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German Aerospace Center (DLR)

• Research Institution (six research areas)
• Space Agency
• Project Management Agency

Aeronautics Space Transportation Energy Security Digitalization
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Energy Research Program Themes

- Efficient fossil-fuel power stations
(turbo machines, combustion 
chambers, heat exchangers)

- Solar thermal power plant 
technology, solar conversion

- Wind research

- Energy storage
(thermal, chemical, electrical)

- High and low temperature fuel cells

- Systems analysis and technology 
assessment

Synlight

DLR test facility TESIS
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Energy Transition in Germany –
Increased volatile power from PV/wind

- Currently ~45 GW installed coal power 
plants in Germany to be shut down 
stepwise until 2038

- After 2038 no coal power plants in 
operation anymore

- Additional aspects:
- The last 9.5 GW of nuclear power 

plants also to be shut down until 
2022

- Significant increase of volatile 
power from PV/wind

- Large-scale energy storage 
required to stabilize the grid
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Installed Global Capacity for Grid-Connected Storage

Sources: 
https://www.iea.org/newsroomandevents/graphics/2015-06-30-installed-global-capacity-for-grid-connected-storage.html
http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf

Grid-connected electrical storage power in 2014: 
- Pumped hydro ~130 GWel
- Thermal energy storage (TES) ~2.3 GWel
- Batteries ~0.6 Gwel

Concentrating Solar Power (CSP) grid-connected 
molten salt storage in 2015

- power > 1.5 GWel
- capacity > 30 GWhth (typically 8 h storage)

2 GWel

increased

375 Mwel Molten salt tanks
28 500 tons molten salt
Source: Andasol 3
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System aspects
Components

Process technology
Material (Upscaling)
aspects

Research Group for TES in MOLTEN SALTS

DLR test facility TESIS

10 mg

100 ton
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Molten Salts for Thermal Energy Storage (TES)

• Large-scale hourly storage for CSP plants (13 GWhel) demonstrated

• Inexpensive heat storage capacity from 170 to 560 °C in molten salts 
(nitrate/nitrite, non-toxic, non-flammable) in large-scale unpressurized tanks

• Potential to transfer technology from CSP to grid-connected storage  → Carnot 
battery*

• Limitation: Thermal decomposition of nitrate/nitrite at >560°C

Source: SolarReserve

TES 
e.g. molten nitrate salt

Mirrors

Receiver 

Tower

~ 250 °C

~550 °C

Source: DOE website

*https://www.solarpaces.org/make-carnot-batteries-with-molten-salt-thermal-energy-storage-from-ex-coal-plants/
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Next Generation CSP with Advanced-salt System 

Advanced-salt system + sCO2 power cycle for higher energy conversion 
and lower LCOE*
• Advanced-salt system (520-720°C) 
• sCO2 power cycle (500-700°C, efficiency > 50%)
*M. Mehos et al., Technical Report: NREL/TP-5500-67464, NREL, Golden, CO, 2017.
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Example: Selection of Promising Chloride Salts for TES 

• Considering thermal and physical properties (Cp, vapor pressure, melting point), 
hygroscopicity (corrosiveness) and prices, MgCl2-KCl-NaCl eutectic salt mixture (<0.35 
USD/kg, thermal stability >800°C, Tm = 385°C) is selected [1]. 

• Other research: Corrosion control of structural materials in molten chlorides [2].

FactSage simulation 1) W. Ding, et al., AIP Conference Proceedings , 2019, 2126: 200014
2) W. Ding, et al., Frontiers of Chemical Science and Engineering, 2018, 12(3): 564–576 
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Liquid Metal Battery (LMB) for Grid-scale Storage

Anode

Cathode

• LMBs: 
– Long life > 10 000 cycles, easy to scale-up → all liquid/liquid interfaces
– Low storage costs → materials of electrodes and electrolytes

• Liquid metal electrodes
→ Low cost metals, high electric conductivity, simple structure of electrodes

• Molten salt electrolytes
→ Cheap, high ionic conductivity, low self-discharge, …

H. Kim, K. Wang, K. Jiang, D. Sadoway, et al., Chem. Rev. 113, 2075 (2013).
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14

State of the Art LMBs

14

1) K. Wang, K. Jiang, B. Chung, et al.. Nature, 2014, 514(7522): 348-350.
2) H. Kim, K. Wang, K. Jiang, D. Sadoway, et al., Chem. Rev. 113, 2075 (2013).

LMBs Electrode Electrolyte Tm [°C] Tw [°C] Coulombic
efficiency
[%]

Energy
efficiency
[%]

self-discharge
rate [mA/cm2 at
full charge]

Capacity loss
rate [%/cycle]

Li-LMB
(MIT) [1]

Anode: Li;
Cathode:
Sb-Sn

LiF-LiCl-LiBr 440 500 >98% 70-90 <1 0.006

Na-LMB
(ANL) [2]

Anode: Na
Cathode:
Bi

NaF-NaCl-NaI
(single-cation)

530 580 82 59 ~20 NA

• Li-based LMB with excellent performance in labor-scale achieved

• Na-based LMB with excellent performance in labor-scale still not achieved

 Low-melting-point Tm molten salt electrolyte is the key challenge
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R&D of Low-temperature Na-based LMB 

• Sino-German project funded by DFG-NSFC: 
• Prof. K. Wang, Dr. H. Li, Huazhong University of Science and Technology (HUST), 

China
• Dr. A. Weisenburger, Dr. A. Jianu, Karlsruhe Institute of Technology (KIT), 

Germany

• Na-based liquid metal batteries with Tw <450°C :
• Liquid metal electrodes (Na//SbSn and Na//BiSb)
• Na+-containing molten salt electrolyte with Tm<400°C and low solubility of Na 

metal for low self-discharge
• Excellent performance as Li-LMB but lower costs and lower Tw

• Molten halide salts are promising electrolytes
• High electrochemical stability (>2.5 V)
• High thermal stability (>500°C)
• High conductivity
• Low costs
• But much higher Tm than electrodes 
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1. Screening of salt mixtures via 
phase diagram simulation (Tm)

2. Experimental measurements of 
melting temperatures Tm

3. Determination of key molten salt 
properties as electrolyte

4. Cost pre-analysis of materials

5. Battery pre-tests with selected  
molten salt electrolytes 

Selection Process of Molten Salt Electrolyte 

Q. Gong, W. Ding, K. Wang, A. Weisenburger, et al. Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal 
battery, J. Power Sources, accepted.
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1  Screening of Halide Salt Mixtures Regarding Tm

• Salt mixture containing:
 Cation: Li+, K+, Ba2+, Ca2+, Na+

 Anion (halide): F- (not selected due to high Tm), Cl-, Br-, I-

• Screening via thermodynamic modelling (FactSage) and literature review
• Potential electrolyte salts: 

 Li+-containing: Na-Li-K//Cl-Br-I (e.g. Na-Li-K//I: Tm = 290°C, Na-Li-K//Cl: Tm = 350°C)
 Not Li+-containing: Na-K-Ba-Ca//Cl-Br-I (e.g. Na-K-Ba-Ca//Cl: Tm = 435°C)

• Na-Li-K//I (starting salt system) due to lowest Tm

H. Kim, et al., Chem. Rev. 113, 2075 (2013).
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• Eutectic Na-Li-K//I:
 Pseudo-binary salt with Tm = ~290 °C
 Eutectic Li-K//I: 63-37 mol%
 Solubility of NaI in the eutectic LiI-KI is ~12 mol%

• Na-K-Li//I is promising:
 Melting temperature Tm < 300°C
 But which Na+ concentration regarding: 

 Low Na metal solubility
 Sufficient Na+ conductivity

• Six eutectic salt compositions are selected 
for further investigation:

- NaI: 0, 3, 5, 7, 9, 12 mol%

1  Screening of Halide Salt Mixtures Regarding Tm

Q. Gong, W. Ding, K. Wang, A. Weisenburger, et al. Molten iodide salt electrolyte 
for low-temperature low-cost sodium-based liquid metal battery, J. Power 
Sources, accepted.
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2  Experimental measurements  of Tm

• Methods:
- Thermal: Differential scanning calorimetry (DSC)
- Optical: Melting point measurement apparatus (OptiMeltTM)

• Na-K-Li//I:
 Solubility of NaI in the eutectic LiI-KI (64-36 mol%) is 7-9 mol%
 12 mol% NaI: not eutectic, secondary peaks besides main peaks at ~309-330°C

Q. Gong, W. Ding, K. Wang, A. Weisenburger, et al. Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal 
battery, J. Power Sources, accepted.
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3 Determination of Molten Salt Properties as Electrolyte

• Estimation of Na solubility in NaI-LiI-KI based on literature data [1]:
- Dissolution reaction �� + ��� → ����

- < 0.03 mol% at < 550 °C (estimated self-discharge < 1 mA/cm2)
- Underestimated due to dissolution reactions with other cations (i.e., Li+, K+) 
- Experiments in progress

• Estimation of Na+ conductivity based on [2]:
 28 mS/cm for T>350°C for 3-7 mol% NaI
 Higher than that of electrolyte in conventional Li-ion battery (~10 mS/cm)

1) M. Bredig and H. Bronstein, The Journal of Physical Chemistry, 64 (1960) 64-67.
2) Molten salts: Volume 1. Electrical conductance, density, and viscosity data, 1968.
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4  Cost Pre-analysis of Materials

• Salt costs:
 NaI-LiI-KI > NaCl-LiCl-KCl > NaF-NaCl-NaI
 Small effect  on battery costs due to thin molten salt electrolyte

• Salt corrosivity against structural materials:
 Not a critical issue due to inert atmosphere of LMB and inhibition effect of Na
 Conventional stainless steels allowed (KIT: Selection of structural materials)

Salts Large-scale prices / USD/kg Sources

NaI ~3 Current price (CP)*

KI ~4 CP

LiI ~40 CP

NaI-LiI-KI eutectic ~20 Calculated with CPs of single salts

NaCl-LiCl-KCl eutectic ~3 Calculated with CPs of single salts

NaF-NaCl-NaI eutectic ~2 Calculated with CPs of single salts
*CP: current large-scale price of the single salt from www.alibaba.com [Accessed on May 9th of 2020].

Q. Gong, W. Ding, K. Wang, A. Weisenburger, et al. Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal 
battery, J. Power Sources, accepted.
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5  Battery Pre-tests with Selected Molten Salt Electrolytes 

LMBs Electrode Electrolyte Tm
[°C]

Tw [°C] Coulombic
efficiency
[%]

self-discharge
rate [mA/cm2 at
full charge]

Capacity loss
rate [%/cycle]

Na-LMB
(HUST, KIT,
DLR)

Anode: Li;
Cathode:
Bi-based
alloy

NaCl-LiCl-KCl 350 450 >95% To be measured 0.1

Na-LMB
(ANL)

Anode: Na
Cathode: Bi

NaF-NaCl-NaI
(single-cation)

530 580 82 ~20 NA

• Test conditions:
 ~1 cm thick NaCl(9 mol%)-LiCl-KCl (similar as NaI-LiI-KI) electrolyte,
 Tw = 450°C, 100 discharge/charge cycles, current up to 1000 mA/cm2

• Results: 
 Higher Coulombic efficiency >95%
 Tw reduced by >100°C → low costs for structural and isolation materials 
 But unacceptable capacity loss rate → to be improved by battery optimization

Q. Gong, W. Ding, K. Wang, A. Weisenburger, et al. Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal 
battery, J. Power Sources, accepted.
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Summary and Outlook

• Next generation TES technology based on molten chloride salts is being 
developed
- MgCl2-NaCl-KCl is selected
- Focusing on corrosion control of structural materials

• Molten halide salts as electrolyte in LMB: 
- Process for selection of salt mixtures is proposed
- Li-K-Na halide salt mixtures as promising electrolytes of Na-LMB
- Battery pre-tests show promising results
- Other halide salt mixtures will be studied
- Battery optimization will be performed
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Locations and employees

Approx. 8700 employees 
with 40 institutes and 
facilities at 20 sites.

Offices in Brussels, Paris, 
Tokyo and Washington.

And a research site of 
concentrated solar power 
(CSP) in Almeria/Spain

CSP research site in 
Almeria/Spain

Institute of Engineering Thermodynamics
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Electricity generation in Germany (Example)

In future the situation will be marked by 
- Large share of volatile PV & wind power with limited operation hours
- Large installed PV & wind power compared to power demand

 Flexibility requirement: Large-scale energy storage, power-to-X, demand 
side management, hybrid operation,…

Pumped hydro (~ 7 GW in Germany)

Day/night demand shift

Wind peak

Flexible coal power

Source: https://www.energy-charts.de/

Flexible gas power

PV peak

Nuclear
BiomassHydro power
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Carnot Battery

Electricity from 
renewable energy

Thermal energy 
storage (TES)

Power cycle to 
produce 
electricity from 
stored heat

• Electricity- heat (stored) - electricity
• Round-efficiency ~50%
• A conventional coal power plant is being transformed to Carnot battery plant
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Advanced-Salt System – Chlorides or Carbonates 

J. Gomez-Vidal, A. Kruizenga, Technology Pathway Molten Salt, Project of 
CSP Gen 3 Roadmap, 02. 2017
SunShot Initiative is a federal government program run by DOE.

Estimated costs of various TES systems* 

• Chloride/carbonate (>800 °C)

• Salt costs: 
Chloride<Nitrate<Carbonate

• Tank costs (corrosion, T): 
Nitrate<Carbonate<Chloride

Reducing corrosiveness of chlorides 
→ Reducing tank (TES) costs by 
using cheaper alloys
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R&D of Molten Chlorides for Thermal Energy Storage

Molten Chlorides

Molten salt storage tank 

Corrosion 
mechanism of
Fe-Cr-Ni alloy

Crx+

MgOH+
Cr

2

3

V AAV

In-situ corrosive 
impurity monitoring 
based on cyclic 
voltammetry 4 Mg corrosion 

inhibitor

Inert atmosphere

Selection of 
Promising 

Chloride Salts 
1

*W. Ding, et al., Frontiers of Chemical Science and Engineering, 2018, 12(3): 564–576. 
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Molten Chlorides

Molten salt storage tank 

Corrosion 
mechanism of
Fe-Cr-Ni alloy

Crx+

MgOH+
Cr

2

Corrosion Mechanism of Commercial Fe-Cr-Ni 
Alloys

2

*W. Ding, et al., Solar Energy Materials & Solar Cells, 2018, 184: 22–30.
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Proposed Corrosion Mechanisms

• Large amount of Mg and O 
detected in holes in corrosion 
layer

• MgCr2O4 and MgO detected in 
oxides on surface

Corrosion mechanisms:
• Cr dissolved preferentially
• Corrosion is driven by 

impurities like MgOHCl

SS 310 in MgNaK chloride (700°C, 500 h)

XRD for oxides on surface

2

*W. Ding, et al., Solar Energy Materials & Solar Cells, 2018, 184: 22–30.
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Molten salt storage tank 

In-situ Monitoring of Corrosive Impurities

Molten Chlorides

3
In-situ corrosive
impurity 
monitoring based 
on cyclic 
voltammetry

Inert atmosphere

W. Ding, et al., J. Energy Storage, 2018, 15: 408–414.

3

V A
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Cyclic Voltammetry (循环伏安法)

-200

-100

0

100

200

-2,0 -1,0 0,0 1,0

C
ur

re
nt

 d
en

si
ty

 [m
A/

cm
2 ]

Potential vs. W-RE [V]

A’

A B

C

ip(B) Start point of CV

Sweep direction of CV

Reaction B: MgOH+ + e- = MgO + ½ H2

MgCl2/KCl/NaCl (60/20/20 mole%) at 500 °C, 
Tungsten as working, counter and reference electrode

Peak current density of the peak B (ip(B)) 
proportional to bulk concentration of MgOH+ 

in molten chloride, i.e.,

C∞(MgOH+) = k(T, v)(B)* ip(B)

Most stable corrosive impurity MgOH+

3

W. Ding, et al., J. Energy Storage, 2018, 15: 408–414.
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Molten salt storage tank 

Mg Corrosion Inhibitor（腐蚀抑制剂）

Molten Chlorides

4 Mg corrosion 
inhibitor

*W. Ding, et al, Solar Energy Materials & Solar Cells, 2019, 193:298-313.

Inert atmosphere

4
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Reduced Corrosion Rates by Mg 

Measured corrosion depth of 
alloys after exposure to molten
MgCl2-KCl-NaCl at 700 °C for 500 
h without and with Mg addition

• Adding Mg as corrosion inhibitor can significantly reduce the corrosion rate in case of Fe-Cr-Ni 
based alloys, to ~10% compared with the case without Mg addition.

• Inhibition mechanism: Adding Mg reduces redox potential of molten chloride salts.

4

Mg added

*W. Ding, et al, Solar Energy Materials & Solar 
Cells, 2019, 193:298-313.


