NEXT UPDATES OF ATMOSPHERIC CORRECTION PROCESSOR SEN2COR

SPIE REMOTE SENSING DIGITAL FORUM

21-25 SEPTEMBER 2020

Bringfried Pflug (DLR), Jerome Louis (Telespazio), Vincent Debaecker (Telespazio), Uwe Müller-Wilm (Telespazio Vega), Carine Quang (CS), Ferran Gascon (ESA), Valentina Boccia (ESA)
1. Sen2Cor – processor overview
2. Sen2Cor history
3. Scene classification
4. AOT and WV retrieval
5. Surface reflectance estimation
6. Conclusions and Recommendations
SEN2COR PROCESSOR OVERVIEW

- Atmospheric correction processor for **Sentinel-2 data**

- Atmospheric Correction over **land surface**

- Processing **mono-temporal** orthorectified L1C **granules**

- **ESA-L2A CORE PRODUCT:** L2A-generation performed in the S2-PDGS, (Planet DEM; 10m/30m/90m Copernicus DEM; more frequent updates; product format and generation differs); can be downloaded from OpenHub: https://scihub.copernicus.eu/dhus/#/home.

- **‘USER’ PRODUCT:** L2A-generation by the user by command line processing or via SNAP Toolbox plugin (SRTM resp. user DEM; 90m Copernicus DEM); Available from: http://step.esa.int/main/third-party-plugins-2/sen2cor
SEN2COR PROCESSING CHAIN

Level-1C

optional

Cirrus Correction

Scene Classification
(11 classes) (20m)

series of threshold
tests on L1C
spectral bands,
band ratios and
indices

AOT Retrieval
(20m)

DDV-algorithm
Fall-back: VIS fixed

Water Vapour
Retrieval (20m)

Atmospheric
Pre-corrected
Differential
Absorption
Algorithm (APDA)

CCI-data

DEM

Radiative Transfer LUT
(libRadtran)

Level-2A

• terrain correction
 • adjacency corr.
 • BRDF correction

TOA to BOA
conversion

10m:
• 4 bands
• AOT, WV maps

20m (60m):
• 9 (11) bands
• SCL, AOT, WV
• cloud probability
• snow probability

SENITEL-2 MISSION PERFORMANCE CENTRE; Next updates of atmospheric correction processor Sen2Cor; SPIE Remote Sensing Digital Forum, 21-25 September 2020
SEN2COR HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.0</td>
<td>Nov. 2017</td>
<td>- Improved AOT estimation</td>
</tr>
<tr>
<td>2.5.0</td>
<td>Feb. 2018</td>
<td>- Designed for PDGS processing</td>
</tr>
<tr>
<td>2.5.0</td>
<td>Feb. 2018</td>
<td>- Updated LUT for S2A spectral response v3.0</td>
</tr>
<tr>
<td>2.6.6</td>
<td>8. Oct. 2018</td>
<td>- Blue path radiance rescaling -> OFF</td>
</tr>
<tr>
<td>2.7.x</td>
<td>6. May 2019</td>
<td>- Topographic correction under clouds disabled</td>
</tr>
<tr>
<td>2.8.0</td>
<td>6. May 2019</td>
<td>- PDGS optimizations</td>
</tr>
</tbody>
</table>

ESA core production for Europe

- Merge with evolutions of core production
- Option to disable terrain correction using a DEM

‘user’ production (public versions)

- Scene classification using ESA CCI Data package
- Improved AOT estimation
- Updated LUT for S2A spectral response v3.0

Sen2Cor 2.8 Scene Classification Performance and Outlook

- Reference mask for 20 granules:
 (by visual inspection and labelling of pixels or polygons)

<table>
<thead>
<tr>
<th></th>
<th>clear</th>
<th>shadows</th>
<th>clouds</th>
<th>UA</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>287 480</td>
<td>5 080</td>
<td>10 247</td>
<td>94.9%</td>
<td>5.1%</td>
</tr>
<tr>
<td>shadows</td>
<td>2 611</td>
<td>13 433</td>
<td>150</td>
<td>83.0%</td>
<td>17.0%</td>
</tr>
<tr>
<td>clouds</td>
<td>4 908</td>
<td>165</td>
<td>47 859</td>
<td>90.4%</td>
<td>9.6%</td>
</tr>
</tbody>
</table>

- **PA** 97.5% 71.9% 82.2% **OA**
- **OE** 2.5% 28.1% 17.8% 94%

+ High OA (94%), low omission (2.5%) and commission (5.1%) of clear pixels
- 10 000 cloud pixels classified as clear
- 17% commission of shadows
 (‘dark features’ mapped to shadows)
- 28% omission of shadows
 (cloud shadow; generic cloud top height distribution)

- cloud/cloud shadow/snow dilation; bright isolated pixels identification
- Reduction of class ‘dark features’ to topographic shadows
- Update of cloud shadow algorithm with cloud top height estimation
Sen2Cor 2.8 AOT and WV Retrieval Performance

- Reference: sunphotometer measurements of AERONET sites
 (AERONET: interpolated to 550 nm; time averaged over ±15 min to overpass time)
 (Sen2Cor: spatially averaged over 9x9 km² area; only clear land surface pixels)

 - Green triangles: Results for DDV-algorithm
 - Orange triangles: fall-back processing
 - Solid lines: Specification \(|\Delta \text{AOT550}| \leq 0.1 \times \text{AOT550}_{\text{ref}} + 0.03 \)
 - Dashed line: Sen2Cor_output = Reference
 - Linear trend lines for DDV and fall-back

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOT complete set ±0.24</td>
<td>WV ±0.24 g/cm²</td>
</tr>
<tr>
<td>AOT DDV subset ±0.11</td>
<td></td>
</tr>
<tr>
<td>AOT fall-back subset ±0.29</td>
<td>➢ New fall-back solution</td>
</tr>
</tbody>
</table>

+ Difference between ESA L2A core product and ‘user’ product not significant
SEN2COR: NEW FALL-BACK SOLUTION FOR AOT RETRIEVAL

- Reference: sunphotometer measurements of AERONET sites
 (AERONET: interpolated to 550 nm; time averaged over ±15 min to overpass time)
 (Sen2Cor: spatially averaged over 9x9 km² area; only clear land surface pixels)

Current fall-back: fixed, pre-defined AOT (0.2 at sea level)

New fall-back: AOT from CAMS product

Uncertainty ±0.35

Uncertainty ±0.19
SEN2COR 2.8 SURFACE REFLECTANCE ESTIMATION

- Reference: SR measurements at RADCALNET sites LaCrau and Gobabeb
 own measurements for vegetated sites

+ almost within ±2% of measured reference data
 - except bands 5 and 11

+ Shape of spectra (Pearson correlation >0.99)
 - Little undercorrection of SR (0.015 < RMSD < 0.025)
 - Bands 5 and 11 not worse

+ ESA L2A core product and ‘user’ product give equivalent SR spectra
L2A PRODUCTS EVOLUTION OUTLINE

TOOLBOX

2.8

2.8.1 - 2.8.4

PDGS

MPC 2A

ACIX

Fixes

New Scene Class
New QI
New PSD
Additional Band 1 on 20m Resolution
CAMS Support
Copernicus DEM

Landsat + Python 3.7 for Sen2Like

TOOLBOX + PDGS

PDGS

Sen2Like

2.9

2.10

3.0

Python 2.7

PSD 14.5

Python 3.7

PSD 14.X
CONCLUSIONS AND RECOMMENDATIONS

- good performance of Sen2Cor for all of scene classification, WV retrieval and SR estimation
- Several updates of the processor on the way

- ESA L2A core product gives equivalent results to ‘user’ products
 - core product:
 - easiest way to get L2A-products
 - based on a default configuration
 - ‘user’ product
 - opportunity to process with non-default configuration.
 - Can be used to generate a homogenous time series for an area of interest.

- Monthly L2A data quality report:
 https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/
ACKNOWLEDGMENTS

The research was performed as part of the Copernicus Sentinel-2 Mission Performance Center activities which are managed by ESA. The authors thank the PI investigators and their staff for establishing and maintaining the AERONET sites used in this investigation.

THANK YOU!
BYE BYE!

Carine Quang

Bringfried.Pflug@dlr.de

Jérôme Louis
Vincent Debaecker
Uwe Müller-Wilm

Ferran Gascon
Valentina Boccia