Impact of faster freight trains on railway capacity and operational quality

Comprail 2020

Jakob Geischberger, Michael Mönsters
Agenda

1. Introduction
2. Methodical approach
3. Case study
4. Discussion
1. Introduction (1)

- Growing rail passenger traffic
- Growing importance of rail freight

- Higher occupation of railway infrastructure
- Overloaded corridors with insufficient capacity

- Measures to increase capacity
1. Introduction (2)

Measures to increase capacity

- Technical innovations
- Operational measures
- Harmonisation of speeds
- Expansion of infrastructure
 ...
 Faster freight trains
1. Introduction (3)

Faster freight trains - distinction between two cases:

A) Freight trains can **occasionally** make use of their allowed higher speed level **only when needed**:
 - higher recovery margins
 - higher flexibility to recover from delays or blend in with passenger traffic
 - operation with conventional timetables and speed profiles

B) Freight trains are scheduled to so-called **“express train paths”**:
 - more homogeneous timetable profiles
 - strict obligation to run faster than with conventional timetables
1. Introduction (4)

- **Theoretical capacity**: the number of trains that could run over a route during a specific time interval; defines the upper limit for line capacity [1]
- **Practical capacity**: number of train paths that can be scheduled with market-oriented quality (“level of service”) [2,3]

- Different approaches to measure and evaluate railway capacity:
 - constructive methods
 - concatenation according to UIC code 406
 - simulations
 - analytical approaches

- methods have both advantages and disadvantages with respect to output parameters, processing efforts, independence from timetables or how close the models are to real-life train operations

- Microscopic simulation using RailSys ® was chosen
2. Methodical Approach (1)

- Detailed microscopic simulation model (heavily occupied mixed-traffic line):
 - simulation period: 24 hours, evaluation period: 16 hours
 - distribution of entry delays (e.g. freight trains delay by an average 10 minutes with a probability of 0.6) [4]
 - Considerable effect of the dispatching configuration on results

- **difference in delays** as an indicator of operational quality (difference of exit and entry delay) has three states [5]:

<table>
<thead>
<tr>
<th>state</th>
<th>delay</th>
<th>operational quality</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>increasing</td>
<td>defective</td>
<td>overloaded system</td>
</tr>
<tr>
<td>0</td>
<td>neither increasing nor decreasing</td>
<td>“satisfactory“</td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>decreasing</td>
<td>good</td>
<td>additional trains could be added</td>
</tr>
</tbody>
</table>
2. Methodical Approach (2)

- enrichment of a reference timetable with additional freight train paths:
 - higher number of freight trains
 - operational quality deteriorates
- additional trains are step by step added as long as there is still space for additional paths
- measure of the difference in delays for each step

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Name</th>
<th>Allowed maximum speed of freight trains (km/h)</th>
<th>Case*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>Reference timetable (RTT)</td>
<td>conventional (100)</td>
<td>Reference case</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>RTT (v_{\text{max}}) 120</td>
<td>120</td>
<td>Case A)</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>RTT (v_{\text{max}}) 140</td>
<td>140</td>
<td>Case A)</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>RTT (v_{\text{max}}) 160</td>
<td>160</td>
<td>Case A)</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>Express timetable (v_{\text{max}}) 160</td>
<td>160</td>
<td>Case B)</td>
</tr>
</tbody>
</table>

*case A): recovery case, case B) express paths
3. Case study (1)

- Line segment between Offenburg and Freiburg
- Part of TEN* corridor
- Publicly accessible data:
 - Infrastructure
 - Timetables
- Four freight train model classes:
 - container trains, trains with bulk goods, block trains and trains with mixed goods
 - German passenger train categories
- 100 simulation runs
- Measurement of difference of delays

*TEN = Trans European Network
3. Case study (2): results

difference in delays, scenario 1: reference timetable:
3. Case study (3): results

difference in delays, comparison of scenarios:

![Graph showing difference in delays for various scenarios]

- **scenario1, reference**
- **scenario2, vmax 120**
- **scenario3, vmax 140**
- **scenario4, vmax 160**
- **scenario5, vmax 160 express**

The graph illustrates the difference in delays across various scenarios with an increase in the number of additional freight trains.
3. Case study (4): results

- comparison of reference scenario 1 (left) and express paths scenario 5 (right):

 - **Long distance trains**: massive decrease in difference in delays in scenario 5 compared to scenario 1 (by approx. 30 to 40 seconds)
 - **Freight trains**: difference in delays rises by approx. 25 seconds (see blue line, comparing from left to right)
 - negative influence outweighs the positive due to the distribution of train categories
4. Discussion (1)

- overall operational quality seems to rise by allowing freight trains a higher maximum speed in case of delay:
 - case A) seems promising: approx. two additional freight trains per hour and direction (could be lower given network-intrinsic constraints)
 - speed homogeneity and speed of freight trains have a significant influence on the capacity of mixed-traffic rail corridors
- faster freight train operations do not seem to bring advantages per se:
 - case B) (scenario 5) does not seem to be promising against the background of raising capacity
 - strictly raised obligatory maximum speed slightly deteriorates operational quality
 - assumption: better during night time or in a less occupied infrastructure
- free capacity can also be used to reduce overall delays
4. Discussion (2): further research

- change of results if freight trains were given a higher priority
 - => isolated analysis of headway times is not sufficient for an overall understanding of capacity
- comparably small difference between scenarios 2, 3 and 4
 - possibly, the highest allowed speed level is not necessarily the optimal choice
- full migration was assumed:
 - all freight trains had the characteristics of the particular scenario
 - mixed scenarios were not analysed
 - demand for conventional freight trains will remain
 - identify demand for express freight (e.g. package delivery sector or with non-durable or chilled goods)
- additional freight trains do not necessarily mean higher overall transport capacity
References

Impact of faster freight trains on railway capacity and operational quality (Geischberger, Mönsters)© 2020 WIT Press, www.witpress.com
ISSN: 2058-8305 (paper format), ISSN: 2058-8313 (online), http://www.witpress.com/journals
DOI: 10.2495/tdi-V4-N3-274-285
https://www.witpress.com/elibrary/tdi-volumes/4/3/2688
Thank you for your attention

Jakob Geischberger
Jakob.Geischberger@dlr.de

Michael Mönsters
Michael.Moensters@dlr.de

German Aerospace Center
Institute of Transportation Systems
Lilienthalplatz 7
38108 Braunschweig
Germany