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Abstract: An accurate radiative transfer model (RTM) is essential for the retrieval of soil moisture
(SM) from microwave remote sensing data, such as the passive microwave measurements from
the Soil Moisture Active Passive (SMAP) mission. This mission delivers soil moisture products
based upon L-band brightness temperature data, via retrieval algorithms for surface and root-zone
soil moisture, the latter is retrieved using data assimilation and model support. We found that the
RTM based on the tau-omega (τ-ω) model can suffer from significant errors over croplands in the
simulation of brightness temperature (Tb) (in average between −9.4K and +12.0K for single channel
algorithm (SCA); −8K and +9.7K for dual-channel algorithm (DCA)) if the vegetation scattering
albedo (omega) is set constant and temporal variations are not considered. In order to reduce this
uncertainty, we propose a time-varying parameterization of omega for the widely established zeroth
order radiative transfer τ-ω model. The main assumption is that omega can be expressed by a
functional relationship between vegetation optical depth (tau) and the Green Vegetation Fraction
(GVF). Assuming allometry in the tau-omega relationship, a power-law function was established and
it is supported by correlating measurements of tau and GVF. With this relationship, both tau and
omega increase during the development of vegetation. The application of the proposed time-varying
vegetation scattering albedo results in a consistent improvement for the unbiased root mean square
error of 16% for SCA and 15% for DCA. The reduction for positive and negative biases was 45%
and 5% for SCA and 26% and 12% for DCA, respectively. This indicates that vegetation dynamics
within croplands are better represented by a time-varying single scattering albedo. Based on these
results, we anticipate that the time-varying omega within the tau-omega model will help to mitigate
potential estimation errors in the current SMAP soil moisture products (SCA and DCA). Furthermore,
the improved tau-omega model might serve as a more accurate observation operator for SMAP data
assimilation in weather and climate prediction model.
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1. Introduction

The prediction of extreme weather events, such as heat waves and cold surges, is important in
time spans from one week to several months (S2S: sub-seasonal to seasonal) [1]. However, existing
weather and climate models still perform very poorly in the prediction for this time scale. This issue
is known as the weather and climate prediction gap [2]. At this time scale, the initial conditions of
atmosphere, land and ocean components affect the prediction skill. One of the important missing
pieces in S2S predictions is the role of the land surface; in particular, soil moisture, which is the main
variable transferring water and energy to atmosphere. Furthermore, soil moisture plays an important
role in cloud and precipitation formation emphasized in the recent modeling and land—atmosphere
feedback studies [3–5]. Estimation of global soil moisture variability, particularly within the root zone,
can be realized in a land surface model using data assimilation of remote sensing measurements [6].
Assimilation systems opens new possibilities to improve the accuracy and robustness of land surface
models with microwave brightness temperature assimilated from satellite such as the Soil Moisture
Active Passive (SMAP) mission [7–9] and SMOS (Soil Moisture and Ocean Salinity) mission [10–12].
For this purpose, accurate and realistic microwave radiative transfer modeling (RTM) is essential as
an operator for simulating microwave brightness temperature (Tb). One of the uncertainty sources
in microwave RTM is modeling of wave–canopy interaction, which is commonly represented with a
zeroth-order RTM using vegetation optical depth (VOD) and single scattering albedo (omega) [13–15].

Currently, the SMAP baseline soil moisture algorithm (SCA, single channel algorithm) uses an
NDVI climatology-based VOD in its RTM [16]. The wavelength, or frequency, limits the penetration of
electromagnetic waves through vegetation. Shorter wavelengths have less capacity to penetrate through
the vegetation saturating the VOD at lower vegetation density. Longer wavelengths have the ability
to capture VOD over a wider range of the vegetation growth stages [17]. Therefore, low-frequency
microwave measurements from L-band radiometers such as SMAP and using algorithms such as
dual-channel algorithm, DCA [18] and multi-temporal DCA, MT-DCA [19] allows full penetration of
wide variety of vegetation types.

In this study, we will investigate the improvement of the operational SMAP SCA and DCA
algorithms by proposing a time-varying parameterization of omega for the two algorithms. Currently,
both of the SMAP operational algorithms consider the scattering albedo as constant, e.g., a value of
0.05 for cropland type, while in experimental algorithms such as the MT-DCA omega is varying in
space but fixed over the time domain of the retrieval period for SM and tau. An important difference
between DCA and MT-DCA is whether omega is estimated by the cost function minimization along
with tau and SM. The main assumption in the minimization of the cost function of MT-DCA is that the
temporal variability of scattering albedo is much larger than SM and tau. However, the assumption of
one fixed omega for each vegetation type domain may be invalid over heterogeneous surfaces and
for fast growing crops. This heterogeneity issue ultimately adds to the uncertainty of SM estimation
using SCA, DCA and MT-DCA algorithms (e.g., [20]). In this study, we apply time- and space-varying
omega that is synchronized with VOD and investigate whether a newly parameterized (time-varying
vegetation scattering albedo) tau-omega (τ-ω) radiative transfer model based on SCA and DCA is able
to simulate Tb more accurately over spatially and temporally heterogeneous croplands.
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2. Methods

2.1. The τ-ω Model of Vegetated Soil Emission

The τ-ωmodel represents a zeroth order solution of the radiative transfer equation [15] and is a
common basis of current passive microwave electromagnetic interaction modeling for vegetated soils
at L-band. This model is also applied in the SMAP soil moisture retrieval algorithms [16]. It expresses
the aggregated Tb in the resolution cell over of view as follows [21]:

Tbland = esγT + (1−ω)(1− γ)T + γ(l− es)(1−ω)(1− γ)T (1)

where γ = exp(−τ/ cosθ), Tbland is the brightness temperature, emitted from land surface; es is the
soil emissivity; γ indicates the transmissivity of canopy which is determined by vegetation optical
thickness τ at nadir incidence θ; T is the physical surface temperature and ω is the single-scattering
albedo, set to a constant of 0.05 (ω0.05) for croplands in the SMAP SCA. In this study, this approach is
called the fixed-omega approach. The basis to estimate the value of τ (or VOD) has arguably improved
from the NDVI-based τ used in SCA. In DCA and MT-DCA, τ and ω are directly determined from the
polarimetric microwave L-band Tb, respectively. We focus here on improving the scattering parameter
ω, which is a constant in space and time for SCA and DCA and a constant in time for MT-DCA.
In contrast, we by establish a spatially heterogeneous and temporally varying ωvar to account for the
heterogeneity of vegetation scattering albedo in croplands and their dynamics. Owing to the varying
omega, this approach differs from the multi-temporal dual-channel algorithm (MT-DCA) in that omega
is a time-constant value over the optimization period in MT-DCA. The latter is retrieved from a model
selection during multi-temporal optimization of the estimation of τ and permittivity [22].

2.2. New Parameterization of Vegetation Scattering Albedo ω with GVF

In order to derive the temporally varying vegetation scattering albedo (ω) within the τ-ωmodel,
we assume that omega can be derived based on a proportionality to the sub-grid scale vegetation
fraction, Green Vegetation Fraction (GVF) [23].

ωvar = (1−GVF)ω0 + GVF ωmax (2)

Based on this assumption, the temporal variability ofωvar is determined by the temporal variability
of the vegetation fraction GVF. With no vegetation scattering condition for the bare soil fraction (1 −
GVF), ω0 becomes 0, which leads Equation (2) to:

ωvar = GVF ωmax (3)

2.3. Combining Tau and Omega Via GVF

Our hypothesis is that we can parametrize the 2-D (spatial) vegetation cover fraction (GVF) with
the measured VOD via a power-law function. Firstly, VOD (or τ) can be expressed with a parameter b
and the vegetation water content VWC [22],

τ = b VWC (4)

where b is a parameter related to the wavelength and vegetation structural characteristics. Now,
we define the vegetation cover fraction with the vegetated area, A, per unit ground area.

GVF
[
m2/m2

]
= A

[
m2
]
/1
[
m2
]

(5)

Studies in the past have established empirical relationships between above ground biomass (AGB)
and tree height, H. The allometric relationship has been derived as AGB ~ H2 for forest by [24,25]. As
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vegetation grows, it typically increases in height (H) and covers a larger area (A). The height and area
of vegetation can be related using allometric functions. Using allometric functions we express the 1-D
height in terms of the 2-D area of the vegetation calculated with tree diameter D [26–28]. However,
instead of using the ln(H)-ln(D)2 non-linear approach, we apply an H-D linear approach without
violation of their physical units as shown in Equation (6),

H [m] = C ·
√

A [m2] (6)

where c is a non-dimensional factor related with environmental variables and model uncertainty from
the proposed function [26]. In a recent study, total VWC in a SMAP grid was scrutinized in terms of
volume and height of canopy by [29],

VWC = ρEρVH (7)

where physical density of plant elements (ρE), density of canopy in plant elements (ρ), volume of
vegetation (V), height of vegetation layer (H). In this study, we express V as a function of a (area of a
plant element) and h (the unique thickness of the plant element):

V = a h (8)

If all plant elements are homogeneous in a measured resolution cell, we can compute the vegetation
area as shown in Equation (9)

A =
∑N

i = 1
ai = ρ a, (9)

where ρ is the number density of the plant elements.
Then we can get the volume of a plan element from A and h.

V =
A
ρ

h (10)

Hence,
VWC = ρE·c·A3/2

·h (11)

Then, we can express vegetation optical depth (τ) by putting Equation (8) into Equation (4) and
using Equation (6):

τ = bρEchGFV3/2 (12)

GVF can now be expressed with tau, a vegetation canopy parameter b [m2/kg], a canopy
environmental parameter including an uncertainty c[-] and unique parameters for a specific plant: ρE

[kg/m3] and h [m], which are collectively expressed with the non-dimensional parameter β[-]:

GFV = β·τ2/3 (13)

This results in a new GVF [cm2/cm2 or %]- τ[-] relationship. The new relationship is differentiated
from the exponential function of LAI (Leaf Area Index), which can be estimated as tau or VWC via the
approximated relation (τ = 0.5 ∗ LAI) to estimate the vegetation fraction proposed by [30]. Chaubell et
al. [31] and Fernandez-Moran et al. [32] suggested that VOD is proportional to grass or crop height
linearly. The non-linearity between VOD—vegetation fraction—turned out to be the power-law
function with 2/3 exponent as shown in Equation (13). Finally, without ancillary input, ωe f f can be
derived as a power-law function of tau based on Equations (3) and (10) as follows:

ωe f f = ωmax·β·τ
2
3 (14)
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In the various studies [31–36], the constant or average ω ranged from 0.05 to 0.12. In this study,
the ωmax (vegetation scattering albedo with no bare soil exposed in the SMAP grid) is empirically set to
0.1.

2.4. Experimental Results and Validation of Parameterization

In order to confirm the developed time-dynamic vegetation scattering albedo approach,
we performed a validation process. The control cases (SCA1 and DCA1) are used for Tb simulation
with in-situ SM which is the reference input as shown in Figure 1. In this step, the difference between
the simulated and observed Tb is considered as the modeling mismatch (mainlyω in this study).

Figure 1. Simulation of brightness temperatures (Tb) using the (a) classical τ-ωmodel with time-constant
ω, (b) time-varying parameterization of the τ-ωmodel with variableω (DMM: dielectric mixing model)

The standard τ-ω is used for Tb simulations with in-situ SM as reference input. In this simulation,
the difference between Tb simulated and the observed is considered as an error. With the same in-situ
SM input, we simulate Tb, but this time by applying the new parameterization of vegetation scattering
albedo, ωvar. We evaluate the differences between the newly parameterized, time-varying τ-ωmodel
(SCA2 and DCA2) with the results obtained using the control runs (SCA1 and DCA1). The amount of
reduction (SCA2-SCA1 and DCA2-DCA1) represents the RTM improvement due to the time-variation
of the vegetation scattering albedo, ωvar.

3. Data

In-situ soil moisture from the U.S. Surface Climate Observing Reference Networks (USCRN) soil
moisture network [37] was used as the input for Tb simulations from May to November 2015, which are
used as the reference for the comparisons. In-situ soil moisture from the U.S. Surface Climate Observing
Reference Networks (USCRN) soil moisture network [37] was used as the input for Tb simulations
from May to November 2015, which are used as the reference for the comparisons. Figure A1 in
Appendix A presents the USCRN sites and soil moisture networks selected for the investigation.
The sites are located on croplands (with information of crop type) according to MODIS IGBP land
cover classification. Table 1 provides the detailed description of the study sites.
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Table 1. Experimental set up to validate the effect of time-varying vegetation scattering albedoω in the
τ-ωmodel.

Model Simulation
Vegetation Part Soil Part
τ ω DMM SM

SCA1 Tb(τSCA,ω0.05, εM)
SCA

0.05

[38] In-situSCA2 Tb(τSCA,ωvar, εM) Variational

DCA1 Tb(τDCA,ω0.05, εM)
DCA

0.05

DCA2 Tb(τDCA,ωvar, εM) Variational

In the SCA (τSCA) case, the τ-ωmodel uses a τ value estimated from the MODIS NDVI (Normalized
difference vegetation index) data. In the DCA (τDCA) case, τ is retrieved simultaneously in addition to
the SM. In both cases, omega is constant 0.05 for the crop surface type following [39].

For the newly parameterized approach, the Tb simulations consider the canopy interaction
heterogeneity in the τ-ω model by applying time- and space-variable ω, which is a function of the
τ estimated in SCA or DCA. The heterogeneity inclusion in the DCA and SCA will be investigated
by comparing the SMAPL2 soil moisture product [39–41] in the specific crop sites over USCRN.
Furthermore, the validation SMAP Level 2 Enhanced Passive Soil Moisture Product [16,42] will be
performed from 2015 to 2019 presented in Table 2. The detailed description of the validation data
with SMAP Level 2 products at USCRN validation sites and SMAP Level 2 Enhanced Products in core
validation sites are provided in Tables A1–A3.

Table 2. Performance of SCA (S) and DCA (D) over the calibration sites.

Bias ubRMSE Correlation

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2

TERENO 3.20 −0.75 3.37 0.64 12.06 8.49 9.73 6.25 0.91 0.91 0.87 0.91

HOBE 8.46 5.90 2.91 3.77 15.61 12.23 10.48 11.05 0.86 0.87 0.72 0.74

RISMA −8.38 −8.69 −6.13 −4.94 20.03 19.72 14.84 14.28 0.49 0.50 0.82 0.82

REDMUS −12.04 −10.94 −4.44 −3.70 37.02 36.06 28.93 28.62 0.76 0.76 0.78 0.77

The stressed values indicate the best.

4. Result

4.1. New Parameterization of ω in the τ-ω Model

The parameter γ required in Equation (11) is determined from temporal average of τSCA and
VIIRS GVF measurements over the calibration sites (TERENO, HOBE, REMEDHUS, RISMA) as shown
in Figure 2. The determined γ in this study is 1.12 for the GVF simulation (p-value from Wilcoxon rank
sum test is 0.6817, which means our hypothesis is reliable enough).

The computation of the time-varying ω based on Equation (11) requires also the maximum ωmax.
For the new parameterization of forward model parameters, the time-varying ω was tuned via the
optimal β (1.12) and ωmax. According to Equation (14) and Figure 2, the effective scattering albedo or
variational scattering albedo can range from 0 to 1.12 if VOD changes from 0 to 1. The results of the
calibration and validation are presented in Table 2.
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Figure 2. Scatter plot with vegetation optical depth single channel algorithm (VOD-SCA) and the
measured vegetation fraction (VIIRS) over croplands (grapy points and colored diamond) and Green
Vegetation Fraction (GVF) simulation with the VOD ranged from 0 to 1 by Equation (13) (red curve).

4.2. Quality Assessment of the New Parameterization in the τ-ω Model

We investigate if the τ-ω model error in the simulation of Tb is reduced by replacing the
time-constant omega (ω0.05) with time-varying omega (ωvar) that depends on the value of τ.
Equation (11) indicates that a higher τ measured in a SMAP resolution cell is likely to have a
higher effective value of omega;

Higher τ→ larger vegetation fraction (less bare soil) in a grid→ higher effective ω.
Figure 3a shows the significant overestimation of SMAP that SM RTMs can produce. Particularly,

the SCA-based SM reached the limit value, up to 0.6 m3/m3 during half of the time-series. These errors
(Figure 3b) were estimated by deducting in-situ SM and are temporally correlated with the varying
ω (Figure 3c). The SM estimation is affected by the required ancillary parameters of vegetation, τ
and ω. If one of the ancillaries is not realistic—in this study the time-constant ω—it will affect the
SM estimation. In other words, one of the error sources in SM are the vegetation properties within
RTM and this error is at least to a certain extent addressed with time- and space-varying ω. This result
confirms the validity of the hypothesis that ω can be approximated with τ. The τ-derived ω was more
than 0.1 and two times larger than the constant ω applied in SMAP baseline algorithm. We investigated
the improvement by applying the time- and space-varying ω. The time series of Tb in (Figure 3e) shows
that the overestimated Tb (blue) decreases in the Tb simulations with DMM (red curve). The effect of
the new parameterization of ω in the τ-ωmodel is displayed in Figure 3f. The application of varying ω
significantly reduces the Tb bias form SCA1 to SCA2. Over cropland (Figure 3a), this type of SM bias
seems to be more of a serious issue in SCA- than DCA-based soil moisture retrievals. We can expect
the unrealistically overestimated SM from both approaches will have a positive effect by applying
varying ω during the SM estimation process from the measured Tb. The SMAP DCA SM estimates
in the right panel of Figure 3a are close to 0.6 cm3/cm3 missing the seasonal SM evolution observed
in-situ. The time-varying ω ranges between 0.08 and 0.12, which is a much larger value than the default
value, 0.05. In addition to the large difference in the absolute value, a temporally varying pattern that
exhibits a similar pattern of the SM error due to the constant ω. In this case, the application of the
time-varying ω also significantly reduced the overestimation of Tb.
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Figure 3. Validation of the improvement by applying time-varyingωwithin SCA and dual-channel
algorithm (DCA) approaches; (a) the soil moisture estimation by SCA (left) and DCA (right), (b) their
uncertainty, (c) SCA and DCA VOD, (d) the constant adapted by the Soil Moisture Active Passive
(SMAP) algorithm and the proposed time-varyingω. (e) The brightness temperature simulated by τ-ω
model applied with the constant and time-varyingω from (d) and the input of the in-situ soil moisture
presented in (a) in the U.S. Surface Climate Observing Reference Network (USCRN) Durham-2-N (crop
type: corn). (f) N: mean SCA and DCA 1, H: mean SCA and DCA2, •: mean SMAP Tb measurements,
→: direction of change from mean SCA and DCA1 to SCA and DCA2 towards the reference Tb.

On the other hand, in the Figure 4, the overestimation of SM by using the constant ω in SMAP
RTM is less severe than Figure 3 showing the limited SM value in all-time series in SCA approach.
In this case, SM estimated by SCA is much closer to the in-situ SM than the one by DCA. The SCA τ
used in the computation ofω (c) in Figure 4 is lower than the one in Figure 3. Still, the DCA τ of Figure 4
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ranges from 0.8 to 0.12, which is similar to Figure 3. With given Tb and higher τ, the SM is higher in the
simultaneous optimal estimation. It means that the DCA τ in Figure 4c should be lower. Particularly,
DCA SM error becomes larger when τ was high in DOY approximately over 0.6, which leads to a
DCA-based SM much higher than the in-situ in this period. Probably, the further improvement of
DCA approach for simultaneous estimation of τ and SM can be expected in the minimization process
finding optimal τ with the temporally varying ω than the constant ω.

Figure 4. Validation of the improvement by applying time-varyingωwithin SCA and DCA approaches;
(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA and DCA
VOD, (d) the constant adapted by the SMAP algorithm and the proposed time-varying ω. (e) The
brightness temperature simulated by τ-ωmodel applied with the constant and time-varyingω from
(d) and the input of the in-situ soil moisture presented in (a) in USCRN Gadsden-19-N (crop type:
soybean). (f) N: mean SCA and DCA1, H: mean SCA and DCA2, •: mean SMAP Tb measurements,→:
direction of change from mean SCA and DCA1 to SCA and DCA2 towards the reference Tb.
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As a result, SM estimated by the SMAPL2 SCA and DCA was overestimated as shown in Figures 3
and 4a. The difference of the SMAP SM to the in-situ in Figure 4b shows the temporal correlation
with the changes of the omega in DCA of Figures 3 and 4. It means that both the SCA and DCA
approaches suffer from a low value of ω; DCA can detect the temporal changes of vegetation better,
which is revealed in its SM error. The improvement in the Tb simulation is mostly originated from the
overall larger value of the new ω in both SCA and DCA and less because of the temporal variance.
This uncertainty is attributed to the scattering properties of the τ-ωmodel which was the reason we
replaced the constant ωwith the varying ω. The results in Figures 3 and 4 suggest that the soil moisture
estimations using the τ-ωmodel based on the fixed ω were mostly underestimated and the new ω is
on a higher level than the constant one showing reduced bias compared to the measured Tb.

During the early growth and senesce period of the crop (soybean), the newly parameterized
vegetation ω for cropland in Figure 5c decreases lower than the constant ω (0.05). This dynamic results
in reduced SMAP SM estimation. Impacts include: (b) negative bias in SM, (c) low τ in growing and
senescence season (d) a lower vegetation ω estimated from the τ.

Figure 5. Validation of the improvement by applying time-varyingωwithin SCA and DCA approaches;



Remote Sens. 2020, 12, 2939 11 of 22

(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA and DCA
VOD, (d) the constant adapted by the SMAP algorithm and the proposed time-varying ω. (e) The
brightness temperature simulated by τ-ωmodel applied with the constant and time-varyingω from
(d) and the input of the in-situ soil moisture presented in (a) in USCRN Northgate-5-ESE (crop type:
unknown). (f) N: mean SCA and DCA1, H: mean SCA and DCA2, •: mean SMAP Tb measurements,
→: direction of change from mean SCA and DCA1 to SCA and DCA2 towards the reference Tb.

Even though the improvement is not really significant as compared to the case presented in
Figures 3 and 4, the direction of the improvement is promising. The results show an increase of the
Tb simulation when the SMAP SM has a negative bias, which occurs mostly during the growing and
ripening season, and a decrease of the Tb simulation when the SMAP SM has a positive bias (similar to
Figures 3 and 4), which occurs mostly during the mature crop state. The crop phenology shows in the
uncertainty (Figure 5a,b). It appears also in the cause (constant ω) and solution (varying ω) (Figure 5d)
and the improvement (Figure 5e,f), reasonably. This temporal pattern has been shown not only in
the case of USCRN crop case Figure 5 but also in other intensive field studies using SMAP Level 2
Enhanced Passive Soil Moisture [42] over croplands (corn) from 2015 to 2019 in Figure 6.

Figure 6. Validation of the improvement by applying time-varyingωwithin SCA and DCA approaches;
(a) the soil moisture estimation by SCA (left) and DCA (right), (b) their uncertainty, (c) SCA and DCA VOD,
(d) the constant adapted by the SMAP algorithm and the proposed time-varying ω. (e) The brightness
temperature simulated by τ-ωmodel applied with the constant and time-varyingω from (d) and the input
of the in-situ soil moisture presented in (a) in South Fork (crop type: corn) (latitude: 42.42, longitude: −93.41).
(f) N: mean SCA and DCA1, H: mean SCA and DCA2, •: mean SMAP Tb measurements,→: direction of
change from mean SCA and DCA1 to SCA and DCA2 towards the reference Tb.
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As a result, the vegetation ω variability in the newly parameterized τ-ω model improves the
Tb simulation. Bias and ubRMSE (unbiased Root Mean Square Error) tend to decrease. Owing to
this, the SM estimation from the SMAP Tb will be closer to the in-situ SM. Furthermore, the newly
parameterized τ-ωmodel provides a more accurate observation operator for data assimilation, which
would result in more accurate soil moisture update to NWP. The validation over the crop sites
matched with 9km Tb products, showed a very little improvement by varying ω (SCA1→SCA2 and
DCA1→DCA2). Further case studies have been performed and the results are summarized in Table 3.

Table 3. Total validation score over USCRN (U.S. Surface Climate Observing Reference Networks)
cropland validation site.

South Fork Kenaston Carman

bias ubRMSE Corr. bias ubRMSE Corr. bias ubRMSE Corr.

SCA1 −7.5 26.2 0.62 −15.1 36.5 0.76 −10.7 25.6 0.82

SCA2 −7.5 25.7 0.63 −15.5 36.7 0.76 −10.0 24.3 0.83

DCA1 −5.41 18.5 0.81 −9.5 22.7 0.85 0.9 8.6 0.93

DCA2 −4.40 17.3 0.81 −8.7 21.4 0.85 1.9 9.3 0.93

The stressed values indicate better score.

Overall, the biases were reduced (SCA1→SCA2 and DCA1→DCA2) and ubRMSE becomes closer
to zero for croplands as shown in Table 4 and Figure 7.

Table 4. Total validation score for USCRN cropland validation site.

#
Bias ubRMSE Correlation

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2

total 2.9 0.6 3.7 2.4 23.1 19.5 21.3 18.1 0.725 0.732 0.836 0.832

win 5 22 9 18 5 22 8 17 9 18 15 12

The stressed values indicate better score.

Figure 7. Histogram analysis of bias, ubRMSE and correlation for τ-ω (SCA1 and DCA1) and
semi-empirical τ-ω (SCA2 and DCA2).

This study derived temporally variableω from τ (green curves in Figures 3d, 5d and 6d), which is
treated as a constant in DCA (black dotted) and MT-DCA. We investigated whether the time-varying
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ω actually leads to a more accurate RTM in terms of correlation and unbiased RMSE. As shown in the
results of Table 4, the improvement by temporally varyingω is indicated by an ubRMSE decrease for
SCA from 23.1 to 19.5 and for DCA from 21.3 to 18.1. Furthermore, the correlation score has improved
for SCA from 0.725 to 0.732 but not for DCA from 0.836 to 0.832. As τ in SCA is pre-determined by the
MODIS NDVI data, the improvement ofω is subsequently not affecting τ. On the other hand, in the
DCA the optimal estimation of SM as well as τ is performed based on a constantω. That means theω
improvement requires a simultaneous change in SM and τ accordingly in the optimization probably
resulting in different ubRMSE and correlation in the later validation. More details on the validation
statistics for the sites, used in Figure A1, can be found in Table A4 of Appendix B.

5. Discussions

As vegetation cover represents a critical source of uncertainty when estimating soil moisture
underneath [21]. We identified in this study that the vegetation disturbance originated from the
difference in VOD either from SCA or DCA. This causes the difference between SMSCA and SMDCA

as presented in the results of Figures 3a, 4a, 5a and 6a. Furthermore, we also found that if VOD of
SCA or DCA is greater than 0.3 as shown in Figures 3c, 4c, 5c and 6c, the constant scattering albedo
(ω = 0.05) can be interpreted to be underestimated comparing to the variational ω derived from
VOD. The underestimated and constant ω is probably one of the main reasons to contribute to the
overestimation of SM as shown in Figures 3b, 4b, 5b and 6b. The ω for both approaches is fixed to 0.05
for croplands which means 1) the vegetation is fully occupied within 36 km by 36km SMAP grid (i.e.,
vegetation fraction is 1 in every grid) and 2) only the optical depth is allowed to vary during vegetation
development. Therefore, we hypothesized that an increasing τ is supposed to induce increasing ω
according to allometric power-law function with the exponent, 2/3, in the vegetation phenological
development. Another required factor is β, which determines the slope of the power-law function. This
study improves the τ-ωmodel only for croplands and the β was empirically derived and applicable
only for croplands. This is a limitation for the global application of the new approach. Furthermore,
because even the crop type can be classified as C3 or C4, the β factor should be more specified. This
limitation in the new approach, however, can be overcome with further specifying β according to
crop types (C3 or C4) or forest types (needleleaf or broadleaf). This kind of experiment will hopefully
provide a range of effectiveω-value for various vegetation types.

However, if land use heterogeneity within the SMAP grid is severe, e.g., mixed forest or partially
urban areas included, the presented approach might not work properly and further inclusion of
information about urban area fraction is required for the τ-ω approach before computing the effective
scattering albedo over bare and vegetated areas. In addition, the τ-ωmodel is based on the assumption
of single scattering albedo. Higher-order scattering scheme should be considered such as the 1st order
τ-ωmodel, proposed in the recent study [43].

Regardless of those limitations, the improvement by time- and space-varying ω appeared in
cropland case studies of SCRN in an unexpected way. A τ increase in RTM causes a Tb increase in the
simulation, but ω-increase induced Tb to decrease. As they change Tb with the opposite directions,
the overall effect on Tb is less than when only the τ increase is accounted for. We investigated whether
or not this new interplay between vegetation properties (τ and ω) and the emitted microwave Tb
measured in SMAP leads to improvements in the accuracy of the Tb simulations. The results showed
that the temporal variability of simulated Tb with the time-varyingω improved the correlation and
ubRMSE compared to the measured Tb as shown in the histogram of the validation results in Figure 7.
In the time series, when ω drops below 0.05 in spring and winter seasons, the simulated Tb decreases
more than the default simulation in most cases and, in the summer, theω becomes greater than 0.05,
with an opposite effect on the simulated Tb, as shown in Figure 5. This is the reason why time-varying
ω improved the ubRMSE in time series analysis. Regarding theω-change on average, the overall bias
in the Tb simulation was improved. The average of the computed time-varying ω was larger than
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the defaultω of 0.05. These results agree with the spatially varyingω product recently computed by
MT-DCA [19].

6. Summary and Outlook

In this study, we found that the soil moisture retrieved with SCA and DCA from the SMAP mission
suffers from over- and under-estimations for cropland sites. In order to tackle this bias, we derived
a time-varying omega (ωvar) based on the assumption of a power-law relationship between GVF
and VOD instead of a time-constant omega (ω0.05), as used in the SMAP baseline algorithms (SCA
and DCA). The formulation allows us to express a time-varying omegaωvar based on the temporal
dynamics of τ. Hence,ωvar is able to account at least partly for the temporal variation of the vegetation
properties in cropland. In this study, we focused on linking the measured VOD and the effective
value of omega (effective single scattering albedo) mainly via vegetation volumetric traits such as the
height and area fraction within the measured resolution cell. The assessment was performed with the
SMAPL2 brightness temperature (Tb). It is matched with the forward modeled brightness temperature
using input from in-situ stations of the USCRN (27 croplands (11 corn, 7 soybean, 2 cotton, grapes,
alfalfa, 1 wheat, citrus, unknown sites)) in 2015 and in the SMAPL2 Enhanced H-pol brightness core
validation sites (3 cropland) from 2015 to 2019.

As one conclusion, we were able to reduce the positive Tb bias for several reference sites over
cropland (C1, 3–11, 13–17, 20, 22, 25, 27 d in Table A4) including Gadsden-19-N (Atlanta) and
Durham-2-N (Boston) presented in Figures 3 and 4. This bias reduction mitigates the overestimation
of Tb (K) by 80% and 35% in the SCA and DCA approach, respectively. These results demonstrate
that owing to a different phenology of the VOD time series over cropland, the time-varying omega
parametrized with VOD can implement a more realistic τ-ωmodel simulation than the one applied
with constant omega in SCA and DCA approaches.

In a future study, further experiments will be performed including organic matter (OM) to the
applied dielectric mixing model [44]. The soil moisture of USCRN used for validation in this study
was also estimated based on probe algorithm [45], where the soil organic matter is not considered.
We would like to recall that this missing consideration in the reference soil moisture values might affect
the validation of Tb simulations.

One key feature of the approach is that no more variables are added with this new parameterization
of the τ-ωmodel contributing to a more accurate but less complex global soil moisture estimation. This
is equally important for retrieval and data assimilation approaches based on microwave brightness
temperature measurements, e.g., from SMOS or AMSR-2.

As satellite remote sensing is the only operational way to determine global soil moisture, an accurate
radiative transfer model for soil moisture estimation is essential. We propose that the presented
parameterization for a time-varying vegetation scattering albedo from VOD dynamics implemented
within the τ-ωmodel provides more realistic retrievals of soil moisture dynamics. Even for air-borne
applications which are capable to measure in higher spatial resolution than satellite applications,
the temporally constant omega within the applied RTM can cause the temporally heterogeneous
issue in the Tb simulation regardless of the spatially unique omega obtained. The previous approach
including the most recent approach, MT-DCA, can suffer from this temporally constant omega issue in
the application of air-borne remote sensing. The here proposed approach can be a way to resolve for
both spatial and temporal heterogeneity of vegetation parameters, likeω, in space-borne as well as
air-borne remote sensing applications.
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Appendix A Data Description

Figure A1. Map of ISMN (International Soil Moisture Network) sites [46] for calibration (upper panel), (a–c)
for HOBE, (d–g) for REMEDHUS, (h) for TERENO, (i) for RISMA; and validation in USCRN sites (lower
panel) over the IGBP (International Geosphere-Biosphere Programme) land classification based on MODIS
measurements obtained from SMAP L4 (orange (IGBP 12): croplands and red (IGBP 14): cropland/natural
vegetation).
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Table A1. Data used for Tb calibration over croplands.

Calibration Sites Crop Site Clay
[cm3/cm3]

Sand
[cm3/cm3]

Silt
[cm3/cm3] OM (%)

HOBE [47]

1.02 0.04 0.87 0.09 27.86

1.03 0.04 0.87 0.09 27.86

1.05 0.04 0.87 0.09 27.86

1.06 0.04 0.87 0.09 27.86

1.07 0.04 0.87 0.09 27.86

1.08 0.04 0.87 0.09 27.86

1.09 0.04 0.87 0.09 27.86

1.10 0.04 0.87 0.09 27.86

2.01 0.04 0.87 0.09 28.03

2.03 0.04 0.87 0.09 28.03

2.04 0.04 0.87 0.09 28.03

2.05 0.04 0.87 0.09 28.03

2.06b 0.04 0.87 0.09 28.03

2.07 0.04 0.87 0.09 28.03

2.09 0.04 0.87 0.09 28.03

2.10 0.04 0.87 0.09 28.03

2.11 0.04 0.87 0.09 28.03

3.01 0.04 0.87 0.09 28.03

3.04 0.04 0.87 0.09 28.03

3.05 0.04 0.87 0.09 28.03

3.06 0.04 0.87 0.09 28.03

3.07 0.04 0.87 0.09 28.03

3.08 0.1 0.81 0.09 27.62

3.09 0.1 0.81 0.09 27.62

REMEDHUS [48]

Canizal 0.49 0.19 0.32 2.95

Carretoro 0.18 0.34 0.48 3.12

CasaPeriles 0.21 0.36 0.43 3.12

ConcejodelMonte 0.21 0.36 0.43 3.62

ElCoto 0.18 0.34 0.48 3.12

ElTomillar 0.49 0.19 0.32 3.12

Guarrati 0.18 0.34 0.48 3.12

LaAtalaya 0.49 0.19 0.32 2.95

LaCruzdeElias 0.49 0.19 0.32 3.12

LasArenas 0.49 0.19 0.32 3.38

LasBodegas 0.21 0.36 0.43 2.95
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Table A1. Cont.

Calibration Sites Crop Site Clay
[cm3/cm3]

Sand
[cm3/cm3]

Silt
[cm3/cm3] OM (%)

REMEDHUS [48]

LasBrozas 0.49 0.19 0.32 3.12

LasEritas 0.49 0.19 0.32 2.95

LasTresRayas 0.49 0.19 0.32 3.38

LasVictorias 0.49 0.19 0.32 3.12

LlanosdelaBoveda 0.21 0.36 0.43 3.12

Paredinas 0.21 0.36 0.43 3.12

Zamarron 0.49 0.19 0.32 4.36

TERENO [49] Gevenich 0.22 0.41 0.37 15.13

Merzenhausen 0.22 0.41 0.37 15.13

RISMA [50]

MB1 0.41 0.12 0.47 13.59

MB2 0.41 0.12 0.47 11.25

MB3 0.41 0.12 0.47 14.28

MB4 0.41 0.12 0.47 14.28

MB5 0.41 0.12 0.47 14.28

MB6 0.41 0.12 0.47 14.28

MB7 0.41 0.12 0.47 13.59

MB8 0.41 0.12 0.47 15.68

MB9 0.41 0.12 0.47 13.58

Table A2. Data used for validation over croplands.

Validation Sites ID Clay
[cm3/cm3]

Sand
[cm3/cm3]

Silt
[cm3/cm3] OM (%) Crop

Type

Blackville-3-W C1 0.23 0.47 0.3 16.33 Cotton

Goodridge-12-NNW C2 0.22 0.38 0.4 18.42 Soybean

Shabbona-5-NNE C3 0.24 0.35 0.41 8.47 Corn

Ithaca-13-E C4 0.2 0.41 0.39 40.15 Corn

Kingston-1-NW C5 0.05 0.85 0.1 55.06 Corn

Aberdeen-35-WNW C6 0.23 0.36 0.41 5.76 Corn

Bedford-5-WNW C7 0.24 0.49 0.27 14.41 Soybean *

Bodega-6-WSW C8 0.23 0.39 0.38 0.00 Grapes

Chillicothe-22-ENE C9 0.24 0.35 0.41 7.37 Soybean

Coshocton-8-NNE C10 0.2 0.41 0.39 18.11 Corn

Crossville-7-NW C11 0.24 0.49 0.27 16.69 Corn

Denio-52-WSW C12 0.23 0.36 0.41 3.39 Alfalfa

Durham-2-N C13 0.13 0.49 0.38 52.60 Corn

Gadsden-19-N C14 0.24 0.49 0.27 12.76 Soybean

Jamestown-38-WSW C15 0.09 0.72 0.19 7.88 Soybean

Joplin-24-N C16 0.24 0.35 0.41 13.52 Soybean *

Lincoln-11-SW C17 0.24 0.35 0.41 3.91 Corn *
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Table A2. Cont.

Validation Sites ID Clay
[cm3/cm3]

Sand
[cm3/cm3]

Silt
[cm3/cm3] OM (%) Crop

Type

Lincoln-8-ENE C18 0.24 0.35 0.41 2.72 Corn *

Medora-7-E C19 0.22 0.43 0.35 5.04 Wheat

Merced-23-WSW C20 0.2 0.39 0.41 7.57 Alfalfa

Muleshoe-19-S C21 0.21 0.5 0.29 1.13 Cotton

Necedah-5-WNW C22 0.06 0.83 0.11 19.47 Corn

Northgate-5-ESE C23 0.23 0.36 0.41 8.80 -

Santa-Barbara-11-W C24 0.24 0.47 0.29 0.00 Grapes

Sebring-23-SSE C25 0.08 0.82 0.1 27.59 citrus

Sioux-Falls-14-NNE C26 0.23 0.39 0.38 3.82 Corn *

Versailles-3-NNW C27 0.24 0.47 0.29 14.43 Soybean

The crop type information was extracted from the 30 m resolution Cropland Data Layer database [51] within SMAP’s
36 km grid boundaries for the year 2015 (*: both corn and soybean are dominated within the SMAP grid).

Appendix B Validation Results

Table A3. Data used for Tb validation with SMAPL2 Enhanced H-pol brightness temperature.

Site Name State, Country PI(s) Land Cover # of Sensors References

South Fork IA, USA Cosh Cropland
(corn) 20 [52]

Kenaston Saskatchewan,
Canada

Berg,
Rowlandson cropland 28 [53]

Carman Manitoba,
Canada

McNairn,
Pacheco cropland 9 [50]

Table A4. Validation scores over USCRN cropland.

#
Bias ubRMSE Correlation

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2

C1 11.5 7.1 13.8 9.3 23.34 14.63 27.72 19.11 0.972 0.971 0.985 0.967

C2 −6.5 −6.2 −3.6 −2.6 25.25 24.47 10.20 8.76 0.065 0.099 0.932 0.932

C3 13.6 11.8 −7.2 −6.5 31.54 28.92 21.88 20.35 0.568 0.496 0.546 0.579

C4 4.5 −0.6 5.5 1.8 9.6 3.5 11.45 4.47 0.932 0.933 0.960 0.972

C5 2.3 −0.9 8.8 −2.8 19.53 5.63 17.99 6.46 0.58 0.79 0.806 0.801

C6 9.9 9.9 7.3 8.6 22.72 22.51 17.28 19.46 0.768 0.782 0.890 0.888

C7 5.3 0.4 7.7 3.9 11.52 4.44 15.71 8.60 0.908 0.915 0.957 0.959

C8 0.0 −5.4 −3.2 −2.6 19.88 22.66 20.39 20.24 0.340 0.333 Z 0.348

C9 5.9 3.9 −0.5 0.5 14.29 10.73 8.55 8.13 0.883 0.896 0.885 0.889

C10 4.8 0.3 9.2 5.4 10.86 5.37 19.08 11.88 0.871 0.832 0.891 0.893

C11 5.1 −2.4 9.2 −0.1 10.67 5.55 18.53 2.41 0.948 0.947 0.962 0.968

C12 −10.7 −10.0 2.4 2.7 25.45 24.28 13.18 13.28 0.682 0.684 0.738 0.746

C13 14.9 3.9 6.5 2.3 30.71 10.69 15.14 8.97 0.724 0.725 0.738 0.723
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Table A4. Cont.

#
Bias ubRMSE Correlation

S1 S2 D1 D2 S1 S2 D1 D2 S1 S2 D1 D2

C14 7.2 4.0 13.2 7.0 15.12 9.15 26.50 14.48 0.918 0.915 0.980 0.955

C15 15.2 15.2 14.4 15.5 32.49 32.23 29.89 32.00 0.744 0.757 0.904 0.900

C16 1.4 0.8 −1.7 −0.8 8.82 8.38 10.75 9.92 0.913 0.920 0.900 0.899

C17 0.4 −0.0 −5.8 −4.5 12.65 12.19 17.67 16.37 0.812 0.815 0.872 0.871

C18 −1.2 −2.1 −12.7 −11.4 15.00 15.03 27.10 24.67 0.691 0.695 0.900 0.902

C19 −5.4 −4.4 5.8 7.2 16.12 14.84 14.51 16.87 0.582 0.589 0.787 0.788

C20 17.3 18.0 20.6 21.9 36.27 37.64 42.48 44.95 0.853 0.853 0.884 0.887

C21 −37.7 −36.6 −21.5 −20.8 76.97 74.80 45.03 43.72 0.761 0.760 0.825 0.825

C22 13.6 8.4 13.1 8.8 27.71 17.50 26.63 18.32 0.855 0.847 0.895 0.838

C23 −7.8 −7.7 0.9 2.2 22.70 21.82 6.85 7.83 0.680 0.683 0.875 0.876

C24 −6.5 −6.5 3.8 4.9 15.72 15.82 10.36 12.13 0.349 0.354 0.551 0.545

C25 26.2 23.9 22.6 23.2 53.64 49.25 46.73 47.82 0.549 0.553 0.709 0.687

C26 −9.0 −10.2 −16.1 −15.0 26.59 27.40 34.56 32.60 0.730 0.724 0.865 0.864

C27 2.8 0.4 8.7 6.4 8.41 6.36 18.02 13.52 0.889 0.883 0.937 0.952

The stressed values indicate better score.
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