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Uncertainties of Human Perception in Visual Image
Interpretation in Complex Urban Environments

Nicolas Johannes Kraff

Abstract—Today satellite images are mostly exploited automat-
ically due to advances in image classification methods. Manual
visual image interpretation (MVII), however, still plays a significant
role e.g., to generate training data for machine-learning algorithms
or for validation purposes. In certain urban environments, however,
of e.g., highest densities and structural complexity, textural and
spectral complications in overlapping roof-structures still demand
the human interpreter if one aims to capture individual building
structures. The cognitive perception and real-world experience are
still inevitable. Against these backgrounds, this article aims at
quantifying and interpreting the uncertainties of mapping rooftop
footprints of such areas. We focus on the agreement among in-
terpreters and which aspects of perception and elements of image
interpretation affect mapping. Ten test persons digitized six com-
plex built-up areas. Hereby, we receive quantitative information
about spatial variables of buildings to systematically check the
consistency and congruence of results. An additional questionnaire
reveals qualitative information about obstacles. Generally, we find
large differences among interpreters’ mapping results and a high
consistency of results for the same interpreter. We measure rising
deviations correlate with a rising morphologic complexity. High
degrees of individuality are expressed e.g., in time consumption, in-
situ- or geographic information system (GIS)-precognition whereas
data source mostly influences the mapping procedure. By this
study, we aim to fill a gap as prior research using MVII often
does not implement an uncertainty analysis or quantify mapping
aberrations. We conclude that remote sensing studies should not
only rely unquestioned on MVII for validation; furthermore, data
and methods are needed to suspend uncertainty.

Index Terms—Cognition, earth observation, elements of image
interpretation, level of individual buildings (LoD-1), manual
visual image interpretation (MVII), perception, uncertainty, urban
morphology.
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I. INTRODUCTION

N THE field of geoinformation, “uncertainty” can be un-

derstood as a human “intrinsic” feature that “exists in the
whole process from geographical abstraction, data acquisition,
and geo-processing to the use of data” [1]). Hence, uncertainty
comprises the human perception as well as data source inac-
curacies that influences geographic approaches, and therefore
demands for an assessment.

In times of “big data” and new powerful methodologies for
automatic image classification, the classic manual visual image
interpretation (MVII) seems to become less important. How-
ever, for almost all quantitative performance evaluations, and
especially to unveil the strength of machine learning algorithms,
previous knowledge on spatial and thematic content of the data is
of utmost importance. Unfortunately, this previous knowledge is
often — if it even exists — not consistent, particularly for spatially
highly resolved data and very specific types of land use. We find
this gap specifically in complex urban environments, which are
characterized by multifaceted built-up structures with changing
land uses in very close vicinity. One example is the domain of
“urban poverty mapping,” which experiences increased attention
from various scientific communities. Consistent labels related to
built-up structures characteristic for poor urban areas in image
data are only rarely available e.g., [2]. While from an initial
perspective it seems obvious to visually localize characteristic
slum structures in very high resolution (VHR) optical satellite
images, we observed in previous studies significant challenges in
detailed manual mapping of slums [3]. Therefore, in this article,
we aim at quantifying data resulting from the subjective human
perception. And we test whether perception is consistent among
interpreters within a series of rooftop footprint mapping exper-
iments. The setting is based in very complex urban structures
characterizing poor urban areas, e.g., slums/informal settlements
but also deprived formal areas.

In related studies of slum mapping using high resolution
satellite images, latest image analysis methods from “artificial
intelligence” (Al) have been adopted at very high mapping
accuracies e.g., [4]. However, it is generally accepted in lit-
erature that MVII still offers highest classification accuracies
[2], [5]-[10]. It is often applied for providing geo-information
at a very high level of spatial and thematic detail [e.g., at the
level of individual buildings (LoD-1)], which is an extremely
challenging task in these complex urban landscapes [7]. It is
argued that a human interpreter with professional knowledge is
less susceptible to failures of building delineation, originating
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Fig. 1.

from e.g., homogenous colors and textures due to microstruc-
tures, than automated algorithms [8], [11]. Therefore, the classic
method is still used extensively as reference to assess accuracies
of automated processes e.g., [4], [12] or as labels for training
classifiers [13]. At the same time, it is also argued that MVII is
prone to inconsistent results among various interpreters due to
for instance varying experience [14]. Fig. 1 demonstrates these
challenges for a complex urban setting with roof structures of
spectral and textural similarity in highest density.

Thus, poor urban areas often consist of very complex morpho-
logic conditions and thus are comparatively difficult to map with
regard to other, formal urban structures [10]. An interpreter’s
subjective way how to capture these structures have hardly been
quantified yet. Uncertainty visualization has mainly been put
into focus on an impact on decision making; yet, its application
to constitute uncertain geodata is less explored [15]. Thus,
recent methodologic developments on especially high detailed
delineation and categorization of uncertain complex morpho-
logic appearances of urban poverty e.g., [3], [16] need to be
critically assessed by systematically documenting, quantifying,
and visualizing uncertainties.

In this study, we set up two experiments to objectively analyze
uncertainties in image interpretation: We test the consistency of
and among interpreters. And, we test the influence of different
complexities of urban morphologies on the mapping results.
The research design is based on cross-sectional data: Six dif-
ferent complex urban settings (approximately 17 000 mapped
individual buildings) are mapped by ten interpreters at LoD-1
based on a predefined ontology. Mapping outcomes for each
of the interpreters are evaluated quantitatively based on five
spatial variables. Following the quantitative mapping evaluation,
we develop a structured survey with a questionnaire. It serves
as qualitative analysis of the interpreters’ subjective responses
concerning the image interpretation process. Overall, we aim at
answering the following research questions.
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1) Do we observe uncertainties among the interpreters’ map-
ping of complex urban areas?

2) Is the degree of uncertainty related to the complexity of
the areas” morphologic structure?

3) Which aspects of perception and image interpretation
elements specifically impact the MVII and thus, foster
uncertainties?

The remainder of this article is organized as follows: Section IT
briefly reviews earth observation (EO) classification approaches
followed by the state of the art of uncertainty applications in the
geographical research field of complex urban areas. Addition-
ally, the MVII process with its relevant key issues of perception
is illuminated. Section III introduces the selected study areas
(A), the technical aspects for mapping (B), as well as the
spatial variables for analyzing and comparing digitized results
(C). Furthermore, the questionnaire’s structure (D) is presented.
Section IV comprises the quantitative results among interpreters
as well as the subjective opinions based on the questionnaire. In
Section V, we discuss the results in the methodological context
of EO and complex urban area research. Finally, Section VI
concludes this article with an outlook.

II. STATE OF THE ART

Earth observation data have been largely deployed for map-
ping urban landscapes at various degrees of morphologic com-
plexity. Especially morphologic appearances of poor urban ar-
eas, such as slums, are a severe challenge for image classification
[12]. Contemporary automatic image classification approaches
rely either on optical e.g., [17] or synthetic aperture radar
(SAR) data e.g., [18], using either pixel based e.g., [19] or
object-based-based methods e.g.,[20]. Other classifications rely
e.g., on aggregated grids or streets blocks, e.g., [21], [22].
Recent advancements in Al and processing power allow for
machine learning techniques such as “deep learning” for slum
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identification and delineation e.g., [4], [23], [24]. Most studies
in current literature focus on classifications at district level [2],
yet on single building level (LoD-1), there are only few studies -
e.g.,[16], [25]. MVII still plays a crucial role for the provision of
reliable geodata, but these are currently rarely available, if they
exist at all [10]. In 15 out of 87 related studies on slum mapping,
MVII is still deployed [2]. However, only very few capture
slums at the level of individual buildings, as e.g., [26] explicitly
refer to the single building “object” and its environment. A
morphologic categorization based on LoD-1 data is provided
by [3] and in a follow-up, they describe the change over time
[27]. However, although nowadays images reach resolutions in
centimeter ranges, textural patterns, spectral differences and
clarity of object transitions in complex urban environments
remain challenging. Automated image analysis—even if as pow-
erful as Al—are prone to uncertainties and classification errors,
e.g., small paths between buildings, complex roof structures, or
shadow casts that break the common patterns (cf. Fig. 1).

Due to a limited computerization of the real world, the
knowledge delta between human, machine, and the real world
automatically creates uncertainty. Thus, uncertainty analysis
and -visualization in a geographic context is crucial. It affects
MVII by cognitive entities (perception, memory, and thinking)
as well as source-inaccuracy, -incompleteness, -inconsistency,
and -imprecision [28]-[31]. However, analyses of uncertainty
visualization rather focus on decision making than methods [15].
Thus, only few studies focus on the assessment of human-related
uncertainties in geodata based on a quantitative methodology.
Especially qualified feedback on human perception is mostly
absent. According to [12] who measure significant variations
between delineated slum boundaries among interpreters, vari-
ations of classification results are commonly more conducted
in uncertainty studies of rural areas than in the urban context.
Summarized appropriately [S]: “There are difficulties in con-
trolling quality over time and between interpreters”. And, as
“uncertainty may be of conceptual nature, and associated with
the process of abstraction or generalization about real-world
phenomena” [1], especially uncertainty of the opposed precise
reproduction of LoD-1 built-up environment is difficult to cap-
ture [9], especially for an entire slum.

A. Issues of the Image Interpretation Process

As MVII is generally influenced by subjective perception we
briefly recapitulate established key issues for a better under-
standing of the relevant human-machine interaction. There exist
different ways to design the interpretation process: Following
[32], there is a hierarchical, primary ordering of analysis with
basic elements as tone/color and complex elements as site and
association. According to [33], the key issues of the interpre-
tation process are the criteria of classification (e.g., residential
areas) as well as the minimum mapping unit (MMU) (cp. also
[34]). In comparison, [35] offers a very simplified scheme and
uses recognition and interpretation as key issues that are hardly
separable and affecting each other in an iterative process. This
process is influenced by the interpreter’s experience and precog-
nition that leads to the final interpretation result.
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TABLE I
ORDER, DATE OF RECORD, DIMENSIONS, AND COMPLEXITY OF SELECTED
SUBSETS OF DOCUMENTED COMPLEX URBAN AREAS

Subsets of | Mapping | Morphologic | Complexity Date of Subset’s
selected order classification sensor’s dimensio
urban areas record n (ha)
Agios 1 mixed less 14.03.2008 17
Panteleimonas, neighborhood complex
Athens, Europe
Imbabah, Cairo, 2 slum-like less 29.04.2015 8
Africa morphology complex
Tei Toboc, 3 mixed less 25.06.2005 4
Bucharest, neighborhood complesx
Europe
Santosh Nagar 4 morphologic highly 12.10.2003 2
(Goregaon slum complex
East), Mumbai,
Asia
Kibera, 5 morphologic highly 27.03.2006 6
Nairobi, Africa slum complex
Makoko, 6 morphologic highly 17.01.2015 1
Lagos, Africa slum complex

Based on this, we emphasize the following selected issues as
coherent for this study: Recognition includes the physical and
psychological visual perception, which finds particular appli-
cability in “morphologically complex areas” as the criterion of
classification. Based on an interpreter’s subjective perception, a
“laminar classification” of contrasts, edges, lines, colors, and
brightness is linked to a strong choice of impulses. With it,
equal laminar areas (e.g., densely urban) are merged. Yet, the
interpreter is able to differentiate and extract single elements
out of an area with homogenous textures [35]. In our case these
are LoD-1 buildings as MM U, in high density built-up environ-
ments. Thereby, visual perception offers central advantages as
“tolerance” and “amodal completion” help to identify elements
on the strength of habit and experience where incompleteness
(e.g., treetop covering part of a rooftop) is psychologically
removed [36].

Furthermore, the interpreter’s cognitive perception allows
using visual image interpretation elements such as size, height,
shadows, patterns, etc. [33]. In combination with experience,
this is fundamental to draw vertices correctly and thus delineate
single buildings precisely. Uncertainties might originate during
the procedure of setting vertices as well as from deviations in
results among human interpreters. Hence, an exploration of these
interpretation elements affecting mapping is necessary [37].
Thereby, uncertainties can reveal first steps for later adoptions
for machine learning or for an evaluation when used for valida-
tion purposes.

III. DATA AND METHODOLOGY

A. Selection of Study Sites

We chose six urban areas with a different character of mor-
phological complexity as test sites (Table I). The selection is
based on the following criteria: Each site contains a minimum
of 300 buildings for digitization. Depending on this, we chose
comparable extents resulting in not more than a maximum
dimension of 17 ha. With it, we estimate work duration of
8-12 h as frame for the mapping exercise. Aiming at a high
variety of morphologic appearances, we selected areas from
three continents. The sites are morphologically representative
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TABLE II
DESCRIPTIVE STATISTICS ACROSS ALL AREAS FOR EACH INTERPRETER AND CV AMONG ALL INTERPRETERS
Interpreter

Spatial . Cv
variable Approach 1 2 3 4 5 6 7 8 9 10 mean median | stdv. (%)
I.No. of Jtotalofall 050 |53 | 1203 | 1231|1475 |1437 [1715 |1670 |1461 | 1496 | 1696.50 | 1485.50|470.07 27711
buildings | areas
;'fe“(lﬂi;‘g 86.84 [109.92]72.05 | 13052 |132.05 [122.51 | 10279 | 8561 |140.49 |130.53 [111.33 [11622 |2241 2012

— mean of
3.Building all areas
orientation 40.95 [40.66 |44.63 |46.15 [40.14 |46.01 |4341 |[4621 |4337 |43.04 |4346 [4339 |2.19 504
©)
4.Building rolated to
density 70.62 | 47.49 |5590 [49.23 |[59.67 |[53.94 |[s4.01 [43.54 [6289 |[59.83 5571 5495 |7.55 1355
%) all areas

“subsets” for the entire districts, containing their characteristic
structures, as for instance dense organic structures, complex
alignments, and different types of buildings or open spaces and
organized street networks (Fig. 2).

The sites show a documented variety in structural complexity
[3], (cf. Section II.B) and have been related to poverty in
literature.

B. Technical Aspects for the Mapping Exercise

For the process of digitization, we offered a short guideline
with instructions on the workflow with the building ontology
to all interpreters (Appendix 1). Following the MVII, ten inter-
preters produced a classification based on VHR optical satellite
data (Quickbird, WorldView with a geometric resolution of up to
0.46 m [pan sharpened)]. Every single building is represented by
its rooftop, which is used as proxy information for the buildings’
ground area. Hereby, one polygon consists of at least 4 vertices.
The level of image scale was left as an individual choice to each
interpreter.

The analysis is applied with an equally distributed level of
difficulty where every interpreter starts with three comparatively
simple areas and continuously progresses toward three more
complex ones, as we do not know whether all interpreters
worked with a GIS before. For this reason, we also handed
out a digitization guideline (cf. Appendix 1). In this vein, we
continuously progress the level of difficulty, similarly to the
funnel questioning, that we also used in the questionnaire (cf.
Section III.D), in order to avoid an early loss of concentration.
We set difficulty and complexity in relation and define a high
complexity of an area being equivalent to a high number of
buildings and high densities, an uneven size distribution and
irregular orientations of buildings (cf. Table I). Thereby, we
rely on the analysis done by [3], who classify these complex
morphologies, ranging from “morphologic slum” to “structured
neighborhood”. Thus, we evaluate the complexity of an area as
“highly complex”, if the classification is close to the category
“morphologic slum” and define complexity “less complex” for
mixed and structured neighborhoods. We expect less complex
areas to be digitized easier, faster and with a more uniform
result.

Finally, the interpreters also provide qualitative assessments
by a questionnaire based on 33 questions. For an unbiased

approach, we choose students of different study fields (geog-
raphy, engineering, computer sciences, and didactics) with and
without precognition in terms of these complex morphologic
sites, in-situ inspections or GIS applications. The interpreters
worked in a controlled environment. We did not limit time for
the digitization.

C. Statistical Analysis of Geometric Uncertainties

To assess the deviation among interpreters, we apply de-
scriptive statistics across all areas for each interpreter and
present a table again with mean, median, standard deviation,
and the coefficient of variation (CV) among all interpreters
(cf. Table II). With it, we first respond to research question I
(uncertainties among interpreters?) at an aggregated level as an
interpreter-oriented (A) approach. In a second step, we evaluate
research question 2 (uncertainties related to complexity?) by
comparing classification results between areas in relation to
the area’s complexity - area-oriented (B): We retrieve values
specifically for each area and present the results among in-
terpreters. Furthermore, we use boxplots for visualization of
deviations and agreements among interpreters. As geometric
identifiers, we systematically apply the following five spatial
variables:

1) Number of buildings: To assess recognition of a building as

a whole entity, we count (quantity) the digitized polygons
of each interpreter and each study site, in order to compare
total differences.

2) Building size: We calculate (sum, mean, and CV of) the
size (m?) of each interpreter’s digitized polygons to assess
the digitisation manner, that is, a tolerant verus tight-fitting
way of setting vertices to form a polygon.

3) Building orientation: We calculate (sum, mean, and CV
of) interpreter’s digitized building orientations. It is based
on a polygon’s longitudinal side to the cardinal direction
north, where an absolute value equals its turn (—90°
4+90°). In this vein, we receive mean information about
precision in placement/alignment of vertices.

4) Building density: As aggregation from number and size
of buildings, we calculate the density as sum of each
interpreter’s buildings (m?) in relation to the entire area(s)
as reference unit (%). Afterwards, we calculate mean and
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Fig. 2. Overview of the selected study sites for the mapping exercises; ©Google Earth 2019.
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TABLE III
+ LEGEND DEVIATION OF MAPPING AMONG INTERPRETERS FOR EACH AREA IN RELATION TO THEIR COMPLEXITY AND COMPLICACY TO MAP, SCALED FOR CV
AND FLEISS-KAPPA INDEPENDENTLY

Complicacy> | simple | simple | simple | difficult | difficult | difficult Streneth of according to using

Soatial a reegment Fleiss-Kappa [fl| coefficient of
vslz“i::able Approach Athens | Cairo | Bucharest | Mumbai | Nairobi | Lagos ¢ [0:1] variation (%)
No. o

1 4.1 1. 27. 2.4 4.22 4
buildings CV of 7413 | 8139 197 52:49 6 63.46 fair 0.21 - 0.40 21-40
2Building mean 100-CV=| 8183 | 8425 | 74.63 | 5699 | 71.67 | 70.19 moderate 0.41 - 0.60 41-60
Slze ofall agreement
3.Building - f ingerpreters' (%) 8930 | 91.84 | 8729 | 9297 | 9582 | 8220 substantial 0.61-0.80 61-80
orientation means/area
;zlsli‘tldmg 8431 | 9147 | 5928 | 7644 | 8332 | 65.66 almost perfect  0.81 - 1.00 81 - 100
5.Geometric

olygon- Fleiss-Kappa [0;1 0.59 0.42 0.49 0.34 0.43 0.36
polyg pp:
matching

CV among interpreters. Especially density allows demon-
strating secondary effects about individual working habits
and digitization continuity.

5) Georeferenced building matching (only B): We focus on
the “interrater reliability” for the accuracy assessment of
the precise geometric matching (rooftop placement) of
polygons rather than an exact reproduction of the reality.
Additional to the previous mathematical approach, we
add this to understand the exact topological diversity of
mapping and visualize the LoD-1 spatial arrangement.
Thus, a background-grid of 2 x 2 m cells is created
for each area. We assume 4 m? per cell to be precise,
because it fits with our MMU of 4 m? being the smallest
mapped building. We spatially join all ten interpreter’s
datasets with the grid and whenever a polygon hits or
intersects one cell we count it as a match. Afterwards,
we compare the counted matches of all cells and apply
the measurement of observer agreement for categorical
data with the Fleiss-Kappa index [38] for all areas. The
interval scale starts from value O that represents a “poor”
agreement to value 1 as an “almost perfect” agreement
among the interpreters (cf. Table III).

D. Questionnaire

To respond to research question 3 (on the perceptional impact
on MVII), we set up a questionnaire (cf. Appendix 2). It is
constructed in a “structured” way with “closed questions” being
succinct and easily comprehensive. Furthermore, we follow
the guidelines for empiric surveys [39]. The questionnaire is
clustered in 5 thematic blocks, starts with easy questions and
progresses to more difficult ones to keep the attention and elicit
more details (funnel questioning). It ends with personalities.

1) Difficulty, work duration, GIS knowledge and in-situ ex-

pertise.

2) Elements of image interpretation (e.g., data source: pat-

tern, shadow, clouds, ...).

3) Time-related interpreter’s subjective self-evaluation for

GIS functions, recognition, and fatigue.

4) Used scale during digitization.

5) Personal questions (name, gender, age).

Blocks 2—4 are used to explore the perceptional influence
affecting digitization as we put the mentioned elements in
relation: We want to know, whether the interpreter’s percep-
tion (recognition, interpretation) during digitizing polygons via
“parameters” position, shape, size, orientation, and quantity is
affected by the elements of image interpretation. And we want
to know if this is congruent among interpreters (cf. Appendix
3). Due to the low basic population of only 10 respondents, we
omitted a pretest of the survey. Responses were qualitatively
interpreted and summarized. The survey was conducted after
the digitization to avoid test persons to be influenced ex-ante. In
case of incomprehensibilities to single questions we provided
explanations as study supervisors. Subsequently, we appealed
to all test persons to provide open, additional comments.

IV. RESULTS
A. Quantitative Results

In the first analysis, we following:

1) Interpreter-oriented approach: We distinguish the in-
dividual interpreters’ mapping results across all areas. For the
classified number of buildings, we find a significant coefficient
of variations (CV) of 27.7% and with respect to building size
we also find a substantial CV of 20% among the interpreters
(Table II). Thus, some interpreters map buildings in a larger
or smaller manner than others do. Comparing all variables, the
lowest deviation is illustrated by the building orientation. A CV
of only 5% shows a high concordance among interpreters by
means of placed vertices allocation.

Altogether, there are significant differences in digitization
results among interpreters. The varying numbers of buildings
and the differences in morphologic characteristics lead to error
propagation. As aresult, from these spatial variables’ aberration,
also building density reveals a significant difference of 13.5%
among interpreters. Thus, distorting variances in geographic
interpretations of the built environment could occur, depending
on the interpreter. With it, we affirm with respect to research
question 1 that there are large differences among interpreters.

2) Area-oriented approach: In such areas of the study, where
we defined the physical morphology to be less complex (Ta-
ble IIT) we find less deviations across the interpreters’ mapping
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results. Reciprocally, we find lower agreements in more complex
areas. Examples are s Santosh Nagar (52.4% for number of
buildings) or the palafitte settlement Makoko (82.2% for ori-
entations). We assert a clearly aligned intraurban street network
and rather larger buildings (Fig. 2) visually to be mapped easier.

Apart from this trend we discover two antithetic aspects: First,
complex slum-like areas usually contain rather small building
sizes. This is exemplified by the interpreters’ work in the com-
plex areas Mumbai and Lagos (cf. Fig. 3 building size). Due to
high complexity in these areas, we assumed higher deviations
among the interpreters, instead we find very high agreements.
Second, our site in Bucharest shows comparably low agreements
among interpreters (cf. Table III) even though registered as an
area with a rather simple morphologic structure.

Generally, the range of variations among interpreters is high,
especially for the number of buildings (Fig. 3). Compared to
the aforementioned interpreter-oriented approach, also the vari-
ables building orientation and density reveal significantly higher
variations. Furthermore, we find that variations are generally
independent from the geographic location, even though we
recognize certain geographic “tendencies” as the number of
buildings varies most in the Asian areas or building sizes in
the European ones. However, our limited basic population of
only six areas does not allow drawing a valid representative
continental wise conclusion.

With respect to the spatial variable matching of geometries,
the Fleiss-Kappa index indicates poor agreements (Table III)
among interpreters. The highest value reveals a “moderate”
agreement (0.59) for the area of Athens. Thus, surprising or
not, a near to perfect spatial match among interpreters is not
given, not even for morphologically less complex areas. Fig. 4
illustrates the degree of cell matching and visualizes the spatial
distribution of uncertainty: As for the mapped building sizes, we
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generally discover more spatial matches per cell where buildings
adjoin each other. This is not only due to a high concentration
of multiple building’s edges on single cells. Thus, we find
comparatively fewer matches at buildings’ untouched margins,
e.g., close to open spaces. At this location, we find a relatively
higher disagreement among interpreters as for instance up to
three interpreters only map one cell.

As aforementioned, we figured out that there are large de-
viations among interpreters on the variable density across the
areas. It ranges from 59% agreement in Bucharest to 91% in
Cairo (Table III). However, despite this variance, density reveals
a relative consistency in the digitization results as well: We see
interpreters usually digitize in a consistent manner across all
areas (Fig. 5). For instance, interpreter 8§ always maps lower den-
sities for each area in comparison to other interpreters. We find
similar results for size and orientation. Only variable number
of buildings shows more inconsistent behavior. Hence, mapped
data within one interpreter’s dataset are observed consistent.
Additionally, this consistency is independent from time, as the
sequence of digitized areas does not seem to influence this
result.

B. Qualitative Results

As introduced in Section III, the questionnaire follows four

thematic blocks:

1) The (self-)evaluation plays an important role in the context
of perception. Generally, six interpreters found the task,
medium‘ difficult. Furthermore, most interpreters imagine
the methodology “MVII” to be more accurate than autom-
atized processes. Continuing with the topic precognition,
half of the interpreters stated to have seen areas of urban
poverty and have experience in these complex areas. Most
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interpreters have worked with a GIS before. These findings
play an important role especially in the context of the
following aspects “elements of image interpretation and
time”.

2) Elements of image interpretation are well known among
the interpreters. With a high agreement we found inter-
preters’ mapping being influenced by a couple of such dif-
ferent elements: Especially the “data source” resp. “image
quality”, as e.g., “atmospheric conditions”, “brightness,”
“stereoscopic effects,” “cast shadows,” “contrast,” “mixed

pixels,” and “geometric resolution” were stated to influ-
ence most, also being the major obstacle causing problems
during digitization.

3) Time and self-evaluation: In contradiction to our estimated
work duration of at least 8 h (cf. III.A), the analysis reveals
the demanded time per interpreter with a maximum of
11 h, a minimum of 04:40 h, and an average of 7:47 h
(Fig. 6). Thus, among the interpreters we find a remarkable
disparity of claimed time. However, for each area the
interpreters needed comparatively similar capacities of
time. We found no relation between complexity of the
area and the required time for digitization.

Obviously, GIS functions can improve working speed, de-
pending on the tools, as snapping, auto complete, and cut poly-
gons were used by most interpreters. Furthermore, interpreters
1, 5, 8, and 9 stated to be experienced, but this did not lead to
less working duration. Plus, regarding speed, six interpreters
confirmed to pay less attention for details after a couple of
hours of digitizing. We assume that working duration and the
rising difficulty both have an influence on fatigue. This explains
the less spent time for the last area (Lagos) to be digitized.
Fewer buildings were captured than we can find in reality.
Thus, the time duration should have been higher for mapping
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Geometric matching of polygons per cell by interpreters’ placed vertices at the example of Athens.

Lagos. Furthermore, it was confirmed that classification took
longer in case of precognition because it influenced their way
of image interpretation. Also, two interpreters had seen some
of the selected areas themselves before and were able to even
remember buildings or vegetation. As another aspect, nearly all
interpreters estimate their own level of details as “medium,”
stating this fact to also influence the mapping. In general, we
find a large variety of factors influencing the mapping process on
individual level. This reveals that even if the same introduction
is given to the interpreters, the starting positions and individual
experience and perception differs significantly.

4) Scale: All interpreters used a flexible scale with zoom
function that also influenced the mapping, where more
than half of them state to perceive the topological relativity
between objects in a better way.

As response to the request for additional comments, the

following remarks were given.

1) Outlines: Despite clearly announced boundaries, it was
unclear whether industrial areas respectively the railway
building should be mapped and whether a building’s court-
yard had to be part of a polygon or to be cut.

2) LoD-1 delineation: Interpreters had problems to identify
balconies, sticking out from the buildings in Agios Pan-
teleimonas due to a satellite nadir offset (cf. Fig. 7). The
fundamental question arose, if balconies are part of the
buildings ground footprint and whether to be mapped or
not. Also, it was stated very often to be difficult to distinct
a tiny footpath, roof ridge, or building shadow in highly
dense areas.

3) Image quality: Some interpreters remarked a bad image
quality. For Cairo there were difficulties to visually dif-
ferentiate buildings from the ground/soil; similarly, delin-
eation between buildings was said to be difficult in Santosh
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Nagar and images of Kibera and Tei Toboc contained
white unnatural dots.

4) Health: 1t was reported that interpreters lost concentration

over time.

With respect to research question 3, we conclude that in-
terpreters highly agreed that digitization “parameters” shape
and size being mostly affected by the elements of image in-
terpretation such as particularly “data source” and “image
quality”. Furthermore, interpreter-related factors as individual
in-situ- and GIS- knowledge, fatigue, and working manner -
including duration and utilization of zoom - expressively affect
the MVIL

V. DISCUSSION AND INTERPRETATION

MVII is often used as a reference for automatic processes
and for validation since it is still being seen as a methodology

@ | @2 s @3

4 mm@m5 m@mim@m 7/m@m Sm@mm Om@m 10

Relativity of density values among interpreters per consecutively mapped area.

resulting in highest accuracies. First, we presented MVII’s key
issues, namely classification, MMU and perception. Second,
we revealed that their application in the context of complex
urban areas does not allow an easy recognition/interpretation
that contains diverse but also smallest building units. Finally, we
demonstrate deviations among human interpreters that demand
for an uncertainty analysis. However, this empirical uncertainty
study does not compare humans with machines; hence, we are
not able to assess which method comprises less uncertainty.
Instead, it is our aim to assess inter-rater results and with it
sharpen the classic methodology. Our experiment relies on six
areas across the globe and we evaluate results of ten interpreters.
Yet, our sample is comparatively small and we cannot claim
the results to represent all such complex areas. Furthermore,
a higher quantity of test persons might reassure our findings.
Yet, our dataset builds a reliable basic population for the spatial
quantitative analysis.
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With it, this article clearly reveals substantial deviations
among interpreters. We find rising variations in relation to a
rising morphologic complexity of the areas. We find that also im-
age interpretation elements as “key issue” of perception have an

= Agjos Panteleimonas, Athens ™ Santosh Nagar, Mumbai
= Imbabah, Cairo = Kibera, Nairobi
Tei Toboc, Bucharest = Makoko, Lagos

Duration of mapping in relation to number of buildings, for each dataset and interpreter.

impact on the digitization. We illuminate that personal knowl-
edge also affects the interpretation process and its duration. This
study reveals that in literature mentioned “high accuracies of
MVII” [2], [5]-[10] are not achieved in the sense that inter-
preters’ agreements are low for our selected complex structural
areas. As automatic classifications being able to capture indi-
vidual buildings in slum-like structures in very high quality, we
cannot evaluate whether MVII is still more accurate. However,
we still see independent from the accuracy that interpreters
can generally distinguish shacks from each other even in very
complex areas of spectrally homogeneity.

However, interpreters clearly recognize or interpret built-up
structures differently and what seems to be one rooftop for one
person might be none or several rooftops for another person.
It is rather questioned whether there is a building and how
big it is, than how it is aligned. Questioning this, we also
follow the uncertainty criteria for objects, as proclaimed by [31]
who demonstrate “existential,” “extensional” and “geometric”
uncertainty. Most interpreters stated to have GIS knowledge and
more than half of them indicated to have at least some in-situ
experience. However, results reveal tremendous disparities, as
for example for the digitized number of buildings (CV of 27.2%).
To draw a more detailed picture of the spatial variables and to
better visualize uncertainty, we set the interpreter’s results in
relation to the area’s morphologic complexity, as categorized by
[3]. This area-oriented approach reveals high agreements with
small variations among interpreters in morphologic areas cate-
gorized as “simple”. This fact significantly changes with a rising
morphologic complexity to higher disagreements and variations;
e.g. buildings with low distances to neighboring buildings in
complex areas are more difficult to capture. Our findings are
in line with established findings about digitization challenges:
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The interpreters experience typical disturbances from image
sources, such as radial offsets with building-lean effect (Fig. 7),
misleading stereoscopic, mirroring, and error effects with dis-
placement and overlapping of buildings [cf. 40]. Particularly
the latter effect was experienced by the interpreters and also
the aforementioned “amodal completion” found application, as
we recognized polygons underneath mirroring white shapes for
instance in Tei Toboc (Fig. 2,). This might be one reason for the
low agreement among interpreters in that area. However, being
the only area offering heterogeneous textures with a significant
vegetation it should be easier to map.

We constitute many of the mentioned results to be caused
by the areas’ homogenous spectral signatures. It embodied the
main landscape class with homogenously colored and textured
elements and mixed pixels where single rooftops are very diffi-
cult to capture or, especially to delineate (Fig. 1). This is affirmed
by e.g., [12] and [41] stating that “there is an influence of
ground sample distance (GSD) respectively the image quality
on object identification”. Interpreters collectively agree that
image interpretation elements depending on the image source
quality (like atmospheric conditions, brightness, contrasts, etc.
and especially the geometric resolution) mostly influence the
“digitization parameters” shape and size, followed by their
quantity.

However, next to our findings about geometric deviations
we also find a substantial consistency when comparing all in-
terpreters by using the example of building density (Fig. 5).
In fact, we discovered highly varying density values among
interpreters (Table III). However, at the same time we find that
one interpreter tends to be comparatively consistent across areas;
i.e., if one interpreter digitizes an area with less density than
others, it is highly likely that he/she will do so for other areas,
too. Size and orientation also demonstrated consistency. This
finding fundamentally extenuates the discovered uncertainties.

So far, we experienced complex morphologic situations chal-
lenging the human interpreter’s cognition more than expected.
We know there is a significant uncertainty among interpreters
but what about the self-evaluation and personal condition? As
human being, one interpreter might have a different perspective
with his/her own recognition and interpretation during the MVII
process than another. Interpreters used the zoom function in
a flexible way to recognize the built-up structure and thereby
confirmed an improved understanding of the topological context.
With it, they also confirm prior findings who declared that
there is no single perfect scale as many scales flexibly depend
on specific image objects [42]. Considering precognition, we
contrast experienced with unskilled user’s results. We find that
precognition rather delays working speed. This is in contrast to
the findings from [12], where experienced interpreter’s results
do not deviate from others without experience. Abbreviated
durations by reasons of fatigue (“vigilance’) were only partially
confirmed by the interpreters. However, the self-estimation dif-
fers to the actual produced results because more polygons were
expected in the final, complex (Lagos) data set. It fits into the
picture that self-evaluation for difficulty and level of detail was
mostly quoted “medium”. In the end, we discover very different
working times (cf. Fig. 6) needed by the interpreters as well as
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trends of correlation between time consumption and polygon
creation. Very similar results were proven by [14] in terms of
accuracies (72 to 81%), vigilance, self-evaluation (medium), and
duration.

Other studies, yet not always applied for LoD-1 or urban areas,
also assessed the MVII and likewise measure inconsistencies
among users, e.g., [43] manually delineating slum areas. As
another example, [44] find a low accuracy (60%) reached among
experts when extracting building plots for cadastral mapping.
However, in their experiments human results were still better
than those by machines. Another analysis was conducted in the
frame of European agricultural subsidies by the Joint Research
Centre (JRC) [45] to evaluate interpreter’s digitization for EU’s
“land-parcel identification system”. Classified agricultural areas
fundamentally differ as the outcome revealed deviations within
one interpreter only up to 1.7% and among all persons only up to
3.8%, which is significantly low in comparison to our complex
urban areas but is in line with our findings with respect to
consistency within interpreter’s density data. The JRC study fur-
thermore postulates that polygon-vertices, placed at the corner
of an agricultural parcel/polygon, crucially influence boundaries
and measured ranges. We experience similar findings with our
analysis of the geometric matching, where corners are crucial. In
the following we explain why: [41] remark a2 m GSD to be nec-
essary for capturing buildings in an urban environment, yet [46]
state 0.5m to be appropriate. We chose the geometric matching
of placed vertices on a2 x 2m cell grid that fits with the MMU of
a4 m?building and is based on satellite images of ~0.5m GSD.
Applying Fleiss-Kappa to receive an exact interrater reliability,
we find moderate matchings for simple morphologic areas and
merely sufficient values for complex areas. Thus, even based on
VHR images, interpreters still vary significantly when placing
vertices into different cells and corners with sometimes only one
hit per cell more than 2 m away from another (cf. Fig. 4). Under
consideration of an even higher image quality (8 cm GSD),
[14] measured a more precise deviation (~0.4-0.5m) among
interpreters for urban road networks and lamp posts. Hence,
in comparison to our study, a very accurate polygon-matching
among interpreters (e.g., Fleiss-Kappa >0.8), at least for simple
morphologic areas and under usage of VHR images, is absent
and thus we find high uncertainty for MVII.

To conclude: Reference data are difficult to capture in VHR
satellite data for such complex urban landscapes. Even MVII
is not providing ground truth, but multiple subjective interpre-
tations significantly deviating from each other. This surprising
result brings doubts to many studies conducting accuracy as-
sessment by MVII, for instance, initiatives aiming the global
mapping of buildings in urban areas, e.g., [4], [24], [47], [48]
that require training data.

VI. CONCLUSION AND OUTLOOK

In this applied empirical uncertainty study, we explore the
similarities and deviations among human interpreters in classi-
fying complex urban areas and find large variations among inter-
preters. Although, different EO approaches are widely applied,
human performance assessment has been hardly investigated
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[12], [14]. A missing “comprehensive understanding of the
parameters that influence successful uncertainty visualization”
is postulated by [30], whereas uncertainty is understood as an
unknown inaccuracy. In this study, we use a methodological
mixture of mapped cross-sectional data and multifaceted re-
sponses from interpreters. With it, we set a range of parameters
to reveal and visualize uncharted and significant uncertainties by
demonstrating inaccuracies related to the classic methodology.
We find large deviations among interpreters and in relation to
a rising morphologic complexity. With respect to the mapping
procedure we observe a high degree of individuality, yet a
personal consistency.

After having assessed and interpreted the results, we draw
the conclusion that the MVII has to be challenged being the
most accurate methodology for complex urban areas at the
single building level. Our findings about uncertainty in the
MVII, considering deviations but also consistency, must be
taken into account in future, because it can influence machine
learning approaches significantly. Furthermore, EO research
has to consider this uncertainty also by finding new methods
for a better approximation to a “ground truth”. This concerns
further studies about cognitive perception [49] as well as LoD-1
machine detection. A following task would reach beyond the
sole spatial analysis and explore potential variety over time,
for instance, by a multitemporal panel study. Will the mapping
“behavior” of a human being remain constant when placed in a
multitemporal experiment?

Finally, one interpreter stated that “visual interpretation can
often be more precise than automatic processing but this depends
on the experience of the interpreter, his/her knowledge with the
influence of the subjective perception, the image quality and
other factors.” The MVII as a methodology still plays a key
role in complex urban morphologies, may it be for mapping,
validation purposes or to generate training data for machine-
learning algorithms; and cognitive advantages of the brain are
demonstrably not to be underestimated. Nevertheless, this article
shows that the seemingly simple process of visual mapping in
optical satellite data is obviously much more difficult than ex-
pected. This leaves us with the final remark that many validation
approaches in remote sensing studies must be fundamentally
questioned.

APPENDIX

1) Digitization guideline for interpreters.

2) Questionnaire.

3) Table with elements of image interpretation and digitiza-
tion parameters.
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