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Abstract
This paper combines the nonlinear Udwadia-Kalaba control approach with the
AssumedModeMethod to model flexible structures and derives an attitude controller
for a spacecraft. The study case of this paper is a satellite with four flexible cantilever
beams attached to a rigid central hub. Two main topics are covered in this paper. The
first one is the formulation of the equation of motion and the second one is the non-
linear controller design. The combination of these two techniques is able to provide a
controller that damps the vibration of a flexible structure while achieving the desired
rigid-motion state.

Keywords Attitude control · Non-linear control · Flexible satellites ·
Active damping · Udwadia-Kalaba

Introduction

Historically the flexibility of most satellites has not posed a major difficulty. This
is because most of the flexible structures deployed so far have natural frequencies
considerably higher than external disturbances and control actuation. Examples of
cases where large structures have been modeled as rigid bodies can be found in [16]
and [23]. In [15] and [3], even though rigid dynamics are used, the potential influence
of the coupling between natural frequencies and external or internal disturbances is
pointed out. This coupling is studied for two particular controllers over a large solar
sail in [18]. Studies on how to model the deformation of large structures in space are
also conducted in [4, 7, 22, 25].

� Jose Luis Redondo Gutiérrez
Jose.RedondoGutierrez@dlr.de

Ansgar Heidecker
Ansgar.Heidecker@dlr.de

1 German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s40295-020-00234-z&domain=pdf
http://orcid.org/0000-0002-0037-2299
http://orcid.org/0000-0002-7483-9074
mailto: Jose.RedondoGutierrez@dlr.de
mailto: Ansgar.Heidecker@dlr.de


The Journal of the Astronautical Sciences

In contrast to the historic perspective the interest of space industry in flexible
structures has considerably increased during the last decades. See e.g. recent plane-
tary society mission LightSail-2 [13] or DLR mission Tandem-L [11]. The current
development in this area is driven by two main factors [24]: the miniaturization of
satellites [1, 12, 14] and technological advances in related key areas, such as ultra-
light deployable booms or sail films [2]. The main advantages of these structures are
their low launching volume, as they are deployed once in orbit, and the low mass
in relation to the final size of the structure. Examples of applications of this kind of
technology are solar sailing [19], active deorbiting of debris [17] and solar power
generation [9]. Such lightweight structures triggered the development of controllers
with specific performance bounds [26] and fixed maneuver times [5]. Additionally,
flexibility in combination with liquid propellant is becoming more and more relevant
[6, 8].

This paper demonstrates a controller design methodology which takes into account
the complex nonlinear motion of a flexible satellite. The chosen study case consists
of a rigid body with four flexible cantilever beams attached to it, see Fig. 1.

The objective is to develop a controller able to fulfill attitude commands and to
damp the structural flexibility by applying forces and torques to the central body
only. The paper is therefore organized as follows. Section “Equation of Motion
Modeling” explains how the general equation of motion is formulated. The equations
of motion are formulated by combining the Lagrange equation with the Assumed
Modes Method (AMM). The AMM is utilized to convert the continuous variables,
e.g. deformation of a beam, to a set of discrete variables, e.g. deformation of the beam
in each eigenmode. Section “Model Implementation” particularizes the equations of
Section “Equation of Motion Modeling” for the case of study.

Section “Control Approach” introduces the Udwadia-Kalaba [21] control
approach, which uses the complete system model to compute the control command.
It allows targeting with the controller all variables included in the description of the
system, e.g. deformation of a beam in a particular eigenmode, and more complex
variables that can be derived from those, e.g. potential energy due to deformation of
several beams. Although the UK approach assumes full state knowledge and control,
we demonstrate the possibility of reduced state control within the controller imple-
mentation in Section “Control Implementation”. Section “Controllers’ Performance”

Fig. 1 Study case: Satellite with four flexible cantilever beams
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aims to study the performance of different controller designs. Finally, a conclusion
sums up the results and provides some outlook to further studies.

Equation of MotionModeling

The Udwadia-Kalaba control approach requires a model of the dynamics of the sys-
tem. In this case, an analytical model of the equation of motion for the flexible
satellites is built. The modeling approach used is based on the Lagrange equation in
combination with the AMM, as described in [10, ch. 4.3.1]. This method is capa-
ble of generating meaningful models while maintaining a low order, which makes it
suitable for control purposes.

Starting with the Lagrangian L = T − V , where T is the kinetic energy and V

the potential energy, the generic equation of motion is expressed as shown in Eq. 1.
Term q is the vector of generalized coordinates and Q represents all non conserva-
tive forces. Carrying out the derivation and distinguishing between the internal and
external non conservative forces leads to the expression in the right where the internal
non-conservative forces are expressed with the Rayleigh dissipation function D.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q ⇒ d

dt

(
∂T
∂q̇

)
− ∂T

∂q
+ ∂V

∂q
+ ∂D

∂q̇
= Qext (1)

The expression for the kinetic energy (T), potential (V) and dissipation energy (D)
can be expressed as

T = 1

2
q̇T Mq̇ V = 1

2
qT Kq D = 1

2
q̇T F q̇ (2)

The term M states for the mass matrix, K for the spring constant matrix and F for
the matrix of damping coefficients. These three matrices are square and have N × N

terms, being N the length of the coordinates vector (q). These expressions allow
performing directly the partial derivatives in Eq. 1 and arrive at the equation of motion
(3), where Ω is the angular rate between inertial and body fixed reference frames.
This expression fully describes the equation of motion and is used throughout the rest
of this study.

dx
dt A

= dx
dt B

+ΩBA×x

⇒ d
dt

(
∂T
∂q̇

)
=Mq̈+Ṁq̇+Ω×(Mq̇)︷ ︸︸ ︷

Mq̈ + Ṁq̇ + Ω × (Mq̇) −

∂T
∂q︷ ︸︸ ︷

1

2
q̇T ∂M

∂q
q̇ +

∂V
∂q︷︸︸︷

Kq +
∂D
∂q̇︷︸︸︷

F q̇ = Q

(3)

Having the equations of motion at hand the task is to find real valued expression
for the matrices M, K and F . Therefore the Assumed Mode Methods (AMM) [10,
ch. 4.3.1] is used. The AMM provides an approach to approximate the differential
equation model of a continuous system and therefore its flexibility. To do this the
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deformation variable u is represented by a linear combination of time t dependent
functions τ and space s dependent functions φ.

u(s, t) =
N∑

k=1

τk(t)φk(s) (4)

The subindex k identifies the mode, being N the total number of modes considered.
Each shape function φk describes a distribution of the deformation along the boom.
The appropriate selection of these shape functions is one of the critical steps of this
method. The terms τk contain the weights of each of these shape functions throughout
time.

The considered study case accounts only for the bending (no torsion) of the (can-
tilever) beams that are part of the structure (see Fig. 1). The resulting number of
coordinates for each boom is equal to the number of modes considered multiplied by
the two orthogonal directions in which a beam can bend.

Combining Eqs. 3 with 4 allows integrating the flexibility into the equations of
motion. The procedure to do this consists of the following steps

1. Describing the system and the system variables q to be taken into account.
2. Finding the expressions for the kinetic energy T , the potential V and the

dissipation energy D as a function of those variables.
3. Redefining the continuous variables into sets of discrete variables using the

AMM, assuming a suitable set of shape functions φk(s) can be found.
4. Finding matrices M , K and F .
5. Computing terms in Eq. 3.

Model Implementation

As previously mentioned, the study case consists of a satellite with four relatively
long flexible cantilever beams, see Fig. 1. Here index I denotes the inertial reference
frame and index c the body fixed reference frame (attached to the central part of the
satellite). The mass properties, boom length etc. are given in Table 1.

Table 1 Structural properties

Symbol Property Value Symbol Property Value

()c Central part ()bi Beams

mc Mass 50 kg L Length 10 m

Ic Moment of inertia Iu*2.083 kgm2 EI Bending stiffness 1320 N/m

dim Dimension 0.53 m3 ρ Linear density 0.25 kg/m

kd Damping coeff. 0
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The state variables p to be studied are related to the rigid motion of the central hub
of the satellite (r , v, θ , ω) and to the flexible motion of each beam w.r.t. the central
hub (u, u̇).

p = [
r θ u1 u2 u3 u4

]T
ṗ = [

v ω u̇1 u̇2 u̇3 u̇4
]T (5)

The next step is deriving expressions for the kinetic T , potential V and dissipation
energy D as a function of p and ṗ. The total kinetic energy is the sum of the central
part Tc and each beam Tbi (see Eq. 6). Here vbi is the velocity at each point of the
boom w.r.t. to the inertial reference frame, s is the longitudinal coordinate along the
booms, index i denotes the boom and d the position of the point w.r.t. the body-fixed
reference frame.

T = Tc +
4∑

i=1

Tbi = 1

2
ωT Icω + 1

2
mcv

2 +
4∑

i=1

∫ L

0

1

2
ρv2bids

vbi = v + ω × di + u̇ (6)

Combining the previous expressions, the kinetic energy can be expressed as

T = 1

2
ωT Icω + 1

2
mcv

T v + 2mbv
T v + 1

2
ρ

4∑
i=1

∫ L

0

(
−vT [di×]ω

+2vT u̇ − 2u̇T [di×]ω + u̇T u̇ + ωT [di×]T [di×]ω
)

ds (7)

With respect to potential and dissipation energy, only the terms related to the boom
deformation are considered. The derivation of these equations (see expression (8))
can be found in [10].

V = 1

2

4∑
i=1

∫ L

0
EI

(
∂2u

∂s2

)2

ds D = 1

2

4∑
i=1

∫ L

0
kd

(
∂2u̇

∂s2

)2

ds (8)

It can be observed that the expressions derived for T , V and D contain continuous
deformation variables u, which are dependent of time and space. In order to be able
to define the matrices M, K and F (defined in Eq. 2), these variables need to be
expressed as a sum of discrete coordinate. By utilizing the AMM space and time are
decoupled and the integrals can be solved in the space domain beforehand.

u(s, t) =
∑

k

τk(t)φk(s) →
∫

u(s, t)ds =
∑

k

τk(t)

∫
φk(s)ds (9)

As only bending deformations are considered and the section of the boom is assumed
isotropic, only one set of shape functions φk is needed. These shape functions,
taken from [10], describe the bending deformation of a cantilever beam and are
expressed as

φk(s) = 1 − cos

(
kπs

L

)
+ 1

2
(−1)k+1

(
kπs

L

)2

(10)

where k refers to the mode. The shape functions linked to the first five modes can be
seen in Fig. 2. The decision to show the first five modes is purely due to visualization
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Fig. 2 Shape functions φk(s) of the first 5 modes

purposes. In this figure s is the normalized distance from the central part of the satel-
lite to the boom tip. Utilizing the AMM, the state vector p can be redefined into q to
become space independent.

q = [
r θ τ1,x,1 ... τi,j,k ... τ4,z,N

]T
i ∈ {1, 2, 3, 4} beam index

q̇ = [
v ω τ̇1,x,1 ... τ̇i,j,k ... τ̇4,z,N

]T
j ∈ {x, y, z} coordinate
k ∈ {1, ..., N} mode number

(11)

Based on this redefinition the final expressions for the matrices M , K and F can
be assembled. Due to their considerable extension they are shown in Appendix I, in
Eqs. 30 to 32.

The last open point is to find the remaining terms of the equation of motion (3).
This includes Ṁq̇, Ω × (Mq̇), 1

2 q̇
T ∂M

∂q
q̇ and Q. The derivation of Ṁ is straight-

forward, as the only time-dependent variable appearing in M is related to the
deformation of the beams in each mode.

The non-zero components of term Ω × (Mq̇), which address the relative rotation
between inertial and body-fixed reference frames, are:1

Ω × (Mq̇)(1 : 3) = ω × (M(1 : 3, 1 : 3)v)

Ω × (Mq̇)(4 : 6) = ω × (M(4 : 6, 4 : 6)ω)
(12)

The term 1
2 q̇

T ∂M
∂q

q̇ is more complex. In order to simplify its combination in the final

expressions and avoid including tensors in the implementation, the term 1
2 q̇

T ∂M
∂q

is
computed as a matrix. The resulting expressions are included in the Appendix I. The
final step is to obtain the vector of generalized forces Q from the real forces that are
applied to the system. This is done by calculating the virtual work that the real forces
would perform as a function of the generalized coordinates q, as:

δWnc =
∑

i

Qiδqi (13)

Equation 13 can be extended as δW = Fiδri + T0δθ0, where F is force, T torque
and 0 to 4 are the indices for the central hub and the four beam tips. The position is
identified by r and the Euler angles by θ . The control input is limited to F0 and T0.

1Here a MATLAB® style notation is used to identify the relevant rows and columns of a matrix M .
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This finishes the definition of all terms in Eq. 3 such that a mathematical model for
the flexible satellite in Fig. 1 is available. For further development the satellite system
model itself was implemented in MATLAB® and validated against a classical FEM
model.

Control Approach

We utilize the non-linear controller design approach proposed by Udwadia et al. in
[21] and transfer it to our problem. The main principle of this control method is
to formulate a constrained dynamic system, which follows the Gauss Principle of
Least Constraint. The dynamic system itself consists of the plant dynamics, modeling
constraints and all controller enforced constraints e.g. trajectory requirements. By
applying the nowadays called Udwadia-Kalaba (UK) equation of motion [20, 27] the
constraint force, which is equivalent to the control force, is directly visible and can be
implemented within a classical control framework. In general this approach requires
full state observability.

The following section summarizes briefly the non-linear control approach
described in [21]. It starts with the generic equation of motion of a mechanical
system. In the absence of constraints its equation of motion can be formulated as

Mq̈ = Q ⇒ q̈ = M−1Q = a (14)

Here M is a positive definite mass matrix, q̈ is the generalized acceleration a (the
double time derivative of the state vector q) and Q the sum of all internal and exter-
nal forces. Whenever there are arising additional constrains this generic equation of
motion has to be rewritten by adding a constraint force component Qc to Eq. 15.

Mq̈ = Q + Qc (15)

The open problem is now to find a valid formulation for Qc such that all constraints
can be addressed and Eq. 14 holds. Such an expression is given in [21] by

Qc = −Ke K = M1/2
[
AM−1/2

]+
e = Aa − b (16)

where K can be interpreted as a feedback gain and term e as an error signal. Follow-
ing this interpretation the force Qc in Eq. 16 is the control force for the uncontrolled
plant in Eq. 14.

From the control designer perspective we would like the plant in Eq. 14 to follow
a specific guidance trajectory. This is interpreted within the UK framework as an
additional constraint of one of the two forms

φi(q, t) = 0 ψi(q, q̇, t) = 0 (17)

When a guidance is existing as holonomic (φ) or as nonholonomic (ψ) expression it
can be differentiated once or twice w.r.t. time to obtain the relation

A(q, q̇, t)q̈ = b(q, q̇, t) (18)

which gives the remaining terms A and b in the control force of Eq. 16.
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Table 2 Equivalences of constrained and controlled systems [21]

Constrained system Controlled system Equation

Unconstrained system ↔ Uncontrolled plant Eq. 14

Constrained system ↔ Controlled system Eq. 15

Constraints ↔ Trajectory requirements Eq. 18

Gauss principle ↔ Control cost Eq. 20 and 21

Constraint force ↔ Control force Eq. 16

In a real world system it is often hard to directly apply trajectory constraints of
the form Eq. 17. They require that the state variable q is already contained in the
described manifold. Therefore, it is more suitable to generalize the constraints to

φ̈ + Σφ̇ + Γ φ = 0 ψ̇ + Λψ = 0 (19)

which ensures that over time the trajectory can converge but does not require that
it matches exactly right from the beginning. The variables Σ, Γ and Λ are constant
tuning parameters, which describe the desired convergence rates.

When this equation of motion formulation is followed cost function J is automat-
ically minimized at each instant of time.

J (t) = Qc(q, q̇, t)T M−1(q, t) Qc(q, q̇, t) (20)

This cost function is representing the constraint (control) force which is selected by
nature for any constrained motion. It is also possible to generalize the cost function,
which gives some freedom for the control designer.

J (t) = Qc(q, q̇, t)T N(q, t) Qc(q, q̇, t) (21)

The use of this different “mass” matrix N means that the resulting controller is not
“equivalent” to Nature’s. The matrix N needs to be chosen carefully, as it has a great
impact in the performance of the controller and can even limit the coordinates over
which an actuation can be exerted. According to [21] the closed form solution of the
control gain in Eq. 16 changes with the usage of this new weighting matrix N to.

K = N−1/2A+
N AN = AM−1N−1/2 (22)

A summary of the different ways in which the parallelism between constrained and
controlled systems can be noticed is presented in Table 2.

Control Implementation

The general nonlinear control law is given by the control force Qc, which is a
combination of Eqs. 16 and 22.

Qc = −N−1/2
[
AM−1N−1/2

]+
(Aa − b) (23)
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For our problem Qc represents the forces and torques that are acting on the structure
of the satellite. The following paragraphs identify all terms inside (23) and explain
what they are used for.

Unconstrained System ↔ Uncontrolled Plant - a Here we extract from the general
equation of motion (3) the unconstrained equation of motion (14) to identify the
acceleration a. This acceleration term is defined by the physics of the problem and
can not be adjusted by the control designer.

a = q̈ = M+Q = M+
(

−Ṁq̇ − R + 1

2
q̇T ∂M

∂q
q̇ − Kq − F q̇

)
(24)

Constraints ↔ Trajectory Requirements - A , b The first desired control target is to
drive the angular rate towards a constant guidance value ωg . This is a nonholonomic
constraint of the same form as Eq. 17, where ω is equal to q̇. To express this con-
straint within the UK framework we need its first derivative and make use of Eq. 19,
which allows a convergence toward the desired angular rate. The constraint equation
is therefore:

ψω(q, q̇, t) = 0 ⇒ ω − ωg = 0 ⇒ ω̇ + Λω(ω − ωg) = 0. (25)

Another constraint targets the time derivative of the boom deformations u̇. The idea is
to bring all motion within the booms down to zero, which is a holonomic constraint.
Based on the AMM, this constraint can be rewritten for each mode and boom. The
generalized coordinate is q̇ equals τ̇ . By taking its 1st derivative w.r.t. time in order
to allow for some convergence we end up with expression (26). Such a formulation
allows formulating requirements for each single boom and each single mode. It is
even possible to control only a individual mode motion of a single boom.

φτ (q̇, t) = 0 ⇒ u̇ = 0 ⇒ τ̇ φ = 0 ⇒ τ̈ + Στ τ̇ = 0 (26)

The third constrain formulation addresses a general vibration damping by minimizing
the dissipation energy. This formulation has basically the same effect as the previous
constrain but much simpler to evaluate at run time. To use this formulation we need
to derive it w.r.t. time once again.

ψF (q, q̇, t) = 0 ⇒ q̇T F q̇ = 0 ⇒ 2q̇T F q̈ + ΛF q̇T F q̇ = 0 (27)

Nowwe have all constraint (control goal) equations in place to assemble the matrix
A and vector b of Eq. 18.

A =
⎡
⎣0[3,3] I[3,3] 0[3,n]
0[n,3] 0[n,3] I[n,n]
0[1,3] 0[1,3] 2q̇T F

⎤
⎦ b =

⎡
⎣−Λω(ω − ωg)

−Στ τ̇

−ΛF q̇T F q̇

⎤
⎦ (28)

It should be noted here that the last two constrains are nearly equivalent and it does
not make sense to implement them both at the same time. For the case under study
we used different combinations of the matrices A, and b, where we skipped the rows
depending on the irrelevant trajectory requirements.
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Controller Tuning - N The “modified mass” matrix N represents the cost, see Eq. 21,
of exerting an actuation over each of the generalized coordinates. It allows to tune
the desired controller behavior.

N =
⎡
⎣mT I[3,3] 0 0

0 I−1 0
0 0 1015I[n,n]

⎤
⎦ (29)

The weighting terms related to the forces at the central satellite hub are set equivalent
to the total mass mT . The terms related to the corresponding torques are set to the
inverse moment of inertia I−1. Additional control actuation should not take place.
Therefore, the terms of coordinates linked to the beam deflection are penalized very
strong and set to 1015. This could potentially lead to a badly conditioned matrix N ,
which could give some problems during its inversion. Therefore, this number was
some kind of trial and error to figure out acceptable numerical stability and proper
control force calculation.

Controllers’ Performance

This section demonstrates the potential use of the previously defined controllers over
the structure defined in Table 1. In these initial results, for the sake of simplicity,
only the first flexible mode is considered. Additionally, the decision was made to
limit the control force to 0.01 N and torque to 0.01 Nm (in each axis, exerted in the
central part of the structure). No extensive tuning of the controllers was conducted,
setting ΛF and Λω and Στ to 1. The definition of the external disturbances, torque
and (distributed) force, can be found in Appendix II.

Four different test scenarios are shown in Table 3. The 1st test is conducted in the
absence of a controller and servers as basic reference. The 2nd contains a controller
that focuses on damping the vibration of the booms, the 3rd on controlling the angu-
lar rate and the 4th combines both control objectives. The remaining of this section
contains analyses of this four test scenarios in both time and frequency domains.

Time Domain

Two analyses are conducted, focusing on the response to a force/torque impulse and
to an external disturbances profile. In relation to the response to impulses, two study

Table 3 Controllers implemented

Scenario Objective Constraints

1st None None

2nd Damp vibration Eq. 27

3rd Control angular rate Eq. 25

4th Damp vibration & control angular rate Eqs. 25 and 27
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Fig. 3 Total energy responses to torque and force impulse in the Z-axis

cases are considered: 1) response to an application of a torque of 1Nm for 1s in the
Z-axis and 2) response to an application of a force of 1N for 1s in the Z-axis. The
results, evolution of total energy, are presented in Fig. 3.

For the response to a torque impulse, in the absence of control (1) the energy
remains constant after the impulse (t=5s). Controller 2 reduces the energy by damp-
ing the vibration of the booms but does not reduce the angular rate, leading to a
constant energy. Cases 3 and 4 show the same behavior, both reducing indefinitely
the energy. This means that controller 3 also damps the vibration of the booms, which
is only true when the vibrations are visible in the angular motion.

The response to a force impulse does not result in an angular motion. Therefore,
controller 2, which aims to damp the angular rate, shows the same performance as
no controller (case 0). In this case the energy of the system is related to the velocity
of the structure and the deformations of the booms. Both controller 2 and 4 are able
to damp the vibrations of the booms. The velocity is not among the control variables,
so there is some remaining energy.

After analyzing the response to force/torque impulses, the performance of the dif-
ferent controllers is studied for a force/torque profile of external disturbances. The
profile used can be found in Appendix II. The initial state is given in Table 4.

The evolution of the system is studied for the 4 different cases defined in Table 3.
In order to give an overall idea of the state of the system, the total energy is not
enough. Therefore, the evolution of angular rate, potential energy and dissipation
energy is shown. Figure 4 shows the response for scenarios 1 and 2. It can be observed
that in scenario 1 both V , D and ω increase with time.

Table 4 Case of study setup

Parameter Value [units] Parameter Value [units]

Q0 (0 0 1 0) ω0, r0, v0 (0 0 0)

ωg (0 0 2e-3) [rad] τ0, τ̇0 0
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In scenario 2 the vibration is damped considerably fast after each change in the
external disturbances. The order of magnitude of V and D is at least one order of
magnitude lower than without a controller. The angular rate is not controlled because
the controller is only targeting the boom vibrations.

Scenarios 3 and 4 are shown in Fig. 5. In scenario 3, it can be seen that the con-
troller is able to reach and maintain the desired ω. In the evolution of V and D, it can
be seen that the vibrations in the booms are similar to those appearing in the absence
of control (scenario 1). However, the oscillations in ω are damped as the angular rate
error reduces. Before that reduction the control command surpasses the maximum
actuation capability and the actuator is saturated.

In scenario 4 two periods can be distinguished, before and after the ω error is low
enough for the actuators not to be saturated. In the first period the control command
is cut and most of the damping of the structure is lost. In the second period the
controller is able to both maintain the desired ω and considerably damp the system.

Frequency Domain

The initial state vector is defined in Table 4. The term ωg is set to zero here. Due to
the non-linear character of the system, this analysis was conducted as follows. First
an external disturbance with a particular frequency is defined (e.g. torque around the
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z-axis at 1 Hz). Then the simulation is conducted until the response of the system is
periodic. Finally, the amplitude of the signals for the study variables is measured. An
exemplary output of such an input is shown in Fig. 6 for the angular rate.

The inputs considered are forces and torques in X,Y and Z-axis, applied in the
central part of the satellite. The outputs studied are V ,D and ω. The range of frequen-
cies studied is between 1 and 30 rad/s, which includes the natural frequencies of the
system. For better readability Fig. 6 in Appendix III shows all numerical determined
input-output transfer functions over the frequency grid. The natural frequencies of
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Fig. 6 Evolution of ωy under a torque in y-axis with a frequency of 1.9744 rad/s, Scenario 1
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the system (frequencies where there is a peak in response) are clearly observable,
both w.r.t. external forces and external torques.

The response of ω to a torque in the same axis is similar for the different con-
trollers implemented, particularly around the natural frequencies of the system (≈ 12
rad/s). The controllers are able to reduce the peak response almost one order of mag-
nitude. At lower frequencies control controller 2 has a lower performance, as it only
targets the angular acceleration indirectly as a consequence of damping the system.
Considering the response of V and D to a input torque, the three controllers show
again a similar performance, reducing the peak response by a factor of 40. At low fre-
quencies, the effect of the controller in the potential energy is lower, while the effect
in the dissipation energy is maintained. This is because it is the dissipation energy
the variable targeted by the controllers.

When the input considered is a force, the effect of controller 3 is negligible. The
other control approaches (2 and 4) have similar performances, leading to a peak
reduction of factor 50 in both the potential and dissipation energy. Similarly, to the
case with torques as inputs, at low frequencies the effect of the controller in the
potential is lower, while the effect in the dissipation energy is maintained. It is also
noticeable that the natural frequency of the system is shifted to the left, from 12 to
2.6 rad/s.

Conclusions

This study shows the potential of using the Udwadia-Kalaba control approach in
combination with a method to model flexible structures. This control approach has
two main advantages: 1) it allows implementing multiple complex guidance instruc-
tions and 2) maintains the non-linear dynamics of the system. The method used to
model the structure is based in the Lagrange equation combined with the AMM
(assumed modes method), and provides a trade-off between accuracy and simplicity
of the model. It integrates the flexibility of the structure into its equation of motion,
which can be used directly to derive the controller.

Among the main limitations that are foreseen w.r.t. the use of this control approach
in this kind of structures are: 1) the computational cost of each control step, 2) the
high frequency at which the controller could have to run and 3) the need of estimat-
ing the deformation of the booms. From a modeling perspective, the main difficulty
lays in finding shape functions able to accurately represent the flexible modes of the
structure.

The results show that controllers derived using this approach are able to actively
damp the structure, reducing the dissipation energy and stabilizing the potential of
the structure, while controlling the angular rate.

The directions of future research in this area include, but are not restricted to, the
following:

– Further tuning of the controllers, including constraints and cost function.
– Simplified experimental tests of the control approach.
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– Detailed model verification.
– Study of additional constraints, such as limitations in the torque direction.
– Study of the potential applicability to other structures.
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Nomenclature

Generals

[a×] Cross product matrix a × b = [a×]b
D Rayleigh dissipation energy
F Damping matrix
I[i,i] Square unitary matrix of size i
K Stiffness matrix
L Lagrangian
M Mass matrix
Q Non-conservative force/torque
q Generalized coordinate
q Attitude quaternion
ω Angular rate
r Position
T Kinetic energy
t Time
τ Time dependent deformation function
u Bending deformation of cantilever beam
V Potential energy
v Velocity
Wnc Work of non-conservative forces
ẋ Time derivative of x
φ Position dependent deformation function
θ Angle coordinate such that dθ

dt
= ω

Structure

AMM Assumed modes method
EI Bending stiffness
kd Damping coefficient
I Moment of inertia
L Length of a boom

http://creativecommonshorg/licenses/by/4.0/
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m Mass
n Number of modes
s Distance along the boom from the tip attached to the central part of the satellite
ρ Linear density

Control

A Constraint matrix
a Acceleration of the uncontrolled system
b Constraint vector
J Cost function
N Weighting matrix
Qc Control actuation
Qext External force/torque
φ,ψ Constraint types
Γ,Λ,Σ Constraint coefficients

Appendix

I. Equation of Motion

This appendix contains the complete expression of the terms in the equation of
motion (3).

The mass matrix is described by Eq. 30. Here subindex i refers to the axis, j to
the boom and k to the mode. The term m is the mass of the central part of the satel-
lite (CS) and mb of one boom (B), Iu is an unitary 3x3 matrix, ρ the linear density
of B, L the length of B, [dx] is a matrix containing the cross product by the position
of a point of B (see expressions Eqs. 6 and 7), ds is a differential in the longitudi-
nal axis of B, �i,j is shown in expression (34), and I is the moment of inertia of
CS. The spring constant and damping coefficient matrices are described in Eqs. 31
and 32, respectively. Here EI is the bending stiffness of B and kd the damping
coefficient.

The expressions related to the shape functions φk(s) are shown in Eq. 35, where
δkl is a Kronecker delta. These expressions are used for particularizing the equations
of motion for the shape functions chosen.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(m + 4mb)Iu ρ
∫ L

0

∑[dx]j ds ρ
∫ L

0 �1,1 ρ
∫ L

0 �1,2 ... ρ
∫ L

0 �4,N−1 ρ
∫ L

0 �4,N

−ρ
∫ L

0

∑[dx]j ds I + ρ
∫ L

0 − ∑[dx]2j ds ρ
∫ L

0 [dx]T1 �1,1ds ρ
∫ L

0 [dx]T1 �1,2ds ... ρ
∫ L

0 [dx]T4 �4,N−1ds ρ
∫ L

0 [dx]T4 �4,N ds

ρ
∫ L

0 �1,1 ρ
∫ L

0 �1,1[dx]1ds ρ
∫ L

0 �2
1,1 ρ

∫ L

0 �1,1�1,2 ... 0 0

ρ
∫ L

0 �1,2 ρ
∫ L

0 �1,2[dx]1ds ρ
∫ L

0 �1,1�1,2 ρ
∫ L

0 �2
1,2 ... 0 0

... ... ... ... ... ... ...

ρ
∫ L

0 �4,N−1 ρ
∫ L

0 �4,N−1[dx]4ds 0 0 ... ρ
∫ L

0 �2
4,N−1 ρ

∫ L

0 �4,N−1�4,N

ρ
∫ L

0 �4,N ρ
∫ L

0 �4,N [dx]4ds 0 0 ... ρ
∫ L

0 �4,N−1�4,N ρ
∫ L

0 �2
4,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ... 0 0
0 0 0 0 ... 0 0

0 0
∫ L

0 EI (
∂2�1,1

∂s2
)2ds

∫ L

0 EI
∂2�1,1

∂s2
∂2�1,2

∂s2
ds ... 0 0

0 0
∫ L

0 EI
∂2�1,1

∂s2
∂2�1,2

∂s2
ds

∫ L

0 EI (
∂2�1,2

∂s2
)2ds ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ...
∫ L

0 EI (
∂2�4,N−1

∂s2
)2ds

∫ L

0 EI
∂2�4,N−1

∂s2
∂2�4,N

∂s2
ds

0 0 0 0 ...
∫ L

0 EI
∂2�4,N−1

∂s2
∂2�4,N

∂s2
ds

∫ L

0 EI (
∂2�4,N

∂s2
)2ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ... 0 0
0 0 0 0 ... 0 0

0 0
∫ L

0 kd (
∂2�1,1

∂s2
)2ds

∫ L

0 kd
∂2�1,1

∂s2
∂2�1,2

∂s2
ds ... 0 0

0 0
∫ L

0 kd
∂2�1,1

∂s2
∂2�1,2

∂s2
ds

∫ L

0 kd (
∂2�1,2

∂s2
)2ds ... 0 0

... ... ... ... ... ... ...

0 0 0 0 ...
∫ L

0 kd (
∂2�4,N−1

∂s2
)2ds

∫ L

0 kd
∂2�4,N−1

∂s2
∂2�4,N

∂s2
ds

0 0 0 0 ...
∫ L

0 kd
∂2�4,N−1

∂s2
∂2�4,N

∂s2
ds

∫ L

0 kd (
∂2�4,N

∂s2
)2ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

q̇T (t)
∂M(q, t)

∂q
(a, :) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ρ
∫ L

0
∂

∑[dx]j
∂qijk

ds)ω

(−ρ
∫ L

0
∂

∑[dx]j
∂qijk

ds)v−(ρ
∫ L

0
∂

∑[dx]2j
∂qijk

ds)ω + ∑
lmn((ρ

∫ L

0
∂[dx]Tl
∂qijk

�l,mds)q̇nml)

(ρ
∫ L

0 �1,1
∂[dx]1
∂qijk

ds)ω

(ρ
∫ L

0 �1,2
∂[dx]1
∂qijk

ds)ω

...

(ρ
∫ L

0 �4,N
∂[dx]4
∂qijk

ds)ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

a = 6 + i + 3(k − 1) + 3N(j − 1); i = x, y, z; k = 1...N; j = 1...4; (33)

�j,k =
⎡
⎣φxjk 0 0

0 φyjk 0
0 0 φzjk

⎤
⎦ (34)

∫ L

0
φkds = L

(
1 + 1

6
(−1)k+1(kπ)2

)
;

∫ L

0
sφkds

= L2
(
1

2
+ 1

8
(−1)k+1(kπ)2 − ((−1)k − 1)

1

(kπ)2

)
(35)

∫ L

0
φkφlds = L

(
1 + (−1)k+l

((
k

l

)2

+
(

l

k

)2
)

+ 1

2
δkl + (−1)k+1 k2π2

6

+(−1)l+1 l2π2

6
+ (−1)k+l k

2l2π4

20

)
(36)

∫ L

0
φ′′

k φ′′
l ds =

(
(−1)k+l + 1

2
δkl

)
k2l2π4

L3
; φk(L) = 1 + (−1)k+l

+1

2
(−1)k+l(k2π2); φ′

k(L) = (−1)k+l k
2π2

L
(37)
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II. External Disturbances

Fig. 7 External disturbances distribution
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The external disturbances consist in a distributed force and a torque applied in
the center of the satellite. The force is distributed between the center of the satellite
(50%) and the tip of each boom (12.5%) (see Fig. 7). This distribution is chosen to
model a external pressure such as atmospheric drag or solar pressure.

The evolution of the external disturbances for the study case is defined as shown
in Fig. 8. Here the left diagram shows the torques and the right one the forces applied
to the satellite plant.

Figure 9 shows the control actuation applied in scenario 4, Fig. 5, Section 1. It
can be seen that the force command focuses only on damping the vibration while the
torque command aims also to achieve a certain angular rate ω.

III. Response in the Frequency Domain
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