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Abstract

The main objective of Global Navigation Satellite Systems (GNSS) is to pre-

cisely locate a receiver based on the reception of radio-frequency waveforms

broadcasted by a set of satellites. Given delayed and Doppler shifted replicas

of the known transmitted signals, the most widespread approach consists in a

two-step algorithm. First, the delays and Doppler shifts from each satellite are

estimated independently, and subsequently the user position and velocity are

computed as the solution to a Weighted Least Squares (WLS) problem. This

second step conventionally uses only delay measurements to determine the user

position, although Doppler is also informative. The goal of this paper is to

provide simple and meaningful expressions of the positioning precision. These

expressions are analysed with respect to the standard WLS algorithms, exploit-

ing the Doppler information or not. We can then evaluate the performance

improvement brought by a joint frequency and delay positioning procedure.

Numerical simulations assess that using Doppler information is indeed effective

when considering long observation times and in challenging reception configu-

rations such as urban canyons or near indoor situations, thus providing new

insights for the design of robust and high-sensitivity receivers.
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matrix, multilateration, high-sensitivity, harsh propagation conditions.

1. Introduction

The main objective of Global Navigation Satellite Systems (GNSS) is to

provide precise position, velocity and time (so-called PVT solution) to any user

on Earth, thanks to the transmission of electromagnetic (EM) signals broad-

casted from a constellation of satellites [1]. The PVT estimates are obtained by

exploiting the modifications that these EM waves undergo during their travel

from the different satellites in view to the receiver. More precise for any kind

of band-limited transmitted signal

e(t) = c(t)e2iπf0t,

where c(t) represents the baseband signal and f0 the carrier frequency, the

received signal r(t) can be written, up to a scaling factor as

r(t) = e(t− τ) = c(t− τ)e2iπf0(t−τ).

For short time periods, given the transmitter to receiver range d0 and range

rate ḋ0, the delay τ can be can be approximated by a first order model,

τ =
d0

c
+
ḋ0

c
t = τ0 + εt,

so that

r(t) '
[
c(t− τ0)e−2iπf0τ0e−2iπf0εt

]
e2iπf0t (1)

where the delay drift ε can be neglected inside the baseband signal c(t).

From (1) it is easy to identify that the transmitted signal undergo 3 main

modifications, namely, a pure delay of the baseband signal, τ0, a constant phase

shift, −2iπf0τ0, and a frequency shift, −f0ε. The two first effects are linked to

the distance d0, whereas the latter, so-called Doppler effect, is linked to the range

rate ḋ0. Both range and range rate are in turn related to the receiver position

and velocity to be inferred. The standard way to exploit this information to es-

timate the receiver PVT from the reception of EM waves from multiple beacons
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(i.e., satellites) is to follow a two-step approach. In the first step, the range and

range rate for each transmitter to receiver link are estimated, thus computing

a set of estimates to all visible satellites in parallel. This can be done thanks to

the GNSS signal design where the different transmitted c(t) must have a very

low cross-correlation among different satellites. The goal of the second step is to

fuse these individual transmitter to receiver estimates solving a multilateration

problem, which is usually done through a Weighted Least Square (WLS) proce-

dure [2]. This popular two-step approach has been shown to be asymptotically

equivalent [3] to the one-step Maximum Likelihood (ML) solution, so-called Di-

rect Positioning Estimator (DPE) [4, 5], which directly estimates the receiver

position and velocity from the received signal. Although the two-step proce-

dure is usually suboptimal in real-life non-nominal conditions, the use of DPE

in commercial receivers is far from becoming a reality mainly because of its high

computational complexity which prevents its use in mass-market applications

(i.e., DPE implies a ML search on a high-dimensional space). That is the reason

why the conventional two-step solution is still the gold standard.

As it has been pointed out right above, one can exploit three different mea-

surements from the received EM signals to estimate the receiver position:

• The simplest and widespread positioning approach, being the state-of-

the-art solution, only exploits the delay carried by the baseband signal

c(t− τ0), conducting to the estimation of so-called pseudoranges (i.e.,

pseudo because transmitters and receiver are not synchronized and the

signal experiments delays during its pass through the atmosphere). From

a set of pseudoranges a multilateration step is performed to compute the

receiver position, that is, the intersection of a set of spheres, roughly

speaking. Notice that even if not exploited for the final position computa-

tion, the Doppler shifts must be also estimated to obtain a correct delay

estimate.

• A more precise solution, consists in exploiting the additional phase infor-

mation in (1), namely, −2iπf0τ0. Indeed, this measurement is linked to
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the wavelength which is much smaller than the baseband signal resolu-

tion (i.e., for a legacy Global Positioning System (GPS) L1 C/A signal,

the wavelength is approximately 19 cm while the baseband signal resolu-

tion is 300 m). Unfortunately, exploiting this phase information implies

solving a much more complicated problem, mainly because the carrier

phase measurement is ambiguous (i.e., unknown number of cycles inside

the baseband signal resolution), then being such ambiguity resolution the

bottleneck [2, Chap 21, 23]. To this end two different schemes can be

advocated. The first approach to resolve phase ambiguities is to turn to

the class of so-called differential techniques, where the relative position to

a geo-referenced GNSS station is obtained. Real-Time Kinematics (RTK)

[2, Chap 26] is an example of such a technique. Nevertheless, this kind

of solution requires the use of a reference station with a communication

link between the two receivers, and is only valid for short ranges from the

base-station to ensure that the two receivers observe the same propagation

errors. Another approach is the family of Precise Point Positioning (PPP)

techniques [2, Chap 25], which allow to get rid of the reference station but

to reach decimetric precision in turn need i) precise carrier phase mea-

surements, which is not the case in harsh propagation conditions, ii) high

accuracy satellite orbits, clock and propagation (ionospheric and tropo-

spheric) error corrections, and/or iii) multi-frequency/multi-system archi-

tectures to compensate the ionospheric effects. These kind of techniques

received much attention in the literature (see [6] and references therein)

and are still under research to reach the maturity needed for their broad

real-time applicability. The price to be paid is the need to access a net-

work broadcasting real-time precise corrections (i.e., International GNSS

Service (IGS) products), and a long convergence time of tens of minutes.

As stated in [6], these drawbacks limit the use of PPP for many practical

real-time applications.

• Finally, referring to (1), the last measurement that can be exploited to in-
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fer information on the receiver position is the Doppler effect. Indeed, since

this term is linked to the range rate, and because the position and velocity

vectors of the transmitter are known a-priori, it brings information on both

the receiver velocity and its position through the Line-of-Sight (LOS) di-

rection. It is important to notice that this last information on the position

is an angular information and not a ranging one, thus supplementing the

two other measurements. Although this information has historically been

at the core of the former GPS, namely Transit, it is seldom used in modern

GPS receivers. The reasons of this lack of interest in Doppler positioning

is certainly due to its poor precision compared to ranging measurements,

at least for short observation times. Nevertheless, its use is very simple

and known to be more robust to harsh propagation environments such

as urban canyons affected by dense multipath or in indoor conditions.

One of the rare usage of this information in GPS receivers is an improved

coarse positioning acquisition technique where Dopplers are exploited in-

dependently from the two other ranging measurements to speed up the

initialization of the the tracking process [7].

In this contribution we focus on the solutions exploiting both delay and

Doppler measurements with the aim to provide a fundamental analysis and

determine if it is worth considering, and under which conditions, Doppler in-

formation in GNSS positioning algorithms. To this end, we provide a simple

and striking formulation of the covariance matrix on the position estimation

based on both delay and Doppler measurements. In this formulation, we do not

take into account the carrier phase information mentioned right above, mainly

because this leads to very specific solutions which do not apply for standard

standalone receivers. Nevertheless, the Cramér-Rao Bound (CRB) for a mix-

ture of real and integer-valued parameters, and its use for carrier phase-based

positioning techniques performance characterization, has been derived in [8].

When dealing with precision, a popular way to proceed is to determine the

Fisher Information Matrix (FIM) or its inverse, the CRB, which gives a lower
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bound for the covariance matrix of the estimates. In the case of GNSS receivers,

the FIM associated to the one-step ML solution (i.e., DPE) has been calculated

in [9], but no insights on the performance associated to the delay/Doppler two-

step approach were provided. Even if DPE has been shown to be asymptotically

efficient, it suffers from a huge computational burden which prevents its use in

real-time applications, then being theoretically appealing but with minor prac-

tical interest. On the other hand, the two-step approach is suboptimal because

it relaxes the links existing among all delays and Dopplers and simply consid-

ers them as independent measurements. However, it has been recently shown

to be asymptotically efficient when using an appropriated weighting [3]. Such

optimal weights are obtained by resorting to the EXtended Invariance Principle

(EXIP) [10], which states that using a re-parametrization of the problem can

lead to a simpler solution while preserving the asymptotic performances. More

precisely, the intermediate estimates obtained from a simpler first step can be

refined to asymptotically achieve the performance of the initial model using an

appropriate WLS minimization. Obviously, this optimal solution must exploit

not only pseudoranges to each satellite in view (i.e., delays) but also Doppler

measurements.

Although it is widely used in all GNSS receivers, the performance analy-

sis of this two-step procedure through the determination of the corresponding

receiver position covariance matrix has not been properly handled in the lit-

erature. Indeed, [9] shows the performance difference between DPE and the

two-step procedure, but the latter only considers delay measurements, then

missing all the information brought by Dopplers. Moreover, to the best of the

author’s knowledge, there is no complete (delay/Doppler) closed-form expres-

sion of the covariance matrix for the position estimates of the WLS two-step

procedure. Of course, the concept of Geometric Dilution Of Precision (GDOP)

has been introduced for a long time [1], but it only describes the second step of

the processing and does not take into account the information brought by the

Dopplers. Several papers deal with the CRB in the context of radiolocation.

For instance, in the reverse case of source localization thanks to synchronized
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sensors, the CRB has been calculated [11, 12, 13, 14, 15], but several differences

prevent using these results in the GNSS case, namely the fact that the signal is

unknown and considered as random in the case of passive localization. Other

authors have calculated the CRB in the case of GNSS Reflectometry (GNSS-R)

altimeters [16], but once again, many intrinsic differences about the processing

prevent from adapting these results to the case of GNSS positioning.

In this contribution we derive the covariance matrix of the position estima-

tion for any WLS procedure based on both delays and Dopplers. This result

is valid for any kind of weighting, and especially for the optimal WLS scheme

[3] conducting to the best precision. We obtain a simple and meaningful for-

mulation of the precision one can obtain using a GNSS receiver, that clearly

exhibits the improvement provided by the use of the Dopplers. Of course, this

formulation can also be exploited in the more standard way, where only the de-

lays are taken into account. These results provide new insights to be exploited

in harsh propagation conditions and especially meaningful for high-sensitivity

GNSS receivers [17] (i.e., indoor GNSS), which are expected to be at the core

of precise time synchronization for next generation 5G small cells.

The paper is organized as follows. First, the problem at hand and the two-

step WLS procedure to estimate the user position are described in Section 2.

Then, the covariance matrix of these estimates is derived in Section 3, and

some insights for the standard weighting procedures are provided in Section 4.

Section 5 allows to analyse in which configuration it is worth using Doppler mea-

surements in addition to delay measurements, through numerical simulations.

Concluding remarks are provided in Section 6.

2. Problem Statement

2.1. Signal Model

We assume that K scaled, delayed and Doppler-shifted front waves, trans-

mitted by the set of satellites in view impinge on a GNSS receiver antenna.
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Under the narrowband assumption, the complex baseband model can be writ-

ten as follows,

y(t) =

K∑
k=1

αkck(t− τk)e−2iπf0bkt + n(t), (2)

where the phase term in (1) is absorbed by the complex amplitudes αk. This

can be rewritten in a more compact form as,

y = Aα + n, (3)

where

• y = [y(0) ... y((N − 1)Ts)]
T , Ts being the sampling period and N the

number of coherent available samples,

• A = [a1 ...aK ] is the manifold corresponding to all in-view satellite signals,

with ak = ck � ek, where ck = [ck(−τk) · · · ck((N − 1)Ts − τk)]T is the

sampled transmitted code for satellite k affected by the corresponding

delay τk, and ek = [1 · · · e−2iπf0bk(N−1)Ts ]T its frequency signature due to

the fk = −f0bk Doppler shift, � being the element-wise product,

• α = [α1 ... αK ]T the corresponding complex amplitudes,

• n = [n(0) ... n((N − 1)Ts)]
T the complex noise, assumed to be circularly

white and Gaussian, with noise power σ2.

The observed delay, τk, and delay drift, bk, depend on the actual relative

distance and velocity from satellite k to the receiver, as well as secondary prop-

agation effects (ionospheric and tropospheric additional delays, ...) and receiver

or transmitter defaults (clock bias and drift). They can be expressed as follows,

τk '
||pk − p||

c
+ τ0 + δτk, (4)

bk '
(vk − v)T .uk

c
+ b0 + δbk,

where

• p, v, pk and vk ∈ R3 are, respectively, the position and velocity vectors

of both receiver and k-th satellite,
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• uk = pk−p
||pk−p|| is the unitary steering vector toward the k-th satellite,

• τ0 and b0 are the receiver clock delay and delay drift with respect to (w.r.t)

the GNSS time reference,

• δτk and δbk include all secondary biases (satellites clock defaults, propa-

gation, ...) and are supposed to be known from the navigation message,

• c the celerity of EM waves.

The unknowns of the positioning problem can be gathered in vector ζ =

[αTr θT ]T where αr = [Re {α1} Im {α1} · · ·Re {αK} Im {αK}]T is the vector

of the signal amplitudes and θ = [pT cτ0 vT cb0]T is the 8-dimensional vector

corresponding to the user position, velocity, clock delay and drift.

Notice that we can made explicit in (3) the dependence on θ, y = A(θ)α+n.

If we assume the complex amplitudes α as deterministic and unknown, it is

straightforward to show that the DPE ML-based solution of the problem is

given by maximizing the nonlinear following criterion [4],

θ̂ML = arg max
θ

[
yHPA(θ)y

]
(5)

where (·)H stands for the Hermitian transpose operation and the projection

matrix onto the signal subspace, spanned by the K received signals, is PA =

A(AHA)−1AH . We can observe that AHA ' NI, as the GNSS pseudo-random

codes broadcasted by the satellites are almost orthogonal and the Doppler shift

modulations are relatively slow compared to the signal variations. This near

orthogonality of the columns of A is the assumption that allows a separate

processing for each satellite signal in all standard GNSS receiver. Therefore, we

can simply write that

θ̂ML ' arg max
θ

[∣∣∣∣A(θ)Hy
∣∣∣∣2] = arg max

θ

[
K−1∑
k=0

|ak(θ)Hy|2
]
, (6)

which is a nonlinear 8-dimensional optimization problem.
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2.2. Standard and Optimal Two-step Solution

Given that the direct solution of (5) is not feasible in practice, as already

stated, the classical way to estimate the receiver position and velocity consists

in a two-step procedure: i) first, the delays and Doppler shifts for each satel-

lite signal are estimated, and then ii) a WLS procedure allows to estimate the

receiver position and velocity. The first step of this algorithm corresponds to

a ML procedure and is also performed in two stages. Indeed, as the electronic

noise is assumed to be Gaussian and white, the ML is shown to be a 2D correla-

tion maximization for each couple of unknowns τk and bk. Conventionally, this

maximization is first performed using a loose grid (acquisition stage) and then

a local and tight smaller grid is used to track the maximum (tracking loops)

in order to reduce the computational complexity. The second step of the pro-

cedure tends to estimate θ from the nonlinear problem in (4). As the receiver

usually gets an approximate initial solution (from the Bancroft algorithm [18],

for instance), the standard way to solve this problem is to linearize (4) near an

initial guess, θ0 = [pT0 cτ00 vT0 cb00]T ,

ηk
∆
=

 τk − ||pk−p0||
c − δτk

bk − (vk−v0)T .uk0

c − δbk

 =
1

c
Hk(θ − θ0), (7)

with

Hk =

−uTk0 1 0T 0

−νTk0 0 −uTk0 1

 , (8)

where uk0 = pk−p0

||pk−p0|| is the direction vector toward the k-th satellite from

the supposed position p0 and νk0 =
P⊥k0vk

||pk−p0|| , with P⊥k0 the projection matrix

on the subspace orthogonal to uk0, corresponds to the angular velocity vector.

Observing (8), it is noteworthy that the Doppler (or delay drift) depends on the

velocity, but also on the position through this angular velocity vector. Hence,

Dopplers bring a direct piece of information on the user position.

It is important to mention that GNSS receivers that use Dopplers to estimate

the velocity, assume that the angular velocity vectors in the linerized matrix (8)

are null, i.e., νk0 = 0, and then do not correctly exploit this information [19,

Chap 7].
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Using the linearized observation model, the ad-hoc procedure is a WLS

closed-form solution,

θ̂ − θ0 = arg min
θ

[cη −H(θ − θ0)]
T

W [cη −H(θ − θ0)]

= c(HTWH)−1HTWη (9)

where η =
[
ηT1 ...η

T
K

]T
, H =

[
HT

1 ...H
T
K

]T
and W is the diagonal weighting

matrix, depending on the chosen WLS scheme. As stated before, the standard

way to proceed, is to consider only the delay measurements in this WLS step,

that simply consists in removing the corresponding lines in matrix H and vector

η. Two weights are conventionally used: i) W = I, leading to a standard LS, or

ii) a weight related to the inverse of the measurement noise covariance, which

is typically approximated as a function of the estimated signal-to-noise ratio

(SNR) and/or the different satellites’ elevation. In short, this is related to the

received signal power and then, up to a scale factor, W = diag (α�α∗) [2].

The optimal way to proceed would be to consider also the information con-

tained in the Doppler. Considering Dopplers or not, the weighting matrix can

be written as

W =

Wτ O

O Wb

 . (10)

where Wτ
∆
= diag (wτ ) are the delays weighting and Wb

∆
= diag

(
wb
)

the delay

drifts weighting, leaved identically null if not considered in the WLS minimiza-

tion. In [3], the optimal weighting is shown to be

Wτ = βPα and Wb = δPα (11)

with

β =
2π2NB2

3σ2
, (12)

δ =
2π2N(N − 1)(N + 1)f2

0T
2
s

3σ2
, (13)

and

Pα = diag (α�α∗) , Pα(k, k) = |αk|2 , (14)

B being the signal bandwidth.
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3. Closed-form Position Covariance Matrix (CRB) Expression

The precision performance of this two-step procedure is contained in the co-

variance matrix of the estimate θ̂ in (9). Assuming that the first step procedure

reaches its asymptotic performance, this covariance matrix is obtained as [9]

cov(θ̂) = c2(HTWH)−1HTWF−1
η WTH(HTWH)−1, (15)

where Fη is the right-lower block of the complete FIM Fγ on the intermediate

parameters γ = [αTr ηT ]T , whose (k, `) element is given by

Fk,`γ =
2

σ2
Re

{
∂(Aα)H

∂γk

∂(Aα)

∂γ`

}
, (16)

In order to obtain a closed-form expression of the covariance matrix (15), we

have first to compute the FIM on the intermediate parameters given in (16).

3.1. FIM on the Intermediate Parameters

As shown in Appendix A, the intermediate parameters of the FIM can be

written in the following block form,

Fγ =

 A B

BT D

 , (17)

with A = 2N
σ2 I2K ,

B =
4πf0Ts

∑N−1
n=0 n

σ2
diag

0 Im {αk}

0 Re {αk}


k=1:K

 ,

D =
8π2

σ2
diag

NB2|αk|2
12 0

0 f2
0T

2
s |αk|

2∑N−1
n=0 n

2


k=1:K

 .

Using the block matrix inversion formula, it is readily seen that

F−1
η =

[
D−BTA−1B

]−1
(18)

=diag

 σ2

8π2 |αk|2

 12
NB2 0

0 (f2
0T

2
s Var {n})−1


k=1:K

 ,
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with Var {n} = N(N−1)(N+1)
12 .

It can be noticed that thanks to the diagonal structure of F−1
η , the CRB

on the delays is simply F−1
τ = 1

βP−1
α , and the CRB on the delay drifts is

F−1
b = 1

δP
−1
α , with Pα defined in from eq. (14). It is noteworthy that the

optimal weights introduced at the end of Section 2.2, Wτ and Wb, correspond

to this FIM. Although this is only an intermediate result, it is interesting, as it

gives precisely the asymptotic precision one can obtain on the delay and Doppler

measurements in case of GNSS signals.

3.2. Covariance Matrix (CRB) on the Position Estimation

The covariance matrix on the 8-D vector θ can be computed from (15) and

(18). Because we are interested in the receiver position we focus on the first 4

parameters of θ, pos = [pT (cτ0)]T , corresponding to the position. For that

purpose we conduct a block matrix inversion of HTWH, which can be written

HTWH =

 (UWτU
T + VWbV

T ) VWbU
T

UWbV
T UWbU

T

 , (19)

with U =
[
[−uT10 1]T ...[−uTK0 1]T

]
and V =

[
[−νT10 0]T ...[−νTK0 0]T

]
.

Hence, we have

(HTWH)−1 =

 Ω−1 B

BT −

 ,
where

Ω = UWτU
T + VW

1/2
b P⊥W

1/2
b VT ,

B = −Ω−1VWbU
T (UWbU

T )−1,

with

P⊥ = I−W
1/2
b UT (UWbU

T )−1UW
1/2
b .

Then, using this block decomposition in (15), we can obtain the following co-

variance matrix for the position parameters only,

cov(pos) = c2Ω−1[(UW1/2
τ F−1

τ W1/2
τ UT ) (20)

+ (VW
1/2
b P⊥F−1

b P⊥W
1/2
b VT )]Ω−1,
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where F−1
τ = W

1/2
τ F−1

τ W
1/2
τ and F−1

b = W
1/2
b F−1

b W
1/2
b are the normalized

FIM on the delay and Dopplers. It has to be noticed that we simply have

F−1
τ = F−1

b = I when one chooses the optimal weights (11) for Wτ and Wb.

The result in (20) gives the position precision (i.e., CRB) associated to any

GNSS WLS multilateration procedure whether Dopplers are used (Wb 6= 0) or

not (Wb = 0). Obviously this performance depends on the number of satellites

and their positions through the direction vectors U, but also on their velocity

through the angular velocity vectors V. In the case of an optimal weighting

(11), this last expression simplifies as we have F−1
τ = F−1

b = I. In the following

Section 4 we provide the performance comparison for different WLS procedures.

4. Insights on the Standard and Optimal WLS Position Estimation

In this Section, we aim to compute the position covariance matrix for stan-

dard weighting matrices W and compare the results to assess the benefits of

using the optimal weighting, exploiting not only delays (Wτ = βPα) but also

Dopplers (Wb = δPα). As the conventional processing only exploit the delays,

we first consider the case of pseudoranges only multilateration.

4.1. Multilateration with Pseudoranges Only

In this case, Wb = 0, so that Ω = UWτU
T , and (20) becomes

cov(pos) = c2(UWτU
T )−1(UWτF

−1
τ WτU

T )(UWτU
T )−1. (21)

As stated before, two procedures are conventionally used to compute the receiver

position, namely the LS procedure, where Wτ = I and the WLS one, where the

optimal weight is Wτ = βPα. In the LS case, we have

covLS(pos) =
c2

β
(UUT )−1(UP−1

α UT )(UUT )−1. (22)

In the WLS case, we have

covWLS(pos) =
c2

β
(UPαUT )−1, (23)
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where we recall that Pα = diag (α�α∗) (i.e., Pα(k, k) = |αk|2) is simply the

matrix of the powers received on each satellite channel (conventionally measured

by means of the carrier-to-noise density ratio C/N0 in GNSS receivers). Hence,

introducing a normalized direction vector manifold matrix UT = P
1/2
α UT , (23)

reduces to

covWLS(pos) =
c2

β
(UUT )−1. (24)

When computing the square root of the trace of this covariance matrix we

recognize the so-called GDOP [1], through (Tr{(UUT )−1})1/2. In order to get

rid of the unknown clock bias and focusing on the 3-D position parameters only,

it is convenient to conduct a block inversion of UUT . It is straightforward to

obtain the covariance matrix on the position vector only, p, as

covWLS(p) =
c2

β
(UcUTc )−1 (25)

where Uc = [(u10 −
−
u0), . . . , (uK0 −

−
u0)]P

1/2
α , with

−
u0 =

∑
|αk|2uk0∑
|αk|2

the power-

weighted mean direction vector. Hence, the position precision when using a

WLS procedure is linked to the inverse of the covariance matrix driven by the

weighted and centred unit vectors towards the visible satellites. In the special

case where all the received signals have the same power, UcUTc is simply the

covariance matrix of these unit vectors. This interpretation has already been

noticed in [20], for instance.

4.2. Multilateration with both Pseudoranges and Dopplers

Now, we compute the position covariance matrix in the case where we use

the complete information brought by the intermediate parameters (delays and

Dopplers), with the aim to draw a comparison with the previous simplified,

but widely used case. When using the optimal weighting matrices (Wτ =

βPα,Wb = δPα), the position covariance matrix (20) becomes,

covWLSopt(pos) = c2
[
UFτU

T + VF
1/2
b P⊥F

1/2
b VT

]−1

. (26)

Again, introducing the power-normalized matrix VT = P
1/2
α VT , we can rewrite

(26) as

covWLSopt
(pos) = c2

[
βUUT + δVP⊥VT

]−1
, (27)
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or

covWLSopt
(pos) = c2

[
βUUT + δV⊥VT⊥

]−1
, (28)

where VT⊥ = P⊥VT . This last expression has to be compared with (24). We can

see that this position covariance matrix, when using both delays and Dopplers,

is composed of two terms. The first one is the same as in the delays only case,

and is linked to the signal bandwidth, through β, and the GDOP, through UUT .

The second one, that will have a tendency to reduce the covariance matrix, is

linked to the observation time, through δ and a kind of angular velocity GDOP,

through V⊥VT⊥ . This last matrix is also similar to a covariance matrix driven by

the angular velocity vectors contained in V, after a projection onto the subspace

orthogonal to UT . Hence, the more satellites we have, the smaller V⊥VT⊥ is, as

only the part in the subspace orthogonal to the 4D subspace spanned by UT

remains. To go a step further, using the matrix inversion lemma, we have

1

c2
covWLSopt(pos) =

(UUT )−1

β
− (29)

(UUT )−1

β
V⊥
(

I

δ
+ VT⊥

(UUT )−1

β
V⊥
)−1

VT⊥
(UUT )−1

β
.

As noticed in [3], for a small integration time, VT⊥
(UUT )−1

β V⊥ is much smaller

than I
δ so that we can draw the following approximation

1

c2
covWLSopt

(pos) ' (UUT )−1

β
− (UUT )−1

β
r(VP⊥UVT )(UUT )−1, (30)

where r = δ
β =

f2
0T

2
s (N−1)(N+1)

B2 .

This approximation shows that the position covariance matrix, when using

the appropriate delay and Doppler WLS scheme, is the one we obtained when

using the delays only, but reduced by a correction matrix. This improvement

correction matrix is inversely proportional to the covariance matrix on the di-

rection vectors, UUT , which shows that the improvement when including the

Doppler information will be larger in case of bad geometries (i.e., bad GDOP).

In other words, we can expect a better improvement in case of challenging en-

vironments, such as urban canyons, for instance.

16



5. Numerical Simulations

To evaluate the gain provided by the use of the Doppler information, through

the matched WLS procedure, we consider different kind of scenarios, ranging

from an ideal open-sky case to a more complicated environment where many

LOS signals are blocked, inducing a bad geometry/GDOP.

In a first simulation, we consider an ideal scenario where a GNSS receiver

exploits the GPS L1 C/A signal from 12 satellites. We consider the case where

all the signals have the same strength, C/N0 = 45 dB-Hz. The satellite con-

figuration is drawn from a real GPS constellation, through sp3 files, and the

corresponding skyplot is presented in Figure 1. Figure 2 represents the square

root of the trace of the position covariance matrices, limited to its first 3 ele-

ments, namely the position vector p. This so-called Position Dilution Of Pre-

cision (PDOP) simply represents the standard deviation of the position error.

We compare the PDOP obtained with both (24), where the pseudoranges only

are exploited, and (28), where pseudoranges and Dopplers are used. We have

also plotted the approximation from (30). We can first notice that the proposed

approximated formula is valid up to 2 seconds of integration time.
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Figure 1: Skyplot of the complete satellite configuration

More interesting is the gain provided by the Doppler exploitation. In this
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Figure 2: Delay only vs. delay and Doppler WLS position estimation (open-sky configuration)

open-sky configuration, the improvement seems weak, even if there is only a

marginal additional computational cost in adding the Doppler information in

the WLS procedure. For short integration time in an open-sky scenario there

is no apparent gain. But, although the majority of nowadays applications do

not consider long integration times, there is a rising demand for improving the

performance of GNSS systems in harsh environments. Indeed, under foliage

canopy, urban canyons or indoor environment, conventional processing does not

allow to recover the signals with C/N0 up to 20 dB lower the nominal outdoor

level. The main solution to compensate for these strong attenuations consists in

increasing the integration time [17, 21]. This so-called High Sensitivity GNSS

(HS-GNSS) has attracted much attention during the last decade and some ex-

periments tend to prove the practical benefits of such receivers for indoor pedes-

trian applications, for example [22]. But, while the main effort to improve the

precision performance has been focused on the electronic sensitivity and the

increase of the integration time, the second step of the processing usually re-

mains the sub-optimal delay-based only WLS processing. This article proposes

a complementary way of improvement in such long integration applications, us-
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ing the Doppler information directly in the WLS position formulation. It also

has to be noticed that in practical situations, the integration time is linked to

the Frequency Lock Loop (FLL) filter bandwidth. In this case fractions of Hz

of precision on the Doppler estimation can be achieved, corresponding to some

seconds of integration time of this simulation.

Figure 3 represents the same PDOP as Figure 2, but with longer integration

times. First of all, we can compare this curve to the results presented in [3].

Indeed, the same configuration has been used in the two simulations and the

theoretical PDOP calculated here gives the same results as the Monte-Carlo

simulations drawn in [3], assessing the validity of the present asymptotic anal-

ysis. Moreover, in an open-sky scenario, the gain provided by the Dopplers is

about one third for integration times of 3 seconds, with almost no additional

computing cost. It has to be noticed that when reaching so small precisions,

other mismatches become the limiting error source to improve the positioning.

But, the goal of this theoretical simulation is just to compare the precision

brought by the Dopplers with that of a delays only solution, all other effects

being removed. Moreover, the Doppler information is known to be less sensitive

to some propagation effects, namely the multipath, so that the gain in practical

situations could be increased. In addition, within this ideal situation, one could

think on the use of Doppler information in complement to PPP approaches,

where the majority of the defaults have been removed and where we need long

observation time to converge to a precise solution.

As expected when analysing the approximated expression (30), we try to

evaluate the gain in a more challenging scenario. To this end, we only keep

6 out of the 12 visible satellites, all belonging to a restricted section of the

sky, as represented on the skyplot in Figure 4. This configuration depicts a

standard urban environment, where some directions are blocked by buildings.

As expected, Figure 5 shows a larger improvement due to the Doppler usage in

this more degraded GDOP scenario. In this case the precision is twice better,

when Dopplers are used, with 2 seconds of integration time. This gain is more

representative of real-life scenarios since HS-GNSS are designed to address this
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Figure 3: Delay only vs. delay and Doppler WLS position estimation (open-sky configuration)

kind of situations.

6. Conclusions

In this paper, we addressed the problem of evaluating the performance of

positioning in the GNSS context. The position estimation is both related to the

delays and the Dopplers, although this last piece of information is convention-

ally not properly used in GNSS receivers. We provided a closed-from and simple

formulation of the position precision, that allows to analyse the gain associated

to the use of the Doppler information. This precision formulation is valid for

any kind of WLS procedure, including the standard case based on the delays

only. We showed that the improvement using the Dopplers could be significant

in situations where a long observation time are needed, such as HS-GNSS appli-

cations. The gain brought by Doppler information is even higher in challenging

conditions with a bad satellite constellation geometry (poor GDOP), as in urban

canyons or in near indoor situations. Finally, exploiting the Dopplers could also

be a solution of choice for reducing the convergence time of PPP algorithms.
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Figure 4: Skyplot of a constrained satellite configuration

A. Intermediate Parameters FIM

We first recall some useful results for GNSS signals. Some of these results

have been proven in [3] and are completed here. As shown in [3], we know that

Rk,l(τl − τk) =

∫
ck(t− τk)cl(t− τl)e−2iπf0(bk−bl)tdt ' 0, (31)

∀τl, τk, bl, bk if k 6= l.

Hence,

∂2Rk,l(τl − τk)

∂τl∂τk
=

∫
·
ck(t− τk)

·
cl(t− τl)e−2iπf0(bk−bl)tdt ' 0, (32)

∀τl, τk, bl, bk if k 6= l.

Moreover, if we write
·

ck = [
·
ck(−τk), · · · , ·ck((N − 1)Ts − τk)]T , we know, from

[3] that
·

ck
T ·
ck =

π2B2N

3
. (33)

Gathering (32) and (33), we can write( ·
ck � ek

)H ( ·
cl � el

)
= δ(k − l)π

2B2N

3
.

Furthermore, letting τl = 0 in (31) we have∫
ck(t− τk)cl(t)e

−2iπ(fk−fl)tdt ' 0, if k 6= l.
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Figure 5: Delay only vs. delay and Doppler WLS position estimation (urban canyon)

Using Parceval’s identity we can write∫
Ck(f + fk)e−2iπ(f+fk)τkC∗l (f + fl)df ' 0, if k 6= l,

where Ck(f) is the Fourier transform of ck(t). Hence, differentiating with respect

to fl we have

0 '
∫
Ck(f + fk)e−2iπ(f+fk)τk

∂Cl(f + fl)

∂fl
df

=

∫
(2iπt)ck(t− τk)cl(t)e

−2iπ(fk−fl)tdt.

Now, differentiating with respect to τk, we can deduce that∫
t
·
ck(t− τk)cl(t)e

−2iπ(fk−fl)tdt ' 0, if k 6= l. (34)

Moreover, ∫
t
·
ck(t− τk)ck(t− τk)dt (35)

=
[
tc2k(t− τk)

]
−
∫
ck(t− τk)(ck(t− τk) + t

·
ck(t− τk))dt

= [t]−
∫
c2k(t− τk)dt−

∫
tck(t− τk)

·
ck(t− τk))dt

= −
∫
tck(t− τk)

·
ck(t− τk))dt,
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so that ∫
t
·
ck(t− τk)ck(t− τk)dt = 0. (36)

Gathering (34) and (36), we can conclude that(
t� ·

ck � ek

)H
(cl � el) ' 0, ∀ k, l

where t = Ts[0 · · · (N − 1)]T .

To sum-up all these intermediate results,

(t� t� ck � ek)
H

(cl � el) = δ(k − l)T 2
s

N−1∑
n=0

n2,

aHk (
·
cl � el) = 0, ∀ k, l

aHk (t� al) = δ(k − l)Ts
N−1∑
n=0

n,

(
t� ·

ck � ek

)H
(cl � el) ' 0, ∀ k, l( ·

ck � ek

)H ( ·
cl � el

)
= δ(k − l)π

2B2N

3
,

where t = Ts[0 · · · (N − 1)]T and
·

ck = [
·
ck(−τk), · · · , ·ck((N − 1)Ts − τk)]T .

Now, considering (16), we have to compute the first derivatives with respect

to the unknown intermediate parameters,

∂Aα

∂Re {αk}
= ak,

∂Aα

∂Im {αk}
= iak,

∂Aα

∂τk
= −αk

·
ck � ek,

∂Aα

∂bk
= (−2iπf0αk) t� ak.

Using the preliminary results above, it is straightforward to compute the FIM

over γ,

Fγ(Re {αk} ,Re {α`}) =
2

σ2
Re
{
aHk a`

}
' 2N

σ2
δ(k − `),

Fγ(Re {αk} , Im {α`}) =
2

σ2
Re
{
iaHk a`

}
= 0,
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Fγ(Im {αk} , Im {α`}) =
2

σ2
Re
{

(iak)H ia`
}
' 2N

σ2
δ(k − `),

Fγ(Re {αk} , τ`) =
2

σ2
Re
{
−α`aHk (

·
c` � e`)

}
= 0,

Fγ(Im {αk} , τ`) =
2

σ2
Re
{
iα`a

H
k (
·

c` � e`)
}

= 0,

Fγ(Re {αk} , b`) =
2

σ2
Re
{

(−2iπf0α`) aHk (t� a`)
}

=δ(k − `) 4πf0Im {αk}
σ2

Ts

N−1∑
n=0

n,

Fγ(Im {αk} , b`) =
2

σ2
Re
{

(−2πf0α`) aHk (t� a`)
}

=− δ(k − `) 4πf0Re {αk}
σ2

Ts

N−1∑
n=0

n,

Fγ(τk, τ`) =
2

σ2
Re
{

(αk
·

ck � ek)H(α`
·

c` � e`)
}

=δ(k − `) |αk|2
2π2B2N

3σ2
,

Fγ(τk, b`) =
2

σ2
Re
{

(αk
·

ck � ek)H((2iπf0α`) t� a`)
}

= 0,

Fγ(bk, b`) =
2

σ2
Re
{

((2iπf0αk) t� ak)H((2iπf0α`) t� a`)
}

=δ(k − `) |αk|2
8π2f2

0T
2
s

∑n−1
n=0 n

2

σ2
.
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