Detection of Similar Functions Through the Use of
Dominator Information

André Schifer
Institute of Computer Science
Friedrich Schiller University Jena
Jena, Germany
Andre.Schaefer @uni-jena.de

Abstract—The detection of code clones is an important tech-
nique for finding malware and malicious code. Many existing
methods work on source code to detect code clones. Recent work
in this area has started to focus on the analysis of compiled code
to find malicious code. We introduce a new method to detect
code clones using Java bytecode and control flow information
from dominator trees. A prototype implementation was developed
and compared with the state-of-the-art clone detector NiCad to
evaluate the basic functionality of the method. First experiments
have shown that the method can reliably find Type 1 and Type
2 clones and even find additional clones.

Index Terms—Clone Detection, Malware Detection, Dominator
Tree, Control Flow, Path Embedding

I. INTRODUCTION

Malicious code and malware have become a striking prob-
lem for the security of today’s computer systems. Effectively
protecting systems against compromising attacks based on
malware is therefore of high importance. The huge numbers
of malware and malicious code are partially due to the
adoption of code reuse schemes in the malware industry and
a large fraction of its produced malicious programs seem to
be mere modifications of previous ones [1], [2]. Identifying
malware using static or dynamic analysis often requires reverse
engineering and an in-depth understanding of the behavior
of the suspicious code. Considering instead known malicious
code as malware patterns, which can be used to check systems
for unknown malware, therefore seems to be a promising
approach. Code clone detection [3] is an actively researched
technique for automatically identifying duplicated or similar
code and is used commonly for applications like code refac-
toring, license violation detection, or bug and vulnerability
detection. Applying these techniques to detect malicious code
allows for protecting against malware-based threats [2], [4].

In this paper, a novel code clone detection method for iden-
tifying clones of malware and malicious code is introduced.
The method is based upon encoding pieces of code according
to their paths in the dominator tree, a compiler-style code
representation, which is more abstract compared to the raw
code, tokens, or abstract syntax trees, as usually used by code

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

DOI 10.1109/ACSOS-C51401.2020.00057

Wolfram Amme
Institute of Computer Science
Friedrich Schiller University Jena
Jena, Germany
Wolfram.Amme @uni-jena.de

Thomas S. Heinze
Institute of Data Science
German Aerospace Center (DLR)
Jena, Germany
Thomas.Heinze @dlr.de

clone detection methods, and therefore achieves better results
in the detection of code clones with weaker syntactical simi-
larity. Even more, the path-based encoding supports detecting
clones at various code granularities, not only at the function
or method level. In a preliminary evaluation, the feasibility of
the approach is studied. We therefore identified and labeled
very similar code clones (Type 1/2 clones [3]) in an open-
source Java production library using the state-of-the-art clone
detector NiCad [5] and then applied our method to the library.
We found that the method is able to find the same code
clones as NiCad with almost perfect recall. In addition, we
also found more code clones (Type 3/4 clones [3]), which are
more difficult to find due to their large syntactical differences.
The rest of the paper is structured as follows: In Sect. II, we
first discuss the different types of code clones and the existing
work on code clone detection. Our approach based upon paths
in the dominator tree is conceptually introduced in Sect. III,
where we provide details on four versions, with or without
path splitting and path abstraction. In Sect. IV, we present a
prototypical implementation and the results of a preliminary
evaluation. Finally, in Sect V, we conclude the paper.

II. CopE CLONES
A. Definition and Classification

A code fragment is a continuous piece of code, usually
certain lines of code. Code fragments can differ in their
granularity, so that a code fragment can be a sequence of
statements, a block, or a function. Code clones are two code
fragments, which share a degree of similarity according to a
certain definition, usually derived from the fragments’ syntax
or semantics. Two similar code fragments then form a clone
pair. If more than two code fragments are involved, the
fragments form a clone class. In the literature, there can be
found four types of code clones, which differ in the kind and
degree of similarity [3]:

o Type I: Code fragments which only differ in whitespace,

layout, and comments but are otherwise identical.

e Type 2: Code fragments which in addition to Type 1 code

clones differ in identifiers, types, and constants.

o Type 3: Code fragments which in addition to Type 2 code

clones have statements inserted, altered, or deleted.

o Type 4: Code fragments which differ in their syntax but
have similar semantics or perform similar computations.

While the first approaches to code clone detection focused
on Type 1 and Type 2 code clones, research has progressed
towards identifying Type 3 and Type 4. Therefore, Type 3
and Type 4 code clones have been further classified into four
types according to the degree of their syntactical similarity,
i.e., ratio of shared lines of code or tokens after normalizing
code fragments for Type 1 and Type 2 [6]:

o Very-Strongly Type 3: Code fragments with more than
90% syntactical similarity.

o Strongly Type 3: Code fragments with syntactical simi-
larity between 70% and 90%.

e Moderately Type 3: Code fragments with syntactical
similarity between 50% and 70%.

o Weakly Type 3/Type 4: Code fragments with less than
50% syntactical similarity.

B. Code Clone Detection

Code clone detection has to identify pieces of code with
high similarity in a given system’s code. Numerous methods
and tools have been proposed for solving this task. According
to ROy ET AL. [3], the methods and tools for code clone
detection can be classified according to the used information
into textual, lexical, syntactical, and semantic approaches:

1) Textual Methods: Textual methods use the raw source
code with little or no normalization for clone detection.
JOHNSON, as early as 1993/94, used a sliding window and fin-
gerprints, i.e., hashes, on code substrings with fixed length for
finding clones [7], [8]. Textual methods are though also used
today due to their efficiency. As an example, Vuddy allows for
the scalable detection of vulnerable code clones, looking up
function fingerprints, consisting of the functions length and
hash, in a central vulnerability repository [9]. Cybersecurity
is also the motivation in [4], where NiCad [5], [10] is used
as a code clone detector for identifying malware in Android
apps. NiCad applies a mostly textual method, but additionally
employs lightweight parsing and tree-based structural analysis
for source code normalization and filtering. NiCad is a state-
of-the-art tool and detects most code clones of Type 1 and
2 and part of Type 3 in practice at various granularities
and customizable syntactical similarity [6]. NiCad is used as
baseline for the preliminary evaluation in Sect. IV.

2) Lexical Methods: In order to deal with minor code
changes like formatting and variable renaming, lexical meth-
ods apply compiler-style lexical analysis to transform source
code into a sequence of tokens which is then used to detect
code clones. An early example is CCFinder [11], which
applies token-based normalizations and suffix trees for finding
similar pieces of code. Frequent subsequence data mining is
used on token sequences in CP-Miner to achieve the same
goal [12]. A recent token-based tool, SourcererCC, employs
prefix filtering to reduce the number of code pair candidates
which need to be compared, thus increasing scalability of
detecting up to Type 3 clones on large code repositories

with similar sensitivity as NiCad [13]. Scalability is fur-
ther improved using adaptive prefix filtering by NISHI AND
DAMEVSKI [14]. Finding large-gap code clones, i.e., code
clones with many Type 3 statement insertions/deletions, is
the specific feature of CCAligner [15]. Token-based clone
detection for buggy or vulnerable code is addressed in [16],
based on measuring compression ratios of clone pairs.

3) Syntactical Methods: Syntactical methods parse source
code to transform it into abstract syntax trees (ASTs), such
that code clones can be detected via tree matching or finger-
prints, i.e., structural metrics. The pioneering tree-matching
tool CloneDR uses a compiler generator to create an AST
generator, whose ASTs are hashed into buckets. Only pairs
of the same bucket are then compared by a tolerant tree
matching algorithm, thus reducing tree comparisons [17].
Instead of matching trees, Deckard maps ASTs to vectors,
capturing the syntactical information, and clusters them using
their Euclidean distances for detecting code clones at varying
granularities [18]. Recent approaches use deep neural networks
for learning how to embed ASTs into vector spaces and select
the vectors’ features to predict code clones. As an example,
Oreo works on the function level and uses a Siamese neural
net architecture and training data labeled with the Sourcer-
erCC clone detector, achieving in particular good results for
Moderately Type 3 clones and beyond [19]. Type 3/4 code
clones are also the focus of other deep learning approaches
to clone detection [20]-[22]. In the tool CCLearner, the
frequencies of eight token categories in an AST and their
similarity in clone pairs are used as features for supervised
learning of a clone detector [20]. Yu et al. use convolutional
networks and combine structural information from ASTs with
lexical information from tokens in their embedding [21]. AST
embeddings are in particular studied in [22], using the cosine
similarity of vectors representing code clones for evaluation.
As a result, the authors showed the usefulness of pretrained
embeddings like code2vec [23]. A thorough comparison of our
approach with syntactical methods is subject to future work.

4) Semantic Methods: Instead of comparing syntactical
features, semantic methods analyze the computations of code
too also find Type 4 code clones. PEWNY ET AL. use the
control flow graph and hashed signatures of its basic blocks,
as created by statically analyzing their input/output behavior,
to find buggy or vulnerable code clones in binary code
across architectures [24]. Similarly, semantic signatures are
extracted for functions by emulating their execution in [25],
to detect cloned functions in binary code. Instrumentation is
used in [26] to create dynamic instruction graphs, which are
searched for isomorphic subgraphs to find function clones.
While they capture runtime information, they may miss similar
code because of limited coverage of used test inputs. Recent
approaches embed a representation of code, which models
semantics, e.g., control/data flow, into a neural net and solve
the clone detection problem via deep learning [27], [28].

ITII. CLONE DETECTION USING DOMINATOR TREES

The method we propose is a path-oriented technique in
which functions are described by control flow. In contrast
to known techniques, in our method, functions are not rep-
resented by control flow graphs, but by a more specialized
format, the dominator tree of a function. A dominator tree
is often used in compilers to describe the execution order of
instructions. The use of dominator trees has the advantage that,
unlike in control flow graphs, each node in such a tree can be
reached exactly via a single and unambiguous path.

A. Basic Methodology

A dominator tree of a program describes a special property
of its control flow, namely, which instructions are executed
before others each time a program is executed. In the fol-
lowing, let G = (N, E,s) be a control flow graph, where
(N, E) describes a directed graph and s € N stands for
its start node. In the control flow graphs used here, nodes
are represented by single instructions instead of basic blocks.
Mapping of instructions can be specified through a function
map : N — Inst that assigns a program instruction s € Inst
to each node. Furthermore, let [,k € N. Then, a node [
dominates a node k£ in G (I dom k), if all execution paths
starting with the start node s and ending in k are using the
node [. A node [strictly dominates k£ in G, if [dom k in
G and | # k. A node [dominates a node k£ immediately in
G, if [strictly dominates %k and there exists no other strictly
dominator of k that is strictly dominated from .

A dominator tree of G then is formally defined as a directed
graph D¢ = (N, E*), where E* = {(I, k) || immediately do-
minates k in G}. Figure 1 shows a Java method and its simpli-
fied dominator tree, generated by the Soot compiler [31] based
on the method’s bytecode. In the shown code representation,
the variables p0 and pl should be initialized with the receiver
object and the transferred parameter value, respectively. As can
be seen, each node is reachable from the start node via exactly
one path. It should also be pointed out that, unlike in control
flow graphs, no backward edge is inserted into the dominator
tree for the method’s for-loop, because the instructions in the
loop body do not dominate the loop condition.

The use of a pairwise matching algorithms on dominator
trees to find similar functions would be, as with techniques that
use such algorithms for control flow graphs [24], inefficient
and lead to a high runtime behavior [27].! For this reason,
we move away from a direct comparison of dominator trees.
Instead, descriptive patterns — a kind of fingerprint — are
derived for dominator trees and their comparison.

Finding Similar Functions and Subfunctions: The basic
idea of our methodology is to derive a set of paths for each
dominator tree, which can then be used as pattern for the
comparison of the dominator trees. This concept is comparable
to the work of ALON ET AL. [23], who use paths that connect
the leaves of abstract syntax trees to build patterns for the

!For example, the use of the Hungarian Method would lead to a complexity
of O(|E3|) for a graph G(N, E) [29].

void restoreExpandedValues (Array<V> values){
for (int i=0,n=values.size;i<n;i++){
node=findNode (values.get(i));
if (node!=null){
node . setExpanded (true);
node . expandTo ();

‘ $r3 = pl.get(il) H return ‘

}

| 12 = invoke p0.findNode(r3) |

cond r2 ==null
()

‘ il =il +1 ‘ ‘ invoke r2.setExpanded() ‘

‘ invoke r2.expandTo() ‘

Fig. 1. Sample progam and its dominator tree.

description of the abstract syntax trees. For the description of
a dominator tree D, all paths contained in D that start with
the start node and end in a leaf node are thus used. Patterns
created in this way can then be used to uniquely represent
a dominator tree. Paths are described in encoded form as a
concatenation of the instructions assigned to the nodes. For
example, in the dominator tree of Figure 1, the path from the
start node to the rightmost leaf node is described as:
assign(il = 0) — assign(i0 = pl.Array.size)

— cond(il >=i0) — return()

Let G = (N,E,s) be a control flow graph and DY its
dominator tree, Ppc the set of paths in D€, and L pc the set
of leaf nodes in DY. The set of paths uniquely describing the
dominator tree, that is used as a pattern for D&, is defined by
DS, = {map(s)o---omap(ny)|s---ng € Ppc,ny € Lpc}.
For the dominator tree D of the sample program in Figure
1, the set of paths Dy, is given in Figure 2. In the figure,
a constant pool is used to describe the accesses to functions
and instance variables. In the paths, a constant pool access is
identified by the character # and the entry number.

Two functions f and g, with control flow graphs G and G’,
respectively, are then called strictly similar to each other, if
the cardinality of the sets DS, and DS, is the same and if
for each path p € DY, exists also a similar path p’ € Dsc‘f;/t.
If only the latter condition applies and the sets of paths D¢

set

Dger = {assign(il=0)—assign(i0=p1.#0)—

0: | Array.size cond(il >=i0)—assign($r3=pl.#1)—

1: | Array.get(in) assign(r2=p0.#2)—cond(r2==null)—

2: |N.findNode(V) assign(il=il+1),
assign(il=0)—assign(i0=p1.#0)—

3: |N-setBxpanded(1) cond(il >=i0)—assign($r3=p1.#1)—

4:|N.expandTo(V) assign(r2=p0.#2)— cond(r2==null)—

invoke(r2.#3)—invoke(r2.#4),
assign(il=0)—assign(i0=p1.#0)—
cond(il>=i0)—return() }

Constant Pool

Dspiir = {assign(il=0)—assign(i0=p1.#0),
cond(il >=i0)—assign($r3=p1.#1)—assign(r2=p0.#2),
cond(il >=i0)—return(),
cond(r2==null)—assign(il=il+1),
cond(r2==null)—invoke(r2.#3)—invoke(r2.#4) }

Fig. 2. Patterns of the sample dominator tree.

and D&, thus do not have the same number of elements, then
f and g are called only partially similar.

The similarity of paths in dominator trees D€ and D can
be formally described by a function o : DS, x DS, — bool. In
general, the function o can be freely chosen depending on its
application. For our purposes, two paths p and g are considered
to be similar, and thus code clones, if the euclidean distance
of p and ¢ does not exceed a certain threshold value.

Discovering Similar Subblocks: With the methodology
we have introduced so far, the similarity of functions or
subfunctions f and g can be analyzed. On the other hand,
the technique cannot yet be used to check whether a function
f contains certain subblocks, which is, however, indispensable
for finding malicious code and malware.

The reason for not finding independent subblocks in func-
tions is due to the way, the paths in the patterns have been
chosen for describing dominator trees. Since these always start
with the start node and end in a leaf node, similiar subblocks
located in the middle of a program, which are characterized as
independent of the overall execution of a function, i.e., by the
fact that they have similar partial paths, cannot be recognized.

A more suitable structure of the patterns, used for the
description of dominator trees when searching for similar
subblocks, can be achieved by introducing split nodes. We call
a node 7 in a dominator tree DY a split node, if 7 has more
than one successor node in D&. The split nodes of dominator
tree D are referred to as Spc. In the dominator tree of the
sample program, split nodes are represented by comparison
nodes, which are shown in Figure 1 in the form of ellipses.

Through the introduction of split nodes, the set of paths that
can used as a pattern of DY = (N, E*) is defined by the set
of all paths that begin with the start node s or a split node, and
end at a leaf node or the predecessor node of a split node, and
contain no other split node apart from the initial split node.
Formally described:

DS = {map(n1) o --- o map(ny,) | n1 - -ny € Ppa,

(n1 =svmnyeSps),(nk € Lpe
vny € preds(Spe), i > 1:n; € Spa)}

> o
g 2 3 5 5
— = 5 5 @ o < <
] T © > [SE=E] 5 L ox .
S .33 E58:P89pP,3535 23¢9 gis2
Z2ERC2 =L 82088 35FEBHG< 3CE8883<E 238
O 1 2 3 4 5 6 7 8 9 10 I1 12 13 14 1516 17 18 19 20 21 22 23 24 25

Dger = {[0.1.1.0.0.0.1.0. - - - 0.5.2.0.0.0.1.1.],
[0.1.0.0.0.0.0.0. - -+ 2.4.2.0.0.0.1.1.],
[0.0.0.0.0.0.0.1.- -+ 0.2.1.0.0.0.0.0.]}

Fig. 3. Path abstraction of Dge¢ of the sample dominator tree.

The set of paths using split nodes for the dominator tree of
the sample program is also shown in Figure 2.

As before, for a subblock b and a function f, with control
flow graphs G and G, respectively, function f contains a
subblock that is strictly similiar to subblock b, if for each
path p € DS, a similar path p' € ng/lit exists. If the latter
condition holds for a subset of Dgﬂit, function f contains a
subblock that is partially similar to subblock b.

B. Abstraction of the Path Representations

The description of paths by a sequence of node labels is
efficient, but often not flexible enough for recognizing similar
paths. For example, it is difficult to recognize two similar
paths, in which computationally independent instructions are
executed in exactly the opposite order. Furthermore, it is diffi-
cult to identifiy a path as similar to a path, in which additional
instructions are executed without changing the semantics.

In principle, recognition of similar paths, in cases like de-
scribed above, could be achieved by loosening the comparison
function . However, a weakening of the comparison function
could lead to the fact that previous inequalities can become
equal. There are various approaches to solve this problem.
One possibility would be, for example, to describe paths in a
dominator tree using multisets [30] and define the similarity
of different paths by means of a subset relation on these sets.
However, such a representation of paths would be inefficient
from an algorithmic point of view. Another solution could be
to use machine learning techniques to train a neural network
to predict when one path is a subpath of another.

The use of machine learning techniques would be an elegant
solution for the recognition of path resemblances, which we
will deal with in subsequent research. Without the use of
these techniques, we want to content ourselves for the moment
with an abstraction of the path concept used in our technique.
Under abstraction of paths, one generally insists that in the
description of paths, not exactly the instructions executed
during the execution are given, but paths are described by more
abstract properties such as the number of executed instructions
and their instruction types, or structural properties such as the
number of successor nodes of a branch node, etc.

Abstraction is not a novel principle for describing instruc-
tions or related program parts and is used, for example, in
[27] to abstract basic blocks contained in control flow graphs
or in [18] to describe subtrees in abstract syntax trees. In this
paper, the principle of abstraction is used to describe paths
in the dominator tree. With the abstraction, a path is then

no longer seen as a sequence of node labels representing the
instructions executed by the nodes, but simply described as
a vector, in which the number of times, different types of
instructions contained in the path are processed, is recorded.

Figure 3 describes which types of instructions are con-
sidered by our abstraction of paths and contains a concrete
example of path abstraction. In the vector descriptions, the
term - -- denotes a sequence of components with value 0.

In the abstraction, paths are described by k-elementary
vectors, so that the set of paths in a given dominator tree
can be considered as a subset of the k-elementary natural
vector space N¥, k € N. By specifying an abstraction function
a : Paths — NF, where Paths is the set of all paths,
the sets DS, and DS ;. as previously used above to find
similar functions or subblocks contained in a function, can be
transformed into a form based on the choosen abstraction level
and, by forming a corresponding comparison function o,psr,
can also be used to check similar functions or subblocks
contained in a function on a corresponding abstraction level.

IV. IMPLEMENTATION AND PRELIMINARY RESULTS

The method has been implemented as an additional compo-
nent in the Soot framework [31]. Soot is a system for analyzing
and optimizing Java bytecode. To generate the dominator trees,
the Soot system loads and processes a single Java class file at
a time. The component we implemented in the Soot system
takes the dominator tree created for a function, derives the
various path sets, and stores them in files. To describe the
individual paths for the non-abstract versions, they are mapped
to a sequence of natural numbers using a simple coding. If
abstraction is used for the description of path sets, paths are
described by the vector representation as explained in Sect. III.

In our first experiments, we were particularly interested in
identifying code clones for a real-world benchmark and to
check whether they can be recognized with our method. As
a benchmark, the open-source Java framework libGDX? and
code clones therein, as identified by the state-of-the-art clone
detector NiCad [5], [10], were chosen. In the experiments,
NiCad’s configuration for Type 2 clones was used. Type 2
clones are very similar code clones, such that the clones
are assumed real code clones and therefore build a baseline
for evaluating our approach. Since manual reviews were
performed in some cases, only functions with a manageable
length between 8 and 35 lines were compared. Our procedures
ran with a threshold Euclidean distance value of 0.1.

Similar to NiCad, identified clones were merged into clone
classes. Figure 4 contains a comparison of the clone classes
found by our method with those generated by NiCad. At this
point, it should be mentioned that, in the experiments, NiCad
found 9 classes which contained functions which were much
changed when mapping them to Java bytecode and therefore
could not be recognized by our method as textually identical.
For reasons of fairness, these classes were removed from the
comparison. From the remaining benchmark, NiCad generated

2(https://github.com/libgdx/libgdx)

Classes compared to NiCad
Same classes
7
= [+
5|2 g 3£ S
=2 |3 & g5 £3
ZEg. g8 | &
Method SENNSE- N <3
NiCad 236
Dot 236 | 203 | 33 (@ plus 3) | 90
D opii 236 | 201 | 34 (D plus 3) | 99
Det—apstr 236 | 192 | 45 (@ plus 4) | 126
Dopiit—abser | 236 | 187 | 49 (@ plus 4) | 133

Fig. 4. Comparison of the found clone classes.

a total of 236 clone classes. The same clone classes, but also
additional classes, were identified with our different methods.

For the found clone classes, when compared with NiCad, it
applied that these were either exactly the same or extended by
additional functions. For example, for the experiments with the
non-abstract version of Dy, in which the path sets are given
by complete paths from the start node to the leaf nodes, 203
classes were exactly the same and 33 classes were extensions
of the classes derived by NiCad, in which on average 3
functions were added. In addition, 90 more clone classes were
found by our procedure compared to NiCad.

Since the methods presented here do not work on Java
source code like NiCad, variables and constants are recog-
nized, for example, and can be excluded from the comparison.
In addition, our methods benefit from the chosen program
representation of Java bytecode and the dominator trees,
which, through further abstraction, allowed for recognizing
semantically similar code despite syntactic differences.

At a first glance, it appears that the experiments for the
abstract versions of our method show no improvement, as
the number of exactly the same clone classes decreases. On
the contrary, more clones could though be found with these
versions, so more clone classes also found by NiCad could
be extended. This improvement is mainly due to the fact that
these versions are completely abstracting from the underlying
source code syntax and that code clones could also be detected,
which result from the swapping of instructions.

In further experiments, we performed measurements with
the abstract methods to determine with what inaccuracy NiCad
must be executed to find all the code clones we found in the
clone classes. The results obtained for the individual classes
were in between 8% and 44% for the textual inaccuracy to
be then used. NiCad in this case added between none and
23 additional functions - up to 508 functions for all classes -
for the measurements in the individual clone classes. In fact,
a direct comparison with NiCad would not be fair, but the
measurements at least show the interesting fact that our method
is performed at peak values with 44% textual independence.

V. CONCLUSION

We have presented a method for detecting code clones,
which can be used to identify reused or cloned malicious
functions and malware, as well as subfunctions or blocks
thereof. The method uses the information of dominator trees
to locate suspicious program parts, which distinguishes the
method from other known techniques for clone code detection.
In the preliminary evaluation, the state-of-the-art clone detec-
tor NiCad was used as baseline for detecting code clones in the
libGDX Java framework to evaluate the basic functionality of
our new method. As the experiments show, when considering
code clones on a rather textual level, the proposed method does
not only achieve comparable results, but also find more clones
compared to NiCad. Additional measurements for a case study
also show that the method can accurately identify semantically
equivalent subblocks where instructions have been swapped.
Further experiments show that the method can perform at peak
values with 44% textual variance.

In fact, the method presented in this paper is still in its
initial state, but the work done so far introduces the essential
approach which is to be extended in future development. As
a starting point, an additional abstraction and encoding of
instructions used in the paths of the dominator tree should
be defined, with which instructions similar to each other can
be mapped to the same encoding. This would result in the
possibility of abstracting from the path term already in the pure
path-oriented comparison. As an alternative, machine learning
could be used to train a neural network to recognize partial
paths or semantically similar paths and to encode them in
the same way, respectively. Above all, however, work needs
to be done for comparing our method to syntactical and
semantic techniques for code clone detection, e.g., based on
the BigCloneBench benchmark [6].

REFERENCES

[1] A. Rahimian, R. Ziarati, S. Preda, and M. Debbabi, “On the reverse
engineering of the citadel botnet,” in FPS, vol. 8352 of Lecture Notes
in Computer Science, pp. 408—425, Springer, 2013.

[2] A. Calleja, J. Tapiador, and J. Caballero, “The malsource dataset:
Quantifying complexity and code reuse in malware development,” I[EEE
Trans. Information Forensics and Security, vol. 14, no. 12, pp. 3175-
3190, 2019.

[3] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470-495, 2009.

[4] J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, “Detecting android
malware using clone detection,” J. Comput. Sci. Technol., vol. 30, no. 5,
pp. 942-956, 2015.

[5] C. K. Roy and J. R. Cordy, “NICAD: accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in ICPC, pp. 172-181, IEEE Computer Society, 2008.

[6] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in ICSME, pp. 131-140, IEEE Computer Society, 2015.

[71 J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in CASCON, pp. 171-183, IBM, 1993.

[8] J. H. Johnson, “Visualizing textual redundancy in legacy source,” in
CASCON, p. 32, IBM, 1994.

[9] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable approach for

vulnerable code clone discovery,” in IEEE Symposium on Security and

Privacy, pp. 595-614, IEEE Computer Society, 2017.

J. R. Cordy and C. K. Roy, “The nicad clone detector,” in ICPC, pp. 219—

220, IEEE Computer Society, 2011.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

[28]

[29]

(30]

[31]

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 654-670, 2002.

Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Trans. Software
Eng., vol. 32, no. 3, pp. 176-192, 2006.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: scaling code clone detection to big-code,” in ICSE, pp. 1157-1168,
ACM, 2016.

M. A. Nishi and K. Damevski, “Scalable code clone detection and search
based on adaptive prefix filtering,” J. Syst. Softw., vol. 137, pp. 130-142,
2018.

P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner: a token
based large-gap clone detector,” in ICSE, pp. 1066-1077, ACM, 2018.
T. Ishio, N. Maeda, K. Shibuya, and K. Inoue, “Cloned buggy code
detection in practice using normalized compression distance,” in ICSME,
pp. 591-594, IEEE Computer Society, 2018.

1. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in ICSM, pp. 368-377,
IEEE Computer Society, 1998.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in ICSE, pp. 96-105,
IEEE Computer Society, 2007.

V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes, “Oreo:
detection of clones in the twilight zone,” in ESEC/SIGSOFT FSE,
pp. 354-365, ACM, 2018.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. G. Ryder, “Cclearner: A
deep learning-based clone detection approach,” in ICSME, pp. 249-260,
IEEE Computer Society, 2017.

H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in /CPC, pp. 70-80,
IEEE / ACM, 2019.

L. Biich and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in SANER, pp. 95-104,
IEEE, 2019.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 40:1-40:29, 2019.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in IEEE Symposium on
Security and Privacy, pp. 709-724, IEEE Computer Society, 2015.

Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in ICPC, pp. 88-98, IEEE
Computer Society, 2017.

F. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. E. Kaiser, and T. Jebara,
“Code relatives: detecting similarly behaving software,” in SIGSOFT
FSE, pp. 702-714, ACM, 2016.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in ACM Conference on Computer and Communications Security,
pp. 363-376, ACM, 2017.

G. Zhao and J. Huang, “Deepsim: deep learning code functional simi-
larity,” in ESEC/SIGSOFT FSE, pp. 141-151, ACM, 2018.

A. Frank, “On Kuhn’s Hungarian method — A tribute from Hungary,”
Naval Research Logistics, vol. 52, pp. 2-5, Feb. 2005.

W. Reisig, Elements of distributed algorithms: modeling and analysis
with Petri nets. Springer, 1998.

P. Lam, E. Bodden, and L. Hendren, “The soot framework for java
program analysis: A retrospective,” July 15 2013.

