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Reduction of the Coulomb logarithm due to electron-neutral collisions
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The frictional force (stopping power) acting on a test electron moving through an ideal electron gas is
calculated by taking into account electron-neutral atom collisions using the linear plasma response formalism.
This allows us to elucidate how the effective Coulomb logarithm is affected by electron-neutral collisions. In
agreement with a recent investigation by Hagelaar, Donko, and Dyatko [Phys. Rev. Lett. 123, 025004 (2019)],
we observe that the effective Coulomb logarithm decreases considerably due to electron-neutral collisions and
becomes inversely proportional to the collision frequency in the highly collisional limit.
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In a recent investigation, Hagelaar, Donko, and Dyatko
have shown that in partially ionized plasmas, Coulomb scat-
tering can be significantly affected by electron-neutral colli-
sions, and that this effect can be accounted for by a mod-
ification of the classical Coulomb logarithm [1]. Frequent
electron-neutral collisions result in a considerable reduction
of the Coulomb logarithm. The proposed modification has
been tested using first-principles particle simulations, and the
existing inconsistencies have been resolved when using the
proposed modification.

The suggested modification of the Coulomb logarithm was
based on a detailed analysis of classical Coulomb collisions
between two electrons with allowance for electron-neutral
collisions (which scatter one of the electrons isotropically)
during a Coulomb collision event. An alternative approach to
electronic transport, which can account for electron-neutral
collisions self-consistently, is based on the linear plasma
response formalism [2,3]. For a recent example of its ap-
plication, see, e.g., works on the problem of the ion drag
force calculation in weakly ionized low-temperature dusty
plasmas [4–7]. In this context, it is useful to remind that the
collision and the linear plasma response approaches are not
competitive, but rather complementary (see, e.g., Refs. [6,8]
for a detailed discussion). It is obviously desirable to examine
the result of Ref. [1] by an independent method.

The purpose of this Rapid Communication is to comple-
ment the trajectory analysis of Ref. [1] with a simple kinetic
calculation using the linear plasma response formalism. We
consider a simplest related problem. A test electron is moving
through the electron gas immersed in an immobile neutral-
izing background (electron-electron collisions in the one-
component plasma). In conventional weakly ionized plasmas
electron transport can be significantly affected by electron-ion
momentum transfer, but this was not included in the analysis
of Ref. [1] and is omitted for consistency here. Neutral atoms
are also present in the system under consideration and the
electron-neutral collision frequency is ν. This frequency ν can
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vary considerably. We calculate the frictional force (stopping
power) acting on such a test electron starting from the colli-
sionless limit (ν → 0) and then follow how this force changes
when ν increases. In this way an effective Coulomb logarithm
can be introduced and its dependence on the electron-neutral
collision frequency can be determined. The modification of
the Coulomb logarithm in the highly collisional regime is
consistent with that proposed in Ref. [1], except for a small
difference in the numerical coefficient involved.

The starting point of our simple calculation is the solution
for the electrostatic potential around an immobile electron
immersed in a system of charged particles,

φ(r) = − e

2π2

∫
dk

eik·r

k2ε(k, ω)|ω=0
, (1)

where −e is the electron charge, k is the wave vector, ω

is the frequency, and ε(k, ω) is the system permittivity. In
the following, an ideal electron gas is considered so that
electron-electron correlations can be completely neglected.
The condition ω = 0 indicates that the test charge is at rest.
Electron-neutral collisions will have no effect on the distribu-
tion of the electrostatic potential around an immobile electron,
when the surrounding plasma is at rest and isotropic. Assume
now that the test electron is moving with a velocity u through
the electron gas (its energy is not too high, so that the classical
consideration is appropriate). The problem is equivalent to
the electron at rest immersed in an electron gas moving with
a velocity −u relative to it. Equation (1) still applies, but
with a condition ω = −k · u. The frictional force (stopping
power) is the force that the test electron experiences in its own
induced field

Fst = e
∂φ

∂z

∣∣∣∣
r=0

, (2)

where the z axis is parallel to the direction of electron motion.
After simple algebra we arrive at the general expression for
the force,

|Fst| = e2

π

∫ kmax

0

∫ 1

−1
kg Im[ε(k,−k · u)−1]dkdg, (3)
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FIG. 1. Three different regimes considered in terms of the re-
lationship between kcoll, kmin, and kmax. Regime (a) corresponds to
weak collisionality, kcoll < kmin � kmax; regime (b) corresponds to
intermediate collisionality, kmin < kcoll < kmax; and (c) is the highly
collisional regime with kcoll > kmax. The collisional regime is high-
lighted by color.

where g = cos θ , and θ is the angle between k and u. The
frictional (stopping) force acts in the direction opposite to u.

We employ a simplest model for the system permittivity,
which is appropriate for superthermal test electrons (when
the velocity distribution is unimportant). The plasmon permit-
tivity accounting for the effect of electron-neutral collisions
reads

ε(k, ω) = 1 − ω2
p

ω(ω + iν)
, (4)

where ωp =
√

4πe2n/m is the electron plasma frequency,
n is the electron density, and m is the electron mass. Fol-
lowing Ref. [1], the electron-neutral collision frequency ν

is assumed constant. Equation (4) follows straightforwardly
from the linear perturbation analysis of fluid continuity and
momentum equations coupled to the Poisson equation. Thus,
it is clearly relevant in the collisional regime. Its relevance to
the collisionless regime is, however, less evident and will be
discussed separately. The effect of electron deceleration on the
frictional force [9] is neglected.

The k integration in Eq. (3) is cut off at the value kmax,
corresponding to short separations between colliding elec-
trons, which cannot be treated within the plasma response for-
malism. It is generally assumed that kmax � 1/ρ0 = μu2/e2,
where μ = m/2 is the reduced mass for electron-electron col-
lisions, and ρ0 is the characteristic Coulomb (Landau) length
(distance at which the kinetic energy of colliding electrons
becomes comparable to the Coulomb interaction energy).

There are the other two important inverse length scales of
interest for the problem at hand, which are suggested by the
form of the permittivity considered. The first is the inverse
mean free path of the test electron with respect to collisions
with neutrals, kcoll = ν/u. For k > kcoll scattering occurs in
the collisionless regime, and for k < kcoll collisions are impor-
tant. The second is the minimum wave number kmin = ωp/u,
corresponding to a collisionless contribution to the stopping
force. The strong inequality kmin � kmax is satisfied in the
ideal electron gas regime. The exact origin and the physical
meaning of kmin will become apparent shortly.

In the following, three regimes will be considered. These
differ by the relationship between kcoll, kmin, and kmax, as
sketched in Fig. 1.

(i) Collisionless regime. This regime corresponds to the
condition kcoll < kmin � kmax [see Fig. 1(a)]. Substitution ω =
−k · u = −kug in Eq. (4) gives

ε(k,−kug) � 1 − ω2
p

(kug)2
− i

νω2
p

(kug)3
= 1 − ω2

p

(kug)2
− iδ.

The real part corresponds to the dispersion relation of the
propagating plasmon collective mode, and the small imagi-
nary part describes weak damping of this mode. The main
contribution to the integration in Eq. (3) will come from the
pole given by the dispersion relation ε(k,−k · u) = 0, which
corresponds to the interaction via plasma waves [10]. We can
use the relation

Im lim
δ→0

1

z − iδ
= lim

δ→0

δ

z2 + δ2
= πδ(z)

to obtain

Fst = e2
∫ kmax

0

∫ 1

−1
kgδ

(
1 − ω2

p

k2u2g2

)
dkdg. (5)

Next, we use the property

δ

(
1 − α2

x2

)
= α

2
[δ(x − α) + δ(x + α)]

and take into account that because |g| < 1, the k integration in
Eq. (5) should start from kmin = ωp/u. This yields

Fst = e2

ω2
pu2

∫ kmax

kmin

dk

k
= 4πe4n

mu2
ln

(
u

ωpρ0

)
. (6)

The classical Coulomb logarithm ln (λD/ρ0) emerges if we
make the substitution T → mu2 in the expression for the
electron Debye radius, λD =

√
T/4πe2n. This is a known

property of screening of a fast projectile in a plasma [11,12].
The Coulomb logarithm is large since the ideal electron gas
is considered (which ensures that λD � ρ0). We observe that
electron-neutral collisions do not contribute to the stopping
force as long as kcoll < kmin, that is, when ν < ωp.

An important observation is that expression (6) is inde-
pendent of the concrete form of the imaginary contribution
to ε(k, ω), provided it is small enough. The main contribution
comes from the pole given by ε(k, ω) = 0, which corresponds
to the electron-electron interaction via the plasmon collective
mode. The result, identical to Eq. (6), could be obtained
with the plasma permittivity of a completely collisionless
plasma, expressed via the conventional plasma dispersion
function [13]. In this case the imaginary part comes from
the (exponentially small) Landau damping term. Note that in
Ref. [13] the contributions from the collective regime kλD < 1
and individual regime kλD > 1 are treated separately. Their
sum coincides with Eq. (6), and this result is often quoted as
the Bohr stopping force [13].

(ii) Highly collisional regime. In this regime electrons are
highly collisional in the entire range of k, since kcoll > kmax

[see Fig. 1(c)]. Equation (4) gives

ε(k,−kug) � 1 − iω2
p

νkug
.
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Substituting this into Eq. (3) we get

Fst = e2ω2
puν

π

∫ kmax

0

∫ 1

−1

k2g2dkdg

(νkug)2 + ω4
p

. (7)

The integration over g then yields

Fst = 2e2ω4
p

π (uν)2

∫ xmax

0
dx

[
1 − 1

x
arctan(x)

]
, (8)

where x = kuν/ω2
p, xmax = u0(λD/ρ0)(ν/ωp), u0 = u/vT, and

vT = √
T/m. The considered regime corresponds to u0 > 1,

λD � ρ0, and ν > ω ∼ ωp. Thus, we must assume xmax � 1.
In this case the integral can be asymptotically expanded as∫ xmax

0
dx

[
1−1

x
arctan(x)

]
� xmax − π

2
ln xmax − 1

xmax
+ · · · .

Keeping the first dominant term we finally get

Fst = 8e4n

mu2

u

νρ0
(9)

in the considered highly collisional regime.
(iii) Intermediate collisionality. Taking into account the

results already obtained, the friction force can be estimated
as a sum from collisional and collisionless contributions, with
appropriate integration limits [see Fig. 1(b)]. The result is

Fst = 4πe4n

mu2
ln

(
u

νρ0

)
+ 8e4n

mu2
. (10)

The first term corresponds to the collisionless contribution
with the collisional modification of the low-k integration limit.
Collisions diminish the argument of the Coulomb logarithm
from u/ωpρ0 ≡ kmax/kmin to u/νρ0 ≡ kmax/kcoll. The second
term is the contribution from the collisional domain with
xmax = kcolluν/ω2

p = ν2/ω2
p.

We now have a complete picture of how the effect of
electron-neutral collisions affects the magnitude of the stop-
ping power and, hence, the effective Coulomb logarithm.
When ν < ωp (weak collisionality), the effect of collisions
is negligibly small. The Coulomb logarithm is large. At
ωp < ν < u/ρ0 (moderate collisionality), collisions reduce
the magnitude of the stopping power, but the Coulomb loga-
rithm remains large, approaching unity at ν ∼ u/ρ0. At ν >

u/ρ0 (high collisionality), the effective Coulomb logarithm

becomes inversely proportional to the collision frequency and
drops below unity. The sequence of modifications it experi-
ences looks approximately as

ln

(
u

ωpρ0

)
→ ln

(
u

νρ0

)
+ 2

π
→ u

νρ0
.

This is similar to what had been proposed in Ref. [1] on
the basis of a trajectory analysis. From the binary collision
perspective, the friction force in the collisionless regime can
be simply estimated as the product of the electron flux nu,
momentum carried by each electron μu (in the center-of-mass
reference frame), and the Coulomb scattering cross section
4πρ2

0 ln 
,

Fbc = 8πe4n

mu2
ln 
. (11)

Comparing Eqs. (9) and (11) we obtain the effective Coulomb
logarithm in the highly collisional regime as

ln 
eff = 1

π

u

νρ0
. (12)

This coincides with Eq. (15) from Ref. [1], except one minor
but interesting detail: The numerical constant 1/3 suggested
in Ref. [1] is evaluated here as 1/π using the linear plasma
response formalism.

To conclude, the modification of the Coulomb logarithm
due to electron-neutral collisions in a partially ionized plasma
proposed in Ref. [1] has been scrutinized using the linear
plasma response formalism. The presented alternative cal-
culation demonstrates full agreement with the results from
Ref. [1], except for a minor difference in the numerical coeffi-
cient. Close agreement between the two independent theoreti-
cal approaches and successful tests against the first-principles
particle simulations provide strong confidence regarding the
important effect of electron-neutral collisions on the electron-
electron collision term discussed here. The underlying physics
is, however, quite general and similar mechanisms and scenar-
ios can operate for other plasma-related problems. This can
constitute an important direction for future work. In particular,
experimental verification of the effect discussed would be
highly desirable.

I would like to thank Alexei Ivlev for useful sugges-
tions and Victoriya Yaroshenko for a careful reading of the
manuscript.
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