Highly microporous carbon aerogels encapsulating sulfur as cathodes for lithium-sulfur batteries

Cell Parameter:

Cell type: Swagelok

Electrolyte 1: 1M LiTFSI (lithium bis(trifluoromethylsulfonyl)imide in DOL/DME (1.3-dioxolane / dimethoxy ethane), 25 °C

Temperature / °C

800 1000 1200

Electrolyte 2: 1M LiPF₆ (Lithiumhexafluorophosphat) in EC/DEC (ethylene carbonate / diethylene carbonate), 25 °C

Sulfur-loading: 0.7–0.8 mg_(S)/cm²

 $CA(N_2/CO_2)$

Cycle number

V_{filled with S}: 0.08 cm³/g

Pore Width [nm]

Binding energy/ eV

High specific capacity and coulombic efficiency for CA:S

No irreversible losses in rate-capability test for CA:S

cathode materials

cathode materials

CONCLUSION

- Synthesis of the CAs with controlled and defined pore sizes and structures
- Increased surface area and micropore volume due to carbonization with N₂/CO₂
- Infiltration of short chain sulfur in the micropores through gas phase process
- Higher cyclability of the Li-S cell via the encapsulation of sulfur in carbonate- and ether-based electrolytes
- Suppression of polysulfide shuttle effect using CA:S electrode

<u>Jessica Schettler</u>, Marina Schwan, Maryam Nojabaee*, Brigitta Sievert*, Frieder Warth*, Hendrik Schneider*, Norbert Wagner*, K. Andreas Friedrich*, and Barbara Milow Institute of Materials Research, Department of Aerogels and Aerogel Composites

German Aerospace Center (DLR), 51170 Cologne, Germany

*Institute of Engineering Thermodynamics, Department of Electrochemical Energy Technology German Aerospace Center (DLR), 70569 Stuttgart, Germany

Jessica.Schettler@dlr.de

