MULTI-SEKTOR-KOPPLUNG

MODELLBASIERTE ANALYSE DER INTEGRATION ERNEUERBARER STROMERZEUGUNG DURCH DIE KOPPLUNG DER STROMVERSORGUNG MIT DEM WÄRME, GAS- UND VERKEHRSEKTOR

ENDBERICHT

August 2020
Autoren:
Max Fette
Christine Brandstädt
unter Mitarbeit von Leander Kimmer, Christopher Rickert und Isabelle Roller
Energiesystemanalyse
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Hans Christian Gils
Hedda Gardian
Thomas Pregger
unter Mitarbeit von Felix Cebulla und Eileen Meyer
Institut für Technische Thermodynamik
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Johannes Schaffert
Eren Tali
Nils Brücken
unter Mitarbeit von Markus Köppke, Norman Dünne und Sophia von Berg
Brennstoff- und Gerätechnik
Gas- und Wärme-Institut Essen e.V.

Ansprechpartner:
Max Fette
Wiener Straße 12 | 28359 Bremen | Germany
Telefon + 49 421 2246-7019 | Fax 2246-300
max.fette@ifam.fraunhofer.de

Förderkennzeichen 03ET4038

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den AutorInnen
Inhaltsverzeichnis

1 Kurzfassung und Abstract .. 5
 1.1 Kurzfassung ... 5
 1.2 Abstract ... 7

2 Einleitung und Ziele ... 10

3 Modellentwicklung ... 12
 3.1 Weiterentwicklung des Energiesystemmodells REMix 12
 3.1.1 Einführung in das Modell ... 12
 3.1.2 Modellerweiterung Gassystem 14
 3.1.3 Modellerweiterung Wärmesektor und Verkehrssektor 18
 3.2 Weiterentwicklung des Energiesystemmodells MuGriflex 19
 3.2.1 Einführung in das Modell ... 19
 3.2.2 Berechnung und Darstellung der Levelised Costs of Energy ... 22
 3.2.3 Modellerweiterung: Abbildung temperaturabhängiger Wärmeerzeuger 23
 3.2.4 Modellerweiterung Wärmespeicher 30
 3.2.5 Abbildung Betriebssmittel im Gasnetz 31

3.3 Modellkopplung ... 31
 3.3.1 Einführung .. 31
 3.3.2 Vorgehen ... 32

3.4 Iterationen ... 35

4 Datengrundlage der Modellierungen 37
 4.1 Szenarien der Energiesystemtransformation 37
 4.1.1 Grundlagen der Szenarioentwicklung 37
 4.1.2 Szenarien für Deutschland ... 39
 4.1.3 Rahmenszenarien für Europa .. 41
 4.1.4 CO₂- und Brennstoffpreisszenarien 43
 4.1.5 Techno-ökonomische Annahmen 44
 4.2 Untersuchungsrahmen auf Gesamtsystemebene 44
 4.2.1 Räumlicher und zeitlicher Betrachtungsraum 44
 4.2.2 Einbindung der Szenarien in REMix 46
 4.2.3 Szenariovarianten ... 51

4.3 Abbildung des Gassystems – Technischer Hintergrund und Datengrundlage ... 52
 4.3.1 Beimischung von Wasserstoff .. 54
 4.3.2 Gasvorwärzung ... 56
 4.3.3 Gasverdichtung ... 61
 4.3.4 Gasspeicher .. 65
 4.3.5 Gastransportnetz und Wasserstofftransportnetz 72
 4.3.6 Einspeisung von Biomethan und synthetischen Gasen 75

4.4 Abbildung des Gassystems in REMix 77
 4.4.1 Elektrifizierung der Gasvorwärzung 78
 4.4.2 Elektrolyse und Methanisierung 78
 4.4.3 Gasverdichtung ... 79
 4.4.4 Gasspeicher .. 80
 4.4.5 Erdgasimport, Gastransportnetz und Wasserstofftransportnetz 81
 4.4.6 Beimischung von Wasserstoff und Biogas 82

4.5 Energiewirtschaftlicher Rahmen ... 83
 4.5.1 Investitionszuschüsse und erzeugungsbasierte Zuschläge 83
 4.5.2 Marktentwicklung und Regelungen im Stromsektor 84
 4.5.3 Marktentwicklung und Regelungen im Gassektor 87
 4.5.4 Ausblick ... 88

5 Ergebnisse der Gesamtsystemoptimierung 90
5.1 Basisszenarien .. 90
 5.1.1 Entwicklung der Energienachfrage .. 90
 5.1.2 Entwicklung der Stromerzeugung und des Kraftwerksparks .. 93
 5.1.3 Entwicklung des Ausgleichs fluktuierender Stromerzeugung 98
 5.1.4 Flexibilisierung der Betriebsmittel im Gasnetz .. 105
 5.1.5 Entwicklung der Systemkosten ... 108
 5.1.6 Wasserstoffinfrastruktur im Zielsystem 2050 ... 111
 5.1.7 Stündlicher Anlageneinsatz im Zielsystem 2050 ... 114

5.2 Szenariovarianten .. 117

5.3 Zusammenfassung und Diskussion ... 120

6 Ergebnisse der Einzelsystemanalyse ... 123
 6.1 Eingangsdaten ... 123
 6.1.1 Stromkosten ... 124
 6.1.2 Gaskosten ... 125
 6.2 Netzgebundene Wärmeversorgung .. 126
 6.2.1 Vergleich von gesamtwirtschaftlich und betriebswirtschaftlich optimalem Ausbau und Anlagenbetrieb ... 127
 6.2.2 Anpassungsbedarf der Rahmenbedingungen zur Ermöglichung des
gesamtwirtschaftlichen Optimums ... 131

6.3 Untersuchung einer alternativen Region .. 138

6.4 Auslegung und Betrieb der Verdichter in Gastransportnetz und
Gasspeichern .. 141
 6.4.1 Gastransportleitungen ... 141
 6.4.2 Gasspeicher ... 144

6.5 Power-to-Gas-Anlagen ... 146
 6.5.1 Elektrolyse .. 148
 6.5.2 Elektrolyse mit Methanisierung ... 149

6.6 Zusammenfassung der Ergebnisse der Einzelsystem Analyse ... 151

7 Schlussfolgerungen, Handlungsempfehlungen und Ausblick .. 155

8 Literaturverzeichnis .. 157

9 Abbildungsverzeichnis ... 165

10 Tabellenverzeichnis ... 170

11 Abkürzungsverzeichnis .. 172

12 Anhänge ... 174
 12.1 Anhang 1: Technologien der klassischen Gasvorwärmung ... 174
 12.2 Anhang 2: Optionen der elektrischen Gasvorwärmung .. 176
 12.3 Anhang 3: Zeitliche Auflösung des Energiebedarfes für die Gasvorwärmung in
Deutschland .. 178
 12.4 Anhang 4: Abschätzung Pipelinekapazitäten ... 179
 12.5 Anhang 5: Grenzen der Wasserstoffbeimischung ... 182
 12.6 Anhang 6: Entwicklung der Stromnachfrage - Szenarien THG80 & THG95 183
 12.7 Anhang 7: Techno-ökonomische Parameter ... 187
 12.8 Anhang 8: Annahmen zu Bestandsanlagen Strom, Wärme, Gas 193
 12.9 Anhang 9: Ergänzende Ergebnisse REMix .. 198
 12.10 Anhang 10: Ergebnisse der Einzelsystemanalyse (THG95 Szenario,
Wärmebereich) .. 201
 12.11 Anhang 11: Ergebnisse der Wärmesystemanalyse für eine alternative
Region ... 202
1 Kurzfassung und Abstract

1.1 Kurzfassung

Die optimierte Gesamtsystemkonfiguration aus REMix wird mit den Betriebsstrategien für die einzelnen Systembestandteile, die sich in Abhängigkeit von energiewirtschaftlichen Rahmenbedingungen ergeben, zusammengeführt. Zentrale Stellen der Modellkopplung sind die Auslegung und zeitlichen Einsatzprofile der Anlagen, sowie die Zeitreihen der Stromgestehungskosten und die Zusammensetzung gasförmiger Brennstoffe. So ergeben sich etwa die Strom- und Gaskosten für die Analyse der Einzelsysteme aus den Grenzkosten der Stromerzeugung.
Die modellgestützten Untersuchungen zukünftiger Energiesysteme basieren auf zwei Rahmenszenarien, die definierte normative Transformationspfade für Deutschland und Europa darstellen. Sie bilden unterschiedliche Zielwerte der CO₂-Emissionsreduktion bis ins Jahr 2050 ab. Die Mengengerüste dieser Zielszenarien werden für die Parametrierung des Modells REMix genutzt und stellen somit für das gesamte Projekt den energiewirtschaftlichen Kontext dar.

Aktuell wirken sich vor allem KWK-Zuschüsse, Abgaben und Umlagen und die Preise für Strom- und Gas auf die Wirtschaftlichkeit der in MuGrifFlex betrachteten Anlagen aus. Für die Analysen der Einzelsysteme wurden diese Einflüsse, soweit wie möglich im Einklang mit energiewirtschaftlichen Szenarien fortgeschrieben. Im Betrachtungszeitraum könnten sich darüber hinaus strukturelle Änderungen z.B. bei der Systematik der Netzentgelte oder durch zusätzliche lokale Flexibilitätsmärkte ergeben.

Die Ergebnisse der Gesamtsystemoptimierung für die beiden Zielszenarien unterstreichen die positive Wechselwirkung der Kombination der verschiedenen Optionen der flexiblen Kopplung von Strom-, Wärme- und Gassystem. Mit zunehmender Reduktion der CO₂-Emissionen gewinnt die flexible Sektorenkopplung zum Ausgleich der fluktuierenden Stromerzeugung aus Wind und Sonne stark an Bedeutung. Im Szenario mit ambitionierteren Emissionsminderungszielen erweist sich der Bau umfangreicher Wasserstoffinfrastrukturen als volkswirtschaftlich sinnvoll. Die Variation ausgewählter Szenarioannahmen zeigt, dass sich im Falle abweichender Kosten und Potenziale sowohl bei der Stromerzeugung aus erneuerbarer Energie (EE) als auch beim Lastausgleich verschiedene Technologien gegenseitig substituieren können.

Unterschiede zwischen Gesamt- und Einzelsystemsicht ergeben sich vor allem für die Kraft-Wärme-Kopplung (KWK) und Wärmepumpen in Wärmenetzen sowie Power-to-Gas-Anlagen (PtG). Sie hängen von den jeweiligen Szenarien und Regionen und mitunter auch von der Wechselwirkung mit anderen Technologien ab. Die Analysen zeigen, wie regulatorische Anpassungen, also Zuschläge oder Rabatte auf

1 Mit Power-to-Gas ist im Bericht die Elektrolyse sowohl mit als auch ohne anschließender Methanisierung gemeint
Abgaben, die Anreize grundsätzlich korrigieren und die Unterschiede zwischen System- und Einzelanlagenperspektive mindern können.

Für die Betriebsmittel im Gasnetz und an den Gasspeichern ist in den Zukunftsszenarien (deutlicher im Szenario mit ambitionierteren Emissionsminderungszielen) der elektrische Betrieb unter den getroffenen Annahmen sowohl gesamt- als auch betriebswirtschaftlich optimal.

Investitionen in PtG-Anlagen sind in den betrachteten Szenarien absehbar nicht wirtschaftlich. Selbst wenn kein Deckungsbeitrag für die Investition erwirtschaftet werden müsste, lohnt sich der Betrieb erst im jeweils letzten Stützjahr 2050. Ein Zuschlag bzw. Rabatt auf die Abgaben kann die Anreize korrigieren, wäre aber sehr kleinteilig zu kalibrieren und angesichts der großen Rolle, die synthetische Gase aus Gesamtsystemsicht spielen, mit erheblichem finanziellen Aufwand verbunden.

Die Projektergebnisse zeigen einerseits die Chancen einer engeren Verzahnung der Strom-, Wärme- und Gasversorgung, und andererseits die damit einhergehenden regulatorischen Herausforderungen für die Anreizung systemdienlicher Investitionen und Anlageneinsätze. Die Arbeiten bieten in den erweiterten Methoden und erhobenen Daten eine wichtige Grundlage zur weiteren Erforschung der Umsetzung der flexiblen Sektorenkopplung in der Energiewende.

1.2 Abstract

The project provides a model based analysis of the combined implementation of different flexibilities and sector coupling options in a future energy system with high shares of renewable energy. It is based on a techno-economic approach that is resolved in time and space. This approach provides the basis to assess various energy economic frameworks concerning the resulting investments and dispatch choices. The novelty of the project lies in the focus on the design of the coupling of electricity and gas systems as well as in the combination of the macroeconomic and the business perspective.

² Mit Power-to-Heat ist im Bericht die elektrische Wärmeerzeugung mit sowohl Elektrokesseln als auch Wärmepumpen gemeint
The energy system model REMix covers the overall system perspective by optimizing system cost of future energy systems. It enables the assessment of infrastructure requirements during the energy system transformation, as well as the hourly technology dispatch. The model comprises electricity, heat and gas supply and parts of the transport system. The implementation of the gas sector into the model is one of the major methodological achievements of this project.

The model MuGriFlex on the other hand represents individual systems on a local level from the perspective of the investor or operator. It simulates the hourly operation of technologies over one year and determines the cost-effective deployment of energy converters as well as storage. This enables dimensioning system components, and assessing economic feasibility and integration into the overall energy system. The project required modelling temperature dependent components, such as solar thermal collectors, heat pumps and the heat network in greater detail and embedding equipment of the gas infrastructure. Further improvements concern heat losses in storage as well as the evaluation of economic efficiency for all plant types.

The optimized system configuration determined with REMix is co-assessed with the strategies that result from the regulatory framework for individual systems. Dimensioning and hourly operation profiles, as well as time series of electricity production cost and the mix of gaseous fuels form the central points of model coupling. Electricity and gas costs for example enter the analysis of individual systems based on the results of the overall system optimization concerning electricity and gas production in the various scenarios.

The model-based analysis of future energy systems relies on two framework scenarios that represent normative transformation paths for Germany and its European neighbours. They reflect different target values for CO₂ emission reduction up to the year 2050. These target scenarios are used for the parameterization of the REMix model and thus set the energy-economic context for the entire project.

Currently the main drivers of economic feasibility for the plants analysed in MuGriFlex are subsidies and surcharges for combined heat and power plants (CHP), as well as the prices for electricity and gas. For the analysis of individual local systems, those parameters were updated for future years in accordance with the scenarios as far as possible. During the period under consideration, however, further structural changes could occur, for example concerning network tariffs or additional, local flexibility markets.

Additionally, the project assembled the technological aspects most relevant to modelling the gas system. These comprise gas preheating, compression, storage and transport, as well as the feed-in of hydrogen, biogas or synthetic methane into the existing gas infrastructure. Particularly for equipment within the gas network, the project compiled a new detailed database. Yet, future gas quality and standards, as well as the energy economic framework for new infrastructures remain in discussion. For the analysis in REMix extensive data concerning the gas system was condensed.
for a simplified representation in the model while required inputs were aggregated and converted to conform to the model logic.

The results from overall system optimization for the two target scenarios underline the positive interaction of different options of flexible coupling between the electricity, heat and gas systems. As the reduction of CO\(_2\) emissions progresses, sector coupling gains in importance for balancing fluctuating electricity generation from wind and solar sources. In a scenario without direct emissions in the analysed energy system, the deployment of extensive hydrogen infrastructure proves economically efficient. Variation of selected scenario assumptions such as technology costs and potentials e.g. in the case of renewable energy production or load balancing impacts the future composition of the energy technology portfolio and shows how technology options may substitute each other.

Differences between the perspectives on the overall and on individual systems lead to deviating results, mainly concerning CHP, heat pumps and PtG plants. The results depend on the respective scenarios and regions, as well as occasionally on the interplay with other technology options. The analysis shows how regulatory changes, i.e. subsidies or rebates on surcharges, can in principle correct the incentives and even out the discrepancy between overall and individual system optimum.

The representative example of the model region “Hessen, Rhineland-Palatinate and Saarland” illustrates, that the given framework does not foster optimal investments in CHP and electric boilers. Furthermore it shows that CHP and Power-to-Heat would not operate efficiently. Subsidies and rebates can optimize the system with manifold interdependencies to be considered. For bi-fuel equipment within the gas infrastructure the electric operation is optimal in the future scenarios from individual both perspectives.

Investments in Power-to-Gas plants do not become feasible within the scenarios considered. Their operation becomes feasible only in 2050, even if no contribution is required to the initial investment. A subsidy or rebate on surcharges can correct the incentives, but would require careful calibration and bring about substantial expenditure given the significant role of synthetic gases from the overall system’s perspective.

The project results highlight the opportunities of a closer integration of electricity, heat and gas supply, but also the associated regulatory challenges for incentivizing a system-friendly operation and investment. In the extended methods and collected data, the work provides an important basis for further research focused on the implementation of flexible sector coupling in the energy system transformation.
2 Einleitung und Ziele

Im Projekt wird der (kombinierte) Einsatz unterschiedlicher Flexibilitäten und Sektorenkopplungen in einem künftigen Energiesystem mit einem hohen Anteil erneuerbarer Erzeugung modellbasiert, techno-ökonomisch sowie zeitlich und räumlich aufgelöst untersucht und anschließend der energiewirtschaftliche Rahmen für die Investitionen und den Anlageneinsatz bewertet.

Zur Untersuchung dieses komplexen Sachverhalts sind methodische Weiterentwicklungen der heutigen Energiesystemmodelle erforderlich, insbesondere für integrierte techno-ökonomische Analysen unter Berücksichtigung mehrerer energiewirtschaftlicher Perspektiven (z.B. dezentral vs. zentral, betriebswirtschaftlich vs. gesamtwirtschaftlich). An diesem Punkt setzt das hier vorgestellte Forschungsvorhaben mit den folgenden Zielen an:

- Weiterentwicklung der techno-ökonomischen, zeitlich und räumlich aufgelösten Modellierung im Hinblick auf die Abbildung von Sektorenkopplungen zur Simulation von Einzelsystemen-/technologien sowie deren Integration in das regionale/nationale Energiesystem
- Integrierte modellbasierte Analysen des Einsatzes unterschiedlicher Technologieoptionen zur flexiblen Nutzung von Strom in allen Sektoren des Energiesystems
- Hierbei Berücksichtigung von Möglichkeiten zur Substitution gasbetriebener Betriebsmittel im Gasnetz durch mit Strom und ggf. flexibel betriebene Technologien als zusätzliche Option
- Verbindung der betriebswirtschaftlichen mit der gesamtwirtschaftlichen Perspektive durch Simulationen auf regionaler, nationaler und europäischer Ebene
- Bewertung von Wirtschaftlichkeit, Investitionsanreizen, regulatorischen Rahmenbedingungen, Systemeffizienz, CO₂-Emissionen und Gestehungskosten für Strom, Wärme und Brennstoffe

Übergreifend trägt das Forschungsprojekt dazu bei, den Einsatz unterschiedlicher Arten und Kombinationen von Flexibilitäten und Sektorenkopplungen in einem künftigen Energiesystem mit einem hohen Anteil EE-Stromerzeugung zu bewerten.
Mögliche Entwicklungspfade werden über Szenarien mit unterschiedlichen Energieregionen und Rahmenbedingungen berücksichtigt.
3 Modellentwicklung

Die Bearbeitung der Forschungsfragen erfordert eine Erweiterung der bestehenden Modelle REMix und MuGriFlex. Diese wird in Umfang und Methodik im Folgenden dargelegt.

3.1 Weiterentwicklung des Energiesystemmodells REMix

Die umfassende Untersuchung der Wechselwirkung verschiedener Technologien der flexiblen Sektorenkopplung aus Gesamtsystemsicht erfordert eine umfangreiche Weiterentwicklung des kostenoptierenden Gesamtsystemmodells REMix. Im Fokus steht dabei die vereinfachte Abbildung des Gassektors.

Auf Grundlage einer allgemeinen Einführung der Modellcharakteristika erfolgt in diesem Kapitel eine detaillierte Darlegung der im Rahmen des Projekts erfolgten Erweiterungen des REMix-Modells.

3.1.1 Einführung in das Modell

und deren Sensitivität hinsichtlich der Anlagenpreise ermittelt werden. Über die Ausbauoptionen hinaus können die zentralen Parameter des Anlagenbetriebs, wie beispielsweise die Volllaststunden, die Anzahl der Anfahrvorgänge und die Häufigkeit der Abregelung von EE-Anlagen in Abhängigkeit von der Nutzung anderer Technologien bewertet werden.

Gemäß dem Fokus des Projekts wurde REMix in MuSeKo in Umfang und Detail der Abbildung von Sektorenkopplungstechnologien ergänzt. Diese betreffen insbesondere eine vereinfachte Abbildung des Gassystems für die detaillierte Untersuchung der Flexibilität der elektrischen Betriebsmittel, aber auch den Wärme- und Verkehrssektor.

3.1.2 Modellerweiterung Gassektor

Anforderung an die Abbildung des Gassystems in REMix

Da die Nutzung ganzzahliger Variablen zu wesentlichen Erhöhungen der Modelllösungszeit führt, wurde diese in der vorliegenden Implementierung vermieden. Daraus folgt, dass z.B. für eine Erhöhung der Leitungskapazität zwischen zwei Regionen jeder Wert möglich ist, und nicht nur solche, die verfügbaren Pipeline-Technologien entsprechen (kein Pipeline-diskreter, sondern kontinuierlicher Zubau). Aus der Modellformulierung folgt weiterhin, dass es im Allgemeinen keine Einschränkung der

3 Im Folgenden wird mit der Kurzbezeichnung REMix der Modellteil REMix-OptiMo bezeichnet, da dieser im Fokus der Modellerweiterung und -anwendung in MuSeKo steht.
Anlagenbetriebszustände gibt, d.h. jede Auslastung zwischen 0% und 100% prinzipiell möglich ist.

Modulare Implementierung des Gassektors in REMix

Für die Abbildung der verschiedenen Komponenten des Gassystems in REMix wurden entsprechende Module mit spezifischen Funktionalitäten einzelner Systemelemente implementiert. Dabei wurde die Gasproduktion in den Modulen Elektrolyse und Methanisierung (Konversion) umgesetzt, Gasspeicherung, -transport, -import wie auch die exogen definierte Nachfrage in jeweils eigenen Modulen realisiert (Abbildung 3-2). Die Module können mittels Energieflüssen flexibel miteinander verbunden werden. Ihre Funktionsweise wird in den folgenden Abschnitten ausführlicher beschrieben.

Abbildung 3-2: REMix-Modellumfang nach Erweiterung in MuSeKo.
Wasserelektrolyse

Methanisierung und andere Brennstoffumwandlung

Gasspeicherung

Für die Einspeicherung von Gas ist eine Komprimierung des Mediums notwendig, die mithilfe von elektrischen und bzw. oder gasbetriebenen Kompressoren erfolgen kann, wobei im ersten Fall ein Strombedarf anfällt und im letzteren Fall der eingespeicherte Gasfluss um die benötigte Energiemenge reduziert wird. Die Menge an Kompressionsenergie, die für die Gasspeicherung anfällt, wird über einen Parameter, der das Verhältnis von eingespeicherter chemischer zu Kompressionsenergie definiert, bestimmt.
Gastransport

Gasimport

Gasnachfrage
Neben dem modellendogen berechneten Gasverbrauch für Kraftwerke, Wärmeerzeugung, Kompressoren etc. kann eine exogen vorgegebene und regional aufgelöste Gasnachfrage berücksichtigt werden. Hierbei ist stets die energetische Energiemenge relevant und keine in Volumeneinheiten angegebene Gasnachfrage. Für diese je Gasmedium unterschiedliche Gasnachfrage kann ein normiertes Profil oder die maximale Entnahmleistung pro Zeiteinheit vorgegeben werden. Darüber hinaus wird in dem Gasentnahme-Modul spezifiziert aus welchen Quellen die Gasnachfrage gedeckt werden kann: z.B. Import, Methanisierung, Elektrolyse etc.

3.1.3 Modellerweiterung Wärmesektor und Verkehrssektor

3.2 Weiterentwicklung des Energiesystemmodells MuGriFlex

3.2.1 Einführung in das Modell

Das Modell wurde im Rahmen des Forschungsprojektes MuGriSto (Multi-Grid-Storage) entwickelt, wobei Auswertungen für folgende Energiewandler vorgenommen werden konnten:

- KWK-Anlagen
- Gaskessel
- Elektrokessel
- Wärmepumpen (vereinfachte Darstellung mit konstantem COP)
- Wärmespeicher
- Elektrolyseure (optional mit Methanisierungsanlagen)

Das Tool dimensioniert die Anlagen und setzt sie so ein, dass z.B. die im Betrachtungszeitraum benötigte Wärmeversorgung zu möglichst geringen Kosten erfolgt. Die Verbindung zum Stromsektor besteht dabei anhand der stündlichen oder viertelstündlichen Börse und Regelenergiepreise.

Abbildung 3-4: Schematische Darstellung der Wärmeerzeugungskosten (nur Strom- bzw. Gasbe-
schaffungskosten bzw. Stromvergütung, ohne andere Betriebs- oder Kapitalkosten)

Die Abbildung zeigt schematisch, dass die Wärmeerzeugungskosten der elektri-
schen Wärmeerzeuger mit steigenden Strompreisen steigen und die Wärmeerzeu-
gungskosten mit steigender Vergütung für den erzeugten Strom sinken. Die Abga-
ben auf den Strombezug erhöhen die Wärmeerzeugungskosten der elektrischen
Wärmeerzeuger und der KWK-Zuschlag verringert die Wärmeerzeugungskosten der
KWK-Anlagen.

Zur maximalen Ausnutzung günstiger Bedingungen wird Wärme die vor dem Zeit-
punkt des Bedarfs wirtschaftlicher als zu diesem Zeitpunkt erzeugt werden kann,
eingespeichert und in den folgenden Zeitschritten zur Versorgung eingesetzt.

In einer weiteren Rechenschleife wird zudem überprüft, ob der Anlageneinsatz weite-
er optimiert werden kann, indem die Anzahl der An- und Abfahrvorgänge der ein-
zelnen Wärmeerzeuger verringert wird und damit Anfahrkosten, die ebenfalls als
Input im Modell hinterlegt werden können, reduziert werden. In der folgenden Ab-
bildung wird beispielhaft für ein Wämenetz, welches mit einer KWK-Anlage, einem
Elektrokessel und einem Gaskessel versorgt wird, für einige Tage gezeigt, wie eine
optimale Wärmeversorgung durchgeführt wird. Es ist zu sehen, dass die KWK-An-
lage zu Zeiten mit hohem Strompreis und der Elektrokessel zu Zeiten mit geringem
Strompreis zum Einsatz kommt (hier mit der Annahme, dass die Abgaben auf den
Strompreis gering sind).

Als Output aus MuGriflex können nicht nur die Gesamtkosten der Wärmeerzeugung ausgewertet werden, sondern auch Kennwerte wie z.B. Vollaststunden und somit die bereitgestellte Wärmemenge je Anlagentyp, Amortisationszeiten der Anlagen, gezahlte Abgaben auf den bezogenen Strom usw.

3.2.2 Berechnung und Darstellung der Levelised Costs of Energy

Für die betriebswirtschaftliche Betrachtung sind die für den Anlagenbetreiber insgesamt zu zahlenden Kosten zu minimieren. Das eingesetzte Kriterium war bisher der Nettokapitalwert (NPV, Net Present Value) der über einen Zeitraum – beispielsweise...
20 Jahre – zu zahlenden Kosten bzw. Einnahmen zur Deckung der geforderten Energieversorgung. Im Beispiel Wärmenetz sind dies z.B. die diskontierten Summen aller jährlichen Kosten und Einnahmen (Energiekosten, fixe- und variable Wartungskosten, Kapitalkosten etc.) die anfallen, um den vorgegebenen Wärmelastgang zu versorgen.

Das Modell wurde in MuSeKo dahingehend ergänzt, dass nun auch die Levelised Costs of Energy (LCoE) ausgegeben werden können. Diese werden jeweils auf den Output-Energieträger angewendet, im Beispiel des Wärmenetzes handelt sich also um Levelised Cost of Heat. Die Levelised Cost of Energy ermöglichen einen besseren Vergleich von unterschiedlich großen Systemen da sie eine Kenngröße der bereitgestellten Energie pro kWh darstellen.

Die folgende Formel nach [KSJN18] wird zur Berechnung verwendet:

\[
LCoE = \frac{(I_0 - S_0) + \sum_{t=1}^{n} \frac{A_t}{(1+i)^t} \cdot ANF}{\sum_{t=1}^{n} M_t} \quad \left[\frac{\text{€}}{\text{kWh}} \right]
\]

mit:
- \(I_0\): Investitionskosten in [€]
- \(S_0\): Förderungen in [€]
- \(A_t\): jährliche Betriebskosten in [€/a]
- \(M_t\): jährliche Wärmeerzeugung in [kWh/a]
- \(i\): Zinssatz in [%]
- \(n\): Betrachtungszeitraum in Jahren
- \(t\): Jahr (1, 2, …n)

Der Annuitätsfaktor, ANF ergibt sich aus folgender Formel:

\[
ANF = \frac{i \cdot (1+i)^t}{(1+i)^t - 1} \quad \left[\frac{\text{€}}{\text{kWh}} \right]
\]

3.2.3 Modellerweiterung: Abbildung temperaturabhängiger Wärmeerzeuger

der mittleren Wassertemperatur im Kollektor, die wiederum von der Rücklauftemperatur des Systems und der zu erzeugenden Vorlauftemperatur abhängig ist, beeinflusst.

Der Einfluss der Vorlauftemperatur (bei vorgegebener Rücklauftemperatur) auf den Wirkungsgrad von Solarkollektoren bei verschieden hoher Einstrahlung ist in der folgenden Abbildung beispielhaft dargestellt:

![Wirkungsgrad eines beispielhaften Solarkollektors in Abhängigkeit der Vorlauftemperatur des Heizsystems und der solaren Strahlung](image)

Abbildung 3-6: Wirkungsgrad eines beispielhaften Solarkollektors in Abhängigkeit der Vorlauftemperatur des Heizsystems und der solaren Strahlung

Die Abhängigkeit der Arbeitszahl (COP, Coefficient of Performance) einer Wärmepumpe (hier Wasser/Wasser Wärmepumpe) von der Vorlauftemperatur, wird in der Abbildung 3-7 exemplarisch gezeigt:

\[\eta = 0.83 - 4.4 \times \left(\frac{T_v - T_\text{Luft}}{T_v - 2 \times T \text{Luft}} \right) / I \]

mit der Wirkungsgradformel \(\eta \), \(T_v \) = Vorlauftemperatur, \(T_\text{Luft} \) = Außentemperatur, hier 20 °C und \(I \) = solare Einstrahlung in W/m²
Es ist zu sehen, dass sich beispielsweise der COP bei einer konstanten Rücklauftemperatur von 40 °C von rund 5,5 auf 3,2 verschlechtert, wenn die Vorlauftemperatur von 42 auf 90 °C steigt.

Wegen des großen Einflusses der Wärmenetztemperatur (Vor- und Rücklauftemperatur des Wärmesystems) auf den Einsatz von Solarthermie und Wärmepumpen, wurde das Modell so erweitert, dass diese Abhängigkeit berücksichtigt werden kann. Im folgenden Unterkapitel wird das Vorgehen bei der Abbildung der variablen Netztemperatur beschrieben, gefolgt von Unterkapiteln für die Implementierung der Solarthermie und Wärmepumpen.

Wärmenetz

Die sich ändernden Vor- und Rücklauftemperaturen des Wärmeversorgungssystems werden zu linearisierten Heizkurven vereinfacht, wie in der folgenden Abbildung gezeigt. Dabei kann jede mögliche Heizkurve, die im System für die Berechnung hinterlegt werden soll mit zwei Punkten für je Vor- und Rücklauf definiert werden.

Für die in diesem Projekt durchgeführten Rechnungen (siehe Kapitel 6.2) wurde bezüglich der Heizkurve stets angenommen, dass ab einer Außentemperatur von minus 10 Grad die Vor- bzw. Rücklauftemperatur nicht mehr steigt und, dass die minimale Vor- bzw. Rücklauftemperatur ab Außentemperaturen von plus 10 Grad nicht unterschritten wird. Die maximalen und minimalen Temperaturen die an den beiden Grenzwerten der Außentemperatur erreicht werden, sind in der folgenden Tabelle dargestellt:

<table>
<thead>
<tr>
<th></th>
<th>maximale Vorlauftemperatur</th>
<th>maximale Rücklauftemperatur</th>
<th>minimale Vorlauftemperatur</th>
<th>minimale Rücklauftemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°C]</td>
<td>[°C]</td>
<td>[°C]</td>
<td>[°C]</td>
</tr>
<tr>
<td>Großes Netz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fernwärme)</td>
<td>2020 130</td>
<td>80</td>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>2030 110</td>
<td>70</td>
<td>97</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2040 90</td>
<td>60</td>
<td>83</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>2050 70</td>
<td>50</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Kleines Netz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nahwärme)</td>
<td>2020 100</td>
<td>70</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>2030 90</td>
<td>50</td>
<td>83</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>2040 80</td>
<td>55</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2050 70</td>
<td>50</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

Diese Netztemperaturen sind mit den Eingangsdaten der REMix-Rechnungen abgestimmt.

Anhand der so definierten Heizkurve und der momentanen Außentemperatur kann nun für jede Stunde des Jahres die Vor- und Rücklauftemperatur des Systems berechnet werden. Hallo Christopher,
Solarthermie
Die Solarthermie wurde bisher in MuGriFlex nicht abgebildet. Für die Implementierung einer möglichst genauen Abbildung des temperaturabhängigen Wirkungsgrades wurde zunächst untersucht, was die Auswirkungen der „Konkurrenz“ zwischen Solarthermie und Wärmepumpe um die niedrigen Rücklauftemperaturen auf die Wärmeerzeugungskosten sind.

Die folgende Abbildung zeigt die prinzipiellen Möglichkeiten der Einbindung von Solarthermie und Wärmepumpen in den Heizkreislauf, bei unterschiedlichen Netztemperaturen auf:

Abbildung 3-10: Darstellung Temperaturhub durch verschiedenen Wärmeerzeuger [eigene Darstellung]

So kann die Temperatur des Wassers aus dem Rücklauf des Heizsystems zunächst durch den Solarkollektor und danach, wenn nötig, durch die Wärmepumpe und weitere Wärmeerzeuger auf die geforderte Vorlauftemperatur angehoben werden. Oder die Wärmepumpe kommt zuerst zum Einsatz und nutzt die Rücklauftemperatur direkt, bevor die Wassertemperatur, falls erforderlich, durch Solarthermie und weitere Erzeuger angehoben wird.

Für beispielhafte Einsatzfälle wurde über einen Zeitraum von einem Jahr untersucht, in wie vielen Stunden die Erzeugungskosten der von Solarthermie und Wärmepumpe erzeugten Wärme geringer sind, wenn die Solarthermie auf dem niedrigeren bzw. höheren Temperaturniveau eingesetzt wird. Das Ergebnis ist, dass in nahezu allen Stunden die direkte Einbindung der Solarthermie in den Rücklauf zu geringeren Wärmeerzeugungskosten führt. Die Wirkungsgradmaximierung der kostenlosen solarer Strahlungsenergie überwiegt also die mögliche Effizienzsteigerung der Wärmepumpe. Dieses Ergebnis wird nur dann umgekehrt, wenn die Solarthermie-Anlage im Verhältnis zur Wärmelast sehr groß ist und den gesamten Temperaturhub bewältigen kann, sodass die Wärmepumpe entweder auf sehr hohem Tempera-

Im Modell wird die Solarthermie folgendermaßen implementiert:

1. Aus der Wärmelast des Wärmenetzes wird eine Zeitreihe für die geforderte Vor- und Rücklauftemperatur errechnet.
2. Mit den Eingangsdaten solare Strahlung, Außentemperatur, Vor- und Rücklauftemperatur des Wärmenetzes und den technischen Parametern des Solarkollektors wird berechnet, auf welche Temperatur der Solarkollektor die Rücklauf temperatur anheben kann und wie hoch die Wärmeerzeugung des Kollektors bei diesem Arbeitspunkt ist.
3. Wird die Netztemperatur dabei auf einen Wert unterhalb der Vorlauftemperatur angehoben, so werden die unter 1. berechneten Werte für die Rücklauftemperatur nach oben korrigiert. Außerdem wird die noch zu deckende Wärmelast des Wärmenetzes um die Wärmeerzeugung des Solarkollektors reduziert.
4. Kann der Solarkollektor die gesamte Wärmennachfrage in einer Stunde abdecken (also die gesamte Wassermenge auf die geforderte Vorlauftemperatur anheben) so wird angenommen, dass der Solarkollektor diesen geforderten Temperaturhub bewerkstelligt, die restliche erforderliche Wärmelast des Systems wird in dieser Stunde auf null reduziert und gegebenenfalls noch zusätzlich erzeugte solare Wärme wird in den Wärmespeicher eingespeichert.
5. Im Anschluss optimiert MuGriFlex den Einsatz der weiteren Wärmeerzeuger mit den durch die Solarthermie geänderten Werten der Rücklauftemperatur bzw. Wärmbedarfe.

Wärmepumpenbetrieb

6 Die Temperatur des Solarkollektors kann zusätzlich auf einen maximalen Wert begrenzt werden

Abbildung 3-11: Schematische Darstellung des durch die Wärmepumpe zu erzeugenden Temperaturhubs

Die Abbildung zeigt die Vielzahl der verschiedenen Einsatzkombinationen der Wärmepumpe mit weiteren beteiligten Wärmeerzeugern auf. Wenn die Wärmepumpe wegen aktueller Strompreise gerade der kostengünstigste Wärmeerzeuger ist, heißt das nicht notwendigerweise, dass die Kombination mit dem höchsten Anteil an Wärmepumpenwärme zu den geringsten durchschnittlichen Wärmekosten führt: ist der Temperaturhub der Wärmepumpe geringer als der erforderliche Temperaturhub des Systems, so sinken die Wärmeerzeugungskosten der Wärmepumpe aufgrund des dann größeren COPs. Je nach der Höhe der Wärmeerzeugungskosten des in der Stunde nächst teureren Wärmeerzeuger (WE1, WE2 usw.) steigt oder sinkt der Wärmepreis der Anlagenkombination.

In MuGriflex wird für jede Stunde des Simulationszeitraumes eine Rangliste der kostengünstigsten Wärmeerzeugungs-Kombinationen zur Erzeugung einer zu definierbaren Wärmemenge erzeugt. Um einen Kompromiss zwischen Rechenzeit und Rechengenauigkeit erzielen zu können kann die Schrittweite der möglichen Temperaturhübe der Wärmepumpe und die Wärmemenge angepasst werden.

Nun wird die kostengünstigste Wärmemenge im Simulationszeitraum abgerufen, d.h. die entsprechende Kombination der Wärmeerzeuger wird „aktiviert“. Es folgt eine Anpassung der folgenden Werte:

- wenn die aktivierte Wärmemenge dazu geführt hat, dass der Wärmebedarf dieser Stunde auf null reduziert wurde und, dass der Wärmespeicher gefüllt ist7 wird die mögliche Wärmeerzeugung dieser Stunde in der Rangliste deaktiviert

7 (bzw. die verbleibende Kapazität kleiner als die Wärmemenge ist)
• der verbleibende Wärmebedarf bzw. die verbleibende Wärmespeicherkapazität in der Stunde in der die Wärmemenge „aktiviert“ wurde, wird um diese Wärme-
einheit reduziert
• für die Stunde in der die Wärmemenge aktiviert wurde werden die Wärmeerzeug-
gungskosten für eine weitere Wärmemengen-Einheit ermittelt und erneut in die Rangliste der Wärmeerzeugungskosten „einsortiert“ (entspricht den Grenzkos-
ten um die Wärmeproduktion mit der bestmöglichen Anlagenkombination in die-
er Stunde zu erhöhen).

Nach dem erneuten Abruf der Wärmemenge mit den günstigsten Erzeugungskosten werden die drei Schritte wiederholt. Diese Schleife wird solange durchlaufen, bis der Wärmebedarf zu jeder Stunde des Simulationszeitraums gedeckt ist.

3.2.4 Modellerweiterung Wärmespeicher

Der Speicherverlust wird berechnet, indem für jede Stunde des Jahres der Wärme-
verlust berechnet wird. Diese stündlichen Verluste werden nun auf den Wärmelast-
gang addiert. Da der Speicherstand in den einzelnen Stunden des Modellierungs-
zeitraumes zu Beginn der Simulation noch nicht bekannt ist, wird angenommen,
dass der Speicher immer halb voll ist, d.h. die obere Hälfte ist mit Wasser der aktu-
ellen Vorlauf- und die untere Hälfte ist mit Wasser der aktuellen Rücklauftemperatur gefüllt. Diese Annahme führt zu erheblichen Einsparungen an Rechenzeit, die erfor-
derlich wäre, wenn die Berechnung der Verluste eine weitere Optimierungsschleife des Speichereinsatzes erfordern würde. Gleichzeitig sind die Genauigkeitsverluste für die Ergebnisse des Gesamtsystems gering.

Die Hüllflächen und Temperaturen zur Berechnung der Wärmeverlustleistungen sind auf der folgenden Abbildung dargestellt:

![Abbildung 3-12: Wärmeverluste des Wärmespeichers in MuGriFlex](image-url)
Für jede dieser Hüllflächen kann die Wärmeleitfähigkeit sowie die Stärke des Dämmmaterials konfiguriert werden. Durchmesser und Höhe und damit das Volumen des Speichers können entweder vorgegeben werden, oder wenn die Speicherkapazität im Rahmen einer Optimierung bestimmt werden soll, muss das Verhältnis von Höhe zu Durchmesser eingegeben werden.

3.2.5 Abbildung Betriebsmittel im Gasnetz

3.3 Modellkopplung

Die optimierte Gesamtsystemkonfiguration aus REMix wird mit den Betriebsstrategien für die einzelnen Systembestandteile, die sich in Abhängigkeit von energiewirtschaftlichen Rahmenbedingungen ergeben, zusammengeführt. Zentrale Stellen der Modellkopplung sind die Auslegung und zeitlichen Einsatzprofile der Anlagen, sowie die Zeitreihen der Stromgestehungskosten und die Zusammensetzung gasförmiger Brennstoffe.

3.3.1 Einführung

Im Forschungsprojekt MuSeKo werden die beiden Energiesystemmodelle REMix und MuGriFlex gekoppelt, indem die Ausgangsdaten von REMix, welche das Gesamtennergiesystem beschreiben, in geeigneter Weise als Eingangsdaten für MuGriFlex verwendet werden. In MuGriFlex wird anschließend mit diesen Eingangsdaten geprüft, ob die Rahmenbedingungen so sind, dass sich die gesamtwirtschaftlich erwünschten
Anlageninvestitionen und -betriebsweisen auch in der betriebswirtschaftlichen Praxis umsetzen lassen. Für den Fall, dass die Rahmenbedingungen aus betriebswirtschaftlicher Sicht abweichende Anlagenkapazitäten bzw. -fahrweisen anreizen, können mit MuGriFlex Aussagen getroffen werden, wie die Rahmenbedingungen dahingehend geändert werden müssten, damit die gesamtwirtschaftlich erwünschten Investitionen und Fahrweisen betriebswirtschaftlich attraktiv werden.

Abbildung 3-13: Modellkopplung zwischen den Energiesystemmodellen REMix und MuGriFlex

3.3.2 Vorgehen

Folgende, weiter unten näher beschriebene Daten werden auf der Schnittstelle zwischen REMix und MuGriFlex übergeben:

1. Anlagengrößen
2. Betriebsweisen
3. Grenzkosten der Stromerzeugung
4. Zeitreihen der Erzeugung synthetischer Brennstoffe und Brennstoffanteile

Für die Kommunikation der Daten zwischen den beiden Modellen wurde in mehreren Erweiterungsschritten ein Austauschtemplate auf Excel-Basis erstellt, das bei jeder Rechnung mit Daten befüllt wird. Die Konvertierung des REMix-Datenausgabeformats GDX (GAMS Data eXchange) in die gewünschte Excel-Datenstruktur wird mittels einer Python-Routine automatisiert durchgeführt. Dafür werden zunächst alle relevanten Daten in Python geladen, sortiert und transformiert, um anschließend in korrekter Weise aneinandergefügt als Excel-Datei abgespeichert zu werden. Für diesen Arbeitsprozess ist lediglich noch die händische Eingabe des Dateipfades sowie der Szenariobeschreibung notwendig. Die so übergebenen Daten können sodann für jedes Szenario und Szenarijahr in die Eingabemaske (Excel-Format) von MuGriFlex eingefügt werden.
Anlagengrößen:

Betriebsweisen:
Die Betriebsweisen der verschiedenen Technologien werden entsprechend dem REMix-Output regional aggregiert als Zeitreihen (8760 Werte pro Szenario-Jahr) auf Excel-Basis übergeben und dann für den Vergleich mit den MuGriFlex-Ergebnissen herangezogen. So können zum Beispiel aus dem Lastgang der Wärmeerzeugung der KWK-Technologie „Gasmotorische KWK, mittlerer Größe“ (siehe Abschnitt 4.2.2) in der Region „Hessen, Rheinland-Pfalz und Saarland“ (siehe Abschnitt 4.2.1) die Vollaststunden, die Gesamtwärmeerzeugung und der Anteil der Wärmeerzeugung der KWK für diesen Typ Wärmenetze als Vergleichsparameter dienen.

Grenzkosten Strom:
Aus den REMix-Ergebnissen werden die Zeitreihen der Stromgrenzkosten für jede Region übergeben. Dabei handelt es sich um die Grenzkosten der Stromerzeugungsgleichung, also die Kosten für eine weitere Megawattstunde Strom, die stets von dem teuersten Kraftwerk des Strommixes zur jeweiligen Stunde gesetzt werden. Da davon ausgegangen wird, dass es keine regionalen Strommärkte gibt, werden die deutschlandweit gültigen Grenzkosten gebildet indem für jede Stunde des Jahres die jeweils höchsten Grenzkosten aller Regionen verwendet werden.

Diese Kosten werden dann in mit MuGriFlex in einem weiteren Schritt mit Abgaben und Umlagen entsprechend des betrachteten Szenarios und der jeweiligen Technologie beaufschlagt, um die in MuGriFlex benötigten Endverbraucherpreise zu erhalten.

Zeitreihen der Erzeugung synthetischer Brennstoffe und Brennstoffanteile:
Analog der Zeitreihen der Stromgrenzkosten, werden auch der stündliche Strombedarf der Elektrolyseure und der Wasserstoffbedarf der Methanisierungsanlagen getrennt nach Regionen übermittelt. Aus diesen Daten werden nun für jede Stunde des Jahres und für jede Region separat die Erzeugungskosten für Wasserstoff und synthetisches Methan ermittelt. Dabei wird wie folgt vorgegangen:
- **Stromkosten:** Zu dem Grenzkosten für Strom aus REMix werden die zu zahlenden Abgaben auf den Strompreis addiert und ergeben in der Summe die spezifischen Gesamtkosten für Strom in €/MWh (siehe Kapitel 4.5 für mehr Informationen zu den Abgaben auf Strom für Power-to-Gas Anlagen). Diese Stromkosten werden nun mit den Strombedarfen der Elektrolyseure multipliziert und aufaddiert (nur Elektrolyseurbetrieb für direkt eingespeisten Wasserstoff). Die durchschnittlichen Stromkosten pro erzeugter kWh Wasserstoff ergeben sich nun, indem die Gesamtstromkosten durch die Gesamtmenge an produziertem Wasserstoff (abzüglich dem für die Methanisierung verwendetem Wasserstoff) geteilt und mit den Wirkungsgraden der Elektrolyse und Wasserstoffeinspeisung multipliziert wird. Für die Stromkosten des synthetischen Methans wird analog vorgegangen, wobei hier zusätzlich der Wirkungsgrad sowie der Hilfsstrombedarf der Methanisierung berücksichtigt wird (siehe Abbildung 3-14).

![Abbildung 3-14: Schematische Darstellung der Wirkungsgrade Elektrolyse und Methanisierung](image)

- **Variable Betriebskosten:** Diese gehen als Eingangsgröße in €/kWh\text{el} ein und werden zum produzierten Wasserstoff bzw. Methan hinzugerechnet.
- **Kapitalkosten:** Die Annuitäten der Investitionen aller Anlagenkapazitäten werden durch die jährlich eingespeisten Gasmengen geteilt.
- **Fixe Betriebskosten:** Diese werden in Prozent der Kapitalkosten pro Jahr angegeben und entsprechend der Kapitalkosten auf die jährlich eingespeisten Gasmengen umgelegt.
- **CO\textsubscript{2}-Kosten:** Die Kosten für die Beschaffung des CO\textsubscript{2} für die Methanisierungsanlagen und den Transport zu selbigen werden nicht berücksichtigt. Zu den Auswirkungen dieser Kosten auf die Entwicklung der Bereitstellung von synthetischem Methan in Deutschland in der Zukunft besteht nach Ansicht der Autoren noch Forschungsbedarf. Nach [BZGT18] beträgt der CO\textsubscript{2}-Preis („Capture Price“) zwischen 5 (aus Bioethanol-Fermentation, niedrigste Angabe) und 475 Euro pro Tonne CO\textsubscript{2} (Gewinnung aus der Luft, höchste Angabe), was zwischen 0,1 und...
9,41 ct pro produzierter kWh Methan entspricht. Die Brennstoffkosten für die gasbetriebenen KWK-Anlagen (und Gaskessel (solange diese noch betrieben werden) werden nun mit dem aus REMix bereitgestellten Brennstoffanteilen per gewichtetem Mittelwert berechnet. Das Brennstoffgemisch setzt sich zusammen aus fossilem Erdgas, Biomethan, synthetisch erzeugtem Methan und ins Erdgasnetz eingespeistem Wasserstoff (siehe dazu Abschnitt 4.3.1) und wird berechnet, indem die Gasströme, die ins Erdgasnetz bzw. die Erdgasspeicher eingespeist werden, um die allgemeine Gasnachfrage der Haushalte bereinigt summiert werden. Die Preise für Erdgas und Biogas sowie die zusätzlichen Kosten für CO₂-Abgaben werden vom Szenario vorgegeben (siehe Abschnitt 4.1.4).

- **Abgaben auf Gastransport und Gewinn:** Für Abgaben, Transport, Zwischenspeicherung und Gewinnerwartungen der beteiligten Akteure werden die in Tabelle 6-2 gezeigten zusätzlichen Kosten pro kWh synthetischem Methan angenommen.

Die folgende Abbildung zeigt als Beispiel die resultierenden Kosten von synthetischem Methan für ein beispielhaftes Szenario im Jahr 2050⁸.

Abbildung 3-15: Beispielhaftes Ergebnis der Wasserstoffzeugungskosten

3.4 Iterationen

Die Ergebnisse zu Anlagenkonfiguration und Anlagenbetrieb fallen bei der betriebswirtschaftlichen Betrachtung (Modell MuGriFlex) gegenüber dem gesamtwirtschaftlichen Optimum (REMix) ohne Anpassung der Rahmenbedingungen unterschiedlich aus. In der Realität würde dieser Unterschied einen Einfluss auf die Grenzkosten der Stromerzeugung bewirken, die als Zeitreihe eine Eingangsgröße der betriebswirtschaftlichen Optimierung sind. Um diesen Einfluss abzuschätzen wurde für das Szenariojahr mit den größten Unterschieden der Anlagenkonfiguration (THG95-2050⁹) eine Rückkopplung zwischen den Modellen durchgeführt. Dabei wurde angenommen, dass die in REMix im ersten Iterationsschritt ermittelten KWK-Anlagen (alle

⁸ Szenario THG95, siehe Kapitel 4.1 für die Beschreibung der Szenarien

⁹ siehe Kapitel 4.1 für die Beschreibung der Szenarien
Anlagen in allen Regionen Deutschlands) nicht mehr zur Verfügung stehen, da sie aus Betreibersicht nicht wirtschaftlich wären und somit auch zu keiner Stunde des Jahres als Kraftwerk zur Verfügung stehen.

Die resultierenden veränderten Grenzkosten, die in vielen Stunden des Jahres durch einen veränderten Kraftwerkseinsatz höher ausfielen, wurden nun erneut in MuGriFlex verwendet um zu sehen ob sich durch die höheren Strompreise eine aus betriebswirtschaftlicher Sicht andere Anlageninvestition und -betrieb lohnen würde. Es zeigte sich im Ergebnis, dass auch mit diesen Grenzkosten eine Investition in KWK-Anlagen im Szenariojahr THG95-2050 aus betriebswirtschaftlicher Sicht nicht zu rechtfertigen ist.
4 Datengrundlage der Modellierungen

4.1 Szenarien der Energiesystemtransformation

Die modellgestützten Untersuchungen zukünftiger Energiesysteme basieren auf zwei Rahmenszenarien, die definierte normative Transformationspfade für Deutschland und Europa darstellen. Die Mengengerüste dieser Zielszenarien werden für die Parametrierung des Modells REMix genutzt und stellen für das gesamte Projekt den energiewirtschaftlichen Kontext dar. Sie bilden unterschiedliche Zielwerte der CO₂-Emissionsreduktion bis ins Jahr 2050 ab.

4.1.1 Grundlagen der Szenarioentwicklung

europäische Bevölkerung um 10 % angesetzt wurde sowie ein eher niedriges Wirtschaftswachstum mit einer BIP-Zunahme um 1,3% pro Jahr. Die Wachstumsrate für Deutschland beträgt in diesem Szenario 1,2% pro Jahr, was im Vergleich zu [PFTF17] etwas höher liegt.

Tabelle 4-1: Sozio-ökonomische Rahmendaten der Szenarien für Deutschland in Anlehnung an [PFTF17] und [SLKK14]

<table>
<thead>
<tr>
<th>Einheit</th>
<th>2011</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevölkerung Mio.</td>
<td>81</td>
<td>81</td>
<td>78</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td>Private Haushalte Mio.</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>BIP real (Preisbasis 2011) Mrd. €</td>
<td>2.500</td>
<td>2.770</td>
<td>3.000</td>
<td>3.200</td>
<td>3.400</td>
</tr>
<tr>
<td>Pkw-Bestand Mio.</td>
<td>42</td>
<td>44</td>
<td>44</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>Personenverkehrsleistung (mit Pkw) Mrd. pkm</td>
<td>1.134</td>
<td>1.143</td>
<td>1.140</td>
<td>1.120</td>
<td>1.085</td>
</tr>
<tr>
<td>Güterverkehrsleistung Mrd. tkm</td>
<td>629</td>
<td>702</td>
<td>804</td>
<td>860</td>
<td>920</td>
</tr>
</tbody>
</table>

4.1.2 Szenarien für Deutschland

Die den Arbeiten zugrunde liegenden Nachfrageentwicklungen für Strom, Wärme, Wasserstoff und Erdgas sind in Tabelle 4-3 und Tabelle 4-4 für die Szenarien dargestellt. Sie basieren für die Sektoren Haushalte, GHD und Industrie im Falle des THG80-Szenarios auf den Ergebnissen zum Zielszenario von [SLKK14]. Für den Verkehr werden zudem Ergebnisse von DLR-Arbeiten zur Entwicklung integrierter Energie- und Verkehrsszenarien für das Jahr 2040 genutzt und in das Jahr 2050 extrapoliert (s. auch [Ehre20]). Im Szenario THG95 orientieren sich die langfristigen Entwicklungen u.a. am THG95-Szenario aus [NPNH12] und dem KS95-Szenario von [ÖkFr15].

Für die Nachfrage an Strom pro Haushalt (außer Strom für Wärme) wurde ein Rückgang um 0,7 bis 0,8% pro Jahr angenommen, was zwischen 2015 und 2050 zu einer Reduzierung des konventionellen Haushaltstroms um 12 % führt. Im Sektor GHD sinkt die Energieintensität in Form des Strombedarfs pro Euro Bruttowertschöpfung um jährlich 2,4%, der Gesamtstrombedarf (ohne Strom für Wärme) sinkt zwischen 2015 und 2050 um 25%. In der Industrie wurde eine Reduzierung des spezifischen Strombedarfs pro Euro Bruttowertschöpfung um jährlich 1,7% angenommen. Der gesamte Strombedarf (wiederum ohne Wärmebereitstellung) sinkt bis 2050 um 23%. In Summe sind die Szenarien, was die Minderung der Stromnachfrage angeht, eher konservativ im Vergleich zu den 2010 formulierten Zielen des Energiekonzepts.

Auf der Wärmeseite wird ein Absinken des heutigen Heizwärmebedarfs von Wohngebäuden um 50% bis 2050 angenommen, was eine deutliche Erhöhung sowohl der bisherigen jährlichen Sanierungsrate als auch der Sanierungstiefe unterstellt. Auch der Heizwärmebedarf sonstiger Gebäude reduziert sich entsprechend stark, der industrielle Prozesswärmebedarf sinkt nach den Annahmen um 36% bis zum
Jahr 2050. In Summe sinkt der Endenergiebedarf bei den Haushalten zwischen 2015 und 2050 um 40%, beim Sektor GHD um 45% und bei der Industrie um 30%. Sektorenübergreifend steigt der Anteil der Wärmeerzeugung aus Strom von heute angenommenen 7% auf 17% im Jahr 2050 im THG80-Szenario und auf 33% im THG95-Szenario.

| Tabelle 4-3: Berücksichtigte Energienachfragen im Szenario THG80 |
|-------------------|-------------------|---------|---------|---------|---------|
| **Sektor** | **Einheit** | **2020** | **2030** | **2040** | **2050** |
| Strom FE Haushalte | TWh/a | 105 | 99 | 93 | 87 |
| Strom FE GHD | TWh/a | 123 | 115 | 107 | 99 |
| Strom FE Industrie | TWh/a | 185 | 172 | 158 | 145 |
| Strom FE Verkehr E-Fahrzeuge | TWh/a | 0 | 32 | 86 | 106 |
| Strom FE Verkehr Bahn | TWh/a | 15 | 15 | 14 | 13 |
| Strom H₂-Erzeugung f. Verkehr | TWh/a | 0 | 4,5 | 21 | 87 |
| Strom H₂-Erzeugung f. Industrie | TWh/a | 0 | 0 | 0 | 0 |
| Strom * H₂-Erzeugung f. KKW/RV | TWh/a | 0 | 0,4 | 9 | 24 |
| Strom * Wärmepumpen, E-Heizer | TWh/a | 86 | 131 | 195 | 197 |
| Strom Summe Nachfrage | TWh/a | 514 | 569 | 683 | 759 |
| Wärme NE Haushalte | PJ/a | 1.916 | 1.624 | 1.363 | 1.167 |
| Wärme NE GHD | PJ/a | 705 | 558 | 431 | 331 |
| Wärme NE Industrie | PJ/a | 1.696 | 1.470 | 1.375 | 1276 |
| Wärme NE Summe Nachfrage | PJ/a | 4.317 | 3.652 | 3.170 | 2.774 |
| davon Wärme aus Strom | PJ/a | 346 | 411 | 457 | 483 |
| H₂ FE Verkehr | PJ/a | 0 | 12 | 59 | 252 |
| H₂ FE Industrie Prozesswärme | PJ/a | 0 | 0 | 0 | 0 |
| H₂ * KWK/Rückverstromung | PJ/a | 0 | 1 | 26 | 69 |
| H₂ Summe Nachfrage | PJ/a | 0 | 13 | 85 | 321 |
| Erdgas FE Haushalte | PJ/a | 773 | 521 | 295 | 158 |
| Erdgas FE GHD | PJ/a | 326 | 191 | 101 | 41 |
| Erdgas FE Industrie | PJ/a | 696 | 501 | 437 | 392 |
| Erdgas FE Verkehr | PJ/a | 10 | 48 | 26 | 16 |
| Erdgas * Kraftwerke und KKW | PJ/a | 1.413 | 1.412 | 919 | 584 |
| Erdgas sonst. Umwandlung/N-E | PJ/a | 198 | 201 | 189 | 190 |
| Erdgas Summe Nachfrage | PJ/a | 3.417 | 2.874 | 1.966 | 1.380 |

* nachrichtlich, in REMix endogen berechnet

Die Nachfrageentwicklungen in Szenario THG95 unterscheiden sich – bezogen auf die Nutzenergie – nicht von THG80, d.h. es wurden keine optimistischeren Annahmen zur Effizienzentwicklung in den Nachfragesektoren angenommen. Aufgrund
unterschiedlicher Erzeugungsstrukturen ändert sich jedoch teilweise und insbesondere in der industriellen Prozesswärmeerzeugung der Endenergiebedarf.

Ausgehend von diesen zwei Basisszenarien werden weitere Szenariovarianten unterschieden und auf der Systemebene modellgestützt untersucht (s. Abschnitt 5.2.3). Diese Varianten unterscheiden sich insbesondere hinsichtlich der Verfügbarkeit von bestimmten Infrastrukturen (dezentrale Batteriespeicher, Wärmepumpen, Stromübertragungskapazitäten, effiziente Elektrolyseure und Methanisierung) sowie von importiertem Wasserstoff und kostengünstigem CO₂ für die Methanisierung.

Tabelle 4-4: Berücksichtigte Energienachfragen im Szenario THG95

<table>
<thead>
<tr>
<th>Sektoren</th>
<th>Einheit</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strom FE Haushalte</td>
<td>TWh/a</td>
<td>105</td>
<td>99</td>
<td>93</td>
<td>87</td>
</tr>
<tr>
<td>Strom FE GHD</td>
<td>TWh/a</td>
<td>123</td>
<td>115</td>
<td>107</td>
<td>99</td>
</tr>
<tr>
<td>Strom FE Industrie</td>
<td>TWh/a</td>
<td>185</td>
<td>172</td>
<td>158</td>
<td>145</td>
</tr>
<tr>
<td>Strom FE Verkehr E-Fahrzeuge</td>
<td>TWh/a</td>
<td>0</td>
<td>32</td>
<td>86</td>
<td>145</td>
</tr>
<tr>
<td>Strom FE Verkehr Bahn</td>
<td>TWh/a</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Strom H₂-Erzeugung f. Verkehr</td>
<td>TWh/a</td>
<td>0</td>
<td>4,5</td>
<td>21</td>
<td>91</td>
</tr>
<tr>
<td>Strom H₂-Erzeugung f. Industrie</td>
<td>TWh/a</td>
<td>0</td>
<td>3,6</td>
<td>32</td>
<td>74</td>
</tr>
<tr>
<td>Strom * H₂-Erzeugung f. KWK/RV</td>
<td>TWh/a</td>
<td>0</td>
<td>8,5</td>
<td>50</td>
<td>259</td>
</tr>
<tr>
<td>Strom * Wärmepumpen, E-Heizer</td>
<td>TWh/a</td>
<td>86</td>
<td>159</td>
<td>228</td>
<td>229</td>
</tr>
<tr>
<td>Strom Summe Nachfrage</td>
<td>TWh/a</td>
<td>513</td>
<td>609</td>
<td>790</td>
<td>1.141</td>
</tr>
<tr>
<td>Wärme NE Haushalte</td>
<td>PJ/a</td>
<td>1.916</td>
<td>1.624</td>
<td>1.363</td>
<td>1.167</td>
</tr>
<tr>
<td>Wärme NE GHD</td>
<td>PJ/a</td>
<td>705</td>
<td>558</td>
<td>428</td>
<td>329</td>
</tr>
<tr>
<td>Wärme NE Industrie</td>
<td>PJ/a</td>
<td>1.696</td>
<td>1.464</td>
<td>1.292</td>
<td>1.085</td>
</tr>
<tr>
<td>Wärme NE Summe Nachfrage</td>
<td>PJ/a</td>
<td>4.317</td>
<td>3.646</td>
<td>3.083</td>
<td>2.581</td>
</tr>
<tr>
<td>davon Wärme aus Strom</td>
<td>PJ/a</td>
<td>346</td>
<td>469</td>
<td>634</td>
<td>839</td>
</tr>
<tr>
<td>H₂ FE Verkehr</td>
<td>PJ/a</td>
<td>0</td>
<td>12</td>
<td>60</td>
<td>263</td>
</tr>
<tr>
<td>H₂ FE Industrie Prozesswärme</td>
<td>PJ/a</td>
<td>0</td>
<td>9</td>
<td>89</td>
<td>213</td>
</tr>
<tr>
<td>H₂ * KWK/Rückverstromung</td>
<td>PJ/a</td>
<td>0</td>
<td>22</td>
<td>138</td>
<td>749</td>
</tr>
<tr>
<td>H₂ Summe Nachfrage</td>
<td>PJ/a</td>
<td>0</td>
<td>32</td>
<td>225</td>
<td>1.225</td>
</tr>
<tr>
<td>Erdgas FE Haushalte</td>
<td>PJ/a</td>
<td>773</td>
<td>493</td>
<td>243</td>
<td>17</td>
</tr>
<tr>
<td>Erdgas FE GHD</td>
<td>PJ/a</td>
<td>326</td>
<td>186</td>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>Erdgas FE Industrie</td>
<td>PJ/a</td>
<td>696</td>
<td>484</td>
<td>277</td>
<td>91</td>
</tr>
<tr>
<td>Erdgas FE Verkehr</td>
<td>PJ/a</td>
<td>10</td>
<td>48</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>Erdgas * Kraftwerke und KWK</td>
<td>PJ/a</td>
<td>1.413</td>
<td>1.325</td>
<td>645</td>
<td>277</td>
</tr>
<tr>
<td>Erdgas sonst. Umwandlung/N-E</td>
<td>PJ/a</td>
<td>198</td>
<td>201</td>
<td>189</td>
<td>190</td>
</tr>
<tr>
<td>Erdgas Summe Nachfrage</td>
<td>PJ/a</td>
<td>3.417</td>
<td>2.738</td>
<td>1.464</td>
<td>581</td>
</tr>
</tbody>
</table>

FE: Endenergie NE: Nutzenergie H₂: Wasserstoff N-E: nicht-energetischer Verbrauch
KWK: Kraftwärmekopplung RV: Rückverstromung GHD: Gewerbe, Handel, Dienstleistungen
* nachrichtlich, in REMix endogen berechnet, H₂-Erzeugung einschl. Bedarf für Methanisierung

4.1.3 Rahmenszenarien für Europa

Für die Modellierung der untersuchten europäischen Länder als räumlicher Kontext des zukünftigen deutschen Energiesystems (siehe Abbildung 5.2) wurde ein europäisches Nachfrageszenario skizziert, dass sich an den für Deutschland angenommenen Entwicklungen anlehnt. Dies gilt insbesondere für die Entwicklung der Nachfrage an Strom für Elektromobilität, Wasserstoff im Verkehr und für Wärme. Gleichzeitig wurde die Entwicklung der klassischen bzw. konventionellen Verbraucher bis

Tabelle 4-5: Entwicklung der Stromnachfrage in Europa in TWh/a – Szenarien THG80 & THG95

<table>
<thead>
<tr>
<th>THG80</th>
<th>2020 konv.</th>
<th>2050 konv.</th>
<th>2050 BEV</th>
<th>2050 H2</th>
<th>2050 WP</th>
<th>2050 E-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>427,7</td>
<td>344,1</td>
<td>106,3</td>
<td>111,1</td>
<td>69,3</td>
<td>128,2</td>
</tr>
<tr>
<td>Österreich</td>
<td>71,8</td>
<td>46,8</td>
<td>9,0</td>
<td>8,7</td>
<td>2,3</td>
<td>2,0</td>
</tr>
<tr>
<td>Belgien</td>
<td>91,0</td>
<td>67,4</td>
<td>12,0</td>
<td>13,1</td>
<td>5,4</td>
<td>3,0</td>
</tr>
<tr>
<td>Tschechien</td>
<td>67,0</td>
<td>40,9</td>
<td>7,0</td>
<td>8,7</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>13,5</td>
<td>7,5</td>
<td>2,2</td>
<td>2,4</td>
<td>0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>22,8</td>
<td>12,6</td>
<td>3,8</td>
<td>4,1</td>
<td>1,0</td>
<td>0,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>485,7</td>
<td>379,5</td>
<td>73,0</td>
<td>80,7</td>
<td>22,5</td>
<td>4,0</td>
</tr>
<tr>
<td>Italien</td>
<td>325,4</td>
<td>283,5</td>
<td>62,0</td>
<td>69,8</td>
<td>10,7</td>
<td>8,0</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>7,1</td>
<td>4,1</td>
<td>1,0</td>
<td>0,4</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Niederlande</td>
<td>114,6</td>
<td>92,5</td>
<td>14,0</td>
<td>15,3</td>
<td>7,0</td>
<td>4,5</td>
</tr>
<tr>
<td>Norwegen</td>
<td>131,3</td>
<td>83,6</td>
<td>6,0</td>
<td>6,5</td>
<td>1,5</td>
<td>0,4</td>
</tr>
<tr>
<td>Polen</td>
<td>161,3</td>
<td>79,1</td>
<td>25,0</td>
<td>26,2</td>
<td>5,7</td>
<td>4,5</td>
</tr>
<tr>
<td>Polen</td>
<td>145,7</td>
<td>90,8</td>
<td>12,0</td>
<td>13,1</td>
<td>3,7</td>
<td>3,0</td>
</tr>
<tr>
<td>Schweiz</td>
<td>64,4</td>
<td>49,1</td>
<td>7,0</td>
<td>8,7</td>
<td>2,6</td>
<td>1,5</td>
</tr>
<tr>
<td>Summe</td>
<td>2.129,4</td>
<td>1.581,4</td>
<td>340,3</td>
<td>368,8</td>
<td>135,0</td>
<td>162,7</td>
</tr>
</tbody>
</table>
4.1.4 CO₂- und Brennstoffpreisszenarien

Tabelle 4-6: Angenommene Brennstoffkosten in den Szenarien.

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas</td>
<td>38,4 €/MWh</td>
<td>41,0 €/MWh</td>
<td>43,2 €/MWh</td>
<td>42,1 €/MWh</td>
</tr>
<tr>
<td>Steinkohle</td>
<td>15,1 €/MWh</td>
<td>16,2 €/MWh</td>
<td>17,3 €/MWh</td>
<td>20,5 €/MWh</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>4,1 €/MWh</td>
<td>4,1 €/MWh</td>
<td>4,1 €/MWh</td>
<td>4,1 €/MWh</td>
</tr>
<tr>
<td>Uran</td>
<td>3,2 €/MWh</td>
<td>3,2 €/MWh</td>
<td>3,2 €/MWh</td>
<td>3,2 €/MWh</td>
</tr>
<tr>
<td>Öl</td>
<td>58,3 €/MWh</td>
<td>60,5 €/MWh</td>
<td>65,9 €/MWh</td>
<td>71,3 €/MWh</td>
</tr>
<tr>
<td>Biogas</td>
<td>28,1 €/MWh</td>
<td>28,1 €/MWh</td>
<td>28,1 €/MWh</td>
<td>28,1 €/MWh</td>
</tr>
<tr>
<td>Feste Biomasse</td>
<td>26,9 €/MWh</td>
<td>26,9 €/MWh</td>
<td>26,9 €/MWh</td>
<td>26,9 €/MWh</td>
</tr>
</tbody>
</table>

In den Szenarien wird weiterhin davon ausgegangen, dass die Emission von CO₂ über einen Zertifikatshandel mit Kosten belegt wird. Die dafür angenommenen Werte sind gemäß den Klimaschutzszenarien 2050 zukünftig stark ansteigend angenommen [ÖkFr15]. Die dort verwendeten Werte wurden unter Berücksichtigung...
der Inflation auf das Basisjahr der Kostenangaben (2015) angepasst (siehe Tabelle 4-7).

Tabelle 4-7: Angenommene CO₂-Emissionszertifikatskosten in den Szenarien.

<table>
<thead>
<tr>
<th>Szenario</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>THG80</td>
<td>32 €/t</td>
<td>54 €/t</td>
<td>97 €/t</td>
<td>140 €/t</td>
</tr>
<tr>
<td>THG95</td>
<td>32 €/t</td>
<td>94 €/t</td>
<td>154 €/t</td>
<td>216 €/t</td>
</tr>
</tbody>
</table>

4.1.5 Techno-ökonomische Annahmen

4.2 Untersuchungsrahmen auf Gesamtsystemebene

Die Szenariodaten werden für die Einbindung in REMix teilweise aggregiert und teilweise disaggregiert. Dies betrifft die räumliche, zeitliche und technologische Dimension. Das resultierende Modell umfasst 22 Regionen, etwa 90 Technologien und 8760 Zeitschritte für die vier Szenariojahre 2020, 2030, 2040 und 2050.

4.2.1 Räumlicher und zeitlicher Betrachtungsraum

Im Fokus der REMix-Modellanwendung steht die Untersuchung des Beitrags flexibler Sektorenkopplung zur Umsetzung der Energiesystemtransformation in Deutschland. Um den Beitrag des internationalen Stromverbundnetzes und großskaliger Wasserkraftwerke zur Integration fluktuierender Wind- und Solarstromerzeugung adäquat abzubilden, umfasst die Modellierung in REMix jedoch auch die europäischen Nachbarstaaten sowie Italien, Norwegen und Schweden (Abbildung 4-1). Während diese als jeweils ein Modellknoten abgebildet sind – jegliche inländische Restriktionen des Stromtransports also vernachlässigt werden – ist Deutschland in zehn Modellregionen unterteilt. Diese ergeben sich aus einer teilweisen Aggregation vor allem der kleineren Bundesländer. Sie ist so gewählt, dass Engpässe des Strom- und Gastransports von Norden nach Süden bzw. von Osten nach Westen (und jeweils umgekehrt)
berücksichtigt werden. Eine Sonderstellung nimmt Hamburg ein, das für die weiterführende Analyse mit MuGriFlex als eigenständige Modellregion behandelt wird.

Abbildung 4-1: Darstellung der betrachteten Regionen in REMix

Die Modellierung umfasst die Szenariojahre 2020, 2030, 2040 und 2050. In REMix werden diese werden in myopischer Modellanwendung betrachtet. Dies impliziert, dass die in den vorherigen Stützjahren modellendogen zugebauten Anlagen im Rah-
men ihrer Lebensdauer im System bestehen bleiben. Die dadurch entstehende begrenzte Voraussicht mit rollierendem Horizont von 10 Jahren trägt den in der Realität auftretenden Unsicherheiten von langfristigen Investitionsentscheidungen Rechnung (s. auch [Lech18]).

4.2.2 Einbindung der Szenarien in REMix

<table>
<thead>
<tr>
<th>Erneuerbare Energie</th>
<th>Konventionelle Energie</th>
<th>Lastausgleich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse-Strom</td>
<td>Steinkohlekraft</td>
<td>Drehstromnetz (HS)</td>
</tr>
<tr>
<td>Geothermie-Strom</td>
<td>Braunkohlekraft</td>
<td>Gleichstromleitungen</td>
</tr>
<tr>
<td>CSP</td>
<td>Kernkraft</td>
<td>H₂-Transportleitungen</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>Gasturbinen</td>
<td>CH₄-Transportleitungen</td>
</tr>
<tr>
<td>Windstrom an Land</td>
<td>Gas-GuD</td>
<td>Pumpspeicher</td>
</tr>
<tr>
<td>Windstrom auf See</td>
<td>Ölturbinen</td>
<td>Batteriespeicher</td>
</tr>
<tr>
<td>Laufwasserkraft</td>
<td></td>
<td>CH₄-Kavernenspeicher</td>
</tr>
<tr>
<td>Speicherwasserkraft</td>
<td></td>
<td>Wärmespeicher (6 x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strom</th>
<th>Wärme (& Strom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse-KWK (2 x)</td>
<td>Gas-BHKW (3 x)</td>
</tr>
<tr>
<td>Biomasse-Wärme</td>
<td>Gas-GuD-KWK</td>
</tr>
<tr>
<td>Solartherm. Wärme (3 x)</td>
<td>Gasturbinen-KWK</td>
</tr>
<tr>
<td>Brennstoffzellen-KWK</td>
<td>Steinkohle-KWK (2 x)</td>
</tr>
<tr>
<td></td>
<td>Braunkohle-KWK (2 x)</td>
</tr>
<tr>
<td></td>
<td>ÖL-KWK (2 x)</td>
</tr>
<tr>
<td></td>
<td>Müllverbrennungs-KWK</td>
</tr>
</tbody>
</table>

Abbildung 4-2: Schematische Darstellung des Technologieumfangs in REMix

Die Szenarien legen im Wesentlichen die Entwicklung der Energienachfrage im betrachteten Untersuchungsgebiet fest. Diese wird entsprechend verschiedener Verteilparameter auf die Modellregionen in Deutschland verteilt. Für die Verteilung der...

Der Zubau von Lithium-Ionen-Batteriespeichern ist ebenfalls möglich, während für Pumpspeicher ein geringer Ausbau von heute 6,5 GW auf 7,6 GW in 2050 exogen angenommen ist. Für den Strombedarf im Verkehrssektor (siehe Tabelle 4-3 und Tabelle 4-4) ist angenommen, dass nur jener von vollelektrischen und hybridelektrischen Pkws für ein gesteuertes Laden in Frage kommt. Weiterhin wird der Anteil des flexiblen Ladens auf 60%, jener der Rückspeisung ins Stromnetz (V2G) auf 20% der Fahrzeuge beschränkt. Die Bereitstellung der Brennstoffnachfrage des Luft- und Schiffverkehrs wird in REMix als einziges wesentliches Element des Energiesystems nicht berücksichtigt.

Für das Stromtransportnetz gehen die heutigen Leitungskapazitäten ebenso wie der im Rahmen des Netzentwicklungsplans [RPMK17] und TYNDP (Ten Year Network Development Plan, [Ents15b]) geplante Ausbau ein. In den Szenariojahren 2040 und 2050 können darüber hinaus 5 GW pro Kuppelstelle zwischen Modellregionen und Dekade modellendogen zugebaut werden. Diese Einschränkung vermeidet das sprunghafte Ansteigen der Leistungskapazität, ihre Auswirkung wird im Rahmen der Sensitivitätsanalysen geprüft. Die Auslegung der verschiedenen Technologien zur flexiblen Sektorenkopplung ist ein wichtiger Untersuchungsgegenstand der REMix-Anwendung. Folglich werden u.a. die Kapazitäten von Speichern für Wasserstoff...
und Wärme, elektrische Wärmeerzeuger, Elektrolyseure und Wasserstofftransportleitungen modellendogen bestimmt (siehe Abbildung 4-2). Eine Bauzeit von Anlagen wird nicht in Betracht gezogen; wenn das Modell also eine Investitionsentscheidung trifft steht die entsprechende Anlage ab dem ersten Tag des betrachteten Jahres zur Verfügung.

Die Nutzung erneuerbarer Energiequellen ist entsprechend der verfügbaren Potenziale begrenzt. Diese sind für die betrachteten Modellregionen in Tabelle 4-8 zusammengefasst.
Tabelle 4-8: Übersicht der in REMix berücksichtigten Potenziale erneuerbarer Energiequellen aufgegliedert auf die betrachteten Modellregionen

<table>
<thead>
<tr>
<th>Region</th>
<th>PV in MW (peak)</th>
<th>Wind an Land in MW (el)</th>
<th>Wind auf See in MW (el)</th>
<th>CSP in MW (th)</th>
<th>Laufwasser in MW</th>
<th>Festere Biomasse in TWh (chem)</th>
<th>Biogas in TWh (chem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>64.455</td>
<td>13.501</td>
<td>0</td>
<td>0</td>
<td>852</td>
<td>10.5</td>
<td>3,6</td>
</tr>
<tr>
<td>Bayern</td>
<td>78.456</td>
<td>22.037</td>
<td>0</td>
<td>0</td>
<td>2.393</td>
<td>14.9</td>
<td>5,2</td>
</tr>
<tr>
<td>Berlin_Brandenburg_SachsenAnh</td>
<td>78.216</td>
<td>15.478</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>6.7</td>
<td>0,0</td>
</tr>
<tr>
<td>Bremen_Niedersachsen</td>
<td>66.645</td>
<td>15.906</td>
<td>40.221</td>
<td>0</td>
<td>79</td>
<td>10.0</td>
<td>3,4</td>
</tr>
<tr>
<td>Hamburg</td>
<td>7.884</td>
<td>137</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
<td>6.7</td>
<td>0,8</td>
</tr>
<tr>
<td>Mecklenburg-Vorpomm.</td>
<td>19.032</td>
<td>8.240</td>
<td>14.341</td>
<td>0</td>
<td>4</td>
<td>6.7</td>
<td>2,3</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>101.352</td>
<td>7.747</td>
<td>60.241</td>
<td>0</td>
<td>192</td>
<td>14.8</td>
<td>5,1</td>
</tr>
<tr>
<td>Saarland_Rhein-Pfalz_Hessen</td>
<td>69.147</td>
<td>12.063</td>
<td>0</td>
<td>0</td>
<td>359</td>
<td>10.1</td>
<td>0,1</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>21.795</td>
<td>10.041</td>
<td>17.400</td>
<td>0</td>
<td>10</td>
<td>3.2</td>
<td>1,1</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>58.992</td>
<td>11.758</td>
<td>0</td>
<td>0</td>
<td>286</td>
<td>15.1</td>
<td>5,2</td>
</tr>
<tr>
<td>Österreich</td>
<td>68.475</td>
<td>29.838</td>
<td>0</td>
<td>0</td>
<td>9.304</td>
<td>22.3</td>
<td>1,7</td>
</tr>
<tr>
<td>Belgien-Luxemburg</td>
<td>122.892</td>
<td>7.033</td>
<td>5.579</td>
<td>0</td>
<td>224</td>
<td>8.9</td>
<td>1,7</td>
</tr>
<tr>
<td>Tschechien</td>
<td>93.009</td>
<td>27.655</td>
<td>0</td>
<td>0</td>
<td>508</td>
<td>18.5</td>
<td>8,7</td>
</tr>
<tr>
<td>Dänemark-Ost</td>
<td>22.479</td>
<td>2.772</td>
<td>102.884</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1,5</td>
</tr>
<tr>
<td>Dänemark-West</td>
<td>36.096</td>
<td>12.503</td>
<td>20.891</td>
<td>0</td>
<td>12</td>
<td>1.5</td>
<td>2,7</td>
</tr>
<tr>
<td>Frankreich</td>
<td>534.117</td>
<td>219.932</td>
<td>251.981</td>
<td>16.840</td>
<td>16.935</td>
<td>74.0</td>
<td>42,6</td>
</tr>
<tr>
<td>Italien</td>
<td>286.398</td>
<td>123.588</td>
<td>165.276</td>
<td>102.622</td>
<td>16.342</td>
<td>30.2</td>
<td>20,0</td>
</tr>
<tr>
<td>Niederlande</td>
<td>86.094</td>
<td>10.638</td>
<td>91.845</td>
<td>0</td>
<td>68</td>
<td>5.2</td>
<td>13,4</td>
</tr>
<tr>
<td>Norwegen</td>
<td>1.8051</td>
<td>137.949</td>
<td>383.388</td>
<td>0</td>
<td>20.500</td>
<td>18,2</td>
<td>0,0</td>
</tr>
<tr>
<td>Polen</td>
<td>211.923</td>
<td>117.655</td>
<td>49.789</td>
<td>0</td>
<td>1.652</td>
<td>52.1</td>
<td>15,1</td>
</tr>
<tr>
<td>Schweden</td>
<td>108.075</td>
<td>178.422</td>
<td>220.297</td>
<td>0</td>
<td>17.311</td>
<td>61.4</td>
<td>2,5</td>
</tr>
<tr>
<td>Schweiz</td>
<td>12.033</td>
<td>14.158</td>
<td>0</td>
<td>0</td>
<td>7.085</td>
<td>11.6</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Die Flexibilisierung der Wärmeerzeugung ist ein Fokus der Modellanwendung, weswegen eine Vielzahl von Technologien in Betracht gezogen wird (siehe Abbildung 4-3). Dabei werden verschiedene Verbraucherklassen berücksichtigt, die sich im Modell durch die unterschiedlichen Nachfrageverläufe unterscheiden. Eine große Breite an Technologien ergibt sich zudem aus der Berücksichtigung unterschiedlicher Anlagengrößenklassen und Brennstoffen bei der KWK. Die durch die verschiedenen Wärmetechnologien bereitzustellende Wärmemenge ist durch die Szenarien vorgegeben. Dies bezieht sich jeweils auf die Hauptversorgereinheit, welche meistens eine KWK-Technologie, in einzelnen Fällen aber auch elektrische Wärmeerzeuger. Diese Hauptversorger können modellendogen durch weitere Wärmeerzeuger – Elektro-/Elektrodenheizkessel, Wärmepumpen, Solarthermieanlagen und konventionelle Spitzenkessel – sowie durch thermische Speicher ergänzt werden. Bei der Optimierung der Kapazitäten – welche auch die Hauptversorgereinheit einschließt – muss zur Besicherung der Wärmeversorgung sichergestellt sein, dass die summierte Wärmeerzeugungsleistung mindestens doppelt so groß wie die zu deckende thermische

Abbildung 4-3: Abbildung der Wärmeversorgung in REMix in den untersuchten Szenarien. Hervorgehoben sind die Hauptversorgungstechnologien. Diese können modellendogen um die weiteren Versorgungskomponenten ergänzt werden.

Tabelle 4-9: Maximale Wärmespeichergrößen, relativ zur thermischen Nachfragespitze.

<table>
<thead>
<tr>
<th>Technologien</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmepumpenspeicher in Gebäuden</td>
<td>0,5</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>Wärmenetzspeicher</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Speicher von Objekt-KWK</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Speicher in Gasvorwärmanlagen</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Speicher von industrieller KWK</td>
<td>0,5</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
</tr>
</tbody>
</table>

Auch der Zubau von Wärmepumpen in Wärmenetzen ist aufgrund der benötigten Erschließung von Wärmequellen teilweise eingeschränkt. Ihre thermische Leistung ist gegenüber der thermischen Spitzenlast beschränkt auf 0,1 in 2020, 0,2 in 2030, 0,35 in 2040 und 0,5 in 2050. Die Wirkung dieser Begrenzungen wird im Rahmen der Sensitivitätsanalyse betrachtet (siehe Abschnitt 4.2.3 und Kapitel 5.2).

4.2.3 Szenariovarianten

Ergänzend zu den beiden Rahmenszenarien wurde eine Reihe von Varianten mit REMix analysiert. Dabei wurden abweichende Pfade der Technologieimplementierung betrachtet, sowie zentrale Technologie- und Szenarioannahmen verändert, um deren Auswirkung zu verstehen und quantifizierbar zu machen. Im Fokus der Szenariovarianten steht die Variation der Erzeugungs- und Importoptionen für Strom und Wasserstoff, die verstärkte Nutzung aufkommender Energiotechnologien (dezentrale Batteriespeicher, Wärmenetzspeicher, Großwärmepumpen) sowie die techno-ökonomischen Parameter der Technologien im Gassystem. Die Definition der Varianten findet sich in Tabelle 4-10. Aufgrund der deutlich stärkeren Ausprägung der Sektorenkopplung beschränkt sich die Betrachtung der Varianten auf das Szenario THG95. Zudem wird nicht für alle Varianten der komplette myopische Pfad gerechnet, da die fokussierten Technologien erst in einer späteren Phase der Transformation relevant werden. Dies ist beispielweise bei der Methanisierung der Fall, oder dem endogenen Stromnetzausbau, der erst ab dem Jahr 2040 betrachtet wird.

Das deutsche Energiesystem verfügt neben sehr dicht ausgebauten und leistungsstarken Stromnetzen auch über weit verzweigte und große Teile des Gebäudebestandes sowie des Gewerbes und der Industrie erreichende Erdgasinfrastrukturen. Diese beinhalten alle Technologien entlang der Kette über Produktion (z.B. Biogas)
 oder Import, anschließend den Gastransport inklusive Verdichtung und Entspannung sowie die Gasspeicherung, bis hin zur kleinteiligen Distribution in Verteilnetzen für Endanwendungen in allen Größenordnungen.

Im Folgenden werden die technischen Grundlagen zum Themengebiet der Gasinfrastrukturen beschrieben, die als Basis der REMix- und MuGriFlex-Eingangsdaten dienen. Im Anschlusskapitel wird auf die Umsetzung der Modellierung eingegangen (Kapitel 4.4).

Gasinfrastruktur in Deutschland
Die Gesamtnetzlängen der öffentlichen Gaswirtschaft in Deutschland messen ca. 500.000 km. Die Gasnetzinfrastruktur lässt sich im Wesentlichen in drei Ebenen einteilen. Das Hochdrucknetz (z.B. 80 bar und darüber) transportiert Erdgas über weite Strecken (hunderte Kilometer). Das sich anschließende regionale Mitteldrucknetz verteilt das Erdgas bei z.B. 16 bar weiter. Für die feinmaschige Verteilung zu den Endanwendern wird im Niederdrucknetz lediglich ein Betriebsdruck z.B. unter 1 bar aufrechterhalten.

Die im Projekt fokussierten Technologien werden in den folgenden Unterkapiteln erläutert. Im Anhang dieses Berichtes finden sich zusätzliche Detail-Informationen und Datentabellen.
4.3.1 Beimischung von Wasserstoff

Die technische Reife der eingesetzten Technologien ist im Maßstab etwa bis 10 MW Elektrolyseleistung etabliert und erprobt. Elektrolyseure, insbesondere vom Typ der PEM-Technologie, sind bis dato noch nicht im industriellen Maßstab (10 MW bis hunderte MW) realisiert worden. In Europa befinden sich Anlagen, die schrittweise auf z.B. 100 MW Elektrolyseleistung ausgebaut werden sollen, derzeit in Planung. Die unterschiedlichen Technologien einer optional nachfolgenden Methanisierungsstufe befinden sich fortwährend in Entwicklung und konnten bereits integriert in reale Versorgungssituationen demonstriert werden, beispielsweise im Projekt STORE&GO [Hori16].

Mit zunehmender Wasserstoffbeimischung reduziert sich der volumenbezogene Energiegehalt im Gasgemisch. Dies liegt im deutlich niedrigeren volumetrischen Energiegehalt des gasförmigen Wasserstoffs im Vergleich zu Erdgas (Hauptbestandteil Methan) begründet. So beträgt zum Beispiel der untere Heizwert von Wasserstoff 3,00 kWh/m³ während reines Methan 9,97 kWh/m³ im Normzustand aufweist. Die geringe Dichte von Wasserstoff führt zu einer Erhöhung des Energiebedarfs für Kompression.

Tabelle 4-11: Berechnete Veränderung der Volumen- und Energietröme durch Erhöhung des Wasserstoffanteils in einer Gastransportleitung bei Betrieb mit konstant gehaltenem chemisch gebundenem Energiestrom [JePe15].

<table>
<thead>
<tr>
<th>H₂-Anteil %</th>
<th>(\dot{V}_{\text{EGM}}) m³/(N·h)</th>
<th>(\dot{V}_{\text{EGG}}) m³/(N·h)</th>
<th>(\dot{V}_{\text{EGb}}) m³/(N·h)</th>
<th>(\dot{E}_{\text{EGM}}) MW</th>
<th>(\dot{E}_{\text{EGG}}) MW</th>
<th>(\dot{E}_{\text{EGb}}) MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>0</td>
<td>11,121</td>
<td>1,121</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1,035,503</td>
<td>983,728</td>
<td>51,775</td>
<td>11,121</td>
<td>10,940</td>
<td>183</td>
</tr>
<tr>
<td>10</td>
<td>1,073,584</td>
<td>966,226</td>
<td>107,358</td>
<td>11,121</td>
<td>10,745</td>
<td>380</td>
</tr>
<tr>
<td>20</td>
<td>1,158,698</td>
<td>926,958</td>
<td>231,740</td>
<td>11,121</td>
<td>10,308</td>
<td>821</td>
</tr>
<tr>
<td>30</td>
<td>1,258,299</td>
<td>880,809</td>
<td>377,490</td>
<td>11,121</td>
<td>9,795</td>
<td>1,337</td>
</tr>
<tr>
<td>100</td>
<td>3,139,382</td>
<td>0</td>
<td>3,139,382</td>
<td>11,121</td>
<td>0</td>
<td>11,121</td>
</tr>
</tbody>
</table>

Die Einspeisung von weit überwiegend aus erneuerbarer Energie erzeugtem Wasserstoff oder synthetischem Methan in Netze der öffentlichen Gasversorgung fällt unter die Regelungen für Biogase nach Teil 1 §3 Nr. 10c Energiewirtschaftsgesetz (EnWG [Enwg05]). Mit dieser Eingruppierung gehen eine Reihe von Einspeiseregelungen nach Teil 6 der Gasnetzzugangsverordnung (GasNZV [Gasn10]) einschließlich der §§ 19 Abs. 1 S. 3, 20a, 20b Gasnetzentgeltverordnung (GasNEV) [Albr13] einher [GöLi18].

Für die Gasverteilnetze hingegen wird angenommen, dass eine Entwicklung hin zu einer höheren Wasserstoffkonzentration stattfindet. Die Endanwendungs technik in Haushalten verträgt grundsätzlich eine Beimischung von Wasserstoff zum Grundgas. So wurde z.B. im Projekt DomHydro Endanwendungstechnik aus dem Bestand

Die technische Vereinigung der europäischen Erdgasindustrie Marcogaz veröffentlichte Im Herbst 2019 einen unter Beteiligung der Wissenschaft erstellten Überblick über verfügbare Testergebnisse zu Wasserstoffverträglichkeitsgrenzen in Gasinfrastrukturen und Endverbrauch [Marc19]. Wesentliche Bestandteile der Infrastrukturen und häuslichen Endanwendungen vertragen demnach \(\text{H}_2 \)-Konzentrationen bis 20 Vol.-% ohne Modifikationen und darüber hinaus unter Ergreifung weiterer Maßnahmen oder Austausch (siehe Abbildung 12-8 im Anhang). Wasserstoffkonzentrationen in dieser Größenordnung werden in MuSeKo für die Zukunft in Verteilnetzen als umsetzbar angesehen.

In den folgenden Unterkapiteln wird technologiespezifisch an einigen Stellen erneut auf den Einfluss einer Wasserstoffbeimischung eingegangen.

4.3.2 Gasvorwärzung

10 Gasgeräte in Haushalten am Ende der Transportkette werden bei 20 mbar oder weniger betrieben.
nicht zu einer relevanten Abkühlung des Gases und wird durch den Wärmeaus-
tausch des Gasgemisches mit den Leitungswandungen der Rohre mit dem umge-
renden Erdboden kompensiert.

Der verbleibende Anteil der benötigten Druckreduktion zur Einspeisung in aus einer
höheren in eine niedrigere Netzebene muss durch sogenannte Gasdruck-Regelan-
lagen (GDRA) erfolgen. An diesen Stationen regelt der Verteilnetzbetreiber den
eingehenden Gasstrom auf den im nachgelagerten Netz benötigten Ausgangsdruck
erunter. Je nach Druckdifferenz zwischen Eingangsdruck und Ausgangsdruck der
GDRA kühlt sich die gedrosselte Gasmenge durch den Joule-Thomson-Effekt unter-
schiedlich stark ab. In günstigen Fällen bleibt die Gastemperatur ganzjährig in einem
Bereich, der die Anlagenkomponenten nicht schädigen kann, z.B. über dem Gefrier-
punkt, sodass Eisbildung an den Leitungen und weiteren Anlagenteilen vermieden
wird, die z.B. den Betrieb von Armaturen beeinträchtigen. Innerhalb der GDRA wer-
den typischerweise Raumheizungen betrieben sowie weitere Maßnahmen ergriffen
(u.a. Isolation), um den Anfall von kondensiertem Wasser zu vermeiden und Korro-
sionsschäden vorzubeugen.

Sinkt die Temperatur des zu verteilenden Gases zu weit, kann es auch zur Konden-
sation von Wasser innerhalb der Rohrleitungen kommen und somit Korrosion aus-
lösen. Hinzu kommt die Möglichkeit der Kondensation von Kohlenwasserstoffen wie
der Methanhydratbildung, die den effektiven Innendurchmesser von Leitungen und
Armaturen verengen kann. Um den genannten Effekten innerhalb und außerhalb
der Leitungen vorzubeugen wird das Gas vorgewärmt bevor es entspannt wird. Dies
ist insbesondere bei größeren Entspannungsanlagen nötig, in der Regel bei Druck-
differenzen von mehr als 16 bar zwischen Eingangs- und Ausgangsdruck der GDRA.

Die Erdgasvorwärmung [TaSB12] erfolgt indirekt durch die Erwärmung von Wasser
mittels Verbrennung eines Teilvolumenstromes des Gases und geeignete Wärme-
tauscher. Da Gasdruck-Regelanlagen bis auf Ausnahmen redundant ausgeführt
sind, werden alle relevanten Anlagenteile pro Anlagenschiene vorgesehen.

Abbildung 4-4 zeigt ein Schemadiagramm der Erdgasvorwärmung. Entlang des
Gasstromes sind der Gasdruck und die Gastemperatur abgebildet. Im ersten Pro-
zessschritt erfolgt die Erhöhung der Gastemperatur durch den Wärmeübertrager. Im
zweiten Schritt entspannt das Gas-Druckregelgerät das Gas auf den Zieldruck. Dabei
senkt der Joule-Thomson-Effekt die Gastemperatur ab. Die Ausgangstemperatur
will zur Regelung der Vorwärmeleistung eingesetzt.

11 Auch werden diese Stationen genutzt, um die Odorierung des Erdgases d.h. die Zugabe von Duftstoffen vorzunehmen, die
es jedem Verbraucher in Verteilnetzen ermöglichen, Leckagen zu erkennen. Im Transportnetz hingegen wird das Gas ohne
Zugabe von Odoriermitteln transportiert.
Technische und betriebliche Hintergründe zur Gasdruckregelung finden sich bei Naendorf (Hrsg.) et al. [Naen10]. Das zugehörige technische Regelwerk ist im Arbeitsblatt DVGW G 499 (A) „Erdgas-Vorwärmung in Gasanlagen“ beschrieben [Deut15].

Option zur Elektrifizierung der Gasvorwärmung

\(^{12}\) Z.B. unter der Prämiss, dass überwiegend EE-Strom eingesetzt würde.
• **Bivalente Auslegung und Fahrweisen**: Die bivalente Ausrüstung mit sowohl erdgasbasierten als auch elektrischen Vorwärmmethoden ermöglicht es den Anlagenbetreibern, flexibel auf (Strom-)Netzsignale bzw. auf sich zeitlich stark ändernde Angebote erneuerbarer Strommengen zu reagieren. In Zeiten starker EE-Stromproduktion könnte das Erdgas elektrisch vorgewärmt werden. Große Vorwärmanlagen können perspektivisch auch als Teilnehmer am Regelenergiemarkt infrage kommen, da sie negative Regelenergie bereitstellen können. So könnte das Erdgas bei erhöhtem EE-Angebot vorgewärmt werden, während in Zeiten mangelnder EE-Erzeugung die erdgasbasierte Vorwärmung angewendet würde.

• **Einzelfallprüfung**: Zur Elektrifizierung der Betriebsmittel der Erdgasvorwärmung müssen die Anlagenauslegungen von Einzelfall zu Einzelfall überprüft werden. Für die Netzbetreiber muss geklärt werden, welche Abstände zum ersten Erdgaskunden im Verteilnetzgebiet vorliegen und erörtert werden, welche Erdgastemperaturen dort zulässig sind. Ein Grund hierfür ist der Einfluss der Gastemperatur auf die Gasmengenmessung bei den Endverbrauchern. Insbesondere bei Industriekunden kann es vertraglich vereinbarte Temperaturfenster geben, die nicht nur für die Mengenmessung für die Abrechnung relevant sind, sondern auch Industrieprozesse direkt beeinflussen. Neben den Leitungslängen und Durchmessern auf dem Weg zu den ersten Kunden im Verteilnetzgebiet spielt auch das eingesetzte Material, dessen Wärmeleiteigenschaften sowie die durchschnittliche örtliche Bodentemperatur eine Rolle.

• **Größenordnung des Elektrifizierungspotenzials**: Der Eigenverbrauch der Gasinfrastruktur für die Vorwärmung des Erdgases bei der Entspannung zur Übergabe
in die Verteilnetzebene beträgt etwa 0,05% bis 0,07% der transportierten Gasmenge. Die untere Grenze kann erreicht werden, wenn alle in Betrieb befindlichen Gasdruck-Regelanlagen in optimierter Fahrweise, d.h. mit einer Austrittsgastemperatur von höchstens 5 °C betrieben werden. Der wartungsarme Betrieb von Gas-Druckregelanlagen und der bereits geringe Ausgangswert des Gasgegenverbrauchs erzeugen derzeit keinen großen Innovationsdruck bei den Betreibern, sodass aktuell noch ein deutlicher Teil der Anlagen im Feld mit höheren Ausgangstemperaturen betrieben werden, z.B. 10 °C oder 15 °C. Vorwärmanlagen unterliegen außerdem in vielen Fällen der Saisonalität der Heizperiode, außerhalb derer sie sich häufig außer Betrieb befinden. Außerhalb der Heizperiode stehen sie daher als mögliche Senken für erneuerbaren Strom nicht zur Verfügung.

Grundsätzlich könnten Vorwärmanlagen in Abhängigkeit des Angebots erneuerbarer Strommengen flexibel entweder Strom oder ein Teil des transportierten Gases für die Wärmeerzeugung einsetzen und somit ein Flexibilitätspotenzial für die Integration erneuerbarer Strommengen darstellen. Eine Abschätzung der Größenordnung des deutschen Power-to-Heat Potenzials durch eine Elektrifizierung der Gasvorwärmung an GDRM-Anlagen erfolgt unter folgenden Annahmen:

- Ca. 900 TWh ausgespeiste Arbeit pro Jahr
- Ca. 50% der Erdgasmenge werden vorgewärmt
- Δp = 44 bar Entspannung von durchschnittlich 60 bar auf 16 bar
- 0,05 % Eigenverbrauch für diese Druckdifferenz

Es ergeben sich:

- Ca. 225 GWh/a als abgeschätzte benötigte Energiemenge für die Gas-Vorwärmmung in Deutschland

Nimmt der Gasbedarf in Deutschland im Zuge der Energiewende ab, reduziert sich auch der Vorwärmenegiebedarf. Für die kleinsten heute in Betrieb befindlichen Vorwärmanlagen würde bei abnehmendem Gasdurchsatz die Notwendigkeit der Gasvorwärmung gänzlich entfallen, da der Wärmetausch mit der Umgebung bzw. dem Erdreich im Fall kleiner entspannter Gasmengen wie oben erläutert ausreichend ist. Sinkende Gastransportmengen könnten im Durchschnitt niedrigere Drücke in den Leitungen nach sich führen, was die zu realisierende Druckdifferenz bei der Gasentspannung und den daraus folgenden Vorwärmenegiebedarf zusätzlich reduzieren würde.

Das Potenzial der elektrischen Gasvorwärmung als Flexibilitätsoption für das stromseitige Energiesystem erscheint im Rahmen der obigen Abschätzung stark begrenzt. Zum Vergleich der Größenordnungen: Bereits 2017 lag die Ausfallarbeit durch Abregelung erneuerbarer Strommengen bei 5.518 GWh [BuBu19]. Im Vergleich hierzu ist der Energiebedarf für Gasvorwärmung in Deutschland sehr

13 Auch noch niedrigere Austrittsgastemperaturen z.B. bis kurz über dem Gefrierpunkt sind möglich, um eine Minimierung der eingesetzten Vorwärmeanregie zu erreichen. Typischerweise wird im Feld jedoch auf +5°C geregelt.
gering. Im Projekt MuSeKo wird diese Elektrifizierungsoption dennoch in vereinfachter Weise im Modell implementiert (siehe Abschnitt 4.4.1).

4.3.3 Gasverdichtung

Abbildung 4-5: Auswahlkriterien Gasverdichter, nach [CeLe16]

Radialverdichter bestehen aus einem rotierenden Schaufelrad, das die Gas moleküle in Transportrichtung beschleunigt sowie einem feststehenden Diffusor.

Bei Kolbenverdichtern wird das Gas dagegen in einem abgeschlossenen Raum verdichtet. Bei zurückgezogenem Kolben wird Gas angesaugt und anschließend durch die Kolbenbewegung verdichtet, bevor das Auslassventil geöffnet wird und der Vorgang wiederholt wird.

Radialverdichter eignen sich durch die kontinuierliche Verdichtungsarbeit vor allem für hohe Volumenströme, mit Kolbenverdichter können hingegen höhere Druckdifferenzen erreicht werden.

Alle Bauformen werden kombiniert mit einer Antriebseinheit, die durch Einsatz von Brennstoff (einem Teil des transportierten Gases) oder den Einsatz elektrische Energie die kinetische Energie für die Verdichtung der Gasmoleküle bereitstellt.

Transportverdichter
Beim leitungsgebundenen Gastransport kommt es aufgrund von Rohrreibungsverlusten stets zu einem Druckabfall entlang des Transportweges. In Gasfernleitungsnetzen erfolgt daher ca. alle 250 km eine Druckerhöhung, die durch Verdichterstationen realisiert wird. Auch die Verknüpfungen unterschiedlicher Transportleitungen unterschiedlichen Druckniveaus wird auf diese Weise umgesetzt. Typische Druckverhältnisse bei der Nachverdichtung bis zu einem Faktor 2 ($p_2/p_1 < 2$) werden durch Turboverdichter sehr gut erfüllt [HHKW17].

Der Antrieb der Turboverdichter kann durch Gasturbinen oder elektrische Motoren (siehe unten) realisiert werden. Die Gasturbinen können direkt mit dem transportierten Gas angetrieben werden, was eine hohe Verfügbarkeit zu Folge hat. Oft sind Gasturbine und Verdichter auf derselben Welle angeordnet, so dass auf ein Getriebe verzichtet werden [HHKW17].

Für eine typische 250 km lange Ferngasleitungsabschnitte liegt der Energieaufwand für die Verdichtung des Erdgases bei ca. 0,05% der transportierten Energiemenge [JePe15]. Tatsächlich ist der Energieverlust für den Langstrecken-Gastransport stark abhängig von der Auslastung der Pipelines, sowie der Durchmesser, Materialbeschaffenheit der inneren Oberfläche und kleinerer Einflussfaktoren wie geografischer Verlauf und Anzahl und Ausgestaltung der Winkel. Die für die Nachverdichtung benötigten Energiemengen können insbesondere um ein Vielfaches höher als durchschnittliche Werte ausfallen, wenn Leitungen in seltenen Fällen unter Volllast betrieben werden, während typische Teillast-Betriebszustände mit geringeren Verdichtungsbedarfen einhergehen. Im Rahmen von MuSeKo werden keine dynamischen Verdichtungsbedarfe simuliert, sondern durchschnittliche Verluste für die Nachverdichtung in zwischen jeweils zwei benachbarten Modellregionen verbindenden Ferngasleitungen angenommen (4.4.3).

- **Speicherverdichter:** Die Gasverdichtung für die Einspeisung in Untergrundgasperreicher wird anders ausgelegt als im Fall der Verdichterstationen des Gastransportnetzes. Der Grund hierfür ist, dass je nach örtlichen Gegebenheiten deutlich höhere Druckverhältnisse (z.T. bis über p2/p1 = 4) zu erzeugen sind. Als Speicherverdichter kommen daher anstelle der oben beschriebenen Turboverdichter bevorzugt (aber nicht ausschließlich) Kolbenverdichter zum Einsatz [HHKW17]. Kolbenverdichter verfügen über einen größeren regelbaren Teillastbereich und können hohe Verdichtungswirkungsgrade bis 90% erreichen. Sie bringen auf der anderen Seite aber erhöhten Wartungs- und Reparaturaufwand und dadurch geringere Verfügbarkeit mit [HHKW17]. Häufig ist für die Einspeicherung von Gasen

- **Gaskühlung**: Der zusätzliche Energiebedarf für eine Gaskühlung im Fall großer Druckdifferenzen (i.d.R. mehrstufige Verdichtung) wird in MuSeKo nicht betrachtet. Energiebedarf für die Gaskühlung fällt in der Regel ab 50°C Gastemperatur an. Die Kühlgeräte sind nicht permanent im Einsatz, lediglich an den Kopf-Verdichterstationen mit hohen zu bewältigenden Druckdifferenzen fallen hohe ganzjährige Kühlbedarfe an. Bei geringeren Nachverdichtungsbedarfen (ca. bis Faktor 1,2 im Druck), wie zum Beispiel einer Verdichtung von 50 bar auf 60 bar braucht in der Regel nicht gekühlt werden.

- **Verdichtung in MuSeKo**: Verdichtung wird vereinfacht in REMix abgebildet. Es wird keine gastechnische Abbildung der verdichteten Gasmengen realisiert, sondern typische Druckdifferenzen und weitere durchschnittlich auftretende Parameter auf die Modellregionen angewendet. Die in Abbildung 4-6 dargestellten Verdichterstandorte wurden in REMix importiert und als Status Quo für die zukünftigen Modelljahre fortgeschrieben. Die installierten Leistungen wurden aus Literatur sowie Betreiberabfragen /-Interviews zusammengetragen und im Fall der gasbetriebenen Anlagen zusätzlich mit Informationen aus den CO₂-Emissionsdaten der deutschen Emissionshandelsstelle DEHSt validiert [Umwe00]. Die Analyse ergab Anlagenauslastungen in einer sehr großen Spanne zwischen 0 und 57% im Jahr 2016 und zwischen 0 und 86% im Jahr 2013. Im Durchschnitt lag die Auslastung der einzelnen Verdichtereinheiten in den Jahren 2013-2016 zwischen 10,3% und 15,4%.

- **Größenordnung des Elektrifizierungspotenzials**: Die maximale theoretische Höhe des Elektrifizierungspotenzials der Gasverdichtung (Power-to-Compression) kann wie folgt abgeschätzt werden. Die insgesamt ca. 2.500 MW installierten Verdichterleistungen aus dem Bereich Gastransport sind im Durchschnitt zu maximal 15% ausgelastet. Unter der groben Annahme ganzjährig konstanter Betriebsweisen ergeben sich 375 MW, die sich durchschnittlich in Betrieb befinden. Würde diese Leistung in 4.000 Stunden des Jahres rein elektrisch mit erneuerbarer Energie bereitgestellt, so erhalten wir im Ergebnis dieser groben Schätzung 1,5 TWh erneuerbares Power-to-Compression-Potenzial pro Jahr. Würde entsprechend zu jeder Stunde des Jahres (d.h. 8760 h/a) die komplette Antriebsenergie elektrisch bereitgestellt werden, ergeben sich entsprechend ein maximales Elektrifizierungspotenzial in der Größenordnung von etwa 3,3 TWh/a, das jedoch in EE-Strom-Unterdeckungszeiträumen mit dem jeweiligen Strommix gedeckt werden müsste. Je nach Gasbedarfsminderung und entsprechender Gastransport- und -transitbedarfsminderung im Rahmen der Europäischen Energiewende wird der Verdichtungs-, Vorwärm-, und Kühlbedarf im Erdgassystem rückläufig sein. Im Gegenzug
könnte eine parallel zum Erdgassystem entstehende Wasserstoff-Transport-Infrastruktur neue Potenziale zur elektrischen Verdichtung mit sich bringen.

4.3.4 Gasspeicher

Wasserstoffkavernenspeicher

Für die Gasspeicherung in Kavernen fallen Trocknungsverluste von 0,2 % der eingespeicherten Energiemenge an [SHWG14], die eingesetzt werden müssen, um während der Speicherdauer ins Gasgemisch eingedrungenes Wasser zu entfernen. Der Trocknungsverlust wird in MuSeKo durch einen Ausspeicherungswirkungsgrad von 99,8 % berücksichtigt.

Abbildung 4-7 zeigt typische Speicherfüllstandskurven deutscher Untertagegasspeicher für die acht letzten Gasjahre (beginnend jeweils ab Oktober) bezogen auf das Arbeitsgasvolumen. Der typische saisonale Verlauf lässt sich erkennen, beginnend mit gefüllten Speichern zu Beginn der Heizperiode und einer Entleerung bis zum Ende der Heizperiode, gefolgt von einer Speicherbeladungsphase über die Sommermonate hinweg.

- **Regionale Verteilung der Speicherkapazitäten**: Die regionale Verteilung der Untergangasspeicher in Deutschland lässt sich grob wie folgt einteilen:
 - Im Norden beginnend ab dem nördlichen Nordrhein-Westfalen bis zu den deutschen Küsten finden sich aufgrund der großen dortigen Salzlagerstätten Kavernenspeicher, für deren Ausbau durch Aussolung die vorliegenden geologischen Formationen sehr gut geeignet sind.
 - Im Süden Deutschlands finden sich Porenspeicher, deren Eignung für eine Wasserstoffspeicherung nicht ausgeschlossen, jedoch noch Forschungsgegenstand ist und die daher im vorliegenden Projekt nicht berücksichtigt werden.

Das REMix-Modell betreibt alle Stand 2019 vorhandenen Erdgaskavernen weiter und kann zusätzlich in den Regionen, die heute über Kavernenspeicher verfügen, modellendogen weitere Kavernenspeicher für die Wasserstoffspeicherung ausbauen. Hintergrund für die Entscheidung für diesen Zubaupfad ist der Umstand, dass an den heutigen Kavernenstandorten in aller Regel noch große Potenziale zur Aussolung weiterer Kavernen vorhanden sind, die unter Nutzung vorhandener Infrastrukturen ausgesolt und in Betrieb genommen werden können. Es wird hierdurch zusätzlich ausgeschlossen, dass das Modell Kavernen in Regionen ausbaut, die nicht über geeignete geologischen Formationen verfügen.
Kosten von Untertage-Gasspeichern: Die Kosten für den Ausbau von Kavernen-Gasspeichern liegen höher als die für bereits erschlossene Lagerstätten-Speicher, aber deutlich niedriger als die für in MuSeKo für eine Wasserstoffspeicherung nicht betrachteten Porenspeicher. Baukosten für Kavernenspeicher können aufgrund der langjährigen Erfahrung mit dieser Technologie gut abgeschätzt werden und die nötigen Anpassungen für die Speicherung von Wasserstoff sind gering [KrCr13].

Im Folgenden werden die Baukosten für in Salzstein errichtete Wasserstoffspeicherkavernen näherungsweise aus Literaturwerten hergeleitet. Für die Berechnungen wird stets der untere Heizwert von Wasserstoff (3,0 kWh/m³ bzw. 33,33 kWh/kg) angesetzt. Hintergrund für diese Entscheidung ist der Umstand, dass voraussichtlich viele Wasserstoff-Endanwendungen auch in Zukunft nicht vom vollen Energiegehalt des oberen Heizwertes (Brennwert) Gebrauch machen können. Grundsätzlich wird daher von einem Verlust der Energiemenge ausgegangen, die aber durch Kondensation des im Abgas vorhandenen Wasserdampfes nutzbar gemacht werden könnte. Des Weiteren wird stets eine Kavernengröße
von 500.000 m³ geometrischem Volumen angenommen, obgleich größere Bauwerke möglich sind und kostensenkend wirken würden. Für die Kapazität der Kavernen wird ein Druck von 120 bar angenommen. Wasserstoffkavernen ließen sich jedoch unter höheren Drücken betreiben, was die Investitionskosten pro Kapazität sinken ließe. Die bis hierhin genannten Annahmen wurden konservativ gewählt, um die Speicherkosten nicht zu unterschätzen. Es wird allerdings unterstellt, dass bestehende Kavernenfelder stets Potenzial für die Erweiterung um Wasserstoffkavernen verfügen (s.o.) und für die Modelljahre bis 2050 wird kein Baukostenanstieg berücksichtigt.

Literatur-Review der Speicherkosten und Annahmen für MuSeKo

Forsberg schätzte 2006 die Speicherkosten auf 0,8-1,6 USD pro kg H₂-Kapazität. Die Studie bezieht sich auf das Speichergas Wasserstoff und verweist auf weitere Studien, die Baukosten analog zu Erdgas-Kavernen vorschlagen [Fors06]. Umgerechnet entspricht dies unter den hier gewählten Annahmen sowie der Annahme 1 USD = 0,9 EUR einer Kostenspanne von 22-43 €/MWh H₂-Speicherkapazität. Eine detaillierte Aufschlüsselung der Kosten findet sich in [Fors06] nicht.

KBB untersuchte 2006 im Rahmen eines Verbundprojektes Kavernen für die Nutzung als Compressed Air Energy Storage und gibt für eine 500.000 m³ Kaverne Baukosten von 15 - 25 € pro Kubikmeter geometrischem Volumen an [AEEK06]. Dies entspräche im Rahmen der hier getroffenen Annahmen etwa 42 - 69 €/MWh Wasserstoffspeicherkapazität. Der Anwendungsfall Druckluftspeicher ist jedoch mit der Wasserstoffkaverne in Bezug auf die oberirdischen Anlagenteile nicht zu vergleichen und die nicht gegebene Aufschlüsselung der Kosten lässt keine belastbare Umrechnung für das vorliegende Projekt zu.

Das HyUnder Projekt gibt in Deliverable 2.2, Tabelle 6 und Abbildung 16 [LBRW14] grobe Kosten für die gesamte Technologiekette aus Wasserstoff-Erzeugung, -Kavernenspeicherung und -Rückverstromung in Höhe von 8.000 €/MWh an; der Wert wird ergänzt durch Literaturwerte mit einer Spanne zwischen 1.000 und 50.000 €/MWh, die im Rahmen des vorliegenden Projektes MuSeKo mangels detaillierter Kostenaufschlüsselung nicht verwertet werden können.

In der Studie PlanDelyKaD [NBHL15] finden sich Investitionskosten für Wasserstoffkavernen in Höhe von 280 €/MWh. Da eine genaue Aufschlüsselung der Kostenpunkte nicht gegeben ist, wird dieser Wert nicht berücksichtigt.

Im Abschlussbericht der Studie „Integration von Wind-Wasserstoff-Systemen in das Energiesystem“ von Stolzenburg et al. [SHWG14] findet sich eine detaillierte Aufschlüsselung der Kosten einer Wasserstoffkaverne [SHWG14]. Für eine typische in Norddeutschland befindliche Kaverne von 500.000 m³ geometrischem Volumen werden
die Kosten für Bau, Kissengasvolumen sowie oberirdische Peripherie angegeben. Diese Studie weist auf nachvollziehbare Weise die berücksichtigten Kosten aus. Es konnten daher für die Anwendung auf MuSeKo oberirdische Anlagenteile, insbesondere die in MuSeKo gesondert behandelten Verdichter herausgerechnet werden.

Tabelle 4-12 fasst die Ergebnisse zur Festlegung der Kavernenausbaukosten zusammen.
4 Datengrundlage der Modellierungen

Tabelle 4-12: Review der Kavernenausbaukosten inkludierter Studien sowie eigene Ableitung für das Projekt MuSeKo

<table>
<thead>
<tr>
<th>Autor / Projekt</th>
<th>Zitat</th>
<th>Bezug</th>
<th>Interpretation bezogen auf Speicherkapazität</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forsberg</td>
<td>0,8-1,6 USD/kg</td>
<td>H₂, USA</td>
<td>22-43 €/MWh</td>
<td>H₂</td>
</tr>
<tr>
<td>KBB</td>
<td>15 - 25 €/m³</td>
<td>geomet. Vol.</td>
<td>42-69 €/MWh</td>
<td>H₂</td>
</tr>
<tr>
<td>BBH, BBHC, TU Berlin</td>
<td>60 €/m³</td>
<td>ca. 49 Mio. €</td>
<td>272 €/MWh inkl. Kissengas und Infrastrukturen</td>
<td>Erdgass / H₂</td>
</tr>
<tr>
<td>Stolzenburg et al.</td>
<td>60 €/m³</td>
<td>geomet. Vol.</td>
<td>220 €/MWh inkl. Aussolung, Kissengas, Messstation, Druckreduzierung, Trocknung, Reserve; exkl. obertägige Infrastrukturen und Verdichter</td>
<td>H₂</td>
</tr>
</tbody>
</table>

Projekt MuSeKo

220 €/MWh inkl. Aussolung, Kissengas, Messstation, Druckreduzierung, Trocknung, Reserve; exkl. obertägige Infrastrukturen und Verdichter | Vorliegende Arbeit, Annahmen basierend auf [SHWG14] |

Dezentrale Wasserstoffspeicher

Klein dimensionierte, dezentrale Wasserstoffspeicher stehen weniger im Projektfookus von MuSeKo. Dennoch wird dem REMix-Modell ermöglicht, auch diese Form der Speicherung auszubauen. Typische kleine, dezentrale H₂-Speicher sind Gasbündelspeicher, bestehend aus Gasflaschen, die in Modulen von sechs oder zwölf Stück auf einem per Lkw transportablen Bündelgestell installiert werden. Sie sind Stand der Technik und dienen seit Jahrzehnten der Versorgung von Unternehmen mit unterschiedlichsten Gasen. Üblicherweise werden sie aus vergütetem Stahl gefertigt, jedoch kommen insbesondere im Hinblick auf Mobilitätsanwendungen verstärkt Produkte mit zusätzlichen Kunststoffummantelungen (Faserverbundwerk-

4.3.5 Gastransportnetz und Wasserstofftransportnetz

Die Leitungsstränge des Erdgasnetzes lassen sich nach Druckstufen einordnen in Ferngasleitungen (Transportnetze) und die feinmaschigere Verteilung zu den Endkunden (Verteilnetze). Im Rahmen von MuSeKo wird innerhalb der Modellregionen eine ideale Verteilbarkeit von Gasen angenommen und Verteilnetze nicht abgebildet. Das Modell fokussiert sich auf den überregionalen Gastransport über Ferngasleitungen, die Erdgas mit Durchmessern von bis zu 1.400 mm und Drücken bis 100 bar transportieren können [Bdew13, Vere15a]. Um diese hohen Drücke aufrecht zu erhalten sind Verdichterstationen erforderlich (siehe 4.3.3). Die vorherrschende Flussrichtung des Gases im Transportnetz verläuft von Nordost nach Südwest [Vere15b].

Der durch die Fernleitungsnetzbetreiber vorgeschlagene Netzausbau bis zum Jahr 2027 beläuft sich auf etwa 828 km und umfasst ein Investitionsvolumen von rund 4,4 Mrd. € [Fnbg19].
Datengrundlage der Modellierungen

Seit vielen Jahren werden mögliche innerdeutsche Standorte für LNG-Anlandeterminals in Niedersachsen und Schleswig-Holstein diskutiert. Im Rahmen von MuSeKo wurden LNG-Terminals auf dem Bundesgebiet nicht berücksichtigt.

Transportkapazitäten

Pipelines, die sich derzeit im Bau befinden, jedoch noch nicht in der entsog Karte enthalten sind, wurden mit Ausnahme von kleineren innerdeutschen Projekten berücksichtigt: [Ents18, Fnbg19]

- Nordstream 2 + Anbindung durch EUGAL bis Tschechien
- Reversierung TENP (Grenzpunkte Schweiz und Niederlande)

Durch die Reversierung der TENP wird der Transit von Süd nach Nord ermöglicht, um zukünftige Bedarfe abzudecken sowie Flexibilitätsoptionen im Gastransport zu haben [Tran17].

Für die Modellregionen in MuSeKo (zusammengefasste Bundesländer) ergeben sich die in Abbildung 4-9 dargestellten Annahmen für die Im- und Export-Pipelinekapazitäten.

Abbildung 4-9: Darstellung des Gastransportnetzes mit technischen Im- und Exportkapazitäten zwischen den Nachbarländern Deutschlands und den 10 betrachteten Modellregionen des REMix-Modells.
4.3.6 Einspeisung von Biomethan und synthetischen Gasen

Biogas bietet als erneuerbare Energieform neben der direkten Nutzung als Brennstoff für die Strom- und Wärme-Erzeugung auch das Potenzial zu Biomethan aufzubereiten zu werden und in die Erdgasnetze eingespeist zu werden.

Biogas

Bei den Substraten der **Biogasherstellung** handelt es sich u.a. um nachwachsende Rohstoffe, Exkremente und Erntereste aus der Landwirtschaft, Restmüll, Grünschnitt und Biotonnenabfälle aus Kommunen sowie Abfällen aus der Bierproduktion, Tierverarbeitung oder Zuckerproduktion aus der Industrie [Dvgw13]. Mais, Gräser, Getreide und Rüben spielen die wichtigste Rolle, wobei Maissilage den höchsten Biomethanertrag mit ca. 100 m³ Biomethan pro t Substrat aufweist [Deut19b]. Derzeit werden 8,6% der landwirtschaftlichen genutzten Fläche und damit ca. 4% der Gesamtfläche Deutschlands genutzt [Bdew19]. Durch den Einsatz nachwachsender Rohstoffe stellt Biogas im Unterschied zu Windkraft und PV eine Ressource zur Verfügung, die unabhängig von kurzfristigen wetterbedingten Schwankungen ist. Zu beachten ist jedoch, dass Ernteausfälle in Folge von Dürren wie beispielsweise in 2018 oder 2019 zu längerfristigen, saisonalen Produktionsschwankungen führen [VöRe19].

Biomethan

Potenzial, ort- und zeitunabhängig in Haushalten, der Industrie, dem Gewerbe oder dem Mobilitätssktor als Kraftstoff oder zur Wärme- und Stromerzeugung zur Verfügung zu stehen. In Deutschland gibt es heute 213 Biomethan-Aufbereitungsanlagen, die 10 TWh Biomethan in das Gasnetz einspeisen. Dies entspricht 1% des deutschen Erdgasverbrauchs [Bdew19] [VöRe19]. Im Jahr 2017 wurden aus 9,8 TWh eingespeistem Biomethan 2,7 TWh Strom und 3,8 TWh Wärme generiert [BKRS18].

Biomethanpotenzial

Methanisierung – Integration von Biogas mit Power-to-Gas

Detaillierte Informationen zu Methanisierungstechnologien inklusive Technologie-demonstration, ökologischer und ökonomischer Bewertungen, rechtlicher und regulatorischer Rahmenbedingungen, sowie Potenzialanalysen finden sich auf der Seite des Horizon2020-Projektes STORE&GO [Hori16].

Pyrolysegase

4.4 Abbildung des Gassystems in REMix

Für die Szenariountersuchungen mit REMix werden die umfangreichen Daten zum Gassystem der vereinfachten Modellabbildung angepasst und auf die benötigten Modelleingangsgrößen umgerechnet bzw. aggregiert.

Gemäß dem Projektfokus und zur Gewährleistung handhabbarer Modelllösungszeiten erfolgt eine detaillierte Betrachtung des Gassystems nur für Deutschland. Für die modellierten europäischen Nachbarländer wird lediglich der Wasserstoffbedarf für Verkehr und Industrie sowie dessen dezentrale und teilflexible Erzeugung über Elektrolyseure abgebildet. Weiterhin wird der Import von fossilem Erdgas nach Deutschland über die bestehenden Transportkapazitäten abgebildet, Transitströme durch Deutschland hindurch werden indes nicht betrachtet. Die Herkunft des Brennstoffes für die Versorgung von Gaskraftwerken außerhalb Deutschlands wird nicht explizit modelliert. Abbildung 4-10 gibt einen Überblick der Abbildung des deutschen Gassystems in REMix und zeigt weiterhin an, wo die verschiedenen Gase zwischen den Systemkomponenten strömen können. Im Folgenden wird dargelegt, wie die in Kapitel 4.3 ermittelten techno-ökonomischen Daten in das Modell eingehen. Modellannahmen wurden dabei teilweise auch auf Grundlage der Mittelung verschiedener
Literaturwerte festgelegt. Die Nachfrage nach Wasserstoff und Methan wird entsprechend der in Kapitel 4.1 beschriebenen Szenarien angenommen.

Abbildung 4-10: Abbildung des deutschen Gassystems in REMix

4.4.1 Elektrifizierung der Gasvorwärmung

Der in Abschnitt 4.3.2 analysierte Wärmebedarf zur Gasvorwärmung in Deutschland wird in REMix als bivalent ausrüstbare Wärmesenke berücksichtigt. Dabei werden robuste Annahmen getroffen, die trotz der Notwendigkeit zur Einzelfallprüfung zur Elektrifizierung von Gasvorwärmungsanlagen im Mittel belastbare Aussagen für das Bundesgebiet ermöglichen. Die Auswahl und Auslegung der für die Bereitstellung dieser Wärme genutzten Anlagen sowie deren stündlicher Einsatz ist Ergebnis der Optimierung. Dem Modell zur Verfügung stehen dabei elektrische Kessel, Gasbrennwertkessel, Wärmespeicher sowie gasbetriebene KWK-Anlagen. Um für den im Vergleich zum Industrie- oder Haushaltssektor geringen Wärmebedarf die Anzahl der Modellvariablen zu minimieren wurde von einer regionalen Aufteilung des Gasvorwärmbedarfs in REMix abgesehen und der Bedarf für die Gasvorwärmung im Gasnetz aggregiert der Modellregion Nordrhein-Westfalen zugeordnet. Dafür wird der Gesamtbedarf thermischer Energie unter Verwendung eines durchschnittlichen Bedarfsprofils der Gasvorwärmung auf die Stunden des Jahres verteilt. Der jährliche Wärmbedarf der Vorwärmung beläuft sich 253 GWh in 2020, 180 GWh in 2030, 130 GWh (THG80) bzw. 100 GWh (THG95) in 2040, und 100 GWh (THG80) bzw. 40 GWh (THG95) in 2050.

4.4.2 Elektrolyse und Methanisierung

Ein systematischer Vergleich verschiedener Technologien für Wasserelektrolyse und Methanisierung ist im Rahmen des Projekts nicht vorgesehen. Vielmehr werden exemplarische Technologien in REMix betrachtet. Dies sind einerseits die Protonen-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>PEM Elektrolyseur</th>
<th>Chemische Methanisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgrad einschl. Einspeisung</td>
<td>kWh (chem., out) / kWh (chem., in)</td>
<td>69,1% / 73,7% / 77,4% / 80,4%</td>
<td>74,6% / 79,6% / 84,6% / 89,6%</td>
</tr>
<tr>
<td>Strombedarf Methanisierung</td>
<td>kWh (el.) / MWh (chem.)</td>
<td>n.a.</td>
<td>6</td>
</tr>
<tr>
<td>Investitionskosten</td>
<td>€/kWh (el.)</td>
<td>900 / 550 / 450 / 350</td>
<td>1500 / 1000 / 900 / 800</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>Jahre</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% der Inv.</td>
<td>2%</td>
<td>2,5%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€ct/kWh (el.)</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€ct/kW (chem., out)</td>
<td>n.a.</td>
<td>0,1</td>
</tr>
</tbody>
</table>

4.4.3 Gasverdichtung

In REMix werden für den Transport und die Speicherung von Gas elektrische sowie gasbetriebene Antriebseinheiten für die Gasverdichter berücksichtigt. Die technischen Hintergründe sind in Abschnitt 4.3.3 dargestellt. In REMix werden einerseits die heute bestehenden Kompressoren berücksichtigt, andererseits ein endogener Zubau im Modell ermöglicht. Für den Fall endogen zugebauter Leitungen für den Transport von reinem Wasserstoff werden ausschließlich elektrische Antriebseinheiten zugelassen. Für die Verdichtereinheiten selbst werden typische Turboverdichter unterstellt, für die jedoch eine Elektrifizierung des Antriebs möglich gemacht wird. Die Verdichtereinheiten werden für die elektrische sowie die gasbetriebene Antriebsoption nicht unterschieden und Abwärmeverluste nicht berücksichtigt. Die Kostenannahmen werden jeweils für die Kombination aus Antrieb und Verdichter angegeben und in Tabelle 4-14 zusammengefasst.
4.4.4 Gasspeicher

18 Für die Bereitstellung der elektrischen Energie fallen zusätzlich Verluste bereits vor den elektromotorischen Antriebsseinheiten an, die der zugehörigen Trafostation sowie der Frequenzumrichtung zuzuordnen sind (hier nicht berücksichtigt).
Tabelle 4-15: Techno-ökonomische Parameter der Gas- und Wasserstoffspeicher. Durch „/“ getrennte Werte geben die Annahmen für die Szenariojahre 2020, 2030, 2040 bzw. 2050 wieder

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Kavernenspeicher (CH₄)</th>
<th>Kavernenspeicher (H₂)</th>
<th>Tankspeicher (H₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entladewirkungsgrad</td>
<td>%</td>
<td>99,8%</td>
<td>99,8%</td>
<td>100%</td>
</tr>
<tr>
<td>Kompressionsenergiebedarf</td>
<td>kW (comp.) / MW (chem.)</td>
<td>7,0</td>
<td>22,7</td>
<td>25,8</td>
</tr>
<tr>
<td>Investitionskosten</td>
<td>€/kWh (chem.)</td>
<td>0,22</td>
<td>0,22</td>
<td>13 / 11 / 9 / 7</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>Jahre</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% der Inv.</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

4.4.5 Erdgasimport, Gastransportnetz und Wasserstofftransportnetz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Pipelines CH₄</th>
<th>Pipelines H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entladewirkungsgrad</td>
<td>%</td>
<td>99.8%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Kompressionsenergiebedarf</td>
<td>kW (comp.) / (MW (chem) x 1 km)</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Investitionskosten</td>
<td>€/m</td>
<td>1880</td>
<td>2162</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>Jahre</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% der Inv.</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

4.4.6 Beimischung von Wasserstoff und Biogas

Die Technologieabbildung in REMix erlaubt die Betrachtung einer Beimischung von Wasserstoff und Biogas in das bestehende Erdgasnetz (siehe Abschnitt 4.3.1).

Der Brennstoff Biogas ist modelltechnisch unter der Prämisse abgebildet, dass durch vorangegangene Aufbereitungen die Brennstoffqualität an die von Erdgas angegli- chen wurde (Biomethan). Dies entspricht dem Stand der Technik für Biogaseinspeiseanlagen in Deutschland. In REMix wird Biogas daher äquivalent zu Erdgas behandelt und eine Beimischung nicht begrenzt, jedoch ein maximales Potenzial vorgegeben. Dieses ist für die betrachteten Länder und Modellregionen in Tabelle 4-8 spezifiziert.
4.5 Energiewirtschaftlicher Rahmen

Die tatsächliche Entwicklung des Energiesystems und insbesondere der im Projekt betrachteten Flexibilitäten hängt wesentlich von der Wirtschaftlichkeit für die jeweiligen Akteure ab. Sie ergibt sich aus den Technologie- und Marktentwicklungen, wird aber darüber hinaus vor allem durch den regulatorischen Rahmen gesteuert. In die Analysen im Projekt MuSeKo fließen sowohl die gegenwärtigen Rahmenbedingungen, als auch mögliche Weiterentwicklungen für die wesentlichen Technologien und Systeme, also Wärmepumpen, KWK-Anlagen, elektrische Betriebsmittel im Gasnetz, Elektrolyseure und Methanisierungsanlagen, ein.

4.5.1 Investitionszuschüsse und erzeugungsbasierte Zuschläge

In den Basisfall der Modellierung fließen dementsprechend keine direkten Investitionszuschüsse, aber die oben genannten Zuschläge gemäß KWKG für reguläre KWK-Systeme ein. Auch wenn die untersuchten KWK-Systeme teilweise Charakteristika innovativer Systeme aufweisen, so ist davon auszugehen, dass sie über den Betrachtungszeitraum bis 2050 nicht mehr unter die innovativen Systeme fallen werden.

4.5.2 Marktentwicklung und Regelungen im Stromsektor

Strom stellt in den analysierten Fällen sowohl einen Inputfaktor (für PtG, elektrische Betriebsmittel im Gasnetz) als auch einen Output (bei KWK) dar. Insofern ist die Marktentwicklung für die Beschaffung von Strom sowie für dessen Vermarktung relevant. Aus Sicht des Anlagenbetreibers sind niedrige Preise günstig zur Beschaffung und hohe Preise attraktiv für die Vermarktung.

Im Jahr 2018 lag der Tagesdurchschnitt der stündlichen Börsenpreise (Phelix-Day-Base) in 80% der Fälle zwischen 33 und 65 €/MWh [Bnet20]. Die Preise sind strukturell tagsüber höher als nachts und weisen bei den Extremwerten eine Spanne von...

Für Anlagen, die Strom aus dem Netz beziehen fallen neben den reinen Stromkosten eine Reihe von Steuern, Umlagen und Entgelten an, die sich ebenfalls auf die Wirtschaftlichkeit des Betriebs solcher Anlagen auswirken. Die verschiedenen Abgaben unterscheiden sich je nach Bezugsmenge und Technologie; ihre Erhebung wird im Folgenden kurz zusammengefasst. Tabelle 4-17 stellt die zwei Beispielfälle von PtH und PtG gegenüber.

Tabelle 4-17: Steuern, Abgaben und Entgelte für PtH und PtG-Speicherpfade im Jahr 2019

<table>
<thead>
<tr>
<th></th>
<th>für PtH</th>
<th>für PtG</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzentgelte</td>
<td>2,33 €ct/kWh</td>
<td>2,33 €ct/kWh</td>
<td>[BnBk20]</td>
</tr>
<tr>
<td>EEG-Umlage</td>
<td>6,756 €ct/kWh</td>
<td>6,756 €ct/kWh</td>
<td>[Netz20]</td>
</tr>
<tr>
<td>KWKG-Umlage</td>
<td>0,041* €ct/kWh</td>
<td>0,041* €ct/kWh</td>
<td>[Netz20]</td>
</tr>
<tr>
<td>Offshore Netzumlage</td>
<td>0,416 €ct/kWh</td>
<td>0,416 €ct/kWh</td>
<td>[Netz20]</td>
</tr>
<tr>
<td>Umlage individuelle Netzentgelte</td>
<td>0,358 €ct/kWh</td>
<td>0,358 €ct/kWh</td>
<td>[Netz20]</td>
</tr>
<tr>
<td>Umlage Abschaltbare Lasten</td>
<td>0,007 €ct/kWh</td>
<td>0,007 €ct/kWh</td>
<td>[Netz20]</td>
</tr>
<tr>
<td>Konzessionsabgabe</td>
<td>0,11 €ct/kWh</td>
<td>0,11 €ct/kWh</td>
<td>[Kav192]</td>
</tr>
<tr>
<td>Stromsteuer</td>
<td>2,05 €ct/kWh</td>
<td>-</td>
<td>[Stro99]</td>
</tr>
<tr>
<td>Gesamt</td>
<td>12,068 €ct/kWh</td>
<td>9,977 €ct/kWh</td>
<td></td>
</tr>
</tbody>
</table>

* 0,226 ct/kWh für die 1. GWh, danach Reduktion auf 15%

Die hier dargestellten Angaben gelten für einen Beispielfall. Dieser umfasst eine neue PtH- bzw. PtG-Anlage mit 10 MW Leistung, die in 2.500 Stunden Strom aufnimmt und nicht rückverstromt. Sie weist daher eine individuelle Netznutzung und

Im Allgemeinen können Anlagen mit einer individuellen Netznutzung oder einer hohen Volllaststundenzahl eine Reduktion bei den Netznutzungsentsgelten in Anspruch nehmen. Für Großabnehmer wurden 2019 im Durchschnitt 2,33 ct/kWh veranschlagt [BnBk20]. Für PtG-Anlagen, deren Wasserstoff rückverstromt wird, ist sogar eine vollständige Befreiung von den Netznutzungsentsgelten möglich (§118, Absatz 6 [Enwg05]).

Für PtH-Anwendungen wird regelmäßig eine Stromsteuer von 2,05 ct/kWh fällig. Für PtG-Anlagen entfällt die Stromsteuer unabhängig von der Rückverstromung (§9a, Absatz 1 [Stro99]).

Für PtH-Anlagen fällt die EEG-Umlage von 6,756 ct/kWh im Jahr 2020 im Regelfall vollumfänglich an. Eine Befreiung ist für die Erzeugung von 'Speichergas' aus PtG-Anlagen zur Rückverstromung (§ 611, Absatz 1 [Eeg214]) oder eine Verringerung im Falle der Eigenerzeugung möglich.

Für die Konzessionsabgabe können Sondervertragskunden mit hoher Abnahmemenge eine Reduktion auf 0,11 ct/kWh in Anspruch nehmen (§2 Absatz (3) [Kav192]). Regulär fallen je nach Gemeindegröße zwischen 2,39 und 1,32 ct/kWh an (§2, Absatz 2, Nr.1b). Für Schwachlasttarife, ohne hohe Abnahmemenge ist außerdem eine Ermäßigung auf 0,61 ct/kWh vorgesehen.

Im Falle der Eigenversorgung, wenn also Strom genutzt wird, der vor Ort erzeugt und nicht durch das öffentliche Netz geleitet wird, entfallen die Letztverbraucherbilgungen weitgehend und nur die EEG-Umlage fällt in reduziertem Umfang an. Insgesamt gewinnt die Eigenversorgung deshalb in Deutschland an Bedeutung. Die Untersuchungen in MuSeKo fokussieren aber auf den nach wie vor deutlich überwiegenden Teil der Versorgung über das Stromnetz.

Für die Modellrechnungen wurden die Abgaben, Steuern und Umlagen, die auf die reinen Strompreise aufgeschlagen werden, fortgeschrieben. Die folgende Tabelle fasst die gesamten Aufschläge, jeweils für die unterschiedlichen Szenarien und Technologien zusammen.

4.5.3 Marktentwicklung und Regelungen im Gassektor

Zusätzlich zu den regulierten Abgaben fallen durch die Beschaffungsstruktur beim Gas höhere Aufschläge für den Zwischenhandel und beim Versorger an als in der
Datengrundlage der Modellierungen

4.5.4 Ausblick

Unter den gegenwärtigen Rahmenbedingungen sind optimale Investitionen und der systemdienliche Betrieb eines Anlagenparks für eine effiziente CO₂-arme Energiesversorgung noch nicht gewährleistet. Zahlreiche Änderungen haben die Klimabelastung bereits verringert und eine Vielzahl weiterer Anpassungen wird noch diskutiert. Im Folgenden heben wir einige für die untersuchten Konzepte besonders relevante potentielle Anpassungen hervor.

Die Vermeidung von EE-Abregelungen wird außerdem durch die einheitliche Preiszone behindert. Bei KWK-Anlagen ist die räumliche Nähe zum Strombedarf durch
die Verbindung zur Wärmesenke in der Regel gegeben, es bestehen aber gegebenenfalls noch nicht ausreichende Anreize die Erzeugung speziell in die Zeiten der Unterdeckung zu verlagern. Selbst wenn die Anlagenbetreiber also ihre Investitionsentscheidung und Betriebsweise nach den Preissignalen ausrichten, betreiben sie ihre Anlagen also nicht zwingend zur aus Gesamtsystemsicht richtigen Zeit und nur eher zufällig am optimalen Ort. Während Akteure aus der Flexibilitätsvermarktung eine Marktteilung gemäß der Netzkapazität fordern, hält die Bundesregierung bislang aus industriepolitischen Gründen an der einheitlichen Preiszone fest [Bmwi20]. Gleichzeitig rücken aber neue Marktsegmente mit örtlicher Differenzierung in den Fokus. So fordert etwa die Strombinnenmarkt-Richtlinie der Europäischen Union die marktliche Ausgestaltung des Redispatch-Verfahrens und parallel explorieren Pilotprojekte die Möglichkeiten lokaler Flexibilitätsmarkte zur systemdienlichen Integration der untersuchten Anlagen [Dena19a].

Die Aufschläge auf den Strompreis machen für die Betreiber von PtH- und PtG-Anlagen einen erheblichen Teil des Bezugspreises aus und überlagern so mögliche Preissignale seitens der Märkte. Ausnahmen und Befreiungen, die die Wirtschaftlichkeit grundsätzlich verbessern, schaffen jedoch kaum Anreize für eine flexible Einsatzweise zur Integration von fluktuierendem EE-Strom. Reformen werden dahingehend diskutiert, dass die Abgabenlast zwischen den Technologien und Sektoren vereinheitlicht wird [Dena19b], sowie dass die Struktur der Netzentgelte bessere Anreize zur Optimierung der Netze bietet [Agor19].

Übergreifend gilt es insbesondere in Bezug auf sich wandelnde Rahmenbedingungen, die Transparenz und Planungssicherheit für die Akteure zu maximieren. Unsicherheiten bezüglich der Auslegung und Anwendbarkeit bestimmter Regelungen auf einzelne Anlagenkonstellationen bzw. Betriebskonzepte werden in der Modellierung im Projekt nicht berücksichtigt, wirken sich aber in der Realität nachteilig auf die Umsetzung eines optimalen Energiesystems aus.
5 Ergebnisse der Gesamtsystemoptimierung

Die Ergebnisse der Gesamtsystemoptimierung unterstreichen die positive Wechselwirkung der Kombination der verschiedenen Optionen der flexiblen Kopplung von Strom-, Wärme- und Gassystem.

5.1 Basisszenarien

Mit zunehmender Reduktion der CO₂-Emissionen gewinnt die flexible Sektor- kopplung zum Ausgleich der fluktuierenden Stromerzeugung aus Wind und Sonne stark an Bedeutung. Im Szenario ohne direkte Emissionen im betrachteten Energiesystem erweist sich der Bau umfangreicher Wasserstoffinfrastrukturen als gesamtwirtschaftlich sinnvoll.

5.1.1 Entwicklung der Energienachfrage

Die Sektorenkopplung führt zu einem starken Anstieg der Stromnachfrage, im Gegensatz dazu entwickelt sich die Gasnachfrage rückläufig.

Die Stromnachfrage, die den Basisszenarien zugrunde liegt, setzt sich aus einer modellexogenen sowie einer modellendogenen Komponente zusammen. Letztere umfasst im Wesentlichen die aus der flexiblen Sektorenkopplung resultierende Nachfrage von batterieelektrischen Fahrzeugen, elektrischen Wärmeerzeugern sowie der Erzeugung, Speicherung und dem Transport von Wasserstoff und synthetischem
Methan. Der modellexogene Anteil ergänzt jene Verbraucher, die nicht explizit in REMix modelliert sind (Legendeneintrag „konventionelle Stromnachfrage“ in Abbildung 5-1).

Abbildung 5-1: Entwicklung der Stromnachfrage in Deutschland im Szenariovergleich. Die sich aus der flexiblen Sektorenkopplung ergebenden Anteile sind separat ausgewiesen.

Bei der Gasnachfrage wird ebenfalls zwischen exogen vorgegebenen und endogen errechneten Bedarfen unterschieden, wobei sich der endogene Anteil aus der Nachfrage gasbetriebener Kraftwerke und Wärmeversorgungsanlagen ergibt (siehe Abbildung 5-2). Deren Auslegung und Einsatz, und damit auch der Brennstoffbedarf, sind Ergebnis der Optimierung.

Abbildung 5-2: Entwicklung der Gasnachfrage in Deutschland im Szenariovergleich

5.1.2 Entwicklung der Stromerzeugung und des Kraftwerksparks

Für eine überwiegend heimische Versorgung der Energienachfrage muss die Stromerzeugungskapazität gegenüber heute je nach Szenario um den Faktor 2 bis 4 erhöht werden. Daraus ergibt sich insbesondere ein Zubau von Windkraft- und Photovoltaikanlagen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>%</td>
<td>40 %</td>
<td>47 %</td>
</tr>
<tr>
<td>Kernenergie</td>
<td>%</td>
<td>12 %</td>
<td>14 %</td>
</tr>
<tr>
<td>Kohle</td>
<td>%</td>
<td>29 %</td>
<td>21 %</td>
</tr>
<tr>
<td>Gas</td>
<td>%</td>
<td>15 %</td>
<td>17 %</td>
</tr>
</tbody>
</table>
Ergebnisse der Gesamtsystemoptimierung

Das Stromerzeugungsportfolio innerhalb Deutschlands wird neben dem Kernkraftausstieg im Jahr 2022 auch vom Kohleaustieg 2038 beeinflusst, sodass diese Technologien ab dem darauffolgenden Stützjahr dem Erzeugungspark nicht mehr zur Verfügung stehen. Ein erhöhter CO\(_2\)-Preis bedingt, insbesondere im Szenario THG95, bereits ab 2030 einen starken Rückgang der Kohleverstromung um 70% bzw. 90%, was eine 35 bzw. 44%-ige Reduktion der CO\(_2\)-Emissionen von 2020 auf 2030 bewirkt. Da die Kapazitäten der Kohlekraftwerke nur um etwa 60% sinken, resultiert ein deutlicher Rückgang der Auslastung. In deutlich geringerem Maße ist die Stromerzeugung aus Gaskraftwerken von den erhöhten Emissionskosten betroffen. Während sich die Reduktion der Emissionen im Szenario THG80 ab 2040 verlangsamt, wird im Szenario THG95 ein linearer Rückgang bis hin zu einer vollständigen Vermeidung von CO\(_2\)-Emissionen in 2050 realisiert.

Die günstigere Stromerzeugung durch erneuerbare Energien im Ausland, bedingt durch die höheren Potenziale (z.B. mittels Photovoltaik in Italien und Frankreich, Windkraft in Dänemark oder Wasserkraft in Norwegen), führt dazu, dass das exogen vorgegebene Stromimportlimit von 20 % der Stromnachfrage ab dem Jahr 2040 erreicht wird. Da sich dieses auf die Nachfrage exklusive der Verluste bezieht, kann der in Abbildung 5-3 dargestellte Anteil etwas höher liegen. Ebenfalls wirkt die Netzkapazität, die sich bis 2040 an dem von der Bundesregierung verabschiedeten Netzentwicklungsplan orientiert, limitierend auf den Stromimport. Im Szenariojahr 2020 wird ein Nettostromexport von 6 TWh realisiert, was konsistent mit den realen Daten übereinstimmt.
der vergangenen Jahre ist. Dies kann darauf zurückgeführt werden, dass das System in großem Maße auf Bestandsanlagen mit günstigen Stromerzeugungsgrenzkosten zurückgreift.

Abbildung 5-5: Entwicklung der Kraftwerkskapazitäten in Deutschland im Szenariovergleich

In Deutschland werden die EE entsprechend ihrer Ressourcenpotenziale zugebaut, d.h. Photovoltaik verstärkt im Süden Deutschlands und Windenergieanlagen vor allem in Niedersachsen (siehe Abbildung 5-6).

Abbildung 5-6: Kapazitäten von Photovoltaik- und Windenergieanlagen (an Land und auf See) im Vergleich für das THG95/2050-Szenario

5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-7: Entwicklung der Kraftwerkskapazitäten in den betrachteten europäischen Ländern im Szenariovergleich

5.1.3 Entwicklung des Ausgleichs fluktuierender Stromerzeugung

Der Ausgleich der fluktuierenden Stromerzeugung erfolgt am günstigsten durch die Kombination von verschiedenen Optionen zur zeitlichen und räumlichen Verlagerung. Im Szenario THG95 kommt der flexiblen Erzeugung und dem überregionalen Transport von Wasserstoff eine zentrale Rolle zu.

Ergebnisse der Gesamtsystemoptimierung betrachtet. Weitere Details folgen für das Wasserstoffsystem in Abschnitt 5.1.6 und für den stündlichen Anlageneinsatz in Abschnitt 5.1.7.

Abbildung 5-8: Beitrag der verschiedenen Lastausgleichsoptionen im Verlauf der Jahre im Szenario THG95

Die Abregelung von EE-Strom beläuft sich in Deutschland auf maximal 3 TWh/a (THG95/2030), entsprechend 0,7% der potenziellen fluktuierenden Erzeugung aus Wind, Sonne und Wasser. Dies impliziert, dass nahezu der gesamte EE-Strom durch Einsatz der vielfältigen Lastausgleichsoptionen genutzt werden kann, und dies trotz der zu tätigen Investitionen günstiger als eine Abregelung ist. Bedingung dafür ist jedoch ein umfangreicher Ausbau des Stromnetzes sowie der flexiblen Sektorenkopplung. Durch mögliche lokale Netzengpässe verursachte Abregelung kann methodisch bedingt nicht erfasst werden. Mit 1,7% nur unwesentlich höher ist die Abregelung für das europäische Untersuchungsgebiet.

Wie sich der Einsatz einzelner Sektorenkopplungsoptionen im zeitlichen Verlauf entwickelt geht im Detail aus Abbildung 5-9 und Abbildung 5-10 hervor. Im Szenario THG80 zeigt sich im Verlauf der Szenariojahre ein Anstieg in der Nutzung aller Optionen außer der Stromerzeugung in KWK-Anlagen. Diese wird zunehmend durch

Auch wenn die verschiedenen Technologien in den folgenden Abbildungen einzeln ausgewiesen werden, ist bei der Interpretation wichtig zu beachten, dass viele von ihnen nur im Zusammenspiel ihre Wirkung entfalten. Dies gilt für KWK, elektrische Wärmeerzeugung und thermische Speicherung ebenso wie für Erzeugung, Speicher!ung und Transport synthetischer Gase.

Abbildung 5-9: Entwicklung des Beitrags der verschiedenen Lastausgleichsoptionen im zeitlichen Verlauf für das Szenario THG80. Achsen haben unterschiedliche Skalierung.
5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-10: Entwicklung des Beitrags der verschiedenen Lastausgleichsoptionen im zeitlichen Verlauf für das Szenario THG95. Achsen haben unterschiedliche Skalierung.

Wie sich die Anforderungen an den Lastausgleich und insbesondere die Sektorenkopplung zwischen den beiden Szenarien unterscheiden wird insbesondere durch Abbildung 5-11 deutlich, welche die Nutzung der verschiedenen Optionen im Zieljahr 2050 zeigt. Durch die stärkere Emissionsreduktion im Szenario THG95 bekommen flexible Erzeugung, Speicherung und Transport von Wasserstoff und Methan eine Schlüsselrolle bei der Integration fluktuierender EE, wohingegen die Bedeutung der Flexibilität im Wärme Sektor durch die reduzierte Nachfrage geringer ausfällt.

Seite 101
Auch dem gesteuerten Laden von Elektrofahrzeugen sowie der Nutzung von Stromspeichern und des Stromnetzes kommen in THG95 eine größere Bedeutung zu. Im Gegensatz dazu kommt in THG80 keine Methanisierung zum Einsatz, und der Schwerpunkt der flexiblen Sektorenkopplung liegt auf der elektrischen Wärmeerzeugung in Wärmenetzen.

Wie sich dies auf die benötigten Infrastrukturen auswirkt zeigt Abbildung 5-12. Durch die geringere Wärmennachfrage liegen in THG95 geringere Kapazitäten der Wärmeerzeugung vor, wobei deren Auslegung gegenüber der Spitzenlast etwas höher ausfällt als in THG80. Dies unterstreicht, dass die Flexibilität der Wärmebereitstellung trotz des umfangreichen Baus von Wasserstoffinfrastrukturen benötigt wird. Dies wird belegt durch die in THG95 höhere Kapazität der Wärmespeicher. Die stärkere Emissionsreduktion geht jedoch insbesondere bei Erzeugungsanlagen für synthetische Gase, den Wasserstoffspeichern und den Transportleitungen für Strom und Wasserstoff mit einem deutlich höheren Infrastrukturbedarf einher. Dies betrifft insbesondere die Elektrolyseure mit einer Gesamtkapazität von 111 GW, entsprechend etwa der heutigen Stromerzeugungsleistung aller Wind- und PV-Anlagen in Deutschland. Zur saisonalen Speicherung des Wasserstoffs werden Untergrundspeicher einer Kapazität von 53 TWh benötigt, was in etwa einem Viertel der heutigen...
Ergebnisse der Gesamtsystemoptimierung

Erdgasspeicher entspricht. Im Vergleich zur heutigen Erdgasinfrastruktur erscheint der Bedarf an Wasserstofftransportleitungen hingegen eher gering und liegt nur bei einem Bruchteil der vorhandenen Transportkapazitäten. Dies legt nahe, dass eine teilweise Umwidmung sowie abschnittsweise Ergänzung des Bestandstransportnetzes eine attraktive Option zur Reduktion der Kosten sein könnten. Ein sich entwickelndes Rumpfnetz für den überregionalen Wasserstofftransport würde mit begrenztem Leitungszubaubedarf zunächst lediglich die größten Nachfrageschwerpunkte bedienen, ganz ähnlich, wie es aktuell im Entwurf des Netzentwicklungsplan Gas 2020-2030 im Szenario Grüne Gase wiederzufinden ist [Schu20].

5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-12: Kapazitäten der verschiedenen Lastausgleichsoptionen im Szenariovergleich. Achsen haben unterschiedliche Skalierung.

Im Gegensatz zum Stromnetzausbau und im Widerspruch zum aktuellen Trend spielen dezentrale Batteriespeicher in den Modellergebnissen für Deutschland nur eine sehr untergeordnete Rolle. Diese kommen nur in THG95 zum Einsatz und erreichen in Speicher- wie Entladeleistung nur etwa ein Drittel der Werte der Pumpspeicher, die gegenüber dem heutigen Bestand gemäß der exogenen Vorgabe um gut 20% ausgebaut werden. Die Auswirkungen einer Kopplung von PV-Ausbau und Batteriespeicherausbau werden ebenfalls im Rahmen einer Szenariovariante untersucht.

Da im europäischen Ausland flexible Sektorenkopplung im Modell nicht abgebildet wird kommt es dort, insbesondere in den Ländern mit einem hohen PV-Anteil an der Stromerzeugung zu einem deutlich umfangreicheren Batteriespeicherausbau (siehe Abbildung 5-13).
5.1.4 Flexibilisierung der Betriebsmittel im Gasnetz

Gemäß den Ausführungen in Kapitel 4 lag ein Schwerpunkt des Projekts auf der Untersuchung der durch eine Elektrifizierung der Betriebsmittel im Gassystem bereitstellbare Flexibilität. Dies betrifft hier einerseits die Gasvorwärmung und andererseits die Kompression für Transport und Speicherung.

Die Modellergebnisse zeigen, dass die Gasvorwärmung im Verlauf der Szenariojahre zunehmend elektrifiziert wird (siehe Abbildung 5-14). Der Anteil der Gasboiler an der Bedarfsdeckung sinkt in Szenario THG95 von 100% in 2020 auf 50% in 2030 und gut 20% in den Folgejahren. KWK-Anlagen werden in 2030 endogen zugebaut, und liefert dann ein Viertel der benötigten Wärme; danach sinkt ihr Versorgungsanteil jedoch auf 14% bzw. 9%. Im Gegenzug steigt der Anteil der durch elektrische Boiler erzeugten Wärme von ebenfalls etwa einem Viertel in 2030 auf gut 70% in 2050. Zur Flexibilisierung der KWK-Anlagen und elektrischen Boiler werden in 2030 Wärmespeicher zugebaut, der etwa 3 Stunden der aggregierten thermischen Erzeugungsleistung aufnehmen kann. Da diese in der Summe jedoch nur bei gut 100 MW liegt, und bis 2050 auf unter 30 MW sinkt, tragen diese Anlagen nicht wesentlich zur Integration fluktuierender EE-Stromerzeugung in Deutschland bei. Dies spiegelt sich auch in der Größenordnung der erzeugten Wärme wider, die im Verlauf der Szenariojahre von 265 GWh auf 150 GWh sinkt (Abbildung 5-14).
Für die Kompression für Transport und Speicherung ist angenommen, dass diese für Wasserstoff lediglich strombasiert erfolgt, für Erdgas und synthetisches Methan jedoch sowohl gas- als auch strombasiert. Aufbauend auf den heute verfügbaren Kompressorkapazitäten (siehe Abschnitt 4.3.3) kann REMix endogen in beide Technologien investieren. Die Ergebnisse zeigen, dass im Fall der Gasspeicher lediglich in elektrische Kompressoren investiert wird, und diese auch die komplette Verdichtungsarbeit übernehmen. Daraus folgt, dass eine Einspeicherung von H₂ und Erdgas/CH₄ insbesondere zu Zeiten hoher EE-Stromerzeugung erfolgt. Im Gasnetz kommt hingegen eine Mischung beider Technologien zum Einsatz, hauptsächlich unter Nutzung der heute bereits vorhandenen Kompressorkapazitäten. So sinkt der Anteil der durch gasbasierte Kompressoren bereitgestellten Verdichtungsarbeit von 55% in 2020 auf 23% (THG80) bzw. 15% (THG95) in 2050.
Ergebnisse der Gesamtsystemoptimierung

Abb Bildung 5-15: Bereitstellung von Verdichtungsarbeit im Methantransportnetz durch gasbasierte und strombasierte Kompressoren im Jahr 2050 des Szenarios THG95 im Jahresverlauf (oben) und im Monat Februar (unten)

5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-16: Bereitstellung von Verdichtungsarbeit in Wasserstoff- und Methanspeichern durch strombasierte Kompressoren im Jahr 2050 des Szenarios THG95 im Monat Februar im Vergleich zur Erzeugung von EE-Strom und Wasserstoff.

Der jährliche Strombedarf der Verdichtung im Gastransport liegt in THG95 unabhängig vom Szenariojahr bei etwa 1 TWh, wobei der Anteil des Wasserstoffnetzes ab 2050 den des Erdgasnetzes übersteigt. In THG80 sinkt dieser Wert bis 2050 hingegen auf etwa 0,75 TWh ab, bedingt durch den geringeren Wasserstoffbedarf in diesem Szenario. Während der Strombedarf der Verdichtung in Gasspeichern in den frühen Szenariojahren deutlich unter jenem der Transportleitungen liegt, übersteigt er diesen dann in 2050. Dies ergibt sich aus der starken Zunahme der Nutzung von Wasserstoffspeichern, deren jährlicher Strombedarf in 2050 auf 1 TWh in THG80 und 3,5 TWh in THG95 ansteigt. Aufgrund dieser Größenordnungen leistet auch die flexible Verdichtung von Gas keinen wesentlichen Beitrag zur EE-Integration, wie der Vergleich mit Abbildung 5-8 zeigt. Zumindest im Fall der Kompressoren in Gasspeichern zeigt sich eine klare Korrelation des Betriebs mit der EE-Stromerzeugung, wobei diese im Wesentlichen durch den zeitgleichen Elektrolysebetrieb verursacht wird.

5.1.5 Entwicklung der Systemkosten

Die Systemkosten zeigen zunächst einen steigenden Trend, der sich jedoch ab dem Jahr 2040 wieder umkehrt. Mit zunehmender Umstellung auf EE-Strom sinkt der Anteil der variablen Kosten gegenüber dem der Investitionen.

Bei der Bewertung der ausgewiesenen Kosten ist jedoch zu beachten, dass die Annuitäten nur für die im jeweiligen Jahr installierten Anlagen in die Zielfunktion eingehen. Da die Lebensdauer aller Anlagen länger als 10 Jahre ist, fallen diese jedoch mindestens noch in dem darauffolgenden Szenariojahr an, was die Gesamtkosten erhöht. Wenn man die Rückgänge der Systemkosten nach 2030 ins Verhältnis mit den Investitionskosten der jeweils früheren Jahre setzt (siehe graue Anteile in Abbildung 5-17), zeigt sich, dass auch bei zusätzlicher Berücksichtigung der Annuitäten der vorherigen Szenariojahre kein Anstieg der Kosten zwischen 2030 und 2050 ergibt.
Abbildung 5-17: Kostengliederung nach Komponenten für Deutschland im Szenariovergleich

Die Aufteilung der Kosten auf die verschiedenen Systemkomponenten unterstreicht die beschriebenen Zusammenhänge. So macht der Erdgasimport in Szenario THG80 bis einschließlich 2050 den größten Anteil der Kosten aus, während die EE-Anlagen, die flexible Wärmeerzeugung und die Wasserstoffinfrastruktur nur geringe Anteile beitragen. Bis einschließlich 2040 bietet sich dieses Bild auch in THG95; in 2050 macht die Stromerzeugung dann die eine Hälfte, der Lastausgleich über Netze, Speicher und Sektorenkopplung die andere Hälfte der Kosten aus.
Auf das gesamte Untersuchungsgebiet bezogen zeigt sich kein struktureller Unterschied bei der Zusammensetzung der Kosten. Da außerhalb Deutschlands der Wärmesektor gar nicht und die Gasnachfrage nur für Kraftwerke berücksichtigt werden, ist der Anteil der Brennstoff- und Emissionskosten geringer, während die Investitionskosten in EE-Anlagen stärker ins Gewicht fallen (siehe Abbildung 12-12 und Abbildung 12-13 im Anhang 12.9).

5.1.6 Wasserstoffinfrastruktur im Zielsystem 2050

Wie bereits in Abschnitt 5.1.3 hervorgehoben, ergibt sich in REMix in beiden Szenarien ein Ausbau umfangreicher Infrastrukturen für die Erzeugung, Speicherung und den Transport von Wasserstoff. Deren regionale Ausgestaltung genauer zu betrachten, steht im Fokus dieses Abschnitts.

Abbildung 5-19: Kapazität des Wasserstoffnetzes im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts)

5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-20: Kapazität der Elektrolyseure im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts)

Entsprechend der Potenziale für Untergrundkavernen konzentriert sich die endogene Installation der Wasserstoffspeicher auf die nördliche Hälfte des Landes (siehe Abbildung 5-21). Die höchsten Kapazitäten werden dabei in Nordrhein-Westfalen, Niedersachsen sowie der aus Brandenburg, Sachsen-Anhalt und Berlin gebildeten Modellregion realisiert.

Abbildung 5-21: Kapazität der Wasserstoffspeicher im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts)

Die Verteilung der Methanisierungsanlagen in Szenario THG95 ist ähnlich der Verteilung der Elektrolyseure, wobei die größte Kapazität in diesem Fall in Niedersachsen vorliegt (siehe Abbildung 5-22).
Ergebnisse der Gesamtsystemoptimierung

5.1.7 Stündlicher Anlageneinsatz im Zielsystem 2050

Abbildung 5-22: Gesamtkapazität von Methanisierungsanlagen im Jahr 2050 für Szenario THG95
5 Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-23: Betrieb der Elektrolyseure im Szenario THG95 für 2050

Abbildung 5-24: Betrieb der Methanisierungsanlagen im Szenario THG95 für 2050

Abbildung 5-25: Beladung der Flottenbatterie im jahreszeitlichen Verlauf im Szenario THG95 für 2050

Abbildung 5-26: Betrieb der Batteriespeicher im Szenario THG95 für 2050

Abbildung 5-27: Betrieb der Elektroheizer im Szenario THG95 für 2050

Abbildung 5-28: Betrieb der Wärmepumpen im Szenario THG95 für 2050

Dieses von REMix optimierte Einsatzverhalten lässt sich anhand des Speicherfüllstands der Wasserstoff- und Methanspeicher erklären (Abbildung 5-30). Diese zeigen in Szenario THG95 einen saisonalen Verlauf, der deutlich durch die Heizsaison bestimmt ist. So erfolgt entsprechend dem Betrieb der Methanisierungsanlagen zwi-

Abbildung 5-29: Jahresverlauf der normierten Wärme- und Gasspeicherfüllstände im Szenario THG80 für 2050

Abbildung 5-30: Jahresverlauf der normierten Wärme- und Gasspeicherfüllstände im Szenario THG95 für 2050
5 Ergebnisse der Gesamtsystemoptimierung

5.2 Szenariovarianten

Die Variation ausgewählter Szenarioannahmen zeigt, dass sich im Falle abweichender Kosten und Potenziale sowohl bei der EE-Stromerzeugung als auch beim Lastausgleich verschiedene Technologien gegenseitig substituieren können.

Um die Auswirkungen ausgewählter Annahmen näher zu beleuchten, wurde eine Reihe von Varianten des Szenarios THG95 berechnet (siehe Abschnitt 4.2.3). Die Analyse der Varianten blickt insbesondere auf Veränderungen der Stromerzeugungsstruktur, der Systemkosten und die Auslegung von Lastausgleichsoptionen. Dabei erfolgt eine Beschränkung auf das Jahr 2050, in dem die größten Effekte beobachtet werden können.

Die REMix-Ergebnisse zeigen eine deutliche Abhängigkeit der Stromerzeugungsstruktur insbesondere bei Einschränkung des Stromnetzausbaus, der PV-Potenzial und der Stromimportquote, sowie einem erzwungenen Batteriespeicherausbau und der Verfügbarkeit von Wasserstoffimporten (Abbildung 5-31).

Szenariovariante Prosumage

Szenariovariante Diversifizierung

Szenariovariante Stromnetz-
Die größte Steigerung der Systemkosten ergibt sich durch die noch striktere Beschränkung des Stromnetzausbaus auf die vorhandenen und bereits geplanten Kapazitäten. Diese verursacht eine Kostensteigerung um mehr als 20% und wirkt sich auch sehr stark auf Stromerzeugung und Lastausgleich aus. Der Wegfall des Netzausbaus reduziert die Kapazität der innerdeutschen Kuppelstellen um gut 50%. In nahezu identischem Maße nimmt jedoch die Kapazität der Wasserstoffleitungen zu. Für den Lastausgleich werden zudem deutlich höhere Kapazitäten an Elektrolyseuren, Methanisierungsanlagen, Wärmespeichern und Stromspeichern benötigt. Zur Kompensation der damit einhergehenden Systemverluste muss die Stromerzeugung und damit die installierten Kapazitäten deutlich gegenüber dem Basisfall erhöht werden. Dies unterstreicht die zentrale Bedeutung des Stromnetzausbaus für die Energiewende.

Szenariovariante Import-
Eine Beschränkung des Stromimports auf 2% der Nachfrage führt zu einer vergleichbaren Erhöhung der EE-Kapazitäten, ist jedoch mit deutlich geringeren Steigerungen der Kosten und Lastausgleichskapazitäten verbunden.
Ergebnisse der Gesamtsystemoptimierung

Abbildung 5-32: Prozentual aufgetragene Abweichungen des Kapazitätsausbaus verschiedener Technologien in den untersuchten Szenariovarianten bezogen auf das THG95/2050-Szenario

Szenariovariante Groß-WP+
Der zusätzliche Ausbau von Großwärmepumpen in Wärmenetzen hat keine wesentlichen Auswirkungen auf Kosten und Stromerzeugungsstruktur. Er steigert jedoch die entsprechende Wärmepumpenkapazität um knapp 60%, woraus geringfügig kleinere Kapazitäten an Wärmespeichern, Elektrolyseuren und Methanisierungsanlagen resultieren.

Szenariovariante Stromnetz+
Noch geringer sind die Auswirkungen eines unbegrenzten Stromnetzausbaus: dieser steigert die Leitungskapazität in Deutschland um knapp 20%, was jedoch kaum Effekte auf Kosten, Stromerzeugung und anderen Lastausgleich hat. Die im Basisfall angenommene Beschränkung des Ausbaus auf 5 GW pro Kuppelstelle und Dekade hat folglich nahezu keine Auswirkung.

Szenariovariante MethanFLH
Auch die Anforderung einer Mindestzahl von 8000 jährlichen Volllaststunden für die Methanisierung – gegenüber den endogen ermittelten 6600 im Basisszenario THG95 – wirkt sich nur marginal auf Kosten und Stromerzeugung aus. Sie reduziert
jedoch die benötigte Methanisierungskapazität um 20%, woraus eine Zunahme bei den Wärmespeichern und Wasserstoffleitungen resultiert.

Szenariovariante SOEC
Die Nutzung effizienterer Elektrolyseure (88% gegenüber 77% in 2040, 93% gegenüber 80% in 2050) hat nur einen leicht dämpfenden Effekt auf Kosten und innerdeutsche Stromerzeugung. Sie reduziert neben der benötigten Kapazität der Elektrolyseure auch jene der Batteriespeicher, mit gegenteiligen Effekten für Wasserstoffleitungen und Methanisierung.

Szenariovariante H\textsubscript{2}KompEn
Die Erhöhung des Kompressionsenergiebedarfs für Wasserstofftransport und -speicherung hat den erwarteten Effekt einer Reduktion der Wasserstofftransportkapazitäten um knapp 20%. Dies wird durch eine leichte Erhöhungen beim Stromnetz, Batteriespeichern und der PV- Stromerzeugung kompensiert, woraus ein geringfügiger Anstieg der Systemkosten resultiert.

Szenariovariante CO\textsubscript{2}-Kosten

Szenariovariante ImportE-Fuel

5.3 Zusammenfassung und Diskussion

Die REMix-Modellergebnisse bieten ein breites Spektrum an Erkenntnissen zur Transformation des deutschen Energiesystems im Allgemeinen und zur Auslegung und Nutzung der flexiblen Sektorenkopplung im Speziellen. So unterstreichen sie, dass alle verfügbaren Lastausgleichsoptionen Teil der kostenminimalen Versorgungssysteme sind. Es gibt somit nur bedingte Konkurrenz- und Verdrängungseffekte zwischen den verschiedenen Optionen.

Der umfangreiche Ausbau von Wärm- und Gasspeichern, sowie die breite Aufstellung der Wärmeerzeuger in Wärmennetzten machen deutlich, dass die Ausgestaltung
Ergebnisse der Gesamtsystemoptimierung

der Sektorenkopplung ganz wesentlich auf die Nutzung aller verfügbaren Flexibilitäten ausgerichtet sein muss. Im Bereich der Wärmenetze umfasst dies die Ergänzung der KWK um Wärmepumpen, elektrische Boiler und thermische Speicher. Auf dieser Basis wird die Wärmeerzeugung im Verlauf der Szenariojahre zunehmend elektrifiziert, was mit einem Rückgang des Einsatzes von Gaskesseln und KWK-Anlagen einhergeht. Da die KWK aber bis in das Jahr 2050 für die Stromerzeugung in Zeiten geringer Wind- und PV-Verfügbarkeit benötigt wird, bleibt sie Teil des Systems, wechselt jedoch auf einen komplett stromgeführten Betrieb. Eine Auslegung der KWK auf geringere Volllaststunden und hohe Betriebsflexibilität ist somit aus Gesamtsystemsicht erstrebenswert. Die Nutzung von Wärmespeichern beschränkt sich nicht auf Wärmenetze, sondern umfasst auch die Gebäudeversorgung mit kleinen KWK-Anlagen und elektrischen Wärmepumpen, sowie die elektrische Prozesswärmeerzeugung.

Nicht nur bezüglich des EE-Gassystems geht die vollständige Vermeidung von Emissionen im Energiesystem (Szenario THG95) mit einem deutlichen Anstieg des Bedarfs nach neuen Infrastrukturen einher, einschließlich einer Verdreifachung der installierten Kraftwerksleistung gegenüber heute. Mit Blick auf die Methanisierung ist zu beachten, dass die Bereitstellung von CO₂ nicht modelliert wurde. Da diese mit Kosten, möglicherweise aber auch mit Einschränkungen der zeitlichen und räumlichen Verfügbarkeit einhergeht, ist davon auszugehen, dass eine entsprechende Modellierweiterung Auswirkungen auf die Ergebnisse mit sich bringen würde. So könnten beispielsweise Kapazität, geographische Positionierung und Einsatz der Methanisie-
rung andere Charakteristika zeigen als hier aufgezeigt. Ebenso könnte die Verfügbarkeit größerer Mengen an Biomethan als den hier angenommenen einen Einfluss auf die Nachfrage nach synthetischem Methan haben.

Generell ist zu bedenken, dass das in REMix modellierte Energiesystem nicht den vollständigen Verkehrssektor umfasst, da die für den Flug- und Schiffsverkehr benötigten Treibstoffmengen nicht berücksichtigt sind. Um diese klimaneutral bereitzustellen würden in Deutschland zusätzliche EE-Anlagen in signifikantem Umfang benötigt, oder es müsste auf den Import von regenerativ erzeugten Brennstoffen aus Ländern mit besseren EE-Potentzialen zurückgegriffen werden.

Den Modellergebnissen zufolge kommt auch dem Stromnetz im Lastausgleich eine zentrale Rolle zu. Die Option des endogenen Ausbaus wird stark genutzt, unter anderem um die innerdeutsche Stromerzeugung durch Importe aus dem Ausland zu ergänzen. Wenn ein Stromnetzausbau nicht möglich ist, kann dies durch eine verstärkte Nutzung der flexiblen Sektorenkopplung und stationäre Batteriespeicher kompensiert werden, was jedoch mit einem Anstieg der Systemkosten um gut 20% einhergeht.

Eine Flexibilisierung wird nicht nur in der Bereitstellung von Wärme und Wasserstoff realisiert, sondern auch bei den Betriebsmitteln im Gasnetz. So erfolgen Verdichtung und Vorwärmung zeitweise strombasiert und zeitweise gasbasiert. Durch die im Verhältnis zur Gesamtversorgungsaufgabe geringen Energiemengen wird hierdurch jedoch nur ein untergeordneter Beitrag zur systemweiten EE-Integration geleistet.

Auch wenn die Wechselwirkung der verschiedenen Optionen der Sektorenkopplung in deutlich höherem Umfang und Detail als in der Vergangenheit erfolgte, bleiben doch noch viele Fragen offen. Dies betrifft beispielsweise die europäischen Wechselwirkungen im Gasystem, die Erzeugung und Nutzung anderer synthetischer Kraft- und Brennstoffe und die Umwidmung von Infrastrukturen, beispielsweise von Erdgas auf Wasserstoff. Zudem müssen ergänzend Effekte auf geringeren räumlichen und zeitlichen Skalen analysiert werden, wie auch die Auswirkung der Betrachtung weiterer europäischer Länder, über die hier berücksichtigten hinaus.

Mit Blick auf die ausgewiesenen Kapazitäten ist zu beachten, dass mit Ausnahme der Wärmenetze eine Besicherung nicht berücksichtigt wurde. Für die Absicherung gegen Ausfälle einzelner Systemkomponenten (Stromleitungen, Kraftwerke, Speicher, Kompressoren etc.) wären also zusätzliche Kapazitäten im Umfang der gewünschten Besicherung nötig.
6 Ergebnisse der Einzelsystemanalyse

In diesem Kapitel soll aufgezeigt werden, inwieweit sich das aus der gesamtwirtschaftlichen Modellierung abgeleitete Optimum von Sektoren koppelnden Anlagen und deren Betriebsweisen in der betriebswirtschaftlichen Realität umsetzen lässt. Dies erfolgt auf Grundlage der Einbindung von REMix-Ergebnisdaten in MuGriflex unter Nutzung der in Kapitel 3.3 eingeführten Schnittstellen zur Modellkopplung.

Dabei wird für ausgewählte Technologien und Anlagenkombinationen (z.B. alle Anlagen zur Wärmeversorgung eines exemplarischen Wärmenetzes) zunächst untersucht, welche Anlagen gebaut und wie diese Anlagen betrieben werden müssten, um die Versorgungsaufgabe typischer Anlagenbetreiber zu den betriebswirtschaftlich günstigsten Kosten zu erfüllen. Diese Versorgungsaufgaben werden mit dem Energiesystemmodell MuGriflex (siehe Kapitel 3.2) abgebildet und optimiert, wobei die Stromkostenzeitreihen und Brennstoffkosten aus der REMix-Modellierung und die in Kapitel 4.5 erarbeiteten Abschätzungen zur Entwicklung der Rahmenbedingungen zugrunde gelegt werden.

Der so optimierte Anlagenpark und der Betrieb der einzelnen Anlagen werden dann dem mit REMix ermittelten Optimum gegenübergestellt. Im nächsten Schritt wird aufgezeigt inwieweit die Rahmenbedingungen von den in Kapitel 4.5 getroffenen Annahmen abweichen müssten, damit die für das Gesamtsystem optimale Anlagenkonfigurationen und Betriebsweisen auch betriebswirtschaftlich angereizt werden.

In den folgenden Unterkapiteln werden zunächst die verwendeten Strom- und Gaskosten, und sodann Ergebnisse der durchgeführten Optimierungen für Wärmeversorgungssysteme, Elektrolyseure und Verdichter als Betriebsmittel im Gasnetz dargestellt.

6.1 Eingangsdaten

Die im Folgenden beschriebenen Eingangsdaten werden für die Analyse der Einzel-systeme verwendet. Sie sind entweder Ergebnisdaten der REMix-Rechnungen oder werden aus diesen berechnet (siehe Kapitel 3.3).

6.1.1 Stromkosten

Die beiden folgenden Abbildungen zeigen die geordneten Dauerlinien der verwendeten Grenzkosten für die vier Szenariojahre und die beiden Szenarien.

![Abbildung 6-1: Geordnete Dauerlinie der Strom-Grenzkosten im THG80-Szenario](image1)

![Abbildung 6-2: Geordnete Dauerlinie der Strom-Grenzkosten im THG95-Szenario](image2)

Diese Kosten sind Ergebnisse der REMix-Berechnungen. Sie ergeben sich aus den Gestehungskosten der jeweils günstigen Stromerzeuger (siehe Kapitel 3.1) und sind für die Modellierung der Einzelanlagen mit MuGriFlex eine zentrale Inputgröße. Sie dienen dabei als Annäherung für die Marktpreise für Strom über den Zeitverlauf. Trotz prinzipieller Unterschiede zwischen Marktpreisen und Gestehungskosten, liegen die Werte strukturell in der gleichen Größenordnung und sind im Wesentlichen ähnlichen Entwicklungen unterworfen (siehe dazu auch Kapitel 5.6 und 6.1).

Auffallend und bei der Interpretation der Ergebnisse zu beachten ist:

Zu den Stromerzeugungskosten kommen für die Anlagenbetreiber noch Abgaben, Umlagen und Steuern hinzu. Für diese wurden in den Modellrechnungen unter der Annahme eines unveränderten Regelrahmens die in Tabelle 4-18 dargestellten Aufschläge auf die Grenzkosten (Abgaben, Umlagen, Steuern und andere Zuschläge) verwendet.

6.1.2 Gaskosten

Die Gaskosten als Brennstoffkosten für KWK-Anlagen, Gaskessel oder mit Gas betriebene Kompressoren werden als gewichteter Mittelwert der Kosten der im Gasmix enthaltenen Gase gebildet. Mit Gasmix ist dabei das jeweilige Gemisch aus unterschiedlichen Gasen, also Methan und Wasserstoff, bzw. verschiedenen Erzeugungspfaden, sprich Elektrolyse, Methanisierung, Biogas oder Import von fossilem Gas gemeint.

Die mit REMix berechneten Anteile der Gase am Brennstoffmix der KWK-Anlagen sind in Tabelle 6-1 zu sehen:

<table>
<thead>
<tr>
<th>Energetische Anteile am Brennstoffmix</th>
<th>Erdgas THG80 / THG95</th>
<th>Biogas THG80 / THG95</th>
<th>Wasserstoff THG80 / THG95</th>
<th>synth. Methan THG80 / THG95</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>100% 0%</td>
<td>0% 0%</td>
<td>0% / 0%</td>
<td>0% / 0%</td>
</tr>
<tr>
<td>2030</td>
<td>93% / 93% 7% / 7%</td>
<td>7% / 0%</td>
<td>0% / 0%</td>
<td>0% / 0%</td>
</tr>
<tr>
<td>2040</td>
<td>92% / 78% 8% / 16%</td>
<td>0% / 6%</td>
<td>0% / 0%</td>
<td>0% / 0%</td>
</tr>
<tr>
<td>2050</td>
<td>73% / 0% 17% / 9%</td>
<td>9% / 2%</td>
<td>1% / 89%</td>
<td></td>
</tr>
</tbody>
</table>

6 Ergebnisse der Einzelsystemanalyse

Tabelle 6-2: Durchschnittliche Gaspreise für KWK-Anlagen und Gaskessel, mit und ohne Aufschläge19

<table>
<thead>
<tr>
<th></th>
<th>Gaspreis inkl. CO\textsubscript{2}-Kosten (Durchschnittspreis für Anlagenbetreiber)</th>
<th>Gaspreis inkl. CO\textsubscript{2}-Kosten (Durchschnittspreis für Anlagenbetreiber inkl. Aufschläge)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne Aufschläge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THG80</td>
<td>THG95</td>
</tr>
<tr>
<td>Einheit</td>
<td>€ct/kWh</td>
<td>€ct/kWh</td>
</tr>
<tr>
<td>2020</td>
<td>4,4</td>
<td>4,5</td>
</tr>
<tr>
<td>2030</td>
<td>5,0</td>
<td>5,8</td>
</tr>
<tr>
<td>2040</td>
<td>6,0</td>
<td>7,2</td>
</tr>
<tr>
<td>2050</td>
<td>7,3</td>
<td>19,0</td>
</tr>
</tbody>
</table>

Die zu Grunde liegenden Kosten der einzelnen Gase (ohne Aufschläge) werden in der folgenden Tabelle gezeigt:

Tabelle 6-3: Durchschnittliche Gaspreise für KWK-Anlagen und Gaskessel, mit und ohne Aufschläge

<table>
<thead>
<tr>
<th></th>
<th>Erdgas</th>
<th>Biogas</th>
<th>Wasserstoff</th>
<th>synth. Methan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THG80 / THG95</td>
<td>THG80 / THG95</td>
<td>THG80 / THG95</td>
<td>THG80 / THG95</td>
</tr>
<tr>
<td>Einheit</td>
<td>€ct/kWh</td>
<td>€ct/kWh</td>
<td>€ct/kWh</td>
<td>€ct/kWh</td>
</tr>
<tr>
<td>2020</td>
<td>4,4</td>
<td>2,8</td>
<td>14,5</td>
<td>35,8</td>
</tr>
<tr>
<td>2030</td>
<td>5,2/ 6,0</td>
<td>2,8/2,8</td>
<td>15,5/14,8</td>
<td>30,1/30,7</td>
</tr>
<tr>
<td>2040</td>
<td>6,3/7,4</td>
<td>2,8/2,8</td>
<td>15,6/17,0</td>
<td>32,5/28,0</td>
</tr>
<tr>
<td>2050</td>
<td>7,0/ -</td>
<td>2,8/2,8</td>
<td>16,6/14,6</td>
<td>23,3/20,7</td>
</tr>
</tbody>
</table>

Auffallend und bei der späteren Interpretation der Ergebnisse zu beachten, sind die hohen Gaspreise im Stützjahr 2050 (siehe Tabelle 6-2), vor allem im Szenario THG95. Diese sind darauf zurückzuführen, dass kein fossiles Erdgas mehr genutzt werden kann, wodurch neben begrenzten Mengen an Biogas nur synthetisches Methan zur Verfügung steht, welches mit hohen Kosten verbunden ist.

6.2 Netzgebundene Wärmeversorgung

19 siehe Tabelle 6-1 für den zu Grunde liegenden Gasmix

Um die Einflüsse, die durch andere lokale Gegebenheiten auftreten zu können zu verdeutlichen, wurde als Variante die Region Hamburg als städtische Region analysiert. Die Ergebnisse für Hamburg werden in Kapitel 6.3 dargestellt.

6.2.1 Vergleich von gesamtwirtschaftlich und betriebswirtschaftlich optimalen Ausbau und Anlagenbetrieb

Szenario THG80
In den folgenden Abbildungen werden die gesamtwirtschaftlich- und betriebswirtschaftlich optimierten Kenngrößen der Anlagenleistungen und Betriebsweisen im THG80-Szenario gegenübergestellt.

Damit die Wärmeversorgung ausfallsicher ausgelegt ist, werden die Systeme mit einer rund 1,8-fachen Redundanz versehen. Dies geschieht, indem nach der Optimierung der Anlagengrößen aller Wärmeerzeuger, der Gaskessel als Technologie mit den niedrigsten Investitionskosten falls erforderlich vergrößert wird, sodass die Summe der cap-to-peaks 1,8 erreicht. Die Solarthermie (ST) wird dabei nicht berücksichtigt, da sie zu Zeiten der Jahreshöchstlast nicht oder nur minimal zur Versorgung beiträgt.
Ergebnisse der Einzelsystemanalyse

Abbildung 6-3: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG80

Abbildung 6-4: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG80

Die Betriebsweise wird mit der Anzahl der jährlichen Vollaststunden, und den daraus resultierenden Wärmeerzeugungsanteilen der einzelnen Wärmeerzeuger wie folgt dargestellt:

Abbildung 6-5: gesamtwirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im Szenario THG80

Abbildung 6-6: betriebswirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im Szenario THG80

Auf die einzelnen Wärmeerzeuger bezogen, zeigen die Abbildungen folgende Entwicklungen:

- Kraft-Wärme-Kopplung (KWK): In der gesamtwirtschaftlichen Betrachtung in REMix (jeweils in der linken Abbildung) ergibt sich ein starker Zubau der anteiligen
KWK-Leistung, der im Jahr 2040 einen Höhepunkt erreicht und dann wieder leicht zurückgeht (siehe Abbildung 6-3). Im Jahr 2040 übersteigt die KWK-Leistung sogar die thermische Spitzenlast des Wärmebedarfes (cap-to-peak Verhältnis größer eins). Anders sieht es bei der betriebswirtschaftlichen Optimierung in MuGriFlex aus, hier stagniert die KWK-Leistung bis 2030 und geht dann auf null zurück.

Zusammenfassend führen die durch den EE-Ausbau in weiten Teilen des Jahres stark sinkenden Strompreise (siehe Abbildung 6-1) dazu, dass es ab 2040 nicht mehr zu Neu-Investitionen in KWK-Anlagen kommt, wenn nur betriebswirtschaftliche Gesichtspunkte berücksichtigt werden. Aus dem gleichen Grund sinken ab 2030 die gesamtwirtschaftlich optimierten Volllaststunden. Dies führt dazu, dass der Wärmeversorgungsanteil der KWK von rund 95% bis 2050 auf 17% zurückgeht (gesamtwirtschaftlich) bzw. es gemäß der betriebswirtschaftlichen Betrachtung 2050 keine KWK-Wärmeanteile mehr geben könnte.

- **Wärmepumpen (WP):** Sowohl aus gesamt- als auch aus betriebswirtschaftlicher Sicht ergibt sich ein starker Zubau der Wärmepumpen-Kapazität (Abbildung 6-3 und Abbildung 6-4). Dies geschieht in der betriebswirtschaftlichen Betrachtung bis 2030 gebremst, danach jedoch sehr deutlich, bis ein cap-to-peak Verhältnis von 0,5 bzw. 0,6 erreicht ist. Der zunächst nur geringe Zubau ist auf die anfangs noch recht hohen Stromkosten zurückzuführen. Der Zubau der Wärmepumpenkapazität in Kombination mit deren bis 2040 steigender Auslastung (siehe Abbildung 6-5 und Abbildung 6-6) führt dazu, dass die optimierten Wärmeversorgungsanteile der Wärmepumpe im Jahr 2050 gemäß beider Betrachtungsweisen auf rund 80% anwächst (siehe Abbildung 6-7, Abbildung 6-8).

- **Elektrokessel (EK):** Diese werden im Szenario THG80 nur in der gesamtwirtschaftlichen Betrachtung ausgebaut und kommen dort in den Szenariojahren 2030, 2040 und 2050 mit immerhin rund 500 Volllaststunden zum Einsatz. Der Wärmeversorgungsanteil beträgt im Stützjahr 2040 8%. Anschließend fällt er aufgrund der dann noch größeren Wärmepumpenkapazität und deren geringerer Wärmeerzeugungskosten. In der betriebswirtschaftlichen Rechnung bewirken die

20 Die Grenzkosten fallen und darüber hinaus sind die auf den Strompreis zu zahlenden Abgaben im Jahr 2030 deutlich geringer angesetzt als 2020.
hohen Aufschläge auf die Stromkosten hingegen, dass eine Investition in Elektrokessel im Vergleich zu den anderen Wärmeerzeugern in keinem der untersuchten Szenariojahren wirtschaftlich ist.

- **Gaskessel (GK):** Sowohl in der gesamtwirtschaftlichen- als auch in der betriebswirtschaftlichen Betrachtungsweise ist zu erkennen, dass eine hohe Leistung der Gaskessel dann benötigt wird, wenn andere sektorrenkoppelnde Wärmeerzeuger (KWK, WP und EK) nicht unter gesamtsystemdienlichen bzw. betriebswirtschaftlichen Kriterien ausreichend ausgebaut werden (siehe Abbildung 6-3 und Abbildung 6-4). In der betriebswirtschaftlich optimierenden Berechnung sind auch 2040 und 2050 noch hohe Leistungsbedarfe für Gaskessel vorhanden, die aber in relativ wenigen Stunden des Jahres nachgefragt werden (rund 600 bzw. 200 Vollaststunden in den Jahren 2040 bzw. 2050).

- **Solarthermie (ST):** Bei der Interpretation der Ergebnisse bezüglich der Solarthermie ist zu beachten, dass in beiden Betrachtungsweisen keine Grundstücks kosten berücksichtigt wurden, weil diese sehr von örtlichen Gegebenheiten abhängen und nicht mit durchschnittlichen Preisen in die Berechnung einfließen konnten. Die Grundstücks kosten und die Verfügbarkeit der erforderlichen Flächen bilden zurzeit oft ein Haupthemmnis bei der Realisierung von großen Solarthermie-Anlagen. Da die installierte Leistung in den durchgeführten Modellrechnungen keinen Einfluss auf die Leistungen der anderen Wärmeerzeuger hat (siehe oben) ist die Leistung der Solarthermie hier als Maximalwert einer zusätzlichen wirtschaftlichen Kapazität zu interpretieren.

Szenario THG 95:
Die Ergebnisse für die Anlagendimensionierungen (dargestellt als cap-to-peaks), Vollaststunden und Anteile der einzelnen Technologien an der Wärmeerzeugung des Szenarios THG95 sind in Anhang 12.10 dargestellt, da sie denen vom Szenario THG80 sehr ähnlich sind. Zusammenfassend lässt sich sagen, dass die Entwicklung der optimierten Anlagengrößen im Szenario THG95 ähnlich der Entwicklung im Szenario THG80 verläuft, wobei die Verschiebung hin zu den elektrischen Wärmeerzeug-
gern für beide Betrachtungsweisen im Szenario THG95 deutlicher ausfällt. Dies be-
trifft vor allem die Elektrokessel im Stützjahr 2050. Auch bei der Auslastung und den
Anteilen an der Wärmeerzeugung ist diese Entwicklung zu sehen.

6.2.2 Anpassungsbedarf der Rahmenbedingungen zur Ermöglichung
des gesamtwirtschaftlichen Optimums

Die Ergebnisse haben gezeigt, dass die für die betriebswirtschaftlichen Entschei-
dungskriterien maßgeblichen Rahmenbedingungen nicht dazu führen, dass die für
das gesamtwirtschaftliche Optimum ermittelten Investitionsentscheidungen und Be-
triebsweisen auch ausreichend umgesetzt werden.

Im Folgenden soll aufgezeigt werden, wie veränderte Rahmenbedingungen dazu
beitragen können, dass die nach betriebswirtschaftlichen Kriterien agierenden Ak-
teure in einen gesamtwirtschaftlich dienlicheren Anlagenpark investieren und diesen
auch systemdienlicher betreiben.

Dabei wird unterschieden zwischen Anreizen für Investitionen, die den tatsächlichen
Zubau der geforderten Anlagenleistungen sicherstellen sollen und Veränderungen
der Rahmenbedingungen mit dem Ziel eines systemdienlicheren Anlagenbetriebs.

Investitionsanreize

Die folgenden Abbildungen zeigen die Wärmeerzeugungskosten als Levelised Cost
of Heat (LCoH) (siehe Kapitel 3.2.2), wenn die Anlagen nach gesamtwirtschaftlichen
sowie nach betriebswirtschaftlichen Kriterien ausgelegt werden. Der angenommene
Betrieb erfolgt dabei jeweils nach betriebswirtschaftlichen Kriterien, d.h. abhängig
von den Stromkosten, so dass über das Jahr die geringstmöglichen Wärmeerzeu-
gungskosten anfallen.

Es ist zu sehen, dass die nach betriebswirtschaftlichen Kriterien optimierten Anla-
gengrößen (cap-to-peaks) zu geringeren Wärmekosten führen. Die Differenz zeigt,
die Verringerung der Wärmeerzeugungskosten, wenn die Anlagengrößen vom ge-

Abbildung 6-9: Wärmeerzeugungskosten (LCoH) mit gesamt- bzw. betriebswirtschaftlich
optimierten Anlagengrößen im Szenario THG80

Abbildung 6-10: Wärmeerzeugungskosten (LCoH) mit gesamt- bzw. betriebswirtschaftlich
optimierten Anlagengrößen im Szenario THG95
Ergebnisse der Einzelsystemanalyse

samtwirtschaftlichen Optimum abweichend gebaut werden. Sie gibt auch einen ersten Anhaltspunkt wie hoch eine Förderung oder Anpassung der Rahmenbedingungen ausfallen muss, damit die gesamtwirtschaftlich optimalen Anlagengrößen verwirklicht werden.

In einem ersten Schritt wird untersucht, wie hoch eine Investitionskosten-Förderung sein müsste, damit die gesamtwirtschaftlich optimalen Anlagengrößen gebaut werden würden. In folgenden Abbildungen ist dies für die beiden Szenarien und die jeweils vier Stützjahre dargestellt:

Die Balken zeigen, wie hoch der Investitionskosten-Zuschuss für den entsprechenden Anlagentyp sein müsste, damit ein Betreiber die (zusätzliche) Anlagenleistung installieren würde. So ist beispielsweise im Szenario THG80 im Jahr 2030 ein Zuschuss für die Wärmepumpe in Höhe von rund 68% der Investitionskosten notwendig, damit eine Anlagenleistung entsprechend einem cap-to-peak von 0,2 statt 0,1 zur betriebswirtschaftlich gerechnet kostengünstigsten Wärmeversorgung führt.

Bei der KWK ist zu bedenken, dass die Volllaststunden ab dem Stützjahr 2030 drastisch sinken (sowohl in der gesamtwirtschaftlichen als auch in der betriebswirtschaftlichen Optimierung). Dies führt zu einer deutlich längeren Lebenserwartung, wenn zu Grunde gelegt wird, dass KWK-Anlagen mindestens 60.000 Betriebsstunden er-
reichen. Wenn auf diese Weise davon ausgegangen wird, dass die in der Vergangenheit installierte KWK-Kapazität deshalb noch zur Verfügung steht, ist der Ausbau und damit Förderbedarf auf den Kapazitätsausbau im Vergleich zur Kapazität im vorhergehenden Stützjahr beschränkt (z.B. 0,3 im Stützjahr 2040 des Szenarios THG80).

Bei der Interpretation dieser Werte ist zu beachten, dass eine mögliche Investitionsförderung mit den Zu- und Abschlägen wechselwirkt, zu denen die oben beschriebenen Annahmen getroffen wurden. So haben insbesondere die KWK-Zuschläge, bzw. die Aufschläge auf die Stromkosten für Wärmepumpe und Elektrokessel einen großen Einfluss auf den wirtschaftlichen Betrieb der Anlagen und damit auch auf den Anreiz, in entsprechende Wärmeerzeugungs-Leistung zu investieren. Höhere KWK-Zuschläge, oder geringere Aufschläge auf den Strompreis für Wärmepumpen, würden somit nicht nur den Einsatz der entsprechenden Wärmeerzeuger anreizen, sondern auch die hier skizzierte Investitionsförderung reduzieren oder überflüssig machen. Außerdem ist zu beachten, dass die Investitionsförderung hier nur unter dem Aspekt untersucht wurde, dass die Investition in einzelne Wärmeerzeuger angereizt wird.

Andere Fördergründe wie z.B. die Ermöglichung von wettbewerbsfähigen Wärmepreisen für Wärmennetzbetreiber, damit der gesamtwirtschaftliche Nutzen von Wärmenetzen zum Tragen kommen kann, werden hier nicht weiter berücksichtigt.

Anreize zum systemdienlichen Betrieb

Durch die Anpassung des für den Betreiber erzielbaren Stromerlöses (auf den in das öffentliche Stromnetz eingespeisten KWK-Strom) einerseits und den auf den für Wärmepumpen und Elektrokessel zu zahlenden Strombezug aus dem öffentlichen Netz andererseits, kann nicht nur die Investition attraktiver gemacht, sondern darüber hinaus ein anderes Betriebsverhalten dieser Wärmeerzeuger angereizt werden.

Die folgenden beiden Abbildungen zeigen den Effekt, den ein veränderter KWK-Zuschlag oder veränderte Aufschläge auf den Strompreis für Wärmepumpen (siehe Kapitel 6.1.1) auf den Betrieb eines Beispielhaften Anlagenparks haben (jeweils das Stützjahr 2030 im Szenario THG95 als Beispiel):
6 Ergebnisse der Einzelsystemanalyse

Abbildung 6-13: Volllaststunden der Wärmeerzeuger in Abhängigkeit des KWK-Zuschlags (beispielhafte Darstellung für 2030 im Szenario THG95)

Abbildung 6-14: Volllaststunden der Wärmeerzeuger in Abhängigkeit des Zuschlags auf den Strompreis (beispielhafte Darstellung für 2030 im Szenario THG95)

Die Abbildungen zeigen, wie sich die Betriebsweisen ändern, wenn der KWK-Zuschlag oder die Aufschläge von 0 bis 20 ct/kWh variiert werden. Dabei ist zu beachten, dass ein höherer KWK-Zuschlag einerseits die Anzahl der wirtschaftlichen Vollaststunden der KWK erhöht, was aber andererseits zu Lasten der Wärmeerzeugung der Wärmepumpe geht, deren Vollaststunden somit reduziert werden21. Ab einem KWK-Zuschlag von rund 16 ct/kWh wird der gesamte Wärmebedarf des Wärmesystems von der KWK-Anlage bereitgestellt.

Um den „Anpassungsbedarf“ der Rahmenbedingungen beispielhaft aufzuzeigen, wurden für die beiden Szenarien THG80 und THG95 zunächst die mit den gesamtwirtschaftlich optimierten Anlagengrößen für das Gesamtsystem optimale Auslastung den Volllaststunden gegenübergestellt, die mit einem betriebswirtschaftlich optimierten Anlagenbetrieb zustande kommen würden. Dabei wurde die oben beschriebene Entwicklung des KWKG-Zuschlages und der Aufschläge auf den Strompreis zugrunde gelegt (siehe auch graue Linien in Abbildung 6-19 bis Abbildung 6-23). Die Ergebnisse für die beiden wesentlichen Wärmeerzeuger KWK-Anlagen und Wärmepumpen sind in den folgenden beiden Abbildungen zu sehen.

21 Entsprechend hat, wie in Abbildung 6-14 zu sehen ist, der Aufschlag auf den Strombezug der Wärmepumpe auch Auswirkungen auf die Volllaststunden der KWK.

Die folgenden zwei Abbildungen zeigen, welche KWK-Zuschläge in den beiden Szenarien und den vier Stützjahren erforderlich sind, damit die gesamtwirtschaftlich wünschenswerte Auslastung der KWK-Anlagen auch betriebswirtschaftlich angereizt wird.
Ergebnisse der Einzelsystemanalyse

Abbildung 6-19: benötigte KWK-Zuschläge im Versorgungsbeispiel im THG80-Szenario
Abbildung 6-20: benötigte KWK-Zuschläge im Versorgungsbeispiel im THG95-Szenario

Zu sehen ist, dass die benötigten Fördersätze in den Stützjahren 2020 bis 2040 nur wenig von den angenommenen Referenzwerten abweichen. Insofern die Anlagenauslegung ggf. bedingt durch Investitionsanreize angemessen erfolgt, sind also nur geringe weitere Anreize für die Betriebsführung erforderlich. Die deutliche Abweichung im Jahr 2050 ist auf die dann deutlich niedrigeren Strompreise, die die Wärmepumpe begünstigen sowie auf die im Jahr 2050 des Szenarios THG95 extrem gestiegenen Brennstoffkosten zurückzuführen, die den Einsatz der KWK ohne die hohe zusätzliche Vergütung unwirtschaftlich machen (vergleiche Abbildung 6-1 und Tabelle 6-2). Bezüglich der gesamtwirtschaftlichen Betrachtung ist zu beachten, dass die KWK im Jahr 2050 in lediglich 550 bzw. 200 Stunden pro Jahr (Szenario THG80 bzw. THG95) eingesetzt wird und dies in Zeiten in denen nur alternative Stromerzeuger mit noch höheren Grenzkosten zur Verfügung stehen.

Bei der Betrachtung dieser sehr hohen Vergütungssätze im Jahr 2050 ist zu bedenken, dass diese nur in sehr wenigen Stunden des Jahres (rund 550 bzw. 200 für das THG 80 und 95 Szenario) benötigt würden, damit die für das Gesamtsystem in der gesamtwirtschaftlichen Betrachtung optimalen Betrieb der KWK zustande kommt; jeweils unter der Voraussetzung, dass Anreize für die Investition in die Kapazität bereits anderweitig bestehen. Die Summe die ein Anlagenbetreiber für den insgesamt jährlich erzeugten Strom bekommen würde, würde also nicht analog der in Abbildung 6-20 gezeigten Zuschlagszahlungen pro kWh steigen, sondern sinken.

Die Summe der Zuschlagszahlungen pro kW an installierter KWK-Anlagenleistung wird in der folgenden Abbildung gezeigt. Diese Summe ist nicht mit einem Investitionsanreiz zu verwechseln, der nicht notwendigerweise zu einem vermehrten Anlagenbetrieb führt.

Für das Stützjahr 2030 im Szenario THG95 zeigt sich, dass nur eine geringfügige Anhebung der Aufschläge zu der geforderten (ebenfalls geringfügigen) Änderung der Volllaststunden führt\(^{22}\). Anders sieht es in den Jahren 2040 und 2050 aus, in denen

\(^{22}\) Die gesamtwirtschaftlich gewünschte Verringerung der Volllaststunden der Wärmepumpe im Jahr 2030 ist auf Abbildung 6-16 zu sehen
die Aufschläge deutlich über den projizierten Annahmen liegen könnten, ohne, dass es zu einem verminderten Einsatz der Wärmepumpe kommen würde.

Eine pauschale Erhöhung der Aufschläge zur Reduzierung der Betriebsstunden erscheint unorthodox und würde die Wärmekosten erhöhen. Womöglich wäre stattdessen eine gezielte Erhöhung zu Zeiten in denen keine strombasierte Wärmeerzeugung stattfinden soll, akzeptabler.

Um zu verdeutlichen, dass der KWK-Zuschlag ebenfalls einen Einfluss auf die Vollaststunden der Wärmepumpe hat (siehe oben), werden in der folgenden Abbildung 6-24 die von der Höhe der Aufschläge auf den Strompreis abhängigen Vollaststunden der Wärmepumpe für zwei verschiedene KWK-Zuschläge, beispielhaft für das Jahr 2040 im Szenario THG80 dargestellt.

Der Aufschlag in Höhe von 11,8 ct/kWh führt bei Verwendung des Referenz-KWK-Zuschlags zur gesamtwirtschaftlich optimalen Auslastung und ist als Schnittpunkt zwischen grüner und gestrichelte roter Linie zu sehen. Wie im vorhergehenden Kapitel beschrieben, führt ein KWK-Zuschlag in Höhe von knapp 4,6 ct/kWh zur gesamtwirtschaftlich optimalen Auslastung der KWK. Wenn dieser Wert statt dem Referenzwert veranschlagt wird, reduziert sich der maximal mögliche Aufschlag auf 9,7 ct/kWh (siehe Schnittpunkt von gestrichelter grüner und roter Linie). Es zeigt sich also, dass Anpassungen nicht einzeln, sondern integriert betrachtet werden müssen.

6.3 Untersuchung einer alternativen Region

In diesem Abschnitt soll aufgezeigt werden, inwieweit die Schlussfolgerungen auf Basis der Analyse der Region „Hessen, Rheinland-Pfalz und Saarland“ auf andere Regionen übertragbar sind, die hinsichtlich ihrer Charakteristika und Ergebnisse stark vom Bundesdeutschen Mittelwert abweichen. Für diese Darstellung wurde die Region Hamburg ausgewählt, die zum einen eine städtische Region repräsentiert und zum anderen bis ins Szenariojahr 2040 von zeitweisen Netzengpässen des elektrischen Übertragungsnetzes betroffen ist.

Im Folgenden werden die Ergebnisse diskutiert, in denen die größten Unterschiede im Vergleich zur Referenzregion aufgetreten sind. Alle weiteren Abbildungen, entsprechend denen, die für die Referenzregion im Kapitel 6.2 diskutiert wurden, sind im Anhang 12.11 zusammengefasst.

Die folgenden Abbildungen zeigen die Entwicklung der optimierten Leistungen der Wärmeerzeuger, auch hier dargestellt als Verhältnis, der Volllaststunden der einzelnen Wärmeerzeuger und der der Anteile an der Wärmeversorgung (cap-to-peak), jeweils für das Szenario THG80. Die Ergebnisse für das Szenario THG95 sind im Anhang aufgeführt.

Abbildung 6-25: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG80-Szenario, Hamburg

Abbildung 6-26: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG80-Szenario, Hamburg

Abbildung 6-27: gesamtwirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG80-Szenario, Hamburg

Abbildung 6-28: betriebswirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG80-Szenario, Hamburg
6 Ergebnisse der Einzelsystemanalyse

Im Vergleich zu den Ergebnissen der Region „Hessen, Rheinland-Pfalz und Saarland“ ist zu sehen, dass sich die relative Leistung der KWK in der gesamtwirtschaftlichen Betrachtung in den Stützjahren 2030 bis 2040 deutlicher erhöht, was auf die Begrenzung des Stromnetzausbaus und den Wegfall der Stromerzeugung aus Kohlekraftwerken zurückzuführen ist.

In der betriebswirtschaftlichen Analyse wirkt sich die Netzsituation nicht aus. Da hier entsprechend dem gegenwärtigen Marktdesign ein deutschlandweit einheitlicher Strompreis, weitgehend unabhängig von den Netzkapazitäten angenommen wird. Dies verdeutlicht die Schwäche eines solchen Marktdesigns; wenn Engpässe bestehen, diese sich aber im Regelrahmen nicht wiederspiegeln, stellt sich kein optimales Investitions- und Betriebsverhalten ein.

Weiterhin sieht die gesamtwirtschaftliche Analyse für die Region Hamburg deutlich größere Wärmespeicher vor, als in der Referenzregion. Auch hier wirkt sich die Netzknappeht aus, da mit den Wärmeerzeugern, insbesondere Elektrokessel und KWK-Anlagen verstärkt Flexibilität für die durch den geringen interregionalen Austausch unflexiblere Stromversorgung bereitgestellt wird.

6.4 Auslegung und Betrieb der Verdichter in Gastransportnetz und Gasspeichern

Für die Betriebsmittel im Gasnetz und an den Gasspeichern ist in den Zukunftsszenarien (in THG95 noch deutlicher als in THG80) der elektrische Betrieb sowohl gesamt- als auch betriebswirtschaftlich optimal.

Gasverdichter im Gastransportnetz und für die Beladung von Gasspeichern können sowohl mit elektrisch oder mit einem Teilstrom des Gases betriebenen Kompressoren ausgerüstet sein. Ist sowohl ein elektrischer als auch ein gasbetriebener Verdichter an einer Verdichterstation vorhanden, so kann diese bivalent betrieben werden (siehe Kapitel 4.3.3). Abhängig vom aktuellen Stromangebot bzw. Strompreis kann also jeweils der für das Gesamtsystem optimale oder für den Betreiber gerade kostengünstigere Kompressor eingesetzt werden.

6.4.1 Gastransportleitungen

In Abbildung 6-31 und Abbildung 6-32 sind die gesamtwirtschaftlich optimierten Verdichterleistungen für die Szenarien THG80 und THG95 dargestellt. Es ist zu sehen, dass es schon im Szenariojahr 2020 zu einer Installation elektrisch betriebener Verdichter in Höhe des maximalen Leistungsbedarfes kommt (cap-to-peak > 1), was darauf zurückzuführen ist, dass die Bestandsanlagen für höhere Transportkapazitäten ausgelegt wurden, als im Jahr 2020 in den Szenarien berechnet wurden. Dies ergibt sich wie oben dargelegt insbesondere aus der Vernachlässigung von Transitflüssen in der REMix-Modellierung.
Ähnlich sieht das Bild des Anlagenbetriebs aus (Abbildung 6-33 und Abbildung 6-34). Mit mindestens rund 97% der Verdichterarbeit überwiegt bei beiden Szenarien durchgehend der elektrische Anlagenbetrieb und die Flexibilitätsoption des bivalenten Anlagenbetriebs wird nur für die wenigen verbleibenden Anteile genutzt.

Der vermehrte Einsatz der gasbetriebenen Verdichter in den späteren Jahren des Szenarios THG95 ist darauf zurückzuführen, dass das Gas in diesen Jahren zu einem großen Anteil in Kraftwerken eingesetzt wird, die das Gas in den Zeiten nachfragen, in denen die erneuerbaren Kraftwerke die Stromnachfrage nicht vollständig bedienen können. Wie der Vergleich mit den Ergebnissen für Gesamt-Deutschland in Abschnitt 5.1.4 zeigt ist dieses Ergebnis spezifisch für die hier analysierte Modellregion, die sich durch einen sehr hohen Anteil an Windstromerzeugung auszeichnet.

In den folgenden vier Abbildungen sind die Ergebnisse der entsprechenden betriebswirtschaftlichen Optimierung mit MuGriFlex zu sehen (anderer Maßstab auf der Y-Achse):

Anders sieht es bei der geleisteten Arbeit der Verdichter aus: Aufgrund der hohen Abgaben auf den Strompreis wird der elektrische Verdichter im Jahr 2020 nur minimal eingesetzt (0,7% der Verdichterarbeit), erreicht aber dann im Jahr 2040, einen Anteil von 100%, der auch in der gesamtwirtschaftlichen Betrachtung fast erreicht wird.

23 Die Frage, ob eine Mindestkapazität von gasbetriebenen Verdichtern aus Gründen der Versorgungssicherheit geboten ist, wurde hier nicht berücksichtigt.
6.4.2 Gasspeicher

Der Anteil der Verdichterarbeit in Gasspeichern unterscheidet sich von dem der Verdichter in Gastransportleitungen. Dies wird auf den folgenden beiden Abbildungen gezeigt. Der Anteil des mitstrombetriebenen Verdichtern komprimierten Gases ist hier ab 2030 höher als bei den Verdichtern in Gastransportleitungen.

Bei der Anlagendimensionierung nach betriebswirtschaftlichen Gesichtspunkten ist zu beachten, dass auch hier eine Redundanz der Anlagenleistung (Summe cap-to-peak-Verhältnis gleich 2) vorgegeben wurde. Auch hier zeigt sich, dass in gasbetriebene Verdichter nur 2020 und in deutlich geringerem Maße 2030 investiert würde.
6 Ergebnisse der Einzelsystemanalyse

(vergleiche Abbildung 6-43 und Abbildung 6-44 mit Abbildung 6-35 bzw. Abbildung 6-36).

Abbildung 6-43: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG80
Abbildung 6-44: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG95

Abbildung 6-45: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichterleistung im Versorgungsbeispiel im Szenario THG80
Abbildung 6-46: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichterleistung im Versorgungsbeispiel im Szenario THG95

Dies lässt sich damit erklären, dass das Gas dann eingespeichert wird, wenn es vom System nicht benötigt wird, was eher zu Zeiten von hoher EE-Stromerzeugung24, also niedriger Stromkosten der Fall ist, die wiederum die Nutzung der elektrischen Kompressoren begünstigen.

24 in den späteren Szenariojahren wird in dieser Zeit auch vornehmlich das zu speichernde Gas produziert
6 Ergebnisse der Einzelsystemanalyse

6.5 Power-to-Gas-Anlagen

Auf der Grundlage von Modellrechnungen mit MuGriFlex wird im Folgenden die Wirtschaftlichkeit der Wasserelektrolyse und Methansynthese untersucht.

Zum Vergleich mit den Ergebnissen der gesamtwirtschaftlichen Analyse werden in den folgenden vier Abbildungen die dort ermittelten Vollaststunden der Elektrolyseure bzw. der Methanisierung dargestellt. Da diese regional sehr unterschiedlich ausfallen, sind diese als Bandbreite von der jeweiligen Region mit den geringsten Vollaststunden (in der Regel küstenferne Regionen) bis zur Region mit den meisten Vollaststunden (in der Regel Küstenregionen) dargestellt mit einer zusätzlichen Markierung, welche den gewichteten Mittelwert aller Power-to-Gas Anlagen zeigt:

Abbildung 6-47: gesamtwirtschaftlich optimierte Vollaststunden der Elektrolyseure im Szenario THG80

Abbildung 6-48: gesamtwirtschaftlich optimierte Vollaststunden der Elektrolyseure im Szenario THG95
Für die betriebswirtschaftliche Analyse wurde nun in einem ersten Schritt aufgezeigt, wie viele Stunden pro Jahr die Anlagen bei ausschließlicher Berücksichtigung der Betriebskosten in Betrieb wären, d.h. in wie vielen Stunden das Gas (H₂ bzw. CH₄) zu gleichen oder geringeren Kosten produziert werden kann als die in den Modellrechnungen hinterlegten Referenz-Gaskosten (siehe Tabelle 6-2).

Da das Ergebnis in fast allen Szenariojahren und für sowohl die Elektrolyse als auch die Elektrolyse samt anschließender Methanisierung lautet, dass die Anlagen unter betriebswirtschaftlichen Kriterien in keiner Stunde des Jahres synthetisches Gas produzieren würden, wurde im zweiten Schritt analysiert welcher Anreiz nötig wäre, damit unter den angenommenen Rahmenbedingungen die Anlagen zu höheren jährlichen Betriebsstunden angereizt werden. Der Anreiz wird hier vorgegeben, indem zusätzlich zum angenommenen Erlös aus dem Gaspreis eine „Prämie für Grünes Gas“ gezahlt wird.

Im dritten Schritt wurde ermittelt, ob unter diesen Annahmen auch nach betriebswirtschaftlichen Gesichtspunkten in die Anlagen investiert werden. Ausgedrückt wird dies im Folgenden durch den Gewinn, der pro Anlagenleistung und Jahr erwartet werden kann. Dabei werden mit dem oben skizzierten Anlagenbetrieb die Stromkosten, die fixen, auslastungsunabhängigen Betriebskosten sowie die Annuität der Anlageninvestition von den Erlösen der Gasvermarktung abgezogen. Ist das Ergebnis negativ, so gibt es entweder gar keine Stunden, in denen die Anlage das Gas zu geringeren Kosten erzeugen kann als der Referenz-Gaspreis oder die Einnahmen aus dem Anlagenbetrieb reichen nicht aus, um die fixen Betriebskosten und die Investition in die Anlagen zu finanzieren.

Die folgenden Abschnitte zeigen die Ergebnisse, zunächst für die reine Wasserelektrolyse, gefolgt von der Produktion von synthetischem Methan mit Elektrolyseure und nachgeschalteten Methanisierungsanlagen.

25 Basis ist dabei jeweils die elektrische Eingangsleistung des Elektrolyseurs.
6.5.1 Elektrolyse

Zuerst wurde ermittelt, wie viele Betriebssunden die Elektrolyseure pro Jahr laufen würden, wenn nur die variablen Kosten und Erlöse berücksichtigt würden (also lediglich die Kosten für Strom und variable Betriebs- und Instandhaltungskosten und als Einnahme die entsprechenden Gaspreise ohne Aufschläge nach Tabelle 6-2 und weder Investitionskosten noch fixe Instandhaltungskosten). Das Ergebnis ist, dass die Elektrolyseure mit Ausnahme des Stützjahres 2050 im Szenario THG95 in keiner Stunde des Jahres laufen würde. Ein Anlagenbetreiber, der die Elektrolyseure zum Beispiel zu 100% finanziert gefördert bekommen hat, würde also trotzdem in jeder Stunde des Jahres einen Verlust machen.

Diese Situation ist in den beiden folgenden Abbildungen dargestellt (Schnittpunkt der farbigen Linien mit der Y-Achse), wo außerdem zu sehen ist, dass im Jahr 2050 des Szenarios THG95 die jährlichen Betriebsstunden bei rund 7.500 h/a liegen und damit sogar über den gesamtwirtschaftlich als optimal ermittelten (siehe Abbildung 6-48).

Nun wurde ermittelt, ob und wie die Betriebsstunden steigen würden, wenn zusätzlich zum Erlös durch den Gasverkauf eine zusätzliche Prämie gezahlt wird. Die damit erreichbaren Betriebsstunden sind in den folgenden beiden Abbildungen gezeigt, jeweils für die vier Stützjahre und mit bis auf 20 ct/kWh H₂ steigender Prämie\(^{26}\); nach wie vor jedoch ohne Berücksichtigung von Investitions- und fixen Betriebskosten.

In den Abbildungen ist zu sehen, dass im Stützjahr 2050 des Szenarios THG 95 eine zusätzliche Prämie von bereits zwei 2 €ct/kWh H₂ zu einer Erhöhung der Betriebsstunden auf über 8.500 h/a führen würde, was einer Auslastung von 97% entsprechen würde. In allen anderen Jahren bzw. Szenarien sind erhebliche zusätzliche Erlöse, z.B. in Form der genannten Prämie auf das erzeugte Gas nötig, um auf nennenswerte Betriebsstunden zu kommen.

\(^{26}\) bei noch höheren Prämien steigen die Kurven für 2020 und 2030 ebenfalls weiter an. Prämien von mehr als 10 ct pro kWh werden jedoch als unrealistisch erachtet
Das Ergebnis des dritten Schrittes wird in den folgenden Abbildungen gezeigt: Die Darstellungen zeigen den Gewinn der mit den Anlagen erzielt werden kann in Abhängigkeit der gezahlten zusätzlichen Prämie. Ist dieser Wert negativ, so laufen die Anlagen zwar möglicherweise, weil sie einen Ertrag erwirtschaften würden, die Summe der jährlichen Erträge überschreitet aber nicht die jährlichen fixen Betriebskosten sowie die zu berücksichtigten Annuität der Anlagen-Investitionen.

Auch hier stellt das Jahr 2050 im Szenario THG95 die Ausnahme dar, in der selbst ohne zusätzliche Prämie ein jährlicher Gewinn von rund 200 €/kW Anlagenleistung erwirtschaftet werden kann. Dieses Szenariojahr ist allerdings auch das einzige Jahr, in dem bei der gesamtwirtschaftlichen Optimierung eine vollständige Defossilisierung der Brennstoffe gefordert war, was wiederum zu aus betriebswirtschaftlicher Sicht hier vorteilhaften hohen Gaspreisen führt (siehe Tabelle 6-2). Im Jahr 2040 des Szenarios THG95 und in den Jahren 2040 und 2050 des Szenarios THG80 sind Prämien zwischen rund 8 - 12 €ct/kWh H₂ notwendig, um einen Gewinn erzielen zu können. Da es gemäß der gesamtwirtschaftlichen Optimierung in diesen Jahren einen erheblichen Wasserstoffbedarf gibt (bis zu rund 9% energetischer Anteil am Gasmix, siehe Tabelle 6-1), lässt sich folgern, dass in diesem Zeitraum erhebliche Unterstützung zum Betrieb dieser Technologie notwendig sein wird.

In den Jahren 2020 und 2030 würden selbst Prämien von 20 €ct pro kWh Wasserstoff nicht ausreichen, um einen wirtschaftlichen Betrieb der Elektrolyseure zu gewährleisten. Der Anlagenbetrieb ist allerdings auch in der gesamtwirtschaftlichen Optimierung in diesen Szenariojahren noch nicht gefordert (vergl. Tabelle 6-1).

6.5.2 Elektrolyse mit Methanisierung
Die Betriebsstunden liegen hier mit rund 6.200 h/a sehr nah am gesamtwirtschaftlichen Optimum (siehe Abbildung 6-50). Dass sie unter denen der isoliert betrachteten Elektrolyseure liegen ist nicht verwunderlich, da das Produkt CH₄ mit höheren Wirkungsgradverlusten hergestellt werden muss, aber hier wie oben der Wasserstoff nur anhand seines Energiegehalts bewertet wird.

Die erzielbare Steigerung der Betriebsstunden durch eine Prämie (gezahlt für das erzeugte CH₄) ist ebenfalls in Abbildung 6-55 und Abbildung 6-56 zu sehen:

Der Verlauf ist ähnlich dem der Betriebsstunden der Wasserstoffezeugung (Abbildung 6-51 und Abbildung 6-52), wobei die benötigten Prämien durchgehend höher sind.

Die folgenden Darstellungen der erzielbaren Gewinne zeigt, dass selbst im Jahr 2050 des Szenarios THG95 kein CH₄ ohne zusätzliche Prämie erzeugt würde.

6.6 Zusammenfassung der Ergebnisse der Einzelsystem Analyse

Mit der Einzelsystem Analyse sollte aufgezeigt werden, ob und unter welchen regulatorischen Rahmenbedingungen sich das aus der gesamtwirtschaftlichen Modellierung abgeleitete Optimum von den Sektoren koppelnden Anlagen und deren Betriebsweise in der betriebswirtschaftlichen Realität umsetzen lässt. Die Ergebnisse
der REMix-Optimierung fließen dabei vor allem anhand der Grenzkosten der Stromerzeugung sowie der Gestehungskosten des Gasmixes in den einzelnen Szenarien, als Strom- und Gaskosten in MuGriFlex ein. Anlagenauslegung und Betriebsweise der Anlagen werden darauf basierend abgeglichen und Anpassungsmöglichkeiten untersucht.

Investitionen in PtG-Anlagen sind in den betrachteten Szenarien unter Anwendung der heutigen Marktbefindungen absehbar nicht wirtschaftlich. Selbst wenn kein Deckungsbeitrag für die Investition und fixe Betriebskosten erwirtschaftet werden
7 Schlussfolgerungen, Handlungsempfehlungen und Ausblick

Es zeigt sich, dass insbesondere für KWK-Anlagen, Elektrokessel, Elektrolyseure und Methanisierung, der heute absehbare zukünftige energiewirtschaftliche Rahmen
8 Literaturverzeichnis

[AEEK06] Alstom; Ecofys; E.ON Energie; KBB; IAEW; REpower; Vattenfall Europe Transmission: Verbesserte Integration großer Windstrommengen durch Zwischenspeicherung mittels CAES - Wissenschaftliche Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (2006)

[BKRS18] Bower, Stephen; Kühnel, Christian; Reinholz, Toni; Sutor, Catharina; Deutsche Energie-Agentur GmbH (dena) (Hrsg.): Biomethan in der Wärmetec. Berlin, 2018

[BOCG14] Bruninx, Kenneth; Orlic, Dragana; Couckuyt, Dries; Grisey, Nathalie; Betraoui, Brahim; Franck, Niels Traeholt; Keane, Gary; Hickman, Benjamin; u. a.: E-highway2050: D2. 1 Data sets of scenarios for 2050 (2014)

[BZGT18] Böhm, Hans ; Zauner, Andreas ; Goers, Sebastian ; Tichler, Robert ; Kroon, Pieter: Innovative large-scale energy storage tech-nologies and Power-to-Gas concepts after optimization Report on experience curves and economies of scale, 2018

[Cent19] Centraal Bureau voor de Statistiek: Natural gas trade deficit for the first time in 2018, 2019

[Deut19b] Deutsche Energie-Agentur GmbH (dena) (Hrsg.): biogaspartner - gemeinsam einspeisen. Berlin, 2019

[DRDT17] Daniel-Gromke, Jaqueline ; Rensberg, Nadja ; Denysenko, Velina ; Trommler, Marcus ; Reinholz, Toni ; Völler, Klaus ; Beil, Michael ; Beyrich, Wiedke ; DBFZ Deutsches Biomasseforschungszentrum (Hrsg.): Anlagenbestand Biogas und Biomethan - Biogaserzeugung und -nutzung in Deutschland (Nr. 30). Leipzig, 2017

[Dvgw13] DVGW (Hrsg.): Potenzialstudie zur nachhaltigen Erzeugung und Einspeisung gasförmiger, regenerativer Energieträger in Deutschland (Biogasatlas) (Abschlussbericht Nr. GW 2/01/10), 2013. — DVGW Förderkennzeichen GW 2/01/10

[EDGG20] ENGIE; DGC; GWI; GAS.BE; CEA; DVGW EBI; BDR Thermea Group; Electrolux; u. a.: ThyGA - Testing Hydrogen Admixtures for Gas Appliances; EU Project; FCH JU; grant agreement No. 874983; thyga-project.eu (2020)

[Ents00] ENTSO-E: ENTSO-E load and consumption data

[GSCC19] Gils, Hans Christian ; Scholz, Yvonne ; Cebulla, Felix ; Cao, Karl-Kien ; Luca de Tena, Diego ; Pregger, Thomas: Data input for the RegMex model experiment on the power system and flexible sector coupling, Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR) (2019)

[ISKT16] Inkeri, Eero ; Sihvonen, Teemu ; Karjunen, Hannu ; Tyynilä, Tero ; Tähtinen, Matti ; Weiss, Robert: Integration of Power-to-Gas -Process to Wastewater Treatment Plant with Biogas Production. In: Conference Paper. (2016)

Literaturverzeichnis

[KSJN18] Kost, Christoph ; Shammugam, Shivenes ; Jülch, Verena ; Nguyen, Huyen-Tran ; Schlegl, Thomas: Levelized Cost of Electricity - Renewable Energy Technologies (2018), S. 42

[LSCA20] Leicher, Jörg ; Schaffert, Johannes ; Carpentier, Stéphane ; Albus, Rolf ; Görner, Klaus: Impact of hydrogen admixture on combustion processes – Part I: Theory, Testing Hydrogen admixture for Gas Applications (THyGA); EU project, grant agreement no. 874983 (Project Report - Deliverable D2.2). Essen, Germany; Stains, France: Gas- and Wärme-Institut Essen e.V. (GWI), ENGIE, 2020

[Luca14] Luca de Tena, Diego: Large Scale Renewable Power Integration with Electric Vehicles, Universität Stuttgart, 2014

[Marc19] marcogaz: Overview of available test results and regulatory limits for hydrogen admission into existing natural gas infrastructure and end use (2019)

[MHSK13] Müller-Syring, Gert ; Hüttenrauch, Jens ; Schütz, Stefan ; Kröger, Kerstin: Abschlussbericht Smart Gas Grids (Nr. g3_01_10ab). Bonn: DBi, DVGW, 2013

Noack, Christoph; Burggraf, Fabian; Hosseiny, Seyed Schwan; Lettendeier, Philipp; Kolb, Svenja; Belz, Stefan; Kallo, Josef; Friedrich, K. Andreas; u. a.: *Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck* (Plan-DelyKaD) (Abschlussbericht): DLR, LBST, Fraunhofer ISE, KBB, 2015

Netztransparenz.de. — Netztransparenz.de

Nicolosi, Marco: *Wind power integration and power system flexibility - An empirical analysis of extreme events in Germany under the new negative price regime*. In: *Energy Policy* Bd. 38, Elsevier (2010), Nr. 11, S. 7257–7268

Nitsch, Joachim; Pregger, Thomas; Naegler, Tobias; Heide, Dominik; Luca de Ten, Diego; Trieb, Franz; Scholz, Yvonne; Nienhaus, Kristina; u. a.: *Langfristszenerien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global* (Leitstudie 2011). Stuttgart: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik, Abt. Systemanalyse und Technikbewertung, 2012

PARAT IEH Hochspannung Elektrodenkessel für Dampf- und Heißwasser - Parat. URL http://www.parat.no/de/produkte/parat-ieh-hochspannung-elektrodenkessel/. - abgerufen am 2016-09-05

Pfluger, Benjamin; Tersteegen, Bernd; Franke, Bernd: *Langfristszenerien für die Transformation des Energiesystems in Deutschland*: Fraunhofer ISI, Consentec GmbH, ifeu, Bundesministerium für Wirtschaft und Energie, 2017

Pregler et al.: *Perspektiven von Elektro-/Hybridfahrzeugen in einem Versorgungssystem mit hohem Anteil dezentraler und erneuerbarer Energiequellen*: Deutsches Zentrum für Luft- und Raumfahrt (DLR)- Institut für technische Thermodynamik (TT), Institut für Fahrzeugkonzepte (FK), Fraunhofer Institut für Solare Energiesysteme (ISE), RWTH Aachen- Institut für Elektrische Anlagen und Stromwirtschaft, 2012

Rippel; Preuss; Meinecke; König: *Netzentwicklungsplan 2030 Zahlen Daten Fakten*: German Transmission System Operators, 2017

Schweitzer, Jean ; Bruun, Jesper ; Leicher, Jörg: World wide study of the impact of gas quality variations on appliances (and utilisation). In: Washington DC, USA, 2018

Schaffert et al.: Impact of hydrogen admixture on combustion processes – Part II: Practice, Testing Hydrogen admixture for Gas Applications (THyGA); EU project, grant agreement no. 874983 (Project Report - Deliverable D2.3 (to be published)): Gas- und Wärme-Institut Essen e.V. (GWI), ENGIE, DVGW-EBI, GAS.BE, DGC, 2020

Schuppner, Thorsten: Netzentwicklungsplan Gas 2020-2030; Modellierungsergebnisse Grüngasvariante.

Scholz, Yvonne ; Gils, Hans Christian ; Pregger, Thomas ; Heide, Dominik ; Cebulla, Felix ; Cao, Karl-Kien ; Hess, Denis ; Borggrefe, Frieder: Möglichenheiten und Grenzen des Lastausgleichs durch Energiespeicher, veränderbare Lasten und stromgeführte KWK bei hohem Anteil fluktuierender erneuerbarer Stromerzeugung. Stuttgart : DLR-Institut für Technische Thermodynamik, 2014

Stolzenburg, Klaus ; Hamelmann, Roland ; Wietschel, Martin ; Genoese, Fabio ; Michaelis, Julia ; Lehmann, Jochen ; Miege, Andreas ; Krause, Stephan ; u. a.: Integration von Wind-Wasserstoff-Systemen in das Energie-System - Abschlussbericht (Abschlussbericht): PLANET, fh lübeck Projekt-GmbH, Fraunhofer ISI, IFEU, KBB; beauftragt vom Bundesministerium für Verkehr und digitale Infrastruktur, 2014

Schlesinger, Michael ; Lindenberger, Dietmar ; Kemmler, Andreas ; Kirchner, Almut ; Koziel, Sylvie: Entwicklung der Energiemärkte - Energierfenrezprognose: BMWi, 2014

Tali, Eren ; Senner, Janina ; Burmeister, Frank: Abschlussbericht „Erdgasvorwärmer“. Essen : Gas- und Wärme-Institut Essen e.V. (GWI), 2012

Technische Daten. URL http://www.vapec.ch/elektrodenkessel/elektrodenkessel/technische-daten/. - abgerufen am 2016-09-05

[VöRe19] Völler, Klaus; Reinholz, Toni; Deutsche Energie-Agentur GmbH (dena) (Hrsg.): Branchenbarometer Biomethan 2019. Berlin, 2019

[WeSc18] Weiser, Eric; Schäfer-Stradowsky, Simon: Weiterentwicklungsbedürfnis und -potentiale der Regelung zu zuschaltbaren Lasten in § 13 Abs. 6a EnWG, Netzwerken & Recht Jhg. 15, 2018
9 Abbildungsverzeichnis

Abbildung 3-1:	Überblick REMix-Modell ... 13
Abbildung 3-2:	REMix-Modellumfang nach Erweiterung in MuSeKo 15
Abbildung 3-3:	Kurzübersicht MuGrIFlex-Ablaufplan ... 20
Abbildung 3-4:	Schematische Darstellung der Wärmerzeugungskosten (nur Strom- bzw. Gasbeschaffungskosten bzw. Stromvergütung, ohne andere Betriebs- oder Kapitalkosten) ... 21
Abbildung 3-5:	Exemplarische Einsatzplanung für einige Tage am Beispiel eines Wärmesystems ... 22
Abbildung 3-6:	Wirkungsgrad eines beispielhaften Solarkollektors in Abhängigkeit der Vorlauftemperatur des Heizsystems und der solaren Strahlung 24
Abbildung 3-8:	Beispielhafte Abbildung einer Heizkurve für das Jahr 2020 26
Abbildung 3-9:	Beispielhafte Abbildung einer Heizkurve für das Jahr 2030 26
Abbildung 3-10:	Darstellung Temperaturhub durch verschiedenen Wärmeerzeuger [eigene Darstellung] ... 27
Abbildung 3-11:	Schematische Darstellung des durch die Wärmepumpe zu erzeugenden Temperaturhubs ... 29
Abbildung 3-12:	Wärmeverluste des Wärmespeichers in MuGrIFlex 30
Abbildung 3-13:	Modellkopplung zwischen den Energiesystemmodellen REMix und MuGrIFlex ... 32
Abbildung 3-14:	Schematische Darstellung der Wirkungsgrade Elektrolyse und Methanisierung ... 34
Abbildung 3-15:	Beispielhaftes Ergebnis der Wasserstoffverwendungskosten 35
Abbildung 4-1:	Darstellung der betrachteten Regionen in REMix 45
Abbildung 4-2:	Schematische Darstellung des Technologieumfangs in REMix 46
Abbildung 4-3:	Abbildung der Wärmeerzeugung in REMix in den untersuchten Szenarien. Hervorgehoben sind die Hauptversorgungstechnologien. Diese können modellendogen um die weiteren Versorgungskomponenten ergänzt werden ... 50
Abbildung 4-4:	Schematische Darstellung der Erdgas-Vorwärmung [Deut15, TaSB12] ... 58
Abbildung 4-5:	Auswahlkriterien Gasverdichter; nach [CeLe16] 61
Abbildung 4-6:	Gas-Verdichterstandorte an Verdichterstationen und Gasspeichern in Deutschland, Stand Mai 2017 ... 65
Abbildung 4-8:	Untertage-Gasspeicher in Deutschland, aktualisiert Mai 2017 68
Abbildung 4-9:	Darstellung des Gastransportnetzes mit technischen Im- und Exportkapazitäten zwischen den Nachbarländern Deutschlands und den 10 betrachteten Modellregionen des REMix-Modells 74
Abbildung 4-10:	Abbildung des deutschen Gassystems in REMix 78
Abbildung 5-1:	Entwicklung der Stromnachfrage in Deutschland im Szenariovergleich. Die sich aus der flexiblen Sektorenkopplung ergebenden Anteile sind separat ausgewiesen ... 91
Abbildung 5-2:	Entwicklung der Gasnachfrage in Deutschland im Szenariovergleich 92
Abbildung 5-3:	Entwicklung der Stromerzeugung in Deutschland im Szenariovergleich ... 94
Abbildung 5-4:	Entwicklung der Stromerzeugung in den betrachteten europäischen Ländern im Szenariovergleich ... 95
Abbildung 5-5:	Entwicklung der Kraftwerkssystemkapazitäten in Deutschland im Szenariovergleich ... 96
Abbildung 5-6:	Kapazitäten von Photovoltaik- und Windenergieanlagen (an Land und auf See) im Vergleich für das THG95/2050-Szenario 97
Abbildung 5-7: Entwicklung der Kraftwerkselekapazitäten in den betrachteten europäischen Ländern im Szenariovergleich 98
Abbildung 5-8: Beitrag der verschiedenen Lastausgleichsoptionen im Verlauf der Jahre im Szenario THG95 ... 99
Abbildung 5-9: Entwicklung des Beitrags der verschiedenen Lastausgleichsoptionen im zeitlichen Verlauf für das Szenario THG80. Achsen haben unterschiedliche Skalierung .. 100
Abbildung 5-10: Entwicklung des Beitrags der verschiedenen Lastausgleichsoptionen im zeitlichen Verlauf für das Szenario THG95. Achsen haben unterschiedliche Skalierung ... 101
Abbildung 5-11: Beitrag der verschiedenen Lastausgleichsoptionen im Szenariovergleich. Achsen haben unterschiedliche Skalierung 102
Abbildung 5-12: Kapazitäten der verschiedenen Lastausgleichsoptionen im Szenariovergleich. Achsen haben unterschiedliche Skalierung 104
Abbildung 5-13: Gesamtkapazität von Batteriespeichern im Jahr 2050 für Szenario THG80 (links) bzw. THG95 (rechts) .. 105
Abbildung 5-14: Wärmeerzeugung (Balken, linke Achse), thermische Leistung (Punkte, rechte Achse) und Speicherkapazität (Punkte, linke Achse) der Gasvorwärmung ... 106
Abbildung 5-15: Bereitstellung von Verdichtungsarbeit im Methantransportnetz durch gasbasierte und strombasierte Kompressoren im Jahr 2050 des Szenarios THG95 im Jahresverlauf (oben) und im Monat Februar (unten) ... 107
Abbildung 5-16: Bereitstellung von Verdichtungsarbeit in Wasserstoff- und Methanspeichern durch strombasierte Kompressoren im Jahr 2050 des Szenarios THG95 im Monat Februar im Vergleich zur Erzeugung von EE-Strom und Wasserstoff .. 108
Abbildung 5-17: Kostengliederung nach Komponenten für Deutschland im Szenariovergleich ... 110
Abbildung 5-18: Kostengliederung nach Technologien für Deutschland im Szenariovergleich ... 111
Abbildung 5-19: Kapazität des Wasserstoffnetzes im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts) .. 112
Abbildung 5-20: Kapazität der Elektrolyseure im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts) .. 112
Abbildung 5-21: Kapazität der Wasserstoffspeicher im Jahr 2050 für Szenario THG80 (links) und THG95 (rechts) .. 113
Abbildung 5-22: Gesamtkapazität von Methanisierungsanlagen im Jahr 2050 für Szenario THG95 .. 113
Abbildung 5-23: Betrieb der Elektrolyseure im Szenario THG95 für 2050 114
Abbildung 5-24: Betrieb der Methanisierungsanlagen im Szenario THG95 für 2050 ... 115
Abbildung 5-25: Beladung der Flottenbatterie im jahreszeitlichen Verlauf im Szenario THG95 für 2050 ... 115
Abbildung 5-26: Betrieb der Batteriespeicher im Szenario THG95 für 2050 115
Abbildung 5-27: Betrieb der Elektroheizer im Szenario THG95 für 2050 115
Abbildung 5-28: Betrieb der Wärmepumpen im Szenario THG95 für 2050 115
Abbildung 5-29: Jahresverlauf der normierten Wärme- und Gasspeicherfüllstände im Szenario THG80 für 2050 .. 116
Abbildung 5-30: Jahresverlauf der normierten Wärme- und Gasspeicherfüllstände im Szenario THG95 für 2050 .. 116
Abbildung 5-31: Stromerzeugung und Systemkosten in den Szenariovarianten. Basisszenario bezeichnet hier Szenario THG95 117
Abbildung 5-32: Prozentsatz aufgetragene Abweichungen des Kapazitätsausbaus verschiedener Technologien in den untersuchten Szenariovarianten bezogen auf das THG95/2050-Szenario 119
Abbildung 6-1: Geordnete Dauerlinie der Strom-Grenzkosten im THG80-Szenario ... 124
Abbildung 6-2: Geordnete Dauerlinie der Strom-Grenzkosten im THG95-Szenario ... 124
Abbildung 6-3: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG80 .. 128
Abbildung 6-4: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG80 .. 128
Abbildung 6-5: gesamtwirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im Szenario THG80 .. 128
Abbildung 6-6: betriebswirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im Szenario THG80 .. 128
Abbildung 6-7: gesamtwirtschaftliche Optimierung: Anteile an der Wärmeversorgung im Szenario THG80 .. 128
Abbildung 6-8: betriebswirtschaftliche Optimierung: Anteile an der Wärmeversorgung im Szenario THG80 .. 128
Abbildung 6-9: Wärmeerzeugungskosten (LCoH) mit gesamt- bzw. betriebswirtschaftlich optimierten Anlagengrößen im Szenario THG80 .. 131
Abbildung 6-10: Wärmeerzeugungskosten (LCoH) mit gesamt- bzw. betriebswirtschaftlich optimierten Anlagengrößen im Szenario THG95 .. 131
Abbildung 6-11: Abweichung gesamtwirtschaftlich optimierter von betriebswirtschaftlich optimierter Anlagengröße und Investitions-Förderbedarf im Szenario THG80 .. 132
Abbildung 6-12: Abweichung gesamtwirtschaftlich optimierter von betriebswirtschaftlich optimierter Anlagengröße und Investitions-Förderbedarf im Szenario THG95 .. 132
Abbildung 6-13: Volllaststunden der Wärmeerzeuger in Abhängigkeit des KWK-Zuschlags (beispielhafte Darstellung für 2030 im Szenario THG95).. 134
Abbildung 6-14: Volllaststunden der Wärmeerzeuger in Abhängigkeit des Zuschlags auf den Strompreis (beispielhafte Darstellung für 2030 im Szenario THG95).. 134
Abbildung 6-15: Volllaststunden von KWK und Wärmepumpe mit gesamt- und betriebswirtschaftlich optimiertem Einsatz im Szenario THG80.. 135
Abbildung 6-16: Volllaststunden von KWK und Wärmepumpe mit gesamt- und betriebswirtschaftlich optimiertem Einsatz im Szenario THG95.. 135
Abbildung 6-17: Abweichung der Volllaststunden, wenn der Einsatz statt gesamt- betriebswirtschaftlich optimierte wird. Szenario THG80 .. 135
Abbildung 6-18: Abweichung der Volllaststunden, wenn der Einsatz statt gesamt- betriebswirtschaftlich optimierte wird. Szenario THG95 .. 135
Abbildung 6-19: benötigte KWK-Zuschläge im Versorgungsbeispiel im THG80-Szenario .. 136
Abbildung 6-20: benötigte KWK-Zuschläge im Versorgungsbeispiel im THG95-Szenario .. 136
Abbildung 6-21: Summe der Zuschlagszahlungen .. 137
Abbildung 6-22: Bandbreite möglicher Aufschläge auf Stromkosten, die den Anlagenbetrieb optimieren, im Szenario THG80 .. 137
Abbildung 6-23: Bandbreite möglicher Aufschläge auf Stromkosten, die den Anlagenbetrieb optimieren im Szenario THG95 .. 137
Abbildung 6-24: Volllaststunden der Wärmepumpe in Abhängigkeit von Aufschlag auf Strompreis und KWK-Zuschlag für ein beispielhaftes Szenariojahr.. 138
Abbildung 6-25: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG80-Szenario, Hamburg.. 139
Abbildung 6-26: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG80-Szenario, Hamburg.. 139
Abbildung 6-27: gesamtwirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG80-Szenario, Hamburg.. 139
Abbildung 6-28: betriebswirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG80-Szenario, Hamburg.. 139
Abbildung 6-29: gesamtwirtschaftliche Optimierung: Anteile an der Wärmeversorgung im THG80-Szenario, Hamburg .. 140
Abbildung 6-30: betriebswirtschaftliche Optimierung: Anteile an der Wärmeversorgung im THG80-Szenario, Hamburg .. 140
Abbildung 6-31: Gesamtwirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG80 .. 142
Abbildung 6-32: Gesamtwirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG95 .. 142
Abbildung 6-33: Anteil der Verdichterarbeit bei gesamtwirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG80 142
Abbildung 6-34: Anteil der Verdichterarbeit bei gesamtwirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG95 142
Abbildung 6-35: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG80 .. 143
Abbildung 6-36: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG95 .. 143
Abbildung 6-37: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG80 143
Abbildung 6-38: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG95 143
Abbildung 6-39: Gesamtwirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG80 .. 144
Abbildung 6-40: Gesamtwirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG95 .. 144
Abbildung 6-41: Anteil der Verdichterarbeit bei gesamtwirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG80 144
Abbildung 6-42: Anteil der Verdichterarbeit bei gesamtwirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG95 144
Abbildung 6-43: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG80 .. 145
Abbildung 6-44: betriebswirtschaftlich optimierte Verdichterleistung im Versorgungsbeispiel im Szenario THG95 .. 145
Abbildung 6-45: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG80 145
Abbildung 6-46: Anteil der Verdichterarbeit bei betriebswirtschaftlich optimierter Verdichter Leistung im Versorgungsbeispiel im Szenario THG95 145
Abbildung 6-47: gesamtwirtschaftlich optimierte Volllaststunden der Elektrolyseure im Szenario THG80 .. 146
Abbildung 6-48: gesamtwirtschaftlich optimierte Volllaststunden der Elektrolyseure im Szenario THG95 .. 146
Abbildung 6-49: gesamtwirtschaftlich optimierte Volllaststunden der Methanisierung im Szenario THG80 .. 147
Abbildung 6-50: gesamtwirtschaftlich optimierte Volllaststunden der Methanisierung im Szenario THG95 .. 147
Abbildung 6-51: wirtschaftliche Betriebsstunden von Elektrolyseuren in Abhängigkeit einer zusätzlichen Prämie im Szenario THG80 148
Abbildung 6-52: wirtschaftliche Betriebsstunden von Elektrolyseuren in Abhängigkeit einer zusätzlichen Prämie im Szenario THG95 148
Abbildung 6-53: jährlicher Gewinn pro installierter Elektrolyseleistung in Abhängigkeit einer zusätzlichen Prämie im Szenario THG80 149
Abbildung 6-54: jährlicher Gewinn pro installierter Elektrolyseleistung in Abhängigkeit einer zusätzlichen Prämie im Szenario THG95 149
Abbildung 6-55: wirtschaftliche Betriebsstunden von Elektrolyseuren mit Methanisierung in Abhängigkeit von einer zusätzlichen Prämie im Szenario THG80 150
Abbildung 6-56: wirtschaftliche Betriebsstunden von Elektrolyseuren mit Methanisierung in Abhängigkeit von einer zusätzlichen Prämie im Szenario THG95 150
Abbildung 6-57: Jährlicher Gewinn pro installierter Elektrolyseur- und Methanisierungsleistung in Abhängigkeit einer zusätzlichen Prämie im Szenario THG80 150
Abbildung 6-58: Jährlicher Gewinn pro installierter Elektrolyseur- und Methanisierungslastigkeit in Abhängigkeit einer zusätzlichen Prämie im Szenario THG95 .. 150
Abbildung 12-1: Schemazeichnung Rohrbündelwärmetauscher [Naen10] 174
Abbildung 12-2: Erdgas-Heater [Naen10] ... 175
Abbildung 12-3: Beispielhafte Zeichnung eines Elektro-Strömungserhitzers [Elek00] .. 176
Abbildung 12-4: Elektrodenkessel und schematische Darstellung [Powe00] 177
Abbildung 12-5: Berechnete Stundenwerte des Gasvorwärmenergiebedarfs in den deutschen Bundesländern 2013 unter der Annahme einer Vorwärmung von 50% der ausgespeisten Gasmengen (siehe Kapitel 0). Im Rahmen des MuSeKo-Projektes wird das Summenprofil der bedarfsstärksten Modellregion Nordrhein-Westfalen zugeschlagen .. 178
Abbildung 12-6: Berechnete Gasvorwärmenergiebedarfe der deutschen Bundesländer 2013 unter der Annahme einer 50%-igen Vorwärmung der ausgespeisten Gasmengen ... 178
Abbildung 12-7: Annahmen zur Bestimmung der Transportkapazitäten von Gastransportleitungen .. 179
Abbildung 12-8: Übersicht verfügbarer Testergebnisse und regulatorischer Grenzen der Wasserstoffbeimischung in bestehende Erdgasinfrastrukturen und Endanwendungsleistungen [Marc19] .. 182
Abbildung 12-9: Kapazität an Photovoltaik- (links) und Windenergieanlagen (rechts) im Szenario THG9/2050 .. 198
Abbildung 12-10: Kapazität Stromnetz THG80/2050 (links) und THG95/2050 (rechts) 198
Abbildung 12-11: Zubau Stromnetz THG95/2050 .. 199
Abbildung 12-12: Kostengliederung nach Komponenten für Europa im Szenariovergleich .. 199
Abbildung 12-13: Kostengliederung nach Technologien für Europa im Szenariovergleich .. 200
Abbildung 12-14: Gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG95 ... 201
Abbildung 12-15: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG95- .. 201
Abbildung 12-16: Gesamtwirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im Szenario THG95- .. 201
Abbildung 12-17: betriebswirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im Szenario THG95- .. 201
Abbildung 12-18: Gesamtwirtschaftliche Optimierung: Anteile an der Wärmeverteilung im Szenario THG95- ... 201
Abbildung 12-19: betriebswirtschaftliche Optimierung: Anteile an der Wärmeverteilung im Szenario THG95- ... 201
Abbildung 12-20: Gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG95- Szenario, Hamburg .. 202
Abbildung 12-21: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG95- Szenario, Hamburg .. 202
Abbildung 12-22: Gesamtwirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im THG95- Szenario, Hamburg .. 202
Abbildung 12-23: betriebswirtschaftliche Optimierung: Vollaststunden der Wärmeerzeuger im THG95- Szenario, Hamburg .. 202
Abbildung 12-24: Gesamtwirtschaftliche Optimierung: Anteile an der Wärmeverteilung im THG95- Szenario, Hamburg .. 202
Abbildung 12-25: betriebswirtschaftliche Optimierung: Anteile an der Wärmeverteilung im THG95- Szenario, Hamburg .. 202
10 Tabellenverzeichnis

Tabelle 3-1: Angenommene Heizkurven für untersuchte Heizsysteme 26
Tabelle 4-1: Sozio-ökonomische Rahmendaten der Szenarien für Deutschland in
Anlehnung an [PTTF17] und [SLKK14] .. 38
Tabelle 4-2: Quantitative Ziele des Energiekonzepts der Bundesregierung 2010
[BuBu10] .. 39
Tabelle 4-3: Berücksichtigte Energieanfragen im Szenario THG80 40
Tabelle 4-4: Berücksichtigte Energieanfragen im Szenario THG95 41
Tabelle 4-5: Entwicklung der Stromanfrage in Europa in TWh/a – Szenarien
THG80 & THG95 .. 42
Tabelle 4-6: Angenommene Brennstoffkosten in den Szenarien 43
Tabelle 4-7: Angenommene CO₂-Emissionszertifikatskosten in den Szenarien 44
Tabelle 4-8: Übersicht der in REMix berücksichtigten Potenziale erneuerbarer
Energiequellen aufgeilt auf die betrachteten Modellregionen 49
Tabelle 4-9: Maximale Wärmespeichergrößen, relativ zur thermischen
Nachfragespitze ... 51
Tabelle 4-10: Definition der mit REMix untersuchten Varianten von Szenario
THG95 .. 52
Tabelle 4-11: Berechnete Veränderung der Volumen- und Energiestrome durch
Erhöhung des Wasserstoffanteils in einer Gastransportleitung bei
Betrieb mit konstant gehaltenem chemisch gebundenem Energistrom
[JPe15] ... 54
Tabelle 4-12: Review der Kavernenausbaukosten inkludierter Studien sowie eigene
Ableitung für das Projekt MuSeKo ... 71
Tabelle 4-13: Techno-ökonomische Parameter der Elektrolyse und Methanisierung.
Durch „/“ getrennte Werte geben die Annahmen für die Szenariojahre
2020, 2030, 2040 bzw. 2050 wieder. Wirkungsgrade beziehen sich auf
den Brennwert (HHV). ... 79
Tabelle 4-14: Techno-ökonomische Parameter zur Erdgas- und
Wasserstoffverdichtung. Durch „/“ getrennte Werte geben die
Annahmen für die Szenariojahre 2020, 2030, 2040 bzw. 2050
wieder ... 80
Tabelle 4-15: Techno-ökonomische Parameter der Gas- und Wasserstoffspeicher.
Durch „/“ getrennte Werte geben die Annahmen für die Szenariojahre
2020, 2030, 2040 bzw. 2050 wieder ... 81
Tabelle 4-16: Techno-ökonomische Parameter der Gas- und
Wasserstofftransportleitungen ... 82
Tabelle 4-17: Steuern, Abgaben und Entgelte für PTH und Ptg-Speicherpfade im Jahr
2019 .. 85
Tabelle 4-18: Aufschläge auf den Strompreis für den Strombezug für Elektrokessel
und Wärmepumpen, Betriebsmittel im Gasnetz und Power-to-Gas-
Anlagen ... 87
Tabelle 5-1: Vergleich der realen Bruttostromerzeugung im Jahr 2019 mit der vom
Modell optimierten im Jahr 2020 für Deutschland 93
Tabelle 6-1: Brennstoffmix für KWK-Anlagen und Gaskessel 125
Tabelle 6-2: Durchschnittliche Gaspreise für KWK-Anlagen und Gaskessel, mit und
ohne Aufschläge ... 126
Tabelle 6-3: Durchschnittliche Gaspreise für KWK-Anlagen und Gaskessel, mit und
ohne Aufschläge ... 126
Tabelle 12-1: Festlegung der Gastransport-Pipelinekapazitäten für drei
Rohrleitungsklassen ... 180
Tabelle 12-2: Angenommene maximale Gastransportkapazitäten zwischen den in
MuSeKo untersuchten Modellregionen für 2020 in GWh/h 181
Tabelle 12-3: Stromnachfragen im Szenario THG 80 in TWh/a 183
Tabelle 12-4: Stromnachfragen im Szenario THG 95 in TWh/a 185
10 Tabellenverzeichnis

Tabelle 12-5: Techno-ökonomische Parameter der KWK-Anlagen (Wärmenetzesysteme 1) .. 187
Tabelle 12-6: Techno-ökonomische Parameter der KWK-Anlagen (Wärmenetzesysteme 2) .. 187
Tabelle 12-7: Techno-ökonomische Parameter der KWK-Anlagen (Industrie) .. 188
Tabelle 12-8: Techno-ökonomische Parameter der KWK-Anlagen (Einzelobjekte) .. 188
Tabelle 12-9: Techno-ökonomische Parameter der Spitzenkessel (Wärmenetzsysteme 1) .. 188
Tabelle 12-10: Techno-ökonomische Parameter der Spitzenkessel (Wärmenetzsysteme 2) .. 189
Tabelle 12-11: Techno-ökonomische Parameter der Spitzenkessel (Industrie) .. 189
Tabelle 12-12: Techno-ökonomische Parameter der Gaskessel (Einzelobjekte) .. 189
Tabelle 12-13: Techno-ökonomische Parameter der Elektrokessel (Wärmenetzesysteme) .. 189
Tabelle 12-14: Techno-ökonomische Parameter der elektrischen Wärmeerzeugung in der Industrie .. 190
Tabelle 12-15: Techno-ökonomische Parameter der Elektrokessel (Einzelobjekte) .. 190
Tabelle 12-16: Techno-ökonomische Parameter der Großwärmpumpen (Wärmenetzsysteme und Industrie) .. 190
Tabelle 12-17: Techno-ökonomische Parameter der Gebäudewärmpumpen (Einzelobjekte) .. 190
Tabelle 12-18: Techno-ökonomische Parameter der Solarthermie .. 190
Tabelle 12-20: Techno-ökonomische Parameter der Wärmespeicher (Industrie) .. 191
Tabelle 12-21: Techno-ökonomische Parameter der Wärmespeicher (Einzelobjekte) .. 191
Tabelle 12-22: Techno-ökonomische Parameter der solaren Stromerzeugung .. 191
Tabelle 12-23: Techno-ökonomische Parameter der Windanlagen und Wasserkraftwerke .. 192
Tabelle 12-24: Techno-ökonomische Parameter der Biomassekraftwerke .. 192
Tabelle 12-25: Techno-ökonomische Parameter konventioneller Kraftwerke .. 192
Tabelle 12-26: Installierte EE-Leistungen in MW .. 193
Tabelle 12-27: Installierte Pumpspeicherkraftwerke .. 193
Tabelle 12-28: Installierte Geothermieanlagen in MW (el) .. 194
Tabelle 12-29: Installierte konventionelle Kraftwerke in MW (el) (1) .. 194
Tabelle 12-30: Installierte konventionelle Kraftwerke in MW (el) (2) .. 195
Tabelle 12-31: Installierte KWK-Anlagen in 2020 in MW (el) .. 195
Tabelle 12-32: Installierte Wechselstromleistungskapazitäten in GW .. 196
Tabelle 12-33: Installierte Gleichstromleistungskapazitäten in GW .. 197
11 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>a</td>
<td>Jahr</td>
</tr>
<tr>
<td>ANF</td>
<td>Annuitätsfaktor</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Energie</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon (Dioxide) Capture and Storage</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methan</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of Performance / Arbeitszahl einer Wärmepumpe</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrated Solar Power / Konzentrierende Solarkraft</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt e.V.</td>
</tr>
<tr>
<td>EE</td>
<td>Erneuerbare Energie</td>
</tr>
<tr>
<td>EEG</td>
<td>Erneuerbare-Energie-Gesetz</td>
</tr>
<tr>
<td>EK</td>
<td>Elektrokessel</td>
</tr>
<tr>
<td>EnWG</td>
<td>Energiewirtschaftsgesetz</td>
</tr>
<tr>
<td>GAMS</td>
<td>General Algebraic Modeling System (Modelliersystem)</td>
</tr>
<tr>
<td>GDRA</td>
<td>Gas-Druckregelanlage</td>
</tr>
<tr>
<td>GDRMA</td>
<td>Gas-Druckregel- und Messanlage, auch GDRM-Anlage</td>
</tr>
<tr>
<td>GDX</td>
<td>GAMS Data eXchange / GAMS-Datenausgabeformat</td>
</tr>
<tr>
<td>GHD</td>
<td>Gewerbe, Handel, Dienstleistungen</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas / Treibhausgas</td>
</tr>
<tr>
<td>GK</td>
<td>Gaskessel</td>
</tr>
<tr>
<td>GT</td>
<td>Gasturbine</td>
</tr>
<tr>
<td>GuD</td>
<td>Gas und Dampf Kraftwerk</td>
</tr>
<tr>
<td>GW</td>
<td>Gigawatt</td>
</tr>
<tr>
<td>GWI</td>
<td>Gas- und Wärme-Institut Essen e.V.</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>H₂</td>
<td>Wasserstoff</td>
</tr>
<tr>
<td>I</td>
<td>Solare Strahlung</td>
</tr>
<tr>
<td>IFA</td>
<td>Fraunhofer Institut für Fertigungstechnik und angewandte Materialforschung</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowattstunden</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung</td>
</tr>
<tr>
<td>KWKG</td>
<td>Kraft-Wärme-Kopplungs-Gesetz</td>
</tr>
<tr>
<td>LCoH</td>
<td>Levelised Cost of Heat / Wärmeerzeugungskosten</td>
</tr>
<tr>
<td>MuGrI Flex</td>
<td>Energiesystemmodel des Fraunhofer IFAM „Multi-Grid-Flexibilität“</td>
</tr>
<tr>
<td>MuSeKo</td>
<td>Forschungsprojekt Multi-Sektoren-Kopplung</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawattstunde</td>
</tr>
<tr>
<td>MWₜₜ</td>
<td>Megawatt thermisch</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value / Nettokapitalwert</td>
</tr>
<tr>
<td>PEM</td>
<td>proton exchange membrane / Protonen-Austausch-Membran</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>PJ</td>
<td>Peta-Joule</td>
</tr>
<tr>
<td>Pkw</td>
<td>Personenkraftwagen</td>
</tr>
<tr>
<td>PtG</td>
<td>Power to Gas</td>
</tr>
<tr>
<td>PtH</td>
<td>Power to Heat</td>
</tr>
<tr>
<td>PtL</td>
<td>Power to Liquid</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>REMix</td>
<td>Energiesystemmodell des DLR „Renewable Energy Mix“</td>
</tr>
<tr>
<td>SOEC</td>
<td>Solid Oxide Electrolyser Cell</td>
</tr>
<tr>
<td>THG</td>
<td>Treibhausgas</td>
</tr>
<tr>
<td>T_{Luft}</td>
<td>Außenlufttemperatur</td>
</tr>
<tr>
<td>T_{RL}</td>
<td>Vorlauftemperatur</td>
</tr>
<tr>
<td>T_{VL}</td>
<td>Rücklauftemperatur</td>
</tr>
<tr>
<td>TWh</td>
<td>Terawattstunde</td>
</tr>
<tr>
<td>TYNDP</td>
<td>10-year network development plan</td>
</tr>
<tr>
<td>VtG</td>
<td>Vehicle to Grid</td>
</tr>
<tr>
<td>WE</td>
<td>Wärmeerzeuger</td>
</tr>
<tr>
<td>WP</td>
<td>Wärmepumpe</td>
</tr>
<tr>
<td>WS</td>
<td>Wärmespeicher</td>
</tr>
</tbody>
</table>
Anhänge

12 Anhänge

12.1 Anhang 1: Technologien der klassischen Gasvorwärmung

Die zwei gängigsten Methoden der verbrennungsbasierten Gasvorwärmung werden im Folgenden kurz erläutert.

Rohrbündelwärmeübertrager

Bei der Gasverbrennung werden meist klassische Erdgaskessel, teilweise aber auch Kraft-Wärme-Kopplungsanlagen (KWK bzw. BHKWs) verwendet, die neben der Wärme auch Strom erzeugen. Der eigenerzeugte Strom kann zur Deckung des Elekt-
rizitätsbedarfes der Anlage selbst verwendet werden und auch seinerseits ins Stromnetz einspeisen und dort Erlöse erzielen. KWK-Anlagen stellen Stand 2019 noch die Ausnahme und Erdgaskessel die Regel dar27.

Erdgas-Heater

Der Erdgas-Heater ist eine direkte Vorwärmanlage, bei der sich ein Flammrohr mit Abgaszügen zusammen mit gasdurchströmten Rohrbündeln in einem Wasserbad befindet. Das Flammrohr wird von einem Brenner befeuert und die Wärme über das Wasser zum Gas transportiert (siehe Abbildung 12-2).

\textbf{Abbildung 12-2: Erdgas-Heater [Naen10]}

27 KWK-Technologien werden im Rahmen dieses Projektes nicht als Wärmequellen für die Gasvorwärmung betrachtet.
12.2 Anhang 2: Optionen der elektrischen Gasvorwärmung

Im Gegensatz zu den in A.1 genannten Methoden der Gasvorwärmung werden in diesem Kapitel technische Alternativen beleuchtet, die ohne die Verbrennung des fossilen Energieträgers Erdgas auskommen. Elektrische Heizmöglichkeiten zeichnen sich durch ihren hohen Wirkungsgrad und schnelle Reaktionszeit aus. Es kommen insbesondere die zwei Technologien Strömungserhitzer und Elektrodenkessel infrage, die im Folgenden vorgestellt werden.

Strömungserhitzer
Hier wird das zu erhitze...
Elektrodenkessel bieten sich auf Grund der kurzen Reaktionszeiten für die Regelleistungsbereitstellung im Stromsystem an. So kann Volllast innerhalb von 5 Minuten beginnend von einem Kaltstart und von Minimallast innerhalb von 30 Sekunden erreicht werden [Para00].

Abbildung 12-4: Elektrodenkessel und schematische Darstellung [Powe00]
12.3 Anhang 3: Zeitliche Auflösung des Energiebedarfes für die Gasvorwärmung in Deutschland

Abbildung 12-6: Berechnete Gasvorwärmenegiebedarfe der deutschen Bundesländer 2013 unter der Annahme einer 50%-igen Vorwärmung der ausgespeisten Gasmengen.
12.4 Anhang 4: Abschätzung Pipelinekapazitäten

<table>
<thead>
<tr>
<th>Untergrenze</th>
<th>Obergrenze</th>
<th>Annahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unter 24 Zoll:</td>
<td>< DN 600</td>
<td>DN 400</td>
</tr>
<tr>
<td>24 – 36 Zoll:</td>
<td>DN 600 – DN 900</td>
<td>DN 800</td>
</tr>
<tr>
<td>Über 36 Zoll:</td>
<td>> DN 900</td>
<td>DN 1200</td>
</tr>
</tbody>
</table>

Die Restriktionen für die Kapazitätsberechnung der Rohrleitungsklassen werden wie folgt aufgelistet:

- \(V_{\text{max}} = 20 \text{ m/s} \)
- Maximal zulässiger Druck (60-100 bar, je nach Klasse) [Bagu16]
- Rohrdurchmesser (≤ DN 1400, je nach Klasse) [Bagu16]

Darüber hinaus wurden weitere Annahmen getroffen:

- Abstand Verdichterstationen: ca. 150 km
- Grenzübergang zwischen Modellregionen befindet sich in der Mitte zwischen 2 Verdichterstationen
- Druckverlust zwischen Verdichterstationen stets \(\Delta P = 40 \text{ bar} \)
- Gastemperaturen an den Messstellen identisch und konstant \(T = 10^\circ\text{C} \)
- Restriktionen im Rohr (z.B. Knickstellen), \(V_{Zul,\text{max}} \) wird daher an der Verdichterstation 2 nicht erreicht, Annahme \(V_{\text{max}} = 15 \text{ m/s} \)

Die getroffenen Annahmen für zwei beispielhafte Verdichterstationen sowie der Messstelle am Grenzübergang zweier Regionen werden wie folgt dargestellt:

Abbildung 12-7: Annahmen zur Bestimmung der Transportkapazitäten von Gastransportleitungen

Anhand obiger Annahmen und Restriktionen lassen sich die technischen Kapazitäten der einzelnen Rohrleitungsklassen wie folgt ermitteln [Deut13, S.260]:

Seite 179
Kapazität \(\left[\frac{\text{GWh}}{\text{h}} \right] \) = Querschnittsfläche \(\left[\text{m}^2 \right] \) * Fließgeschwindigkeit \(\left[\frac{\text{m}}{\text{s}} \right] \) * Brennwert \(\left[\frac{\text{kWh}}{\text{m}^3} \right] \) * Zustandszahl

Wobei für die Zustandszahl \(z \) gilt:
\[
z = \frac{T_n}{T_B} \cdot \frac{p_B}{p_n} \cdot \frac{1}{K}
\]

mit den Temperaturen \(T \) und den Drücken \(p \), indiziert für jeweils Normzustand (n) \(^{28}\) und Betriebszustand (B), sowie der Kompressibilität \(K \) des betrachteten Gasmischs.

Der Normvolumenstrom entspricht dem Volumenstrom im Betriebszustand multipliziert mit der Zustandszahl:
\[
\dot{V}_n = \dot{V}_B \cdot z
\]

Daraus ergeben sich folgende Kapazitäten für drei typische Leitungsdurchmesser:

<table>
<thead>
<tr>
<th>Tabelle 12-1: Festlegung der Gastransport-Pipelinekapazitäten für drei Rohrleitungsklassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribut</td>
</tr>
<tr>
<td>Rohrleitungsklasse nach ENTSOG</td>
</tr>
<tr>
<td>Rohrleitungsgröße (Annahme)</td>
</tr>
<tr>
<td>Innendurchmesser</td>
</tr>
<tr>
<td>Druck an der Messstelle (Annahme)</td>
</tr>
<tr>
<td>Fließgeschwindigkeit an der Messstelle (Annahme)</td>
</tr>
<tr>
<td>Flussrichtung (Annahme)</td>
</tr>
<tr>
<td>Gasbrennwert (Russlandgas)</td>
</tr>
<tr>
<td>Kompressibilitätszahl K (Russland Erdgas H, 10°C)</td>
</tr>
<tr>
<td>Resultierende Pipeline-Kapazität</td>
</tr>
</tbody>
</table>

In Abbildung 4-9 sind die Haupttransportrouten des Erdgastransportnetzes inklusive der maximalen technischen Im- und Exportkapazitäten zwischen den Modellregionen und den Nachbarländern abgebildet. Die folgende Tabelle gibt zusätzlich die technischen Kapazitäten zwischen den Remix-Modellregionen an.

\(^{28}\) Normzustand entspricht einer Temperatur von 0°C und einem Druck von 1013,25 mbar.
Tabelle 12-2: Angenommene maximale Gastransportkapazitäten zwischen den in MuSeKo untersuchten Modellregionen für 2020 in GWh/h

12.5 Anhang 5: Grenzen der Wasserstoffbeimischung

Abbildung 12-8: Übersicht verfügbarer Testergebnisse und regulatorischer Grenzen der Wasserstoffbeimischung in bestehende Erdgasinfrastrukturen und Endanwendungstechnik [Marc19]
12.6 Anhang 6: Entwicklung der Stromnachfrage - Szenarien THG80 & THG95

Tabelle 12-3: Stromnachfragen im Szenario THG 80 in TWh/a

<table>
<thead>
<tr>
<th>Konventioneller Strombedarf</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>427,7</td>
<td>401,1</td>
<td>372,1</td>
<td>344,1</td>
</tr>
<tr>
<td>Österreich</td>
<td>71,8</td>
<td>70,1</td>
<td>57,0</td>
<td>46,8</td>
</tr>
<tr>
<td>Belgien</td>
<td>91,0</td>
<td>87,1</td>
<td>75,6</td>
<td>67,4</td>
</tr>
<tr>
<td>Tschechien</td>
<td>67,0</td>
<td>69,8</td>
<td>54,1</td>
<td>40,9</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>13,5</td>
<td>14,4</td>
<td>10,3</td>
<td>7,5</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>22,8</td>
<td>24,2</td>
<td>17,3</td>
<td>12,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>485,7</td>
<td>466,2</td>
<td>392,2</td>
<td>379,5</td>
</tr>
<tr>
<td>Italien</td>
<td>325,4</td>
<td>330,5</td>
<td>298,8</td>
<td>283,5</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>7,1</td>
<td>7,4</td>
<td>5,6</td>
<td>4,1</td>
</tr>
<tr>
<td>Niederlande</td>
<td>114,6</td>
<td>114,9</td>
<td>101,0</td>
<td>92,5</td>
</tr>
<tr>
<td>Norwegen</td>
<td>131,3</td>
<td>143,4</td>
<td>103,5</td>
<td>83,6</td>
</tr>
<tr>
<td>Polen</td>
<td>161,3</td>
<td>164,0</td>
<td>118,8</td>
<td>79,1</td>
</tr>
<tr>
<td>Polen</td>
<td>145,7</td>
<td>141,7</td>
<td>113,0</td>
<td>90,8</td>
</tr>
<tr>
<td>Schweiz</td>
<td>64,4</td>
<td>66,2</td>
<td>56,2</td>
<td>49,1</td>
</tr>
<tr>
<td>Summe</td>
<td>2129,4</td>
<td>2101,0</td>
<td>1775,3</td>
<td>1581,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strom für Elektromobilität</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>32,0</td>
<td>86,1</td>
<td>106,3</td>
</tr>
<tr>
<td>Österreich</td>
<td>0</td>
<td>2,7</td>
<td>5,4</td>
<td>9,0</td>
</tr>
<tr>
<td>Belgien</td>
<td>0</td>
<td>3,6</td>
<td>7,2</td>
<td>12,0</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0</td>
<td>2,1</td>
<td>4,2</td>
<td>7,0</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0</td>
<td>0,7</td>
<td>1,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0</td>
<td>1,1</td>
<td>2,3</td>
<td>3,8</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0</td>
<td>21,9</td>
<td>43,8</td>
<td>73,0</td>
</tr>
<tr>
<td>Italien</td>
<td>0</td>
<td>18,6</td>
<td>37,2</td>
<td>62,0</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>0,3</td>
<td>0,6</td>
<td>1,0</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>4,2</td>
<td>8,4</td>
<td>14,0</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0</td>
<td>1,8</td>
<td>3,6</td>
<td>6,0</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>7,5</td>
<td>15,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>3,6</td>
<td>7,2</td>
<td>12,0</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
<td>2,1</td>
<td>4,2</td>
<td>7,0</td>
</tr>
<tr>
<td>Summe</td>
<td>0</td>
<td>102,2</td>
<td>226,5</td>
<td>340,3</td>
</tr>
</tbody>
</table>
Strom für Wasserstoffherstellung

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>4,9</td>
<td>30,4</td>
<td>111,1</td>
</tr>
<tr>
<td>Österreich</td>
<td>0</td>
<td>1,3</td>
<td>3,5</td>
<td>8,7</td>
</tr>
<tr>
<td>Belgien</td>
<td>0</td>
<td>1,9</td>
<td>5,2</td>
<td>13,1</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0</td>
<td>1,3</td>
<td>3,5</td>
<td>8,7</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0</td>
<td>0,4</td>
<td>1,0</td>
<td>2,4</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0</td>
<td>0,6</td>
<td>1,6</td>
<td>4,1</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0</td>
<td>12,1</td>
<td>32,3</td>
<td>80,7</td>
</tr>
<tr>
<td>Italien</td>
<td>0</td>
<td>10,5</td>
<td>27,9</td>
<td>69,8</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>2,3</td>
<td>6,1</td>
<td>15,3</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>3,9</td>
<td>10,5</td>
<td>26,2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2,0</td>
<td>5,2</td>
<td>13,1</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
<td>1,3</td>
<td>3,5</td>
<td>8,7</td>
</tr>
<tr>
<td>Summe</td>
<td>0</td>
<td>43,6</td>
<td>133,5</td>
<td>368,8</td>
</tr>
</tbody>
</table>

Strom für Wärmepumpen

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>9,53</td>
<td>37,6</td>
<td>64,7</td>
<td>69,3</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,23</td>
<td>0,7</td>
<td>1,4</td>
<td>2,3</td>
</tr>
<tr>
<td>Belgien</td>
<td>0,54</td>
<td>1,6</td>
<td>3,2</td>
<td>5,4</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0,25</td>
<td>0,7</td>
<td>1,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0,06</td>
<td>0,2</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0,10</td>
<td>0,3</td>
<td>0,6</td>
<td>1,0</td>
</tr>
<tr>
<td>Frankreich</td>
<td>2,25</td>
<td>6,8</td>
<td>13,5</td>
<td>22,5</td>
</tr>
<tr>
<td>Italien</td>
<td>1,07</td>
<td>3,2</td>
<td>6,4</td>
<td>10,7</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0,02</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0,70</td>
<td>2,1</td>
<td>4,2</td>
<td>7,0</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0,15</td>
<td>0,5</td>
<td>0,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Polen</td>
<td>0,57</td>
<td>1,7</td>
<td>3,4</td>
<td>5,7</td>
</tr>
<tr>
<td>Polen</td>
<td>0,37</td>
<td>1,1</td>
<td>2,2</td>
<td>3,7</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0,26</td>
<td>0,8</td>
<td>1,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Summe</td>
<td>16,10</td>
<td>57,3</td>
<td>104,1</td>
<td>135,0</td>
</tr>
</tbody>
</table>

Strom für Elektroheizer

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>76,1</td>
<td>93,3</td>
<td>129,8</td>
<td>128,2</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,2</td>
<td>0,6</td>
<td>1,2</td>
<td>2,0</td>
</tr>
<tr>
<td>Belgien</td>
<td>0,3</td>
<td>0,9</td>
<td>1,8</td>
<td>3,0</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0,2</td>
<td>0,8</td>
<td>1,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0,0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0,1</td>
<td>0,2</td>
<td>0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0,4</td>
<td>1,2</td>
<td>2,4</td>
<td>4,0</td>
</tr>
<tr>
<td>Italien</td>
<td>0,8</td>
<td>2,4</td>
<td>4,8</td>
<td>8,0</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0,5</td>
<td>1,3</td>
<td>2,7</td>
<td>4,5</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0,1</td>
<td>0,1</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Polen</td>
<td>0,5</td>
<td>1,4</td>
<td>2,7</td>
<td>4,5</td>
</tr>
<tr>
<td>Polen</td>
<td>0,3</td>
<td>0,9</td>
<td>1,8</td>
<td>3,0</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0,2</td>
<td>0,5</td>
<td>0,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Summe</td>
<td>79,6</td>
<td>103,7</td>
<td>150,5</td>
<td>162,7</td>
</tr>
</tbody>
</table>
Tabelle 12-4: Stromnachfragen im Szenario THG 95 in TWh/a

<table>
<thead>
<tr>
<th>Konventioneller Strombedarf</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>427,7</td>
<td>401,1</td>
<td>372,1</td>
<td>344,4</td>
</tr>
<tr>
<td>Österreich</td>
<td>71,8</td>
<td>70,1</td>
<td>57,0</td>
<td>46,8</td>
</tr>
<tr>
<td>Belgien</td>
<td>91,0</td>
<td>87,1</td>
<td>75,6</td>
<td>67,4</td>
</tr>
<tr>
<td>Tschechien</td>
<td>67,0</td>
<td>69,8</td>
<td>54,1</td>
<td>40,9</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>13,5</td>
<td>14,4</td>
<td>10,3</td>
<td>7,5</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>22,8</td>
<td>24,2</td>
<td>17,3</td>
<td>12,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>485,7</td>
<td>466,2</td>
<td>392,2</td>
<td>379,5</td>
</tr>
<tr>
<td>Italien</td>
<td>325,4</td>
<td>330,5</td>
<td>298,8</td>
<td>283,5</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>7,1</td>
<td>7,4</td>
<td>5,6</td>
<td>4,1</td>
</tr>
<tr>
<td>Niederlande</td>
<td>114,6</td>
<td>114,9</td>
<td>101,0</td>
<td>92,5</td>
</tr>
<tr>
<td>Norwegen</td>
<td>131,3</td>
<td>143,4</td>
<td>103,5</td>
<td>83,6</td>
</tr>
<tr>
<td>Polen</td>
<td>161,3</td>
<td>164,0</td>
<td>118,8</td>
<td>79,1</td>
</tr>
<tr>
<td>Polen</td>
<td>145,7</td>
<td>141,7</td>
<td>113,0</td>
<td>90,8</td>
</tr>
<tr>
<td>Schweiz</td>
<td>64,4</td>
<td>66,2</td>
<td>56,2</td>
<td>49,1</td>
</tr>
<tr>
<td>Summe</td>
<td>2129,4</td>
<td>2101,0</td>
<td>1775,3</td>
<td>1581,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strom für Elektromobilität</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>32,0</td>
<td>86,3</td>
<td>144,8</td>
</tr>
<tr>
<td>Österreich</td>
<td>0</td>
<td>2,7</td>
<td>5,4</td>
<td>12,3</td>
</tr>
<tr>
<td>Belgien</td>
<td>0</td>
<td>3,6</td>
<td>7,2</td>
<td>16,3</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0</td>
<td>2,1</td>
<td>4,2</td>
<td>9,5</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0</td>
<td>0,7</td>
<td>1,3</td>
<td>3,1</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0</td>
<td>1,1</td>
<td>2,3</td>
<td>5,1</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0</td>
<td>21,9</td>
<td>43,9</td>
<td>99,4</td>
</tr>
<tr>
<td>Italien</td>
<td>0</td>
<td>18,6</td>
<td>37,3</td>
<td>84,4</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>0,3</td>
<td>0,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>4,2</td>
<td>8,4</td>
<td>19,1</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0</td>
<td>1,8</td>
<td>3,6</td>
<td>8,2</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>7,5</td>
<td>15,0</td>
<td>34,0</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>3,6</td>
<td>7,2</td>
<td>16,3</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
<td>2,1</td>
<td>4,2</td>
<td>9,5</td>
</tr>
<tr>
<td>Summe</td>
<td>0</td>
<td>102,2</td>
<td>226,9</td>
<td>463,3</td>
</tr>
</tbody>
</table>
Strom für Wasserstofferzeugung

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>0</td>
<td>16,5</td>
<td>103,2</td>
<td>423,2</td>
</tr>
<tr>
<td>Österreich</td>
<td>0</td>
<td>1,5</td>
<td>4,0</td>
<td>9,7</td>
</tr>
<tr>
<td>Belgien</td>
<td>0</td>
<td>2,2</td>
<td>6,1</td>
<td>14,5</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0</td>
<td>1,5</td>
<td>4,0</td>
<td>9,7</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0</td>
<td>0,4</td>
<td>1,1</td>
<td>2,7</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0</td>
<td>0,7</td>
<td>1,9</td>
<td>4,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0</td>
<td>13,5</td>
<td>37,3</td>
<td>89,6</td>
</tr>
<tr>
<td>Italien</td>
<td>0</td>
<td>11,7</td>
<td>32,3</td>
<td>77,4</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>2,6</td>
<td>7,1</td>
<td>16,9</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0</td>
<td>1,1</td>
<td>3,0</td>
<td>7,3</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>4,4</td>
<td>12,1</td>
<td>29,0</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>2,2</td>
<td>6,1</td>
<td>14,5</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
<td>1,5</td>
<td>4,0</td>
<td>9,7</td>
</tr>
<tr>
<td>Summe</td>
<td>0</td>
<td>59,7</td>
<td>222,5</td>
<td>709,3</td>
</tr>
</tbody>
</table>

Strom für Wärmepumpen

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>9,53</td>
<td>41,3</td>
<td>69,6</td>
<td>69,9</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,23</td>
<td>0,8</td>
<td>1,9</td>
<td>3,7</td>
</tr>
<tr>
<td>Belgien</td>
<td>0,54</td>
<td>2,0</td>
<td>4,4</td>
<td>8,6</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0,25</td>
<td>0,9</td>
<td>2,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0,06</td>
<td>0,2</td>
<td>0,5</td>
<td>1,0</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0,10</td>
<td>0,4</td>
<td>0,8</td>
<td>1,6</td>
</tr>
<tr>
<td>Frankreich</td>
<td>2,25</td>
<td>8,1</td>
<td>18,2</td>
<td>35,9</td>
</tr>
<tr>
<td>Italien</td>
<td>1,07</td>
<td>3,9</td>
<td>8,7</td>
<td>17,1</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0,02</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0,70</td>
<td>2,5</td>
<td>5,7</td>
<td>11,2</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0,15</td>
<td>0,5</td>
<td>1,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Polen</td>
<td>0,57</td>
<td>2,0</td>
<td>4,6</td>
<td>9,0</td>
</tr>
<tr>
<td>Polen</td>
<td>0,37</td>
<td>1,3</td>
<td>2,9</td>
<td>5,8</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0,26</td>
<td>1,0</td>
<td>2,1</td>
<td>4,2</td>
</tr>
<tr>
<td>Summe</td>
<td>16,1</td>
<td>65,0</td>
<td>122,8</td>
<td>174,4</td>
</tr>
</tbody>
</table>

Strom für Elektroheizer

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td>76,9</td>
<td>117,7</td>
<td>158,5</td>
<td>158,9</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,2</td>
<td>0,62</td>
<td>1,46</td>
<td>3,1</td>
</tr>
<tr>
<td>Belgien</td>
<td>0,3</td>
<td>0,93</td>
<td>2,19</td>
<td>4,6</td>
</tr>
<tr>
<td>Tschechien</td>
<td>0,3</td>
<td>0,78</td>
<td>1,83</td>
<td>3,8</td>
</tr>
<tr>
<td>Dänemark (Ost)</td>
<td>0,04</td>
<td>0,12</td>
<td>0,27</td>
<td>0,6</td>
</tr>
<tr>
<td>Dänemark (West)</td>
<td>0,1</td>
<td>0,20</td>
<td>0,46</td>
<td>1,0</td>
</tr>
<tr>
<td>Frankreich</td>
<td>0,4</td>
<td>1,24</td>
<td>2,93</td>
<td>6,1</td>
</tr>
<tr>
<td>Italien</td>
<td>0,8</td>
<td>2,48</td>
<td>5,85</td>
<td>12,3</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>0,0</td>
<td>0,03</td>
<td>0,07</td>
<td>0,2</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0,5</td>
<td>1,40</td>
<td>3,29</td>
<td>6,9</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0,04</td>
<td>0,12</td>
<td>0,29</td>
<td>0,6</td>
</tr>
<tr>
<td>Polen</td>
<td>0,4</td>
<td>1,40</td>
<td>3,29</td>
<td>6,9</td>
</tr>
<tr>
<td>Polen</td>
<td>0,3</td>
<td>0,93</td>
<td>2,19</td>
<td>4,6</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0,2</td>
<td>0,47</td>
<td>1,10</td>
<td>2,3</td>
</tr>
<tr>
<td>Summe</td>
<td>80,4</td>
<td>128,4</td>
<td>183,7</td>
<td>211,9</td>
</tr>
</tbody>
</table>
12.7 Anhang 7: Techno-ökonomische Parameter

Die in den Tabellen dieses Abschnittes durch „/“ getrennten Werte geben die Annahmen für die Szenariojahre 2020, 2030, 2040 bzw. 2050 wieder. Wenn nur ein Wert angegeben ist, so ist dieser für alle Szenariojahre gleichbleibend.

Techno-ökonomische Parameter der KWK-Anlagen

Tabelle 12.5: Techno-ökonomische Parameter der KWK-Anlagen (Wärmenetzsysteme 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Gas-GuD-KWK</th>
<th>Steinkohle-KWK</th>
<th>Braunkohle-KWK</th>
<th>Festbio-masse-KWK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>850</td>
<td>-</td>
<td>-</td>
<td>2000</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0%</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2,7</td>
<td>2,7</td>
<td>2,7</td>
<td>2</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>0,5</td>
<td>2</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>25</td>
<td>40</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>KWK-Wirkungsgrad (Nennlast)</td>
<td>%</td>
<td>84% / 86% /</td>
<td>81% / 83% /</td>
<td>81% / 83% /</td>
<td>81% / 83% /</td>
</tr>
<tr>
<td>Stromkennzahl</td>
<td></td>
<td>1,17 / 1,2 /</td>
<td>0,57 / 0,6 /</td>
<td>0,57 / 0,6 /</td>
<td>0,44 / 0,47 /</td>
</tr>
<tr>
<td>Stromverlustkennzahl</td>
<td></td>
<td>0,16 / 0,17 /</td>
<td>0,16 / 0,17 /</td>
<td>0,16 / 0,17 /</td>
<td>0,2</td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>97,7%</td>
<td>94%</td>
<td>93,5%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Tabelle 12.6: Techno-ökonomische Parameter der KWK-Anlagen (Wärmenetzsysteme 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Müllverbrennungs-KWK</th>
<th>Gasmotor-BHKW</th>
<th>Brennstoffzellen-KWK</th>
<th>Ölmotor-KWK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>7000</td>
<td>656,2</td>
<td>850</td>
<td>644</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2,2</td>
<td>5</td>
<td>10</td>
<td>12,1</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>KWK-Wirkungsgrad (Nennlast)</td>
<td>%</td>
<td>61% / 63% /</td>
<td>64% / 65% /</td>
<td>90%</td>
<td>85%</td>
</tr>
<tr>
<td>Stromkennzahl</td>
<td></td>
<td>0,275 / 0,3 /</td>
<td>1</td>
<td>1,833</td>
<td>1,17</td>
</tr>
<tr>
<td>Stromverlustkennzahl</td>
<td></td>
<td>0,25 / 0,35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>94%</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
</tr>
</tbody>
</table>
Techno-ökonomische Parameter der KWK-Anlagen (Industrie)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Ölmo-BHKW</th>
<th>Gasturb-KWK</th>
<th>Steinkohle-KWK</th>
<th>Braunkohle-KWK</th>
<th>Festbio-KWK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>656</td>
<td>800</td>
<td>-</td>
<td>-</td>
<td>1900</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0%</td>
<td>0%</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>5</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>1</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>-</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>KWK-Wirkungsgrad (Nennlast)</td>
<td>%</td>
<td>90%</td>
<td>76%/78%/</td>
<td>78%/80%/</td>
<td>78%/80%/</td>
<td>79%/81%/</td>
</tr>
<tr>
<td>(Nennlast)</td>
<td>%</td>
<td>90%</td>
<td>79%/80%</td>
<td>81%/82%</td>
<td>81%/82%</td>
<td>82%/83%</td>
</tr>
<tr>
<td>Stromkennzahl</td>
<td>-</td>
<td>1.08</td>
<td>0.62/0.60/</td>
<td>0.42/0.45/</td>
<td>0.42/0.45/</td>
<td>0.37/0.40/</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>0.67/0.70</td>
<td>0.47/0.50</td>
<td>0.47/0.50</td>
<td>0.425/0.45</td>
<td></td>
</tr>
<tr>
<td>Stromverlustkennzahl</td>
<td>%</td>
<td>98%</td>
<td>98%</td>
<td>94%</td>
<td>94%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der KWK-Anlagen (Einzelobjekte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Mikro-Gas-BHKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>3000</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2.5</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>0.5</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>3%</td>
</tr>
<tr>
<td>KWK-Wirkungsgrad (Nennlast)</td>
<td>%</td>
<td>90%</td>
</tr>
<tr>
<td>Stromkennzahl</td>
<td>-</td>
<td>0.475 / 0.5 / 0.525 / 0.55</td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Spitzenkessel

Techno-ökonomische Parameter der Spitzenkessel (Wärmenetzsysteme 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Gas-GuD-KWK</th>
<th>Steinkohle-KWK</th>
<th>Braunkohle-KWK</th>
<th>Festbio-masse-KWK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>90%</td>
<td>80%</td>
<td>80%</td>
<td>85%</td>
</tr>
</tbody>
</table>
Tabelle 12-10: Techno-ökonomische Parameter der Spitzenkessel (Wärmenetzelemente 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Gasmotor-BHKW</th>
<th>Brennstoffzellen-KWK</th>
<th>Ölmotor-BHKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>75</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>90%</td>
<td>90%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Tabelle 12-11: Techno-ökonomische Parameter der Spitzenkessel (Industrie)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Ölmotor-BHKW</th>
<th>Gasturbinen-KWK</th>
<th>Steinkohle-KWK</th>
<th>Braunkohle-KWK</th>
<th>Festbiomasse-KWK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>1%</td>
<td>1,3%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>80%</td>
<td>90%</td>
<td>80%</td>
<td>80%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Tabelle 12-12: Techno-ökonomische Parameter der Gaskessel (Einzelobjekte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Mikro-Gas-BHKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>100</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>2%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>3%</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Elektrokessel

Tabelle 12-13: Techno-ökonomische Parameter der Elektrokessel (Wärmenetzelemente)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Gas-GuD-KWK</th>
<th>Festbiomasse-KWK</th>
<th>Gasmotor-BHKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>1,5%</td>
<td>1,5%</td>
<td>1,0%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>
Tabelle 12-14: Techno-ökonomische Parameter der elektrischen Wärmeerzeugung in der Industrie

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Elektrokessel</th>
<th>Großwärmepumpen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>1,5%</td>
<td>0,8%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Tabelle 12-15: Techno-ökonomische Parameter der Elektrokessel (Einzelobjekte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Luft-Wasser-WP</th>
<th>Sole-Wasser-WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0,5%</td>
<td>0,8%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Wärmepumpen

Tabelle 12-16: Techno-ökonomische Parameter der Großwärmepumpen (Wärmenetzsysteme und Industrie)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Groβwärmpumpen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>660 / 590 / 560 / 530</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0,4%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>1,8 / 1,7 / 1,7 / 1,6</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>25</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
</tr>
<tr>
<td>Arbeitszahl, max (COP)</td>
<td>%</td>
<td>3,6 / 3,8 / 3,95 / 4,1</td>
</tr>
</tbody>
</table>

Tabelle 12-17: Techno-ökonomische Parameter der Gebäudewärmepumpen (Einzelobjekte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Groβwärmpumpen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>1004 / 908 / 811 / 715</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>3%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (th)</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>3%</td>
</tr>
<tr>
<td>Arbeitszahl, max (COP)</td>
<td>%</td>
<td>4,4 / 4,6 / 4,7 / 4,9</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Solarthermie

Tabelle 12-18: Techno-ökonomische Parameter der Solarthermie

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Solarthermie Groβanlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (th)</td>
<td>344 / 310 / 283 / 260</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>2%</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>30</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Techno-ökonomische Parameter der Wärmespeicher

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Kleine Wärmenetze</th>
<th>Große Wärmenetze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten Speicher</td>
<td>€/kW (th)</td>
<td>11 / 10 / 10 / 9</td>
<td>10 / 9 / 8 / 8</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0,7%</td>
<td>0,7%</td>
</tr>
<tr>
<td>Lebensdauer Speicher</td>
<td>a</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Wärmespeicher (Industrie)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Festbiomasse-KWK</th>
<th>Elektrokessel</th>
<th>Großwärmeppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten Speicher</td>
<td>€/kW (th)</td>
<td>43 / 40 / 37 / 34</td>
<td>43 / 40 / 37 / 34</td>
<td>33 / 31 / 29 / 27</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0,7%</td>
<td>0,7%</td>
<td>0,7%</td>
</tr>
<tr>
<td>Lebensdauer Speicher</td>
<td>a</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der Wärmespeicher (Einzelobjekte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Mikro-Gas-BHKW</th>
<th>Wärme-</th>
<th>Gasdruckregelanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten Speicher</td>
<td>€/kW (th)</td>
<td>24/22/21/19</td>
<td>40/37/35/32</td>
<td>11/10/10/9</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>0,7%</td>
<td>0,7%</td>
<td>0,7%</td>
</tr>
<tr>
<td>Lebensdauer Speicher</td>
<td>a</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter der erneuerbaren Stromerzeugungsanlagen

Tabelle 12-22: Techno-ökonomische Parameter der solaren Stromerzeugung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>CSP Kraftwerksblock</th>
<th>CSP Wärme-</th>
<th>CSP Solar-</th>
<th>Photovoltaik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>980</td>
<td>38 / 38 / 29 / 19</td>
<td>399/399/320/192</td>
<td>903/717/593/518</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>2,5%</td>
<td>2%</td>
<td>1,7% / 1,7% / 1,9% / 2%</td>
<td></td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2,22</td>
<td>25</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>5%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>37%</td>
<td>95%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>95%</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Anlaufzeit</td>
<td>%/5min</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>98%</td>
</tr>
<tr>
<td>Gesicherte Leistung</td>
<td>%</td>
<td>90%</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Speichergröße</td>
<td>h</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 12-23: Techno-ökonomische Parameter der Windanlagen und Wasserkraftwerke

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Speicherwasserkraft</th>
<th>Laufwasserkraft</th>
<th>Wind auf See</th>
<th>Wind an Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>-</td>
<td>4000</td>
<td>2550 / 2250 / 1900 / 1800 / 1368 / 1300 / 1236 / 1173</td>
<td></td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>-</td>
<td>2,5%</td>
<td>1,7% / 1,7% / 3,0% / 2,5% / 1,9% / 2,0% / 2,3% / 2,2%</td>
<td></td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>3</td>
<td>0</td>
<td>0,02 / 0,01</td>
<td></td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>60</td>
<td>60</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5%</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>90%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>95%</td>
<td>100%</td>
<td>94% / 98%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 12-24: Techno-ökonomische Parameter der Biomassekraftwerke

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Biomasse (fest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>2241 / 2203 / 2176 / 2149</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>5%</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>1</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>Wirkungsgrad (Nennlast)</td>
<td>%</td>
<td>29% / 30% / 30% / 31%</td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Techno-ökonomische Parameter konventionelle Kraftwerke

Tabelle 12-25: Techno-ökonomische Parameter konventioneller Kraftwerke

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>GuD</th>
<th>Gasturbinen</th>
<th>Steinkohle</th>
<th>Braunkohle</th>
<th>Kernkraft</th>
<th>Ölturbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten</td>
<td>€/kW (el)</td>
<td>850</td>
<td>437</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fixe Betriebskosten</td>
<td>% InvKosten</td>
<td>4%</td>
<td>4%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variable Betriebskosten</td>
<td>€/MWh (el)</td>
<td>2</td>
<td>1,1</td>
<td>1,8</td>
<td>2,4</td>
<td>4,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Laständerungskosten</td>
<td>€/MW (el)</td>
<td>1,71</td>
<td>0,19</td>
<td>2,42</td>
<td>4,24</td>
<td>2,35</td>
<td>0,19</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>a</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Zinssatz</td>
<td>%</td>
<td>5,2%</td>
<td>5,2%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>%</td>
<td>60% / 62% / 44% / 46% / 47% / 47%</td>
<td>47%</td>
<td>50,1%</td>
<td>63%</td>
<td>46,5%</td>
<td></td>
</tr>
<tr>
<td>Anlagenverfügbarkeit</td>
<td>%</td>
<td>96%</td>
<td>95%</td>
<td>90%</td>
<td>91%</td>
<td>94%</td>
<td>95%</td>
</tr>
</tbody>
</table>
12.8 Anhang 8: Annahmen zu Bestandsanlagen Strom, Wärme, Gas

Tabelle 12-26: Installierte EE-Leistungen in MW

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>Laufwasser</th>
<th>PV</th>
<th>Wind auf See</th>
<th>Wind an Land</th>
<th>Speichерwasser</th>
<th>Biomasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>852</td>
<td>6174</td>
<td>0</td>
<td>5492</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Bayern</td>
<td>1857</td>
<td>7515</td>
<td>0</td>
<td>8964</td>
<td>444</td>
<td>0</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>37</td>
<td>7493</td>
<td>0</td>
<td>6296</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Bremen_Niedersachsen</td>
<td>79</td>
<td>6383</td>
<td>3912</td>
<td>6470</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hamburg</td>
<td>0</td>
<td>755</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>4</td>
<td>1823</td>
<td>1395</td>
<td>3352</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>192</td>
<td>9708</td>
<td>0</td>
<td>3151</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen</td>
<td>332</td>
<td>6623</td>
<td>0</td>
<td>4907</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>6</td>
<td>2088</td>
<td>1693</td>
<td>4084</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>286</td>
<td>5650</td>
<td>0</td>
<td>4783</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Österreich</td>
<td>3726</td>
<td>2000</td>
<td>0</td>
<td>3880</td>
<td>3050</td>
<td>630</td>
</tr>
<tr>
<td>Belgien_Luxemburg</td>
<td>83</td>
<td>4170</td>
<td>877</td>
<td>4171</td>
<td>13</td>
<td>1710</td>
</tr>
<tr>
<td>Tschechien</td>
<td>96</td>
<td>2560</td>
<td>0</td>
<td>580</td>
<td>264</td>
<td>900</td>
</tr>
<tr>
<td>Dänemark-Ost</td>
<td>0</td>
<td>638</td>
<td>630</td>
<td>1057</td>
<td>0</td>
<td>1841</td>
</tr>
<tr>
<td>Dänemark-West</td>
<td>0</td>
<td>202</td>
<td>946</td>
<td>3407</td>
<td>0</td>
<td>1841</td>
</tr>
<tr>
<td>Frankreich</td>
<td>6097</td>
<td>8440</td>
<td>0</td>
<td>13900</td>
<td>11647</td>
<td>1400</td>
</tr>
<tr>
<td>Italien</td>
<td>2662</td>
<td>24190</td>
<td>0</td>
<td>13400</td>
<td>1966</td>
<td>7240</td>
</tr>
<tr>
<td>Niederlande</td>
<td>0</td>
<td>5100</td>
<td>1118</td>
<td>5820</td>
<td>0</td>
<td>5030</td>
</tr>
<tr>
<td>Norwegen</td>
<td>4668</td>
<td>0</td>
<td>0</td>
<td>2080</td>
<td>28212</td>
<td>0</td>
</tr>
<tr>
<td>Polen</td>
<td>24</td>
<td>500</td>
<td>0</td>
<td>6450</td>
<td>326</td>
<td>7184</td>
</tr>
<tr>
<td>Schweden</td>
<td>2047</td>
<td>0</td>
<td>224</td>
<td>7616</td>
<td>13183</td>
<td>4790</td>
</tr>
<tr>
<td>Schweiz</td>
<td>5161</td>
<td>1750</td>
<td>0</td>
<td>120</td>
<td>11730</td>
<td>380</td>
</tr>
</tbody>
</table>

Tabelle 12-27: Installierte Pumpspeicherkraftwerke

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>1876</td>
<td>1898</td>
<td>2074</td>
<td>2188</td>
<td>10,967</td>
<td>11,102</td>
<td>12,131</td>
<td>12,795</td>
</tr>
<tr>
<td>Bayern</td>
<td>394</td>
<td>398</td>
<td>435</td>
<td>459</td>
<td>2,304</td>
<td>2,332</td>
<td>2,548</td>
<td>2,687</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>80</td>
<td>80</td>
<td>88</td>
<td>93</td>
<td>0,468</td>
<td>0,473</td>
<td>0,517</td>
<td>0,545</td>
</tr>
<tr>
<td>Bremen-Niedersachsen</td>
<td>220</td>
<td>222</td>
<td>243</td>
<td>256</td>
<td>1,286</td>
<td>1,302</td>
<td>1,422</td>
<td>1,5</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>315</td>
<td>318</td>
<td>348</td>
<td>367</td>
<td>1,842</td>
<td>1,865</td>
<td>2,037</td>
<td>2,149</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen</td>
<td>787</td>
<td>796</td>
<td>870</td>
<td>918</td>
<td>4,602</td>
<td>4,658</td>
<td>5,09</td>
<td>5,368</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>120</td>
<td>121</td>
<td>132</td>
<td>140</td>
<td>0,702</td>
<td>0,71</td>
<td>0,776</td>
<td>0,818</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>2694</td>
<td>2726</td>
<td>2979</td>
<td>3142</td>
<td>15,75</td>
<td>15,944</td>
<td>17,422</td>
<td>18,375</td>
</tr>
<tr>
<td>Österreich</td>
<td>4236</td>
<td>5086</td>
<td>5937</td>
<td>6788</td>
<td>62,716</td>
<td>75,312</td>
<td>87,908</td>
<td>100,504</td>
</tr>
<tr>
<td>Belgien_Luxemburg</td>
<td>2604</td>
<td>2604</td>
<td>2604</td>
<td>2604</td>
<td>11,062</td>
<td>11,062</td>
<td>11,062</td>
<td>11,062</td>
</tr>
<tr>
<td>Tschechien</td>
<td>1168</td>
<td>1167</td>
<td>1167</td>
<td>1167</td>
<td>5,986</td>
<td>5,987</td>
<td>5,987</td>
<td>5,987</td>
</tr>
<tr>
<td>Frankreich</td>
<td>6147</td>
<td>6583</td>
<td>7020</td>
<td>8488</td>
<td>38,486</td>
<td>41,221</td>
<td>43,956</td>
<td>53,142</td>
</tr>
<tr>
<td>Italien</td>
<td>7940</td>
<td>9380</td>
<td>10820</td>
<td>12261</td>
<td>80,551</td>
<td>95,162</td>
<td>109,774</td>
<td>124,385</td>
</tr>
<tr>
<td>Norwegen</td>
<td>1093</td>
<td>4374</td>
<td>7655</td>
<td>10936</td>
<td>387,341</td>
<td>1550,072</td>
<td>2712,804</td>
<td>3875,535</td>
</tr>
<tr>
<td>Polen</td>
<td>1800</td>
<td>1923</td>
<td>2047</td>
<td>2397</td>
<td>7,681</td>
<td>8,209</td>
<td>8,737</td>
<td>10,229</td>
</tr>
<tr>
<td>Schweden</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>835,39</td>
<td>835,39</td>
<td>835,39</td>
<td>835,39</td>
</tr>
</tbody>
</table>

Seite 193
Tabelle 12-28: Installierte Geothermieanlagen in MW (el)

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>143</td>
<td>255</td>
<td>343</td>
</tr>
<tr>
<td>Bayern</td>
<td>186</td>
<td>332</td>
<td>447</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>100</td>
<td>178</td>
<td>240</td>
</tr>
<tr>
<td>Bremen-Niedersachsen</td>
<td>146</td>
<td>261</td>
<td>351</td>
</tr>
<tr>
<td>Hamburg</td>
<td>4</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>100</td>
<td>179</td>
<td>240</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>117</td>
<td>209</td>
<td>281</td>
</tr>
<tr>
<td>Saarland_RheinlPfalz_Hessen</td>
<td>88</td>
<td>159</td>
<td>214</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>38</td>
<td>67</td>
<td>90</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>77</td>
<td>138</td>
<td>184</td>
</tr>
</tbody>
</table>

Tabelle 12-29: Installierte konventionelle Kraftwerke in MW (el) (1)

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>GuD</th>
<th>Gasturbinen</th>
<th>Ölturbinen</th>
<th>Steinkohle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020</td>
<td>2030</td>
<td>2020</td>
<td>2030</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>142</td>
<td>71</td>
<td>111</td>
<td>56</td>
</tr>
<tr>
<td>Bayern</td>
<td>47</td>
<td>24</td>
<td>1604</td>
<td>802</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>98</td>
<td>50</td>
<td>667</td>
<td>333</td>
</tr>
<tr>
<td>Bremen-Niedersachsen</td>
<td>127</td>
<td>64</td>
<td>951</td>
<td>476</td>
</tr>
<tr>
<td>Hamburg</td>
<td>16</td>
<td>0</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>62</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>196</td>
<td>98</td>
<td>968</td>
<td>484</td>
</tr>
<tr>
<td>Saarland_RheinlPfalz_Hessen</td>
<td>56</td>
<td>28</td>
<td>175</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>0</td>
<td>0</td>
<td>504</td>
<td>252</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Österreich</td>
<td>5119</td>
<td>2560</td>
<td>0</td>
<td>196</td>
</tr>
<tr>
<td>Belgien_Luxemburg</td>
<td>4944</td>
<td>2473</td>
<td>831</td>
<td>415</td>
</tr>
<tr>
<td>Tschechien</td>
<td>1288</td>
<td>644</td>
<td>322</td>
<td>161</td>
</tr>
<tr>
<td>Dänemark-Ost</td>
<td>661</td>
<td>330</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dänemark-West</td>
<td>1111</td>
<td>556</td>
<td>0</td>
<td>461</td>
</tr>
<tr>
<td>Frankreich</td>
<td>5627</td>
<td>2814</td>
<td>1324</td>
<td>662</td>
</tr>
<tr>
<td>Italien</td>
<td>28999</td>
<td>14499</td>
<td>6214</td>
<td>3107</td>
</tr>
<tr>
<td>Niederlande</td>
<td>10090</td>
<td>5045</td>
<td>1682</td>
<td>841</td>
</tr>
<tr>
<td>Norwegen</td>
<td>283</td>
<td>142</td>
<td>142</td>
<td>71</td>
</tr>
<tr>
<td>Polen</td>
<td>1529</td>
<td>764</td>
<td>382</td>
<td>191</td>
</tr>
<tr>
<td>Schweden</td>
<td>0</td>
<td>0</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle 12-30:

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>Kernkraft 2020</th>
<th>Kernkraft 2030</th>
<th>Kernkraft 2040</th>
<th>Kernkraft 2050</th>
<th>Braunkohle 2020</th>
<th>Braunkohle 2030</th>
<th>Braunkohle 2040</th>
<th>Biomasse (fest) 2020</th>
<th>Biomasse (fest) 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bayern</td>
<td>3885</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>761</td>
<td>182</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bremen-Niedersachsen</td>
<td>1992</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>413</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hamburg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13648</td>
<td>3267</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>1042</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>137</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Österreich</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>990</td>
<td>990</td>
<td>0</td>
<td>630</td>
<td>315</td>
</tr>
<tr>
<td>Belgien_Luxemburg</td>
<td>5060</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3290</td>
<td>3290</td>
<td>0</td>
<td>1710</td>
<td>855</td>
</tr>
<tr>
<td>Tschechien</td>
<td>4000</td>
<td>1880</td>
<td>1880</td>
<td>1880</td>
<td>6908</td>
<td>4424</td>
<td>2400</td>
<td>900</td>
<td>450</td>
</tr>
<tr>
<td>Dänemark-Ost</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1841</td>
</tr>
<tr>
<td>Dänemark-West</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1841</td>
</tr>
<tr>
<td>Frankreich</td>
<td>63020</td>
<td>37646</td>
<td>36800</td>
<td>14400</td>
<td>5500</td>
<td>5400</td>
<td>0</td>
<td>1400</td>
<td>700</td>
</tr>
<tr>
<td>Italien</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11350</td>
<td>10160</td>
<td>0</td>
<td>7240</td>
<td>3620</td>
</tr>
<tr>
<td>Niederlande</td>
<td>482</td>
<td>482</td>
<td>0</td>
<td>0</td>
<td>5230</td>
<td>5080</td>
<td>0</td>
<td>5030</td>
<td>2515</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7184</td>
<td>3592</td>
</tr>
<tr>
<td>Polen</td>
<td>0</td>
<td>0</td>
<td>1600</td>
<td>1600</td>
<td>18326</td>
<td>16431</td>
<td>4000</td>
<td>4790</td>
<td>2395</td>
</tr>
<tr>
<td>Schweden</td>
<td>7031</td>
<td>7142</td>
<td>4800</td>
<td>0</td>
<td>1020</td>
<td>0</td>
<td>0</td>
<td>380</td>
<td>190</td>
</tr>
<tr>
<td>Schweiz</td>
<td>2845</td>
<td>1145</td>
<td>0</td>
<td>0</td>
<td>520</td>
<td>520</td>
<td>0</td>
<td>630</td>
<td>315</td>
</tr>
</tbody>
</table>

Tabelle 12-31:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>519</td>
<td>269</td>
<td>602</td>
<td>1947</td>
<td>152</td>
<td>875</td>
<td>16</td>
<td>0</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Bayern</td>
<td>533</td>
<td>379</td>
<td>109</td>
<td>1592</td>
<td>214</td>
<td>875</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh</td>
<td>562</td>
<td>170</td>
<td>103</td>
<td>402</td>
<td>96</td>
<td>265</td>
<td>0</td>
<td>148</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Bremen-Niedersachsen</td>
<td>431</td>
<td>256</td>
<td>46</td>
<td>1055</td>
<td>145</td>
<td>427</td>
<td>241</td>
<td>0</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Hamburg</td>
<td>106</td>
<td>26</td>
<td>55</td>
<td>186</td>
<td>14</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>188</td>
<td>36</td>
<td>65</td>
<td>231</td>
<td>20</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>913</td>
<td>377</td>
<td>518</td>
<td>1015</td>
<td>213</td>
<td>962</td>
<td>93</td>
<td>58</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen</td>
<td>533</td>
<td>256</td>
<td>417</td>
<td>1495</td>
<td>145</td>
<td>591</td>
<td>108</td>
<td>0</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>209</td>
<td>83</td>
<td>45</td>
<td>517</td>
<td>47</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Thüringen_Sachsen</td>
<td>855</td>
<td>275</td>
<td>338</td>
<td>481</td>
<td>155</td>
<td>334</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Seite 195
<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankreich__Italien</td>
<td>4,35</td>
<td>4,35</td>
</tr>
<tr>
<td>Italien__Schweiz</td>
<td>6,24</td>
<td>6,24</td>
</tr>
<tr>
<td>Baden-Württemberg__Bayern</td>
<td>4,8</td>
<td>8,8</td>
</tr>
<tr>
<td>Baden-Württemberg__Saarland_RheinPfalz_Hessen</td>
<td>4,1</td>
<td>7,1</td>
</tr>
<tr>
<td>Baden-Württemberg__Österreich</td>
<td>1,7</td>
<td>2,7</td>
</tr>
<tr>
<td>Baden-Württemberg__Frankreich</td>
<td>1,9</td>
<td>3,7</td>
</tr>
<tr>
<td>Baden-Württemberg__Schweiz</td>
<td>4,7</td>
<td>4,7</td>
</tr>
<tr>
<td>Bayern__Saarland_RheinPfalz_Hessen</td>
<td>2,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Bayern__Thüringen_Sachsen</td>
<td>4,752</td>
<td>5,752</td>
</tr>
<tr>
<td>Bayern__Österreich</td>
<td>3,3</td>
<td>4,8</td>
</tr>
<tr>
<td>Bayern__Tschechien</td>
<td>1,25</td>
<td>1,3</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh__Mecklenburg-Vorpommern</td>
<td>5,2</td>
<td>5,2</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh__Thüringen_Sachsen</td>
<td>8,24</td>
<td>9,24</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh__Polen</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Bremen-Niedersachsen__Berlin_Brandenb_SachsenAnh</td>
<td>2389</td>
<td>3389</td>
</tr>
<tr>
<td>Bremen-Niedersachsen__Nordrhein-Westfalen</td>
<td>3,2</td>
<td>5,2</td>
</tr>
<tr>
<td>Bremen-Niedersachsen__Schleswig-Holstein</td>
<td>4,6</td>
<td>5,6</td>
</tr>
<tr>
<td>Bremen-Niedersachsen__Niederlande</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Hamburg__Bremen-Niedersachsen</td>
<td>3,966</td>
<td>3,966</td>
</tr>
<tr>
<td>Hamburg__Schleswig-Holstein</td>
<td>1,792</td>
<td>1,792</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern__Schleswig-Holstein</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Nordrhein-Westfalen__Belgien_Luxemburg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nordrhein-Westfalen__Niederlande</td>
<td>1,95</td>
<td>2,5</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen__Bremen-Niedersachsen</td>
<td>5,4</td>
<td>5,4</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen__Nordrhein-Westfalen</td>
<td>9,2</td>
<td>10,2</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen__Thüringen_Sachsen</td>
<td>1272</td>
<td>2272</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen__Belgien_Luxemburg</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>Saarland_RheinPfalz_Hessen__Frankreich</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>Schleswig-Holstein__Dänemark-West</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Thüringen_Sachsen__Tschechien</td>
<td>1,25</td>
<td>1,3</td>
</tr>
<tr>
<td>Thüringen_Sachsen__Polen</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Österreich__Tschechien</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Österreich__Italien</td>
<td>0,555</td>
<td>1,655</td>
</tr>
<tr>
<td>Österreich__Schweiz</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Belgien_Luxemburg__Frankreich</td>
<td>4,68</td>
<td>4,68</td>
</tr>
<tr>
<td>Belgien_Luxemburg__Niederlande</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Tschechien__Polen</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Dänemark-Ost__Schweden</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Frankreich__Belgien_Luxemburg</td>
<td>4,68</td>
<td>4,68</td>
</tr>
<tr>
<td>Frankreich__Schweiz</td>
<td>3,7</td>
<td>3,7</td>
</tr>
<tr>
<td>Norwegen__Schweden</td>
<td>3,995</td>
<td>3,995</td>
</tr>
</tbody>
</table>
Tabelle 12-33: Installierte Gleichstromleitungskapazitäten in GW

<table>
<thead>
<tr>
<th>Modellregionen</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dänemark-West__Niederlande</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Dänemark-West__Norwegen</td>
<td>1,64</td>
<td>1,64</td>
</tr>
<tr>
<td>Dänemark-Ost__Polen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dänemark-West__Schweden</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Frankreich__Italien</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Italien__Schweiz</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Niederlande__Norwegen</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Polen__Schweden</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Nordrhein-Westfalen__Bremen_Niedersachsen</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Nordrhein-Westfalen__Belgien_Luxemburg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schleswig-Holstein__Bayern</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Schleswig-Holstein__Norwegen</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Schleswig-Holstein__Schweden</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern__Dänemark-Ost</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern__Schweden</td>
<td>0</td>
<td>0,7</td>
</tr>
<tr>
<td>Berlin_Brandenb_SachsenAnh__Bayern</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
12.9 **Anhang 9: Ergänzende Ergebnisse REMix**

Abbildung 12-9: Kapazität an Photovoltaik- (links) und Windenergieanlagen (rechts) im Szenario THG95/2050.

Abbildung 12-10: Kapazität Stromnetz THG80/2050 (links) und THG95/2050 (rechts)
Abbildung 12-11: Zubau Stromnetz THG95/2050

Abbildung 12-12: Kostengliederung nach Komponenten für Europa im Szenariovergleich
Abbildung 12-13: Kostengliederung nach Technologien für Europa im Szenariovergleich
12.10 Anhang 10: Ergebnisse der Einzelsystemanalyse (THG95 Szenario, Wärmebereich)

Abbildung 12-14: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im Szenario THG95

Abbildung 12-16: gesamtwirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im Szenario THG95.

Abbildung 12-17: betriebswirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im Szenario THG95.

12.11 Anhang 11: Ergebnisse der Wärmesystemanalyse für eine alternative Region

Abbildung 12-20: gesamtwirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG95-Szenario, Hamburg

Abbildung 12-21: betriebswirtschaftliche Optimierung: cap-to-peak Verhältnis der Wärmeerzeuger im THG95-Szenario, Hamburg

Abbildung 12-22: gesamtwirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG95-Szenario, Hamburg

Abbildung 12-23: betriebswirtschaftliche Optimierung: Volllaststunden der Wärmeerzeuger im THG95-Szenario, Hamburg

Abbildung 12-24: gesamtwirtschaftliche Optimierung: Anteile an der Wärmeversorgung im THG95-Szenario, Hamburg

Abbildung 12-25: betriebswirtschaftliche Optimierung: Anteile an der Wärmeversorgung im THG95-Szenario, Hamburg