Molten Halide Salts for Large-Scale Energy Storage

Dr. Wenjin Ding, MSc. Qing Gong, Dr. Alexander Bonk, Dr. Thomas Bauer

Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Germany

Virtual 2020 MSILDG Summer Research Meeting

Wednesday, 22nd July 2020
Contents

• Introduction
 – Energy research at DLR
 – Large-scale energy storage for Energy Transition

• Molten halide salts for large-scale energy storage
 – Thermal energy storage (TES)
 – Liquid metal battery (LMB)

• Summary and outlook
German Aerospace Center (DLR)

- Research Institution (six research areas)
- Space Agency
- Project Management Agency

Aeronautics Space Transportation Energy Security Digitalization
Energy Research Program Themes

- Efficient fossil-fuel power stations (turbo machines, combustion chambers, heat exchangers)
- Solar thermal power plant technology, solar conversion
- Wind research
- Energy storage (thermal, chemical, electrical)
- High and low temperature fuel cells
- Systems analysis and technology assessment
Energy Transition in Germany –
Increased volatile power from PV/wind

- Currently ~45 GW installed coal power plants in Germany to be shut down stepwise until 2038
- After 2038 no coal power plants in operation anymore
- Additional aspects:
 - The last 9.5 GW of nuclear power plants also to be shut down until 2022
 - Significant increase of volatile power from PV/wind
 - Large-scale energy storage required to stabilize the grid

Source: Final report of the „Commission on Growth, Structural Change and Employment“ 2019
Installed Global Capacity for Grid-Connected Storage

Sources:

Grid-connected electrical storage power in 2014:
- Pumped hydro ~130 GW_{el}
- Thermal energy storage (TES) ~2.3 GW_{el}
- Batteries ~0.6 Gw_{el}

Concentrating Solar Power (CSP) grid-connected molten salt storage in 2015
- power > 1.5 GW_{el}
- capacity > 30 GWh_{th} (typically 8 h storage)

375 Mw_{el} Molten salt tanks
28 500 tons molten salt
Source: Andasol 3
Research Group for TES in MOLTEN SALTS

System aspects
Components
Process technology (Upscaling)
Material aspects

"... value chain research..."

10 mg
100 ton

DLR test facility TESIS
Contents

• Introduction
 – Energy research at DLR
 – Large-scale energy storage for Energy Transition

• Molten halide salts for large-scale energy storage
 – Thermal energy storage (TES)
 – Liquid metal battery (LMB)

• Summary and outlook
Molten Salts for Thermal Energy Storage (TES)

- Large-scale hourly storage for **CSP plants** (13 GWhₑ) demonstrated
- **Inexpensive** heat storage capacity from 170 to 560 °C in molten salts (nitrate/nitrite, non-toxic, non-flammable) in large-scale **unpressurized** tanks
- Potential to transfer technology from CSP to **grid-connected storage → Carnot battery**
- **Limitation**: Thermal decomposition of nitrate/nitrite at >560°C

Next Generation CSP with Advanced-salt System

Advanced-salt system + sCO₂ power cycle for higher energy conversion and lower LCOE*

- Advanced-salt system (520-720°C)
- sCO₂ power cycle (500-700°C, efficiency > 50%)

Example: Selection of Promising Chloride Salts for TES

- Considering thermal and physical properties (Cₚ, vapor pressure, melting point), hygroscopicity (corrosiveness) and prices, MgCl₂-KCl-NaCl eutectic salt mixture (<0.35 USD/kg, thermal stability >800°C, Tₘ = 385°C) is selected [1].

- Other research: Corrosion control of structural materials in molten chlorides [2].

FactSage simulation

Contents

• Introduction
 – Energy research at DLR
 – Large-scale energy storage for Energy Transition

• Molten halide salts for large-scale energy storage
 – Thermal energy storage (TES)
 – Liquid metal battery (LMB)

• Summary and outlook
Liquid Metal Battery (LMB) for Grid-scale Storage

- **LMBs:**
 - Long life > 10,000 cycles, easy to scale-up → all liquid/liquid interfaces
 - Low storage costs → materials of electrodes and electrolytes
- **Liquid metal electrodes**
 → Low cost metals, high electric conductivity, simple structure of electrodes
- **Molten salt electrolytes**
 → Cheap, high ionic conductivity, low self-discharge, …

State of the Art LMBs

- **Li-based LMB** with excellent performance in labor-scale achieved

- **Na-based LMB** with excellent performance in labor-scale still not achieved
 - **Low-melting-point** T_m molten salt electrolyte is the key challenge

<table>
<thead>
<tr>
<th>LMBs</th>
<th>Electrode</th>
<th>Electrolyte</th>
<th>T_m [°C]</th>
<th>T_w [°C]</th>
<th>Coulombic efficiency [%]</th>
<th>Energy efficiency [%]</th>
<th>self-discharge rate [mA/cm² at full charge]</th>
<th>Capacity loss rate [%/cycle]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-LMB</td>
<td>Anode: Li; Cathode: Sb-Sn</td>
<td>LiF-LiCl-LiBr</td>
<td>440</td>
<td>500</td>
<td>>98%</td>
<td>70-90</td>
<td><1</td>
<td>0.006</td>
</tr>
<tr>
<td>Na-LMB</td>
<td>Anode: Na Cathode: Bi (single-cation)</td>
<td>NaF-NaCl-NaI</td>
<td>530</td>
<td>580</td>
<td>82</td>
<td>59</td>
<td>~20</td>
<td>NA</td>
</tr>
</tbody>
</table>

R&D of Low-temperature Na-based LMB

- **Sino-German project funded by DFG-NSFC:**
 - Prof. K. Wang, Dr. H. Li, Huazhong University of Science and Technology (HUST), China
 - Dr. A. Weisenburger, Dr. A. Jianu, Karlsruhe Institute of Technology (KIT), Germany

- **Na-based liquid metal batteries with $T_w < 450^\circ C$:**
 - Liquid metal electrodes (Na//SbSn and Na//BiSb)
 - Na^+-containing molten salt electrolyte with $T_m < 400^\circ C$ and low solubility of Na metal for low self-discharge
 - Excellent performance as Li-LMB but lower costs and lower T_w

- **Molten halide salts are promising electrolytes**
 - High electrochemical stability (>2.5 V)
 - High thermal stability (>500°C)
 - High conductivity
 - Low costs
 - **But much higher T_m than electrodes**
Selection Process of Molten Salt Electrolyte

1. Screening of salt mixtures via phase diagram simulation (T_m)
2. Experimental measurements of melting temperatures T_m
3. Determination of key molten salt properties as electrolyte
4. Cost pre-analysis of materials
5. Battery pre-tests with selected molten salt electrolytes

1 Screening of Halide Salt Mixtures Regarding T_m

- Salt mixture containing:
 - Cation: Li^+, K^+, Ba^{2+}, Ca^{2+}, Na^+
 - Anion (halide): F^- (not selected due to high T_m), Cl^-, Br^-, I^-

- Screening via thermodynamic modelling (FactSage) and literature review

- Potential electrolyte salts:
 - Li^+-containing: Na-Li-K//Cl-Br-I (e.g. Na-Li-K//I: $T_m = 290°C$, Na-Li-K//Cl: $T_m = 350°C$)
 - Not Li^+-containing: $\text{Na-K-Ba-Ca//Cl-Br-I}$ (e.g. Na-K-Ba-Ca//Cl: $T_m = 435°C$)

- Na-Li-K//I (starting salt system) due to lowest T_m
1 Screening of Halide Salt Mixtures Regarding T_m

- **Eutectic Na-Li-K/I:**
 - Pseudo-binary salt with $T_m = \sim290 \ ^\circ\text{C}$
 - Eutectic Li-K/I: 63-37 mol%
 - Solubility of NaI in the eutectic LiI-KI is ~12 mol%

- **Na-K-Li/I** is promising:
 - Melting temperature $T_m < 300\ ^\circ\text{C}$
 - But which Na$^+$ concentration regarding:
 - Low Na metal solubility
 - Sufficient Na$^+$ conductivity

- Six eutectic salt compositions are selected for further investigation:
 - NaI: 0, 3, 5, 7, 9, 12 mol%

2 Experimental measurements of T_m

- **Methods:**
 - Thermal: Differential scanning calorimetry (DSC)
 - Optical: Melting point measurement apparatus (OptiMelt™)

- **Na-K-Li//I:**
 - Solubility of NaI in the eutectic LiI-KI (64-36 mol%) is 7-9 mol%.
 - 12 mol% NaI: not eutectic, secondary peaks besides main peaks at ~309-330°C.

3 Determination of Molten Salt Properties as Electrolyte

- **Estimation of Na solubility** in NaI-LiI-KI based on literature data [1]:
 - Dissolution reaction $Na + Na^+ \rightarrow Na^+_2$
 - < 0.03 mol% at < 550 °C (estimated self-discharge < 1 mA/cm2)
 - Underestimated due to dissolution reactions with other cations (i.e., Li$^+$, K$^+$)
 - Experiments in progress

- **Estimation of Na$^+$ conductivity** based on [2]:
 - 28 mS/cm for $T>350$°C for 3-7 mol% NaI
 - Higher than that of electrolyte in conventional Li-ion battery (~10 mS/cm)

4 Cost Pre-analysis of Materials

- Salt costs:
 - NaI-LiI-KI > NaCl-LiCl-KCl > NaF-NaCl-NaI
 - Small effect on battery costs due to thin molten salt electrolyte

- Salt corrosivity against structural materials:
 - Not a critical issue due to inert atmosphere of LMB and inhibition effect of Na
 - Conventional stainless steels allowed (KIT: Selection of structural materials)

<table>
<thead>
<tr>
<th>Salts</th>
<th>Large-scale prices / USD/kg</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI</td>
<td>~3</td>
<td>Current price (CP)*</td>
</tr>
<tr>
<td>KI</td>
<td>~4</td>
<td>CP</td>
</tr>
<tr>
<td>LiI</td>
<td>~40</td>
<td>CP</td>
</tr>
<tr>
<td>NaI-LiI-KI eutectic</td>
<td>~20</td>
<td>Calculated with CPs of single salts</td>
</tr>
<tr>
<td>NaCl-LiCl-KCl eutectic</td>
<td>~3</td>
<td>Calculated with CPs of single salts</td>
</tr>
<tr>
<td>NaF-NaCl-NaI eutectic</td>
<td>~2</td>
<td>Calculated with CPs of single salts</td>
</tr>
</tbody>
</table>

5 Battery Pre-tests with Selected Molten Salt Electrolytes

- **Test conditions:**
 - ~1 cm thick NaCl(9 mol%)-LiCl-KCl (similar as NaI-Lil-KI) electrolyte,
 - $T_w = 450^\circ C$, 100 discharge/charge cycles, current up to 1000 mA/cm2

- **Results:**
 - Higher Coulombic efficiency >95%
 - T_w reduced by >100$^\circ C$ → low costs for structural and isolation materials
 - But unacceptable capacity loss rate → to be improved by battery optimization

<table>
<thead>
<tr>
<th>LMBs</th>
<th>Electrode</th>
<th>Electolyte</th>
<th>T_m [°C]</th>
<th>T_w [°C]</th>
<th>Coulombic efficiency [%]</th>
<th>self-discharge rate [mA/cm2 at full charge]</th>
<th>Capacity loss rate [%/cycle]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-LMB</td>
<td>Anode: Li; Cathode: Bi-based alloy</td>
<td>NaCl-LiCl-KCl</td>
<td>350</td>
<td>450</td>
<td>>95%</td>
<td>To be measured</td>
<td>0.1</td>
</tr>
<tr>
<td>(HUST, KIT, DLR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-LMB</td>
<td>Anode: Na Cathode: Bi (single-cation)</td>
<td>NaF-NaCl-NaI</td>
<td>530</td>
<td>580</td>
<td>82</td>
<td>~20</td>
<td>NA</td>
</tr>
<tr>
<td>(ANL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary and Outlook

- Next generation TES technology based on molten chloride salts is being developed
 - MgCl₂-NaCl-KCl is selected
 - Focusing on corrosion control of structural materials

- Molten halide salts as electrolyte in LMB:
 - Process for selection of salt mixtures is proposed
 - Li-K-Na halide salt mixtures as promising electrolytes of Na-LMB
 - Battery pre-tests show promising results
 - Other halide salt mixtures will be studied
 - Battery optimization will be performed
Thank you for your attention!

Wenjin Ding
Institute of Engineering Thermodynamics (ITT), Stuttgart
Email: wenjin.ding@dlr.de

Acknowledgement:
Locations and employees

Approx. 8700 employees with 40 institutes and facilities at 20 sites.

And a research site of concentrated solar power (CSP) in Almeria/Spain
Electricity generation in Germany (Example)

In future the situation will be marked by

- Large share of volatile PV & wind power with limited operation hours
- Large installed PV & wind power compared to power demand

→ **Flexibility requirement**: Large-scale energy storage, power-to-X, demand side management, hybrid operation,…
Carnot Battery

- Electricity- heat (stored) - electricity
- Round-efficiency ~50%
- A conventional coal power plant is being transformed to Carnot battery plant
Advanced-Salt System – Chlorides or Carbonates

- Chloride/carbonate (>800 °C)
- Salt costs: Chloride < Nitrate < Carbonate
- Tank costs (corrosion, T): Nitrate < Carbonate < Chloride

Estimated costs of various TES systems*

J. Gomez-Vidal, A. Kruizenga, Technology Pathway Molten Salt, Project of CSP Gen 3 Roadmap, 02. 2017
SunShot Initiative is a federal government program run by DOE.

Reducing corrosiveness of chlorides → Reducing tank (TES) costs by using cheaper alloys
R&D of Molten Chlorides for Thermal Energy Storage

1. Selection of Promising Chloride Salts
2. Corrosion mechanism of Fe-Cr-Ni alloy
3. In-situ corrosive impurity monitoring based on cyclic voltammetry
4. Mg corrosion inhibitor

Inert atmosphere

Molten Chlorides

Molten salt storage tank

2 Corrosion Mechanism of Commercial Fe-Cr-Ni Alloys

Molten Chlorides

Molten salt storage tank

2 Proposed Corrosion Mechanisms

- Large amount of Mg and O detected in holes in corrosion layer
- MgCr$_2$O$_4$ and MgO detected in oxides on surface

SS 310 in MgNaK chloride (700°C, 500 h)

3 In-situ Monitoring of Corrosive Impurities

In-situ corrosive impurity monitoring based on cyclic voltammetry

Inert atmosphere

Molten Chlorides

Molten salt storage tank

3 Cyclic Voltammetry (循环伏安法)

MgCl₂/KCl/NaCl (60/20/20 mole%) at 500 °C, Tungsten as working, counter and reference electrode

Most stable corrosive impurity MgOH⁺

Reaction B: MgOH⁺ + e⁻ = MgO + ½ H₂

4 Mg Corrosion Inhibitor

Mg corrosion inhibitor

Inert atmosphere

Molten Chlorides

Molten salt storage tank

4 Reduced Corrosion Rates by Mg

Adding Mg as corrosion inhibitor can significantly reduce the corrosion rate in case of Fe-Cr-Ni based alloys, to ~10% compared with the case without Mg addition.

Inhibition mechanism: Adding Mg reduces redox potential of molten chloride salts.