
Scientific Software Engineering:
Mining Repositories to gain insights into BACARDI

Lynn von Kurnatowski !, Martin Stoffers!, Martin Weigel2, Michael Meinel!, Yi Wasser2, Kathrin Rack!, and Hauke
Fiedler2

!German Aerospace Center, Simulation and Software Technology, firsLname.lasLname@dlr.de

2German Aerospace Center, Space Operations and Astronaut Training, firsLname.lasLname@dlr.de

Abstract- For Space Situational Awareness, the German
Aerospace Center (DLR) develops the software system "Back
bone Catalogue of Relational Debris Information" (BACARDI),
which allows for keeping track of resident space objects. BAC
ARDI's key features are automated processing services which
produce orbit information and products like collision warnings.
We present how we applied new methods of software analytics
to the BACARDI project.

BACARDI is an example of a complex software system with
large development effort carried out by a team of various spe
cialists. Our goal is to design and implement an efficient soft
ware development process, balancing the explorative character
of a research project and operational requirements (i.e. tailored
from official standards in the aerospace domain). Therefore,
we established a software development process for the project
where we focus on software quality. We applied methods to
structure, communicate, and utilize the diverse skills, knowl
edge, and experience in the team concisely and precisely. After
one year of practical utilization, we analyzed the process based
on the repository data. By analyzing these data, we assess and
prove the effects of the introduced process on the development
of a software, which is used in the aerospace domain.

TABLE OF CONTENTS

1. INTRODUCTION •••••••••••••••••••••••••••••••••••••• 1
2. SOFTWARE ANALYTICS ••••••••••••••••••••••••••••• 2
3. SOFTWARE ENGINEERING PROCESS IN BACARDI 2
4. DATA SET GENERATION ••••••••••••••••••••••••••••• 3
5. METRICS •• 4
6. RESULTS ••• 6
7. DISCUSSION ••• 6
8. CONCLUSION AND FUTURE WORK ••••••••••••••••• 7
ApPENDICES •• 8
A. BACARDI CHANGE PROCESS ••••••••••••••••••••• 8
B. RESULT TABLES ••••••••••••••••••••••••••••••••••••• 9
REFERENCES ••• 10
BIOGRAPHy •• 10

1. INTRODUCTION
Software is an important innovation factor and an essential
component of modem research. Consequently, development
of software is becoming an integral part of research across
all scientific fields. "Based on an internal survey from 2005,
we know that within the German Aerospace Center (DLR)
more than 25% of the personnel costs are spent on software
development." [1]

978-1-7281-2734-7/201$31.00 ©2020 European Union

1

Nevertheless, software development is often treated as simple
tooling to automate tasks. Particularly software properties
which contribute to its sustainability like re-usability, main
tainability, and extensibility are not prioritized or often not
even considered. However, all these properties must be
addressed if software artifacts are to be maintained over a
longer time period. In consequence researchers of all fields
are increasingly faced with software engineering challenges
and have to maintain processes for which they have not been
trained [1].

The "Backbone Catalogue of Relational Debris Information"
(BACARDI) software was initially developed as a demonstra
tor within a DLR project. During this phase the software
was developed without a formal development process in
place. Therefore, some factors like maintainability were not
considered sufficient during development of the prototype.
After the successful development of a prototype, the project
has been continued as a long-term project with the goal of
developing a functional and production-ready software, but
still being a research software with exploratory character.
Consequently, a software engineering process has been de
signed and applied to the BACARDI project to balance the
character of a research project and operational requirements.

After the introduction of this process we recognized a first
pattern that indicates effects of the established process. Fig
ure 1 shows the number of commits from July 2015 to
September 2019. From July 2018 a tuming point can be
identified by an increase in the total number of commits to the
project. However, this is only a first indication. Conclusions
cannot be drawn by this chart alone.

In the following paper we want to analyze and evaluate the
implemented software engineering methods. Thereby we
address the following questions:

1. How consistently was the introduced software engineering
process applied during development?
2. Is the introduced software engineering process resulting in
more interaction between developers?

The remaining paper is structured as follows:

• First, we discuss what represents the term software an
alytics (Sect. 2) and give a broad overview of the BAC
ARDI project including the used software engineering pro
cess (Sect. 3).
• Next we describe the generation of the data set (Sect. 4)
and explain the specific metrics (Sect. 5) used to evaluate the
process.
• In the main part of this paper, we present the results
(Sect. 6) and discuss the research questions in their context
(Sect. 7).
• Finally, we summarize the major findings and indicate

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

35

30

25

20

15

10

October 2016 April July October 2017 April July October 2018 April July October 2019 April July

Figure 1. Number of commits from July 2015 to September 2019

future work directions (Sect. 8).

2. SOFTWARE ANALYTICS
Software development is a highly complex process involving
a wide range of responsibilities and people. In addition the
complexity of the software itself grows over time. To cope
with this different tools are used to support the development
process. During the entire software development process all
these support tools produce several different types of data.
These large amounts of data, which are generated before,
during, and after the development of a software, can be
analyzed.

In the area of software analytics, there is an increasing trend
to utilize and analyze the data generated during the devel
opment process. The goal is to optimize the development
process of software systems. These heterogeneous data can
be used to support development activities more effectively
and help to improve the decision-making process for further
software development and evolution. The Microsoft Research
Asia Group has defined the term software analytics as fol
lowed:

"Software analytics aims to obtain insightful and ac
tionable information from software artifacts that help prac
titioners accomplish tasks related to software development,
systems, and users." [2]

In order to evaluate and further optimize the entire develop
ment process, it is essential to consider the specific data about
a software system, its development process, and participating
developers during the analysis. For this purpose we use
mining of software repositories.

Mining Software Repositories
Repository Mining is the empirical and systematic analysis
of software repositories. Each repository contains a large
amount of different data. The term repository does not
only include source code repositories, but also issue tracker,
commits, merge requests etc. In general, repository mining
means to use a large amount of data which is generated during
software development. This data can be used to improve the
development process of software projects [3].

3. SOFTWARE ENGINEERING PROCESS IN
BACARDI

BACARDI is a large-scale Python-based software platform
to register and track resident space objects like space debris
and satellites. It is a joint effort of DLR's Simulation and
Software Technology institute and the German Space Opera
tion Center (GSOC) [4]. The system supports different rep-

2

resentations of orbital objects like two-line elements (TLE),
osculating orbits, or ephemerides. Thus, it allows for keeping
track of objects from different sources with the aim to com
pile a database with highest completeness of known objects
with accurate and precise orbit information orbiting Earth.
BACARDI achieves this by processing data from external
databases as well as sensor networks all around the globe.
Especially the Small Aperture Robotic Telescope Network
(SMARTnet™) [5] provides tracking data from a network
of ground-based telescopes operated by DLR, Astronomical
Institute of the University of Bern (AIDB), and L3Harris
(formerly known as Applied Defence Solution).

As mentioned in the introduction, the new project focus
required a change of software development and software
engineering strategies used in the BACARDI project. To
establish a new software engineering process DLR's Software
Engineering Guideline [6] was applied. Addressing all topics
in software engineering the guideline points out important
aspects for each topic. By diving software into three classes
these aspects are prioritized. Since BACARDI is a software
with long-term support and will be used in operational envi
ronment it is categorized as a class 2 software. According
to the guideline, this requires structured requirement man
agement, a maintainable software architecture with focus on
constraints and quality, as well as a defined development
processes, test automation, and rules for design and imple
mentation. BACARDI is a research project, thus the software
engineering process was adapted to avoid a complete cut
down of all research character.

Workjiows, Guides and Definitions
To fulfill the guidelines a set of workflows, guides, and
definitions were attuned within the development team. The
workflows and definitions, which are of interest for the eval
uation of the software engineering process, are introduced in
the following:

Ticket Workflow: The ticket workflow describes how and
where issues are handled within the project. In BACARDI,
the workflow is implemented via the GitLab issue tracker.
Git Workflow: The Git workflow describes how the Version
Control System (VCS) must be used. In addition, it defines
the naming and handling of branches used as baseline and for
feature development.
Definition of Done (DoD): The DoD is the main checklist
when working on new features or reviewing them. The first
half of the DoD supports the main developer of the feature.
The second half supports reviewing a new feature. The DoD
refers to the workflows and guides listed above.

Sprints
To structure the development in BACARDI, we use sprints as
a technique. A sprint marks a short development period with

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

!--..----~-----.-~---1

l J

t t
Common Data Storage

--------~--------,-- -......,
...---_._---,, ,

II
Figure 2. The process of mining software repositories.

a strong focus on previously selected tasks.

A backlog in the issue tracker collects all issues that still need
to be addressed. To identify the amount of tasks that can be
resolved within one sprint each team member chooses issues
which should be treated in the next sprint. Afterwards all
team members value the subjectively perceived complexity
and add a number between I and 8 as comments. Thereby
the number I means low complexity while 8 indicates a very
high complexity. In the following meeting these comments
are used to agree on a single complexity weight. Summing
up all weighted issues, this yields a total sprint complexity
and therefore an estimate of the expected work load. If the
total complexity is within reasonable margins, the team has
successfully defined the next sprint.

Feature development
During an ongoing sprint, team members pick the issues they
want to implement themselves freely. Afterwards, a new
feature branch and a GitLab merge request is directly created
from within the issue (Appendix A). The feature branch is
than checkout locally by the team member. The assigned
developer implements and tests the feature in iterative steps,
while adding new code to the VCS. By pushing commits to
the feature branch onto the server a continuous integration
system (CI) is carrying out automated tests with coverage,
code analyses and builds of code and documentation.

By finishing the work, the developer goes through the first
part of the DoD checklist to ensure that all applicable tasks
were carried out. Afterwards a reviewer is assigned to
the merge request, who than checks the second half of the
DoD. This includes without limitation, to review the new
code against code guidelines, to ensure that new tests are
sufficient, that all documentation is available and the new
code is correct. Comments to the current merge are directly
annotated to the merge request and discussed and resolved in
place. Once the reviewer considers all discussion as resolved
the merge request is approved and assigned to the original
developer. Only after a successful review the new feature
can be merged into the main development branch. Once the
merge was finished the related issue is closed.

3

4. DATA SET GENERATION
As mentioned in Section 2, we extract the relevant data by
using Repository Mining. As shown in Figure 2, we first
identify relevant information in these individual repositories
and extract the data from them. Since the information about
relations between the different repositories, in context of this
work, is at least as important as the entities themselves, we
selected the Ne04p graph database.

We selected a graph database since relational databases are
not suitable for every application purpose and every type of
data. Nowadays, data often cannot be integrated into the
classical grid of relational databases [7]. Graph databases uti
lizes a different data representation than relational databases.
Entities of the same kind are identified by the same label
and can be considered a class of objects. Instances of these
labels are representing the nodes of the graph. Attributes
can be annotated to labels and are commonly referred to as
properties, hence the name "property graph". In contrast to
relational databases, properties in graph databases are not
limited to a certain data type. To model relationships between
labels the graphs edges are used. In graph databases these
edges are called relations. Relations are conceptual similar
to foreign keys in relational databases. But in contrast to
foreign keys, relations are named and can carry additional
information, such a weight.

Implementation
The repository of our interest is managed by a single GitLab
instance, thus the data was retrieved from its Application
Interface (API) [8]. To map the retrieved data to labels,
properties and relations, we developed the software Git
Lab2Graph [9]. Gitlab2Graph reads the GitLab id of the
project to be analyzed as well as connection parameters for
GitLab and Ne04j from a configuration file.

To automate the transformation process, the software utilizes
the packages "python-gitlab"[lO] and "py2neo"[1l]. The
first package manages the connection to the selected GitLab
instance and provides access to the GitLab API by defining
models for all available data structures. The second package
manages the connection to the Ne04j database and provides
methods to interact with it. In addition, it implements an
Object Graph Mapper (OGM) to model labels including their
properties and relations as Python classes. As shown in
Figure 3 for an issue entity, both models and the connections
to the databases are handled within a "Pipeline" class. This
class is derived for each label to separate the processes of
requesting data from the GitLab, transforming it and writing
the finalized data to the graph database.

Graph Database Model
To ensure that a wide range of metrics can be applied to
the resulting graph we decided to map ahnost all attributes
of retrieved entities to corresponding properties at the labels.
A shortened example of defined labels, with their important
properties, is listed in Table 1.

The GitLab API utilizes the internal database identifiers of
retrieved entities to refer to other related entities. To generate
the graph representation, the corresponding label in the graph
database is queried by the identifier. If the label does not
exists in the graph, an empty new label with the identifier is
created. Finally the defined relationship between both labels
is established. The meta graph in Figure 4 shows that all

2https://neo4j.com

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

labels shown in Table 1maintain relationships to other labels.

Table 1. Labels with important properties

Figure 3. Classes involved creating an Issue label

\V \V
Pipeline IssuePipeline

+ _config: ConfigParser r:r- + gitlabjssues: list

+ gitlab_api: Gitlab + issue_labels: list

+ graph: Graph

+ request_dataO:

+ transform_dataO:

+ commit_dataO:

Label Property Type Unique
User id int yes

name string
useruame string yes

Milestone id int yes
iid int yes
state string
due_date date
start-date date

Note id int yes
Issue id int yes

iid int yes
weight int

MergeRequest id int yes
iid int yes
state string
work_in_progress bool
merge_status string
approved bool
created_at date
merged_at date

Commit id int yes
shorLid string yes

Merge Requests
As mentioned in Section 3, feature development should fol
Iowa defined process. This includes both development and
review. In order to analyze how the feature development
process has been accepted, we use the Cypher query shown
in Listing 1.

As a first step, the query checks if the general number of
merge requests has changed due to the introduction of the
process. To do this, the Merge Requests that were created
in a specific time period are counted. In the next step, it is
checked if the process was followed as described in Section
3. For this the relationships between merge requests and users
is analyzed. If the process has been applied correctly, the
following relationships must exist between merge request and
user:

MATCH (n:MergeRequest)
WITH*
WHERE

'2018-01-01' <= n.created_at <=
'2018-03-31'

WITH*

Besides these relationships, the status of the merge request
must also be verified. Since no developer is allowed to review
his own code, the user which created the merge request must
differ from the user who approves and reviews the merge.
Since each new feature needs to be defined in an issue to a
new feature, we verify that each merge request is related to
an issue. Finally, we test if the merge request was correctly
closed during the sprint to which it was assigned. Therefore,
the date on which the merge request was merged must be less
than or equal to the due date of the milestone.

• CREATED-BY
• IS-ASSIGNED
• WAS-ASSIGNED
• APPROVED_BY
• MERGED-BY

5. METRICS
As mentioned in Section 4, the graph database Ne04j was
used to store the data needed for the following analysis.
To apply these methods on the data set, we use the query
language Cypher developed by Ne04p. The analysis methods
use the relationships between labels to reconstruct the organi
zation and dynamics of the complex system. The whole graph
is used as input.

By using graph queries, we analyze how the software en
gineering process is applied during development and if the
introduced software engineering process results in more inter
action between developers. In doing this, we focus on Merge
Requests and the Issue Tracker as data artifacts.

The software engineering process was introduced at the be
ginning of the 3rd quarter 2018. To make a more meaningful
statement about the software engineering process, we start
to analyze the data artifacts half a year prior (0110112018).
For the period 0110112018 to 06/3112019 we consider the data
quarterly.

,,,,,,.
' "'\0,,,,,,

IssueLabel (Py2Neo)

+ weight: int

+ id: int

+ iid: int

,,,,.'-------------------------\,,,

Issue (Gitlab)

+ description: string

+ iid: int

+ title: string

+ weight: int

3https://neo4j.com/developer/cypher-basics-i/

4

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

!t

Figure 4. Meta model of the Graph Database

WHERE
((n)-[:IS_ASSIGNED]->(:User)) and
((n)-[:APPROVED_BY]->(:User)) and
((n)-[:WAS_ASSIGNED]->(:User)) and
((n) - [:MERGED_BY] -> (:User)) and
((n) - [: CREATED_BY] -> (: User))

WITH*
WHERE

n.approved = true and n.state = 'merged'
WITH*
MATCH (u1:User)<-[:CREATED_BY]-(n)-[:

APPROVED_BY]-> (u2:User)
WHERE

u1.name <> u2.name
WITH*
MATCH (n)-[:IS_RELATED]->(:Issue)
WITH*
MATCH (n)-[:HAS_MILESTONE]->(m:Milestone)
WHERE

n.merged_at <= m.due_date
RETURN count(*)

Listing 1. Cypher query to verify that the feature
development process has been followed

Issues
The process described in Section 3 explains that the BAC
ARDI team uses the GitLab issue tracker. With the Cypher
query in Listing 2, we verify that the issue tracker is used as
described earlier. In a first step, we monitor if the general
number of issues has changed as a result of the introduction
of the GitLab issue tracker. To do this, we count the issues
that were created in a specific time period. In the next step,
we check that every issue is annotated with a weight. To
accomplish that, we check that the property weight of the
issue is not null.

MATCH (n:Issue)
WHERE

'2018-01-01' <= n.created_at <=
'2018-03-31'

5

WITH*
WHERE

n.weight IS NOT NULL
RETURN count (*)

Listing 2. Cypher query to check if the feature
development process has been followed

Interaction
The development team does not only works together across
different departments and institutes, but also across several
locations, thus the software engineering process should also
support interactions within the team. Therefore, we analyze
in which way the use of issue tracker and reviews supports
the interaction within the team. To achieve this, we count the
number of notes that have a relationship to a merge request or
to an issue using the queries shown in Listing 3 and 4.

MATCH (n:MergeRequest)-[:HAS_NOTE]->(o:Note)
WHERE

'2018-01-01' <= n.created_at <=
'2018-03-31'

RETURN count (0)

Listing 3. Cypher query to count the number of notes
that have a relationship to a merge request

MATCH (n:Issue)-[:HAS_NOTE]->(o:Note)
WHERE

'2018-01-01' <= n.created_at <=
'2018-03-31'

RETURN count (0)

Listing 4. Cypher query to count the number of notes
that have a relationship to a issue

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

~ 10

U

:1

• Total number of merge request

• Process-conform & different authors

• Related issues
• Closed at milestone

II.~~II.I
Figure 5. Results Merge Request

- Number of note'S ith reJCltion tOCln issues

- Number of notes ith relation to a merge reque~

800

600
c
"8

400

200

Date

• Total number of issues

• Weighted issues

Date

Figure 6. Results Issue Tracker

6. RESULTS
As mentioned in the introduction, we want to evaluate the
acceptance of the software engineering process. So we first
reviewed the feature development process and the use of the
issue tracker through the metrics described in Section 5. The
precise data points of the results are listed in Appendix B.

Merge Requests
Figure 5 provides an overview of the results for each query
sent to verify if the feature development process was applied.
There is a considerable trend that the total number of merge
requests rose with the introduction of the software engineer
ing process. The same behavior can be seen in the other
metrics. The number of process-conform merge requests,
merge requests assigned to an issue, and merge requests
closed before the due date of the sprint rose with the launch of
the software engineering process to the end of the year 2018.
Before introduction of the software engineering process in
the second quarter no merge requests are closed before the
due date of the sprint.

Since the introduction of the software engineering process,
the total number of merge requests converges with the num
bers of the other metrics. However, an conspicuous trend is
noticeable in the 1st quarter of 2019. The number of merge
requests closed before the due date of the milestone has fallen
within a quarter. In the following quarter the number of merge
requests closed before the due date of the sprint converges to
the total number of merge requests but not as much as the
other metrics.

Issue Tracker
The bar chart shown in Figure 6 provides an overview of our
metric concerning the usage of the Issue Tracker. The total
number of issues and the number of weighted issues strongly
increased with the introduction of the software engineering

6

Figure 7. Results Communication

process. After the introduction, from the 3rd to the 4th
quarter 2018, a decrease of both results is visible. Starting
with the introduction of the software engineering process up
to the end of the year 2018, the lines of both results are
almost symmetrical. From the beginning of the year 2019,
the difference between both metrics converges.

Interaction
The bar chart shown in Figure 7 provides an overview about
the results of reviewing the interaction in the team. It is
visible, that the interaction with issues grows rapidly with the
introduction of the software engineering process. The number
of notes in the issues doubled during the 3rd quarter 2019. A
major peak is visible. In the following quarter the number of
notes in the issues is more than halved. Interaction with the
issues is reduced during the same time span. The interaction
during merge requests increases slightly at the beginning of
the process introduction and then stabilizes. Starting in the
2nd quarter 2019, it is obvious that the amount of interactions
with issues and merge requests change in a contrary way.

7. DISCUSSION
In the following Section, we discuss the results in context of
the research questions from Section 1.

Continuous compliance of the software engineering process
With the introduction of the software engineering process the
total number of merge requests and issues showed a strong in
crease. At the beginning of the 3rd quarter, when the process
was first applied, a noticeable difference between the total
number of merge requests and merge requests with a process
conform approval could be observed. This may be linked to
a team which is still unfamiliar with the process. Supporting
this assumption, there was a great difference between the total
number of issues and weighted issues. From the 4th quarter
on, a tendency can be recognized that the team gets more
familiar with the previously introduced process. This can be
noticed by the decreasing difference between the number of
issues and weighted issues. The declined difference between
the number of merge requests and process-conform merges
supports the assumption, too.

However, it should be pointed out that despite a sprint plan
ning, the number of merge requests closed within a sprint
does not equal out with the number of process-conform merge
requests. Therefore it is still below the desired value. This
indicates that the scope of these issues is to broad for a sprint.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Additionally we conclude that the issues were not realistically
weighted within the planning phase.

As mentioned before, after introduction of the software engi
neering process the total number of issues increased consid
erably. The following decline of the total number of issues
indicates that after the introduction of the process the issues
are predominantly closed.

As described in Section 3 issues are only weighted during
the sprint planning. Thus, a difference between weighted
issues and the overall number of issues will always remain.
However, the difference between these two numbers gets
progressively smaller, since issues already weighted during
sprint planning are often not included in the sprint and instead
moved into the backlog.

Interaction between developers
With introduction of software engineering process the num
ber of notes added to issues has doubled. This suggests that
the team first had to familiarize with the newly introduced
methods and workflows. Hence, the process was not im
mediately adopted. There was much need for clarification
and discussion. In the 4th quarter, the extreme decline of
interaction in the issues indicates that the team responded
positively to the introduced software engineering process.
The following marginal decline might be an indication that
the concept of sprint planning is positively accepted by the
team. Presumably, most of the uncertainties are clarified dur
ing the sprint planning, thus fewer discussions occur during
work on the issues.

In contrast to the number of interactions within the issues, the
number of interactions during the merge requests increased
only slightly at start of the software engineering process.
This leads to the conclusion that at this point in time the
team's main focus was on the familiarization with the process
and the building of an infrastructure. Thus work on many
issues was neglected. This explains the stagnating quantity
of merge requests in the 3rd and 4th quarter 2018. In the 4th
quarter 2018, the number of interactions during the merge
requests slightly increased and slowly evens out. Therefore,
we assume that the software engineering process was fully
adopted at this point. In the 2nd quarter 2019 the quantity
of interactions in the issues and during the merge requests
change in a contrary way. This circumstance, in respect
to the declining total number of issues, is an indicator that
the process was followed by the team. Issues are constantly
processed and the thereby generated code is reviewed.

In order to provide stronger statements on the overall find
ings, the data needs to be examined over a longer time period.
Nevertheless, it can be noted that there is a clear tendency
that the process is applied in a proper way. However, external
influences on the results cannot be completely excluded.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to use repository
mining to analyze the effects of an recently applied and
well-defined software engineering process. We applied our
approach to an long-running, research oriented software de
velopment project. In the interpretation of the results we
clearly see effects of the introduced process. Especially,
indications that developers needed to familiarize with the new
processes and that the process was adopted in the long run
were found. As an immediate outcome for the development

7

team we can say that the sprint needs further optimizations
to cope with the problem of tasks being moved into the
next sprint. We also showed that it is possible to extract
information from multiple repositories about how accurate
parts of a process were executed by the team. This was only
possible due to a strict process definition and the advanced
use of tooling. Especially the GitLab ecosystem provided a
good base to easily cross-reference different artifacts.

In future research we want to further analyze the type of
notes extracted from the repository. This should lead to better
insight on the type of interactions between the developers and
how code reviews were carried out. Consequently, we want to
approve or disprove our assumptions on the communication
between developers.

As there are lot of other projects available in our DLR-wide
GitLab, we also want to apply this approach to other projects.
This requires to adapt the queries for each implemented
development process. However, the process we use in the
BACARDI project is tailored from the general DLR software
guideline and uses general available tools. Thus we are
confident to find projects with similar development processes.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

ApPENDICES

A. BACARDI CHANGE PROCESS
: -~';;-l-'; ~-ri-:- -----------:
: Run local tesLS :
: commit to ves :

I

: (Ment;on issue 10) :

L--------------I~--

prepare work:
update from vcs
checkout feature branch

---------------------------1
: Resolved when: :
:. 000 chec k1; st OK I
I I

I· code Rev; ew OK I

: successful :

:----~~:~~:a:~~~-~~~2~I----J

Merge

Figure 8. Change process in BACARDI

8

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

B. RESULT TABLES
Table 2. Results Merge Request

Metric 01/01118- 04/01118- 07/01118- 10/01118- 01/01119- 04/01119-
03/31118 06/31118 09/31118 21/31118 03/31119 06/31119

Total merge requests 6 9 17 17 13 15
Process conform 0 6 10 12 11 13
Different authors 0 6 10 12 11 13
Related issues 0 5 9 12 10 13
Closed at milestone 0 0 6 12 6 8

Table 3. Results Issue Tracker

Metric 01/01118- 04/01118- 07/01118- 10/01118- 01/01119- 04/01119-
03/31118 06/31118 09/31118 21/31118 03/31119 06/31119

Number of issues 32 31 66 33 26 11
Issue weighted 10 17 54 27 21 10
Average weighting 3.4 3.5 3.5 2.6 3.2 3.2

Table 4. Results Communication

Metric 01/01118- 04/01118- 07/01118- 10/01118- 01/01119- 04/01119-
03/31118 06/31118 09/31118 21/31118 03/31119 06/31119

Number of notes 111 134 250 280 224 262
with relation to a
merge request
Number of notes 437 413 925 340 276 123
with relation to an is-
sue

9

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

Hauke Fiedler received his Diploma
degree in General Physics at the
Ludwig-Maximilians- Universitat in MUnchen,
his Doctoral Degree in Astrophysics at
the Ludwig-Maximilians- Universitat in
MUnchen, and his Master degree in
Space System Engineering at TU Delft.
At present, he is with DLRs German
Space Operation Center (GSOC), lead-
ing the Space Situational Awareness

Team, and project leader ofBACARDI

Dr. Kathrin Rack (nee MUller) stud
ied theoretical physics at University of
DUsseldorf In 2011 she graduated (M.
Sc.) and continued her study in com
putational biophysics at Forschungszen
trum JUlich. As a member of IHRS
BioSoft she received her doctoral de
gree in 2014 from the University of
Cologne. Since 2015 she supports the
Simulation and Software Technology de

partment (section High Performance Computing) of German
Aerospace Centre.

Martin Stoffers received his M.S. in
Computer Science from Leipzig Uni
versity in 2017. He joined the Ger
man Aerospace Center's (DLR) Simu
lation and Software Technology divi
sion the same year, where he works
on software engineering and provenance
recording within the BACARDI project.
In late 2017, he joined the the software
engineering group to support software

projects ofdifferent DLR institutes and train scientists at DLR
with focus on practical software engineering and sustainable
software.

Michael Meinel joined the German
Aerospace Center's (DLR) Simulation
and Software Technology division for
his study of information technology at
the university of cooperative education
Mannheim in 2004. After receiving his
diploma in 2007, he worked at various
DLR institutes at different sites for sev
eral years. During that time he got
in touch with many different research

fields. In 2012, he moved to DLR 's Berlin site where he joined
the software engineering group. Besides supporting software
projects ofdifferent DLR institutes, he is the lead developer of
F2X-a versatile, template-based Fortran wrapper written in
Python. He is currently acquiring his M.Sc. in IT Security by
distant learning.

BIOGRAPHY

REFERENCES
[1] T. Schlauch, C. Haupt, M. Meinel, and A. Schreiber,

"Analytics and insights about cultivating a software
engineering community at dlr," in 2019 IEEE Aerospace
Conference, ser. IEEE Aerospace Conference
Proceedings, June 2019, pp. 1-12. [Online]. Available:
https://elib.dlr.de/124846/

[2] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and
T. Xie, "Software analytics in practice," Software, IEEE,
vol. 30, pp. 30-37, 09 2013.

[3] A. E. Hassan, "The road ahead for mining software
repositories," in 2008 Frontiers of Software Mainte
nance,Sep.2008,pp.48-57.

[4] M. Stoffers, M. Meinel, M. Weigel, M. Siggel,
H. Fiedler, K. Rack, and Y. Wasser, "Bacardi: A
system to track space debris," in ESA NEO and
DEBRIS DETECTION CONFERENCE - EXPLOITING
SYNERGIES -, February 2019. [Online]. Available:
https://elib.dlr.de/126572/

[5] H. Fied.ler, J. Herzog, M. Prohaska, T. Schildknecht, and
M. WeIgel, "SMARTnet(TM) - Status and Statistics."
International Astronautical Congress 2017 (lAC), 2017.

[6] T. Schlauch, M. Meinel, and C. Haupt, "DLR Software
Engineering Guidelines," Aug. 2018. [Online].
Available: https://doi.org/1O.52811zenodo.1344612

[7] G. Jaiswal, "Comparative analysis of relational and
graph databases," vol. 03, no. 8, pp. 25-27, 2013.

[8] GitLab Inc., "API Docs Git-
lab," Oct. 2019. [Online]. Available:
https://docs.gitlab.com/ee/api/README.html

[9] M. Stoffers, "Gitlab2Graph," Oct. 2019. [Online].
Available: https://doi.org/1O.52811zenodo.3469386

[10] G. Pocentek, "python-gitlab," Aug. 2019. [Online].
J\vailable: https://github.comJpython-gitlab/python-
gltlab

[11] N. Small, "py2neo," May 2019. [Online]. Available:
https://github.com/technige/py2neo

Lynn von Kurnatowski received her
M.Sc. in Computer Science from
Friedrich-Alexander- University Erlangen
Nuernberg. She graduated with her
Master's thesis in collaboration with the
German Aerospace Center (DLR) and
since 2018, she is a scientific researcher
at the Intelligent and Distributed Sys
tems group of DLR Institute Simula
tion and Software Technology. She now

works in the field of empirical and systematical analysis of
software repositories with the long-term goal to optimize the
general development process ofsoftware systems.

10

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on September 02,2020 at 14:24:49 UTC from IEEE Xplore. Restrictions apply.

