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Abstract: This paper studies the measurement requirements of spectral resolution and radiometric
sensitivity to enable the quantitative determination of water constituents and benthic parameters for
the majority of optically deep and optically shallow waters on Earth. The spectral and radiometric
variability is investigated by simulating remote sensing reflectance (Rrs) spectra of optically deep
water for twelve inland water scenarios representing typical and extreme concentration ranges of
phytoplankton, colored dissolved organic matter and non-algal particles. For optically shallow
waters, Rrs changes induced by variable water depth are simulated for fourteen bottom substrate
types, from lakes to coastal waters and coral reefs. The required radiometric sensitivity is derived for
the conditions that the spectral shape of Rrs should be resolvable with a quantization of 100 levels
and that measurable reflection differences at at least one wavelength must occur at concentration
changes in water constituents of 10% and depth differences of 20 cm. These simulations are also
used to derive the optimal spectral resolution and the most sensitive wavelengths. Finally, the Rrs

spectra and their changes are converted to radiances and radiance differences in order to derive
sensor (noise-equivalent radiance) and measurement requirements (signal-to-noise ratio) at the water
surface and at the top of the atmosphere for a range of solar zenith angles.

Keywords: remote sensing; inland water; phytoplankton; colored dissolved organic matter (CDOM);
non-algal particles; shallow water; coral reef; reflectance; spectral resolution; radiometric sensitivity

1. Introduction

Many Earth-observing satellite sensors have been developed with the primary objectives of
serving either terrestrial, oceanic or atmospheric remote sensing applications [1]). Since no satellite
sensor specifically designed for coastal and inland waters is available at present [2–4], data from these
sensors are used for freshwater, estuarine and coastal water quality observations, bathymetry and
benthic mapping [5–7]. However, such land and ocean specific sensors are not designed for these
complex aquatic environments and consequently are not likely to perform as well as a specialized
coastal and inland water mapping sensor would.

Due to a lack of comprehensive information that would allow the design of a spaceborne sensor
system optimized for the global monitoring of inland and coastal waters, the Committee on Earth
Observation Satellites (CEOS) initiated a study [1] which collected literature information and conducted
simulations to derive requirements that could form the basis for developing such a dedicated sensor
system. It identified the following parameters that such a system should be able to quantify: (i) algal
pigment concentrations of chlorophyll-a, accessory pigments relevant for phytoplankton functional
types research, phycoerythrin and phycocyanin for monitoring cyanobacteria; (ii) algal fluorescence,
especially chlorophyll-a fluorescence at 684 nm; (iii) suspended matter concentration, possibly split up
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into organic and mineral components; (iv) absorption coefficient of colored dissolved organic matter
(CDOM); (v) spectral slope of CDOM absorption to discriminate terrestrial from marine CDOM; (vi)
spectral absorption and backscattering coefficients of the optically active components; (vii) measures
of water transparency such as Secchi disk depth, vertical attenuation coefficient and turbidity index.
For optically shallow waters, the following parameters were also identified: (viii) water column depth
to derive bathymetry; (ix) substratum type and cover, such as muds, sands, coral rubble, seagrasses,
macro-algae and corals; (x) plants floating at or just above the water surface.

The accuracy with which these parameters can be determined depends on a number of
environmental and measurement conditions. The CEOS study [1] addressed these conditions for
satellite observation and discussed the related mission and sensor concepts. There is a trade-off in
spectral, spatial and radiometric resolution as the number of photons available to be measured will
constrain choices. For example, detecting a change of 10% in chlorophyll from a low Earth orbiter (LEO)
satellite sensor at a high latitude in a northern or southern hemisphere winter requires a totally different
radiometric sensitivity than detecting a similar change in the tropics with the sun close to zenith. One
may think this can be solved by a geostationary orbit, but then the look angle from the equatorial
position to the high latitudes becomes a limiting factor. In addition, spatial resolution and integration
time also dictate how many photons are available to be measured: the finer spatial resolution advised
for e.g., benthic feature mapping or smaller inland waters leads to reduced signal-to-noise ratios
(SNRs).

To obtain an overview of the environmental and measurement conditions that are relevant for the
majority of inland and coastal waters on Earth, a sensitivity analysis was made for the CEOS report
(Appendix A.2 in [1]). The simulations covered optically deep and shallow waters for concentrations
of water constituents and for substratum cover types that are representative of many inland, coastal
and shallow benthic environments across the world. The studied scenarios represent inland, estuarine,
deltaic and near coastal waters with a variety of bottom substrates, such as sand, rock, silt, macrophytes,
macro-algae, sea grasses and corals in the shallow areas. The derived set of parameters included
the most relevant wavelengths and optimal spectral resolutions for capturing the spectral shape of
remote sensing reflectance (Rrs), wavelengths of maximum sensitivity, noise-equivalent Rrs differences
(∆Rrs) required to resolve 10% concentration changes in water constituents, and for selected dark and
bright water types the corresponding radiances (L), noise-equivalent radiance differences (∆L) and
SNRs at the top of the atmosphere for sun zenith angles of 10◦ and 70◦ and horizontal visibilities of 10
and 80 km. To support a multispectral sensor design, a wavelength table extending the International
Ocean-Colour Coordinating Group IOCCG recommendations for ocean color sensors [8] was derived.

Since the CEOS report was not subject to peer review and the simulated spectra are not publicly
available, the authors were repeatedly asked for a citable documentation of the methods and results
of the sensitivity analysis and for access to the software and the complete simulation dataset. For
this reason, we repeated all simulations and statistical analyses with slightly updated settings for
the scenarios, improved approaches for simulating radiometric sensor (∆L) and measurement (SNR)
requirements and extended statistical analysis of the simulated spectra. A method was developed
for parameterizing the SNR in terms of Rrs, ∆Rrs and atmospheric path radiance and for separating
the SNR contributions from the ground and the atmosphere. This parameterization, which, to our
knowledge, has not been described in the literature before, allowed us to specify the measurement
requirements more systematically compared to the CEOS report. The updated scenarios, methods
and simulations, their statistical analysis and the derived measurement and sensor requirements are
described in this paper. The software used to perform the simulations and the full dataset of simulated
spectra are available online [9] (Supplementary Materials, https://doi.org/10.5281/zenodo.3817616).

This paper focuses on an aspect which, as far as we know, has not been performed systematically
before: to approach the required reflectance and radiance sensitivities using thorough physics-based
simulation for actually measured concentration ranges and optical properties from representative water
bodies, as well as actual measured benthic substratum spectra. The described methods and results are
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generic in nature and thus may provide sensor engineers and scientists with information to design Earth
observation sensors and juxtapose what is technologically feasible with what is scientifically desirable.

2. Materials and Methods

The derivation of widely applicable measurement requirements follows the following concept.
First, a number of scenarios are defined to represent the variability of the optical properties for
typical and extreme lakes on Earth (Section 2.1). The optical variability within each scenario is mainly
determined by the concentration changes in phytoplankton, CDOM and non-algal particles, by the
variability of the spectral slope of CDOM absorption in the case of optically deep water and by water
depth and bottom substratum types in the case of optically shallow water. An analytical model is
used for simulating a large number of remote sensing reflectance spectra for different values of the
variable parameters within the scenario-specific ranges. This model is described in Section 2.2. The set
of simulated spectra is subsequently analyzed to determine the optimal spectral and radiometric
resolution of measurements. The methods for deriving these measurement requirements are described
in Section 2.3 (optimal spectral resolution) and Section 2.4 (optimal radiometric sensitivity).

2.1. Scenarios

The inland and coastal waters on Earth are as variable as their surrounding ecosystems and
catchment areas. Water constituents differ considerably in type, concentration and thus optical
properties. The various sources of organic and inorganic material make the reflectance spectra more
variable than for the open ocean. When the bottom is visible at the surface in shallow waters, the
reflectance spectrum is affected by the optical properties of the substratum (the inanimate bottom
material), as well as the benthos (the living organisms on the substratum). These waters are called
optically shallow waters, as opposed to the optically deep waters, where the radiance or reflectance
signal measured at the surface comes from backscattering and fluorescence in the water column. To
study the variability of reflectance, we used two scenarios: one representing values of optically active
water quality components (OACs) that can be considered as typical for inland and coastal waters and
one considering extremely high levels of OACs, representing extreme aquatic ecosystem conditions.
Each scenario is defined by a set of measurable quantities, which are related to the spectral variability
of reflectance, and by their minimum, maximum and typical values.

Remote sensing groups the OACs into three main classes: phytoplankton, non-algal particles
(NAP) and colored dissolved organic matter (CDOM) [2]. NAP consists of varying ratios of organic to
mineral matter. Optical properties that are independent of the illumination, such as the absorption
coefficient and the backscattering coefficient, are called IOPs (inherent optical properties) or SIOPs
(specific inherent optical properties) when normalized to concentration or, in the case of CDOM,
normalized to the absorption value of 440 nm. These wavelength-dependent functions, together
with the concentrations, allow the simulation of the reflectance of the water body. In the case of
optically shallow waters, additionally, the spectral irradiance reflectance (or albedo) of the bottom
substrates and benthos are required for simulating the combined reflectance, including the attenuated
and backscattered light in the water column.

2.1.1. Optically Deep Water

The wavelength-independent parameters defining an optically deep water scenario are the
concentrations of phytoplankton (C), NAP (X) and CDOM (Y). Additionally, the spectral slope
of CDOM absorption (S) is used to model the natural variability of the spectral shape of CDOM
absorption. The wavelength-dependent optical properties are the SIOPs of phytoplankton and NAP.
The relationship of these parameters and SIOPs to the reflectance of water is outlined in Section 2.2.

As the concentrations of water constituents are not completely independent from each other, the
definition of scenarios is oriented toward certain types of lakes. Scenarios for typical lakes are defined
in Table 1, based on actual measured values. They are specified in terms of a typical value and a
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representative range of C, X, Y and S. The simulations vary C, X, Y and S across the scenario-specific
ranges and keep the SIOPs constant. These results are also valid for most coastal waters, as coastal
waters tend to have ranges of concentrations that fall within the inland water ranges.

Table 1. Standard scenarios for optically deep water. A scenario is defined by a constant parameter
marked as bold. The scenario name consists of the parameter acronym and a sign indicating a low (−)
or high (+) value. The variable parameters are specified by a typical value and a range in the notation
typical (min-max).

Scenario C− C+ X− X+ Y− Y+
Represents Low phy High phy Low NAP High NAP Low CDOM High CDOM
Example Lake Garda 2 Finnish l. L. Constance The Netherlands L. Maggiore Lake Peipsi

C (mg m−3) 1 40 2 (0.5–15) 25 (10–50) 1 (0.2–5) 5 (1–20)
X (g m−3) 1 (0.2–20) 10 (5–15) 1 15 1 (0.2–10) 5 (1–10)
Y (m−1) 0.1 (0.04–2) 2.5 (1.5–4) 0.5 (0.2–2) 1 (0.5–1.5) 0.2 2.5

S (nm−1)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)

The concentrations and ranges for scenarios C−, Y− and Y+ are based on Table 1 in [10,11],
scenario X+ on lakes in The Netherlands [12] and scenario C+ on the two Finnish lakes, Tuusulanjärvi
and Hiidenvesi [13]. S is in most cases between 0.010 nm−1 for humic acid dominated waters and
0.020 nm−1 when fulvic acids prevail, with a value of 0.014 nm−1 being representative of a great variety
of water types [14,15].

Of particular relevance for defining measurement requirements are the extreme cases: if a sensor
is suitable for the extremes, it should provide even better data in-between. This concept of extremes
defines the scenarios of, based on actual measured values (Table 2). The extreme concentrations of C, X
and Y are chosen close to a minimum or maximum of Table 1 in [11].

Table 2. Extreme scenarios for optically deep water. The notation is the same as in Table 1, except
the label −−of a scenario name indicating an extremely low parameter value and ++ an extremely
high value.

Scenario C−− C++ X−− X++ Y−− Y++
Extreme for Low phy High phy Low NAP High NAP Low CDOM High CDOM

Example Italian lakes Lake Taihu Lake Garda Lake Taihu Lake Garda Finnish lakes

C (mg m−3) 0.2 1000 1 (0.1–10) 20 (1–1000) 1 (0.1–10) 5 (1–10)
X (g m−3) 1 (0.2–20) 50 (10–300) 0.1 300 1 (0.2–20) 2 (0.5–5)
Y (m−1) 0.1 (0.04–2) 1 (0.2–3) 0.1 (0.04–2) 1 (0.2–3) 0.04 10

S (nm−1)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)
0.014

(0.01–0.02)

2.1.2. Optically Shallow Water

The simulations for optically shallow waters alter the bottom substrate or benthos type and water
depth, and they keep the parameters of the water column constant. As remote sensing of optically
shallow waters favors clear water conditions, the typical concentrations of scenario Y− (C = 1 mg
m−3, X = 1 g m−3, Y = 0.2 m−1) are used to specify the water layer. These concentrations are close
to the lower end for the standard scenarios; hence, the water is clear for inland waters compared to
most other optically deep water scenarios. For coastal waters, these low concentration values are more
representative of an average coastal water.

The optical properties of the optically shallow water scenarios are defined by the spectral albedo of
the bottom substrates and benthos. Fourteen substrate and benthos types are selected for approximating
the natural variability of the water body’s bottom reflective properties (Table 3, Figure 1):
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Table 3. Bottom substrates used for shallow water simulations.

No. Substrate Type Reference

0 Chara contraria (macrophyte) [16]

1 Potamogeton perfoliatus
(macrophyte) [16]

2 Rock [17]
3 Bleached coral [18]
4 Dark silt [17]
5 Bright sand [18]
6 Yellow porites sp. (coral) [18]
7 Purple encrusting coralline algae [18]
8 Brown porites sp. (coral) [18]
9 Posidonia australia (seagrass) [19]

10 Detritus (sea-grass wrack) [17]
11 Ecklonia radiata (kelp) [17]
12 Coarse coral rubble [18]
13 Dark sand [20]
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Figure 1. Bottom substrate and benthos albedos used for the simulations. See Table 3 for the labeling.

Substrates 0 and 1 were measured in Lake Constance, Germany [16], substrates 2 to 12 in the tropical
Lihou Reef National Marine Park and subtropical Lord Howe Island Marine Parks, Australia [17–19]
and substrate 13 in the Baltic Sea, Germany [20]. The albedo spectra of these substrates were used as
input for the simulations in optically shallow waters.

2.2. Model

The reflectance of water depends on the spectral absorption coefficient, a(λ), and spectral
backscattering coefficient, bb(λ), of the water layer. The most relevant components contributing to
a(λ) and bb(λ) are pure water (index “W”), phytoplankton (index “phy”), non-algal particles (index
“NAP”) and CDOM. Their absorption and backscattering coefficients are additive:

a(λ) = aw(λ) + C× a∗phy(λ) + X × a∗NAP(λ) + Y × exp
{
−S× (λ− 440)

}
, (1)

bb(λ) = bb,w(λ) + C× b∗b,phy(λ) + X × b∗b,NAP(555) ×
(
λ

555

)−n
. (2)

C is the phytoplankton concentration in units of mg m−3 of chlorophyll-a, X is the total suspended
matter concentration in units of g m−3 and Y is the CDOM absorption at 440 nm in units of m−1.
While these wavelength-independent parameters are used to model the concentrations of the water
constituents, their optical properties are simulated using the wavelength-dependent SIOPs shown
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in Figure 2. The specific absorption coefficients of phytoplankton (a∗phy(λ)) and non-algal particles
(a∗NAP(λ)) and the specific backscattering coefficient of phytoplankton (b∗b,phy(λ)) are taken from
measurements, while CDOM absorption and NAP backscattering are approximated using analytical
equations. The parameters of these empirical equations are S, the spectral slope of CDOM absorption
in units of nm−1, n, the Angström exponent of NAP backscattering and b∗b,NAP(555), the specific

backscattering coefficient of NAP at 555 nm in units of m2 g−1.
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Figure 2. Absorption coefficients (left) and backscattering coefficients (right) used for the simulations.
The units are given in the legend.

All calculations simulate measurements of remote sensing reflectance Rrs, which is the ratio of
upwelling radiance to downwelling irradiance, both above the water surface and excluding specular
reflections at the surface. Rrs is related to the corresponding underwater ratio rrs as follows [21,22]:

Rrs(λ) =
ζ× rrs(λ)

1− Γ × rrs(λ)
. (3)

ζ ≈ 0.52 is the water-to-air radiance divergence factor, and the denominator with Γ ≈ 1.6 accounts
for the effects of internal reflection from water to air. The model of Albert [23,24] is used for the
simulations, which expresses rrs as a polynomial of fourth order of the IOP.

u(λ) =
bb(λ)

a(λ) + bb(λ)
. (4)

The model can be used for optically deep and shallow waters and accounts for the sun zenith angle
and the viewing angle. Its coefficients have been derived using Hydrolight [21] simulations, covering
wide ranges of environmental parameters, including all concentrations of the standard scenarios and
most of the high concentrations of the extreme scenarios. A similar model has been developed by Lee
et al. [22,25] for narrower ranges; see [26] for a comparison of the equations and parameter ranges.
The following is Albert’s equation for optically deep water:

rdeep
rs (λ) =

0.0512× u(λ) ×
(
1 + 4.6659× u(λ) − 7.8387× u(λ)2 + 5.4571× u(λ)3

)
×

(
1 + 0.1098

cosθ′sun

)
×

(
1 + 0.4021

cosθ′v

)
× (1− 0.0044 vw);

(5)

and the following is the equation for optically shallow water:

rshallow
rs (λ) = rdeep

rs (λ) × [1−Ars,1 × exp
{
−(Kd(λ) + kuW(λ)) × zB

}
]

+Ars,2 ×Rb
rs(λ) × exp

{
−(Kd(λ) + kuB(λ)) × zB

}
.

(6)
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θ′sun is the sun zenith angle in water, θ′v the viewing zenith angle in water, vw the wind speed in
units of (m s−1), Kd the diffuse attenuation coefficient of downwelling irradiance, kuW the attenuation
coefficient for upwelling radiance originating from the water layer, kuB the attenuation coefficient for
upwelling radiance from the bottom, Rb

rs the bottom substrate albedo (irradiance reflectance) and Ars,1

and Ars,2 are empirical coefficients close to one. For the equations of the attenuation coefficients Kd(λ),
kuW(λ) and kuB(λ), see [23,24].

The SIOPs are chosen as follows (see Figure 2):

• a∗phy(λ) is the specific absorption coefficient of green algae from the database of the software
WASI [27]. It is based on an absorption measurement of the green algae Mougeotia sp., grown as
pure culture in the laboratory [28], which was later fitted for extension to the near infrared and
rescaled to 0.023 m2 mg−1 at 674 nm to match field measurements from two German lakes [29].

• a∗NAP(λ) is approximated by an exponential equation with slope SNAP = 0.011 nm−1 [30] and the
specific absorption coefficient of 0.027 m2 g−1 at 440 nm [31].

• b∗b,phy(λ) is the specific backscattering coefficient from normal clear water in Lake Garda, dominated
by green algae (provided by C. Giardino, personal communication).

• b∗b,NAP (555) = 0.011 m2 g−1 and n = 0.75 were calculated by averaging measurements from lakes
in Italy, Estonia, the Netherlands and Finland using Table 3 of [32].

Some of the simulations of optically shallow waters represent saltwater environments such as
seagrasses, macro-algae and coral reefs. Nevertheless, we used mostly freshwater SIOPs. As the
optically shallow water simulations were carried out with low concentrations of OACs (scenario Y−: C
= 1 mg m−3, X = 1 g m−3, Y = 0.2 m−1), the effect on the results of not choosing an additional set of
saltwater SIOPs is considered to be minimal.

2.3. Determination of the Optimal Spectral Resolution

To capture the information content of a reflectance spectrum, a measurement must resolve the
spectral features of the spectrum, particularly the peaks, dips and shoulders. These changes in steepness
are given by the first derivative ∂Rrs/∂λ. It can be measured by a real sensor only approximately,
depending on the measurement’s quantization ∆Rrs and the sensor’s spectral resolution ∆λ: ∆Rrs/∆λ

≈ ∂Rrs/∂λ. For given ∆Rrs, the ideal spectral resolution is thus:

∆λ =

∣∣∣∣∣ ∆Rrs

∂Rrs/∂λ

∣∣∣∣∣. (7)

At wavelength regions of large reflectance changes, the spectrum must be sampled more frequently
than at regions of small gradients, hence ∆λ is inversely related to ∂Rrs/∂λ. To minimize artifacts
introduced by sensor or model noise at spectral regions where the reflectance spectrum is flat or has
minima or maxima, ∆λ = 20 nm is set for |∂Rrs/∂λ| < 10−6 sr−1 nm−1. Equation (7) defines the optimal
spectral resolution for a measurement with a noise-equivalent reflectance of ∆Rrs. Equation (8) is used
for ∆Rrs because it addresses the resolution of the spectral shape of a measurement.

2.4. Determination of the Optimal Radiometric Sensitivity

2.4.1. Rrs. Quantization

The Rrs quantization ∆Rrs is defined in this study as the smallest difference of remote sensing
reflectance that can be resolved by a measurement. As it is determined by the noise of a measurement,
∆Rrs is also called noise-equivalent remote sensing reflectance difference. It should not be confused
with the radiometric resolution of a sensor, which is always in energy units (e.g., photons, radiance).
The required resolution ∆Rrs is derived using two approaches. Both approaches are applied to all
spectra simulated for all deep water scenarios.
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The first approach addresses the measurement of remote sensing reflectance spectra for determining
the absolute values of environmental parameters from a spectral analysis of Rrs(λ). It is based on the
postulation that the dynamics of a spectrum Rrs(λ) should be sampled at a typical resolution of 1%. Hence,
the noise-equivalent remote sensing reflectance difference of this approach, ∆Rrs,1, is calculated as 1% of the
difference between the reflectance maximum, Rrs(λmax), and the reflectance minimum, Rrs(λmin):

∆Rrs,1 = 0.01
∣∣∣Rrs(λmax) −Rrs(λmin)

∣∣∣. (8)

The subscript “1” refers to approach number 1. The wavelength interval from 400 to 800 nm is
taken to determine the wavelengths λmax and λmin of maximum and minimum reflectance.

The second approach addresses the measurement of Rrs differences for quantifying changes in
environmental parameters. It is oriented on the postulation that a measurement should be sensitive to
changes in the parameter of interest (x) in the order of 10%. It first determines the wavelength λmax which
is most sensitive to reflectance changes induced by x. The remote sensing reflectance difference at λmax,
induced by a 10% change in x, is then taken to define the noise-equivalent remote sensing difference:

∆Rrs,2 =
∣∣∣Rrs(λmax, 1.1x) −Rrs(λmax, x)

∣∣∣. (9)

The subscript “2” refers to approach number 2.

2.4.2. Absolute Radiometric Resolution

The study simulates measurements in units of remote sensing reflectance (Rrs), which is
independent of light intensity and thus not suitable for assessing the capability of radiance sensors
for resolving the spectral shape of Rrs or detecting Rrs differences induced by changes in optically
active environmental parameters. Relative Rrs units are converted to absolute radiance (L) units by
multiplying Rrs with the illumination of the target in terms of downwelling irradiance Ed:

L(λ) = Rrs(λ) × Ed(λ). (10)

Similarly, the radiance difference ∆L induced by a remote sensing reflectance difference of ∆Rrs is
given by:

∆L(λ) = ∆Rrs(λ) × Ed(λ). (11)

To estimate radiometric sensor requirements, the illumination Ed(λ) is simulated for sun zenith
angles of 0◦, 20◦, 40◦, 60◦ and 70◦, using MODTRAN-6 [33]. Radiance differences ∆L(λ) are calculated
using Equation (11) for ∆Rrs values of 10−3, 10−4, 10−5 and 10−6 sr−1.

2.4.3. Signal-to-Noise Ratio

The signal-to-noise ratio,

SNR(λ) =
L(λ)

NEL(λ)
(12)

specifies the sensor-induced noise for measuring a radiance spectrum L(λ). NEL is the radiance corresponding
to the radiometric sensitivity of a sensor. It is important to note that NEL is a sensor parameter, while SNR is a
measurement parameter, as it depends on the measured radiance, i.e., on the illumination and reflectance of
the target (Equation (10)). If real measurements are used to compare sensors rather than laboratory-based NEL
data, the SNRs derived from the measurements have to be converted to a common reference spectrum L(λ) [34].
This is however only an approximate sensor comparison because the SNR derived from measurements further
depends on photon noise and on the Rrs variability of the averaged measurements.

Over water, most of the upwelling radiance at the top of the atmosphere (TOA) originates from
the atmosphere, thus the SNR at TOA is governed by the radiance contribution from the atmosphere,
called path radiance Lpath. The TOA radiance is related to Lpath and Rrs as follows:
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LTOA(λ) = Lpath(λ) + tA(λ) × Ed(λ) ×Rrs(λ). (13)

tA(λ) is the transmission of the atmosphere for the upwelling radiance and Ed(λ) is the
downwelling irradiance at the bottom of the atmosphere (BOA). A Rrs difference of ∆Rrs induces a
radiance difference at TOA of

∆LTOA(λ) = tA(λ) × Ed(λ) × ∆Rrs(λ). (14)

To resolve this difference, a sensor on a satellite must have a noise-equivalent radiance of
NEL ≤ ∆LTOA(λ). For the minimum requirement of NEL = ∆LTOA(λ), a measurement has a
signal-to-noise ratio of

SNRTOA(λ) =
LTOA(λ)

∆LTOA(λ)
=

Lpath(λ)

tA(λ) × Ed(λ) × ∆Rrs(λ)
+

Rrs

∆Rrs
. (15)

This means that the SNR at TOA is the sum of two components, the one related to the path
radiance and the other to the remote sensing reflectance at BOA:

SNRTOA(λ) = SNRpath(λ) + SNRBOA(λ) (16)

with

SNRpath(λ) =
Lpath(λ)

tA(λ) × Ed(λ) × ∆Rrs(λ)
(17)

and
SNRBOA(λ) =

Rrs

∆Rrs
. (18)

Equation (17) expresses a measurement requirement for the path radiance: the required SNRpath

is inversely proportional to the Rrs difference to be resolved.

3. Results

3.1. Spectral Resolution

The spectral resolution of a measurement required for capturing the spectral details of reflectance
is calculated using Equation (7). The simulations were made by iterating C, X, Y and S across the
ranges specified in Tables 1 and 2 in 50 equidistant steps. For example, the range of the spectral slope
of CDOM absorption S is 0.01 – 0.02 nm−1 for all scenarios, hence S was iterated in steps of 0.002 nm−1.
The simulations for shallow water were made for the 14 bottom substrates shown in Figure 1 and
altering water depth in 50 steps from 0.01 to 10 m, i.e., ∆Rrs in Equation (7) represents the induced
changes in Rrs for depth differences of 20 cm.

For illustration purposes, 2D plots are used, with wavelength on the x-axis and the variable
parameter on the y-axis, and the calculated spectral resolution is color-coded using the color scheme
shown in Figure 3.
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for optically shallow waters. For input model parameterization values, see Section 2.2.; for legend of
colors, see Figure 3.

The color coding of the 2D plots changes for a radiometric difference of less than 10−6 sr−1 from
colors to gray values. This allows us to distinguish between spectral regions in which the induced
reflectance changes might be measurable, at least using sensitive field instruments with long integration
times (colors), and regions where such differences are below sensor detection limits (gray values).

3.1.1. Optically Deep Water

Three 2D-plots were calculated for each deep water scenario. Each plot shows the optimal spectral
resolution ∆λ as a function of one parameter covering the scenario-specific range, while the other
parameters were kept constant at their scenario-typical values. Figure 4 shows the results for the
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standard scenarios and Figure 5 for the extreme scenarios. Summaries of all scenarios are shown below
in Figure 6 in terms of medians.

The colored areas in the 2D plots show the wavelengths and concentrations for which 10%
changes in the parameters C, X, Y and S induce principally detectable Rrs differences above 10−6

sr−1. The different colors represent the associated spectral changes, indicating the lowest useful
spectral bandwidths according to the color coding in Figure 3. Spectrally finer resolved measurements
cannot capture additional information. Similarly, the areas in gray tones represent wavelengths and
concentrations where changes in C, X, Y and S above 10% are required in order to induce detectable
Rrs differences, if at all, and the gray values represent the lowest useful spectral bandwidths.

Figures 4 and 5 show that the spectral details of Rrs are most pronounced in all standard scenarios
and most extreme scenarios from about 480 to 600 nm and from 630 to 730 nm. In these regions
(dark blue), spectrally highly resolved measurements with resolutions below 2.5 nm can be used to
gather spectral information. The spectral details of Rrs decrease below 480 nm and in the range of
600 to 630 nm, and they drop markedly above 730 nm. The decrease in the blue (below 480 nm) is
more pronounced for scenarios with high concentrations of water constituents (C+, C++, X+, X++,
Y+, Y++) than for low concentrations (C−, C−−, X−, Y−). The decrease in the red (600 to 630 nm) is
less scenario-specific.

The marked drop in the NIR above 730 nm is caused by the strong increase in pure water
absorption. Here, pure water dominates the absorption spectrum of the water body to such an extent
that only very high CDOM concentrations (scenarios Y+ and Y++) induce a measurable effect. With
the exception of these scenarios, changes in Rrs are almost entirely caused by scattering. Since, for most
simulated cases, NAP dominates scattering, and scattering by phytoplankton is significantly lower
(and CDOM does not scatter at all), measurable effects above 730 nm are mainly related to NAP and to
a lesser extent to phytoplankton. The lack of spectral details in Rrs makes spectrally highly resolved
measurements in the NIR of little use, except for high NAP concentrations at specific spectral regions
with local minima of pure water absorption. The most pronounced minimum at 810 nm corresponds
to the spectral region used by Kutser et al. [35–37] in black lakes.

3.1.2. Optically Shallow Water

The optimal spectral resolution ∆λ was calculated for each optically shallow water scenario using
Equation (7) by changing the water depth in steps of 20 cm from 0 to 10 m to simulate the induced
changes in Rrs. Figure 6 shows the resulting 2D plots. Induced Rrs differences below 10−6 sr−1 are
shaded in gray in order to indicate that measuring these differences is very challenging, even for field
instruments, and impossible for current satellite sensors.

The gray shaded areas of Figure 6 illustrate that the spectral interval that can be used for deriving
information about the sea floor becomes narrower with increasing water depth. Common to all bottom
substrates is the upper boundary, near 740 nm: above this wavelength, light reflected at the bottom
is detectable only in very shallow waters of typically less than 1 m depth. Similar conclusions were
drawn by Jay et al. [38], who investigated the discrimination of sand, seagrass, brown algae and
oyster bags from hyperspectral measurements. They found that at a water depth of 1 m and for most
wavebands larger than 700 nm, the water attenuation is already such that the covariance matrix of
these four substrates is mainly dominated by environmental noise.

At short wavelengths, the bottom affects Rrs only up to a water depth of a few meters for the
considered water type of scenario Y−. Only the spectral range from approximately 500 to 600 nm
allows the measuring of light reflected from the bottom substrates at 10 m water depth. The width of
this interval depends on the bottom albedo (refer for comparison to the corresponding albedo spectra
in Figure 1): the darker the substratum, the narrower the range; the brighter the substratum (e.g., bright
sand or bleached coral), the wider the spectral range and the greater the depth at which a measurable
signal is present.
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The optimal spectral resolution ∆λ changes most significantly between 0 and approximately 1 m
water depth. The spectral signature of these very shallow waters resembles more land surfaces than
water bodies; hence, the simulations for water depths above 1 m are better suited to drawing general
conclusions for remote sensing of optically shallow water ecosystems.

The dark blue areas of Figure 6, with values of ∆λ below 2.5 nm, show that for water depths
between 1 and 10 m, the spectral range of about 450 to 600 nm bears the most information, which is
in accordance with the simulation studies of Hochberg et al. [39] and Kutser et al. [40], who found
that coral reef benthos are best discriminated at wavelengths shorter than 580 nm. Up to depths of
approximately 5 m, the spectral range between 630 and 730 nm can also contain significant spectral
information, depending on the substratum type. Botha et al. [18] have shown with data from the
sensors QuickBird, WorldView-2 and CASI that increased spectral resolution leads to more substratum
types being discernible from each other at greater depths and enhances bathymetry retrieval. Figure 6
indicates the lower useful limits of spectral bandwidth.

3.1.3. Optimal Spectral Resolution

The 2D plots from the previous sections show that the optimal spectral resolution for capturing
the spectral details present in reflectance spectra depends on the water type. To obtain globally
representative values, the simulations for all water types of the standard scenarios (Figure 4), extreme
scenarios (Figure 5) and optically shallow water scenarios (Figure 6) are averaged for all cases in which
the induced reflectance differences are ∆Rrs ≥ 10−6 sr−1. To reduce the impact of unusually high ∆λ
values, the median is used rather than the mean. Figure 7 shows the results.
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Figure 7. (A): Medians of the optimal spectral resolutions for capturing the details of Rrs spectra.
(B): Number of spectra used for calculating the medians.

It can be seen in Figure 7A that the optimal spectral resolution depends on wavelength. It ranges
from 0.6 to 4.8 nm in the blue-green (400 to 600 nm), from 0.7 to 11.5 nm in the red (610 to 735 nm)
and increases significantly at 740 nm, exceeding 20 nm in wide spectral intervals. The averages across
all scenarios are 2.9 nm from 400 to 735 nm and 13.8 nm from 740 to 900 nm. The spectral pattern is
similar for the standard and extreme scenarios of optically deep water, whilst the optically shallow
water scenarios produce more variable values in the 500 to 580 nm range.

The results of Figure 7 are based on 2500 simulated spectra. For calculating the median reflectance,
differences ∆Rrs < 10−6 sr−1 were ignored as these are extremely difficult to measure even with sensitive
field instruments. This data selection leads to a wavelength dependency of the used number of spectra
(Figure 7B). Figure 7B thus illustrates which spectral regions are difficult to measure due to the low
dependency of reflectance on water composition, bottom substratum or depth.

Analogous statistical analyses were made for the 75% and 90% percentiles, which represent 75%
and 90% of all simulated spectra (no figure). From 400 to 735 nm, the average 75% percentile is 1.7 nm,



Remote Sens. 2020, 12, 2247 15 of 26

and the average 90% percentile is 1.2 nm. From 740 to 900 nm, the corresponding values are 8.3 nm
and 2.3 nm.

While the 2D plots of the previous sections and the medians of Figure 7 quantify the lower
useful limits of spectral bandwidth for detecting 10% changes in the parameters C, X, Y, 0.002 nm−1,
changes in S and 20 cm differences in water depth, they do not allow us to derive the upper limits of
bandwidth that are still suitable for determining these parameters. All scenarios represent optically
complex waters in which Rrs is usually affected by several water constituents or substratum types
simultaneously at each wavelength. These waters therefore do not allow us to determine an unknown
parameter using a single wavelength. The ambiguity of single band retrieval algorithms is reduced
for algorithms based on several bands; the more bands, the less pronounced are the ambiguities.
However, even hyperspectral measurements with a contiguous series of narrow bands can suffer from
ambiguities [36], depending on measurement noise and number, type and concentration of water
constituents [37] and bottom substrates. The accuracy of the retrieved parameters depends on the
used algorithm and its strategy to handle ambiguities [38], as well as on the spectral range, spectral
resolution and radiometric resolution of the measurements. Figures 4–7 help us to estimate the ideal
spectral resolution of measurements and determine the useful spectral range for data analysis in
different water types, while the results of Section 3.2 provide information concerning the most sensitive
wavelengths and the required radiometric resolution. Which reduced spectral resolutions are still
sufficient in practice for accurate parameter retrieval can only be determined for specific retrieval
algorithms and given measurement noise. Such analysis is, however, out of scope for this paper.

3.2. Radiometric Sensitivity

The radiometric sensitivity requirements of inland and coastal waters are studied using the deep
water scenarios, since these encompass the darker targets driving the sensor requirements. Shallow
waters are generally much brighter and thus their radiometric sensitivity requirements fall well
within the optically deep water requirements. The required Rrs quantization is estimated using two
approaches, Equations (8) and (9). The first is based on a postulation for sampling the reflectance
spectrum, the second for resolving concentration changes at the wavelength of maximum sensitivity.

3.2.1. Resolving Spectral Features

The Rrs quantization required for sampling the spectral features of a reflectance spectrum is
calculated using Equation (8). It specifies the noise-equivalent remote sensing reflectance ∆Rrs,1 in
terms of 1% of the maximum remote sensing reflectance difference, in the range of 400 to 800 nm.

The simulations were made by keeping C, X or Y constant at the scenario-specific values given in
Tables 1 and 2 and iterating the other three parameters in 10 steps in the ranges also given in these
tables. In this manner, 103 = 1000 spectra were simulated for each scenario, from which ∆Rrs,1 was
derived using Equation (8). The results are shown in Figure 8.

Figure 8 shows that the Rrs differences generally increase with increasing NAP (X) and
decreasing CDOM absorption (Y), but they do not depend much on phytoplankton concentration (C).
The reflectance spectra of all considered scenarios can be sampled with a radiometric resolution of
1% or better for ∆Rrs,1 = 10−6 sr−1. ∆Rrs,1 = 10−5 sr−1 is sufficient for most parameter combinations of
the standard scenarios, except scenarios Y+ and C− for X < 1 g m−3, scenario C− for Y > 0.4 m−1 and
scenario X− for Y > 2 m−1. The extreme scenarios more frequently require ∆Rrs,1 between 10−5 and
10−6 sr−1. The median Rrs differences are 1.1 × 10−4 sr−1/4.6 × 10−5 sr−1 for the considered C values of
the standard/extreme scenarios (upper row of Figure 8), 1.2 × 10−4 sr−1/2.3 × 10−4 sr−1 for the X values
(middle row of Figure 8) and 1.2 × 10−4 sr−1/2.6 × 10−4 sr−1 for the Y values (lower row of Figure 8).
The overall median is 1.5 × 10−4 sr−1.
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Figure 8. Rrs differences corresponding to 1% of the dynamic range of Rrs. Left column: standard
scenarios; right column: extreme scenarios of optically deep water.

3.2.2. Resolving Concentration Changes

The Rrs quantization required for resolving relevant changes of a model parameter is calculated
using Equation (9). It specifies the noise-equivalent remote sensing reflectance ∆Rrs,2 as the maximum
change in Rrs in the wavelength range of 400 to 800 nm induced by a 10% change in the parameter of
interest. C, X, Y and S were treated as the parameters of interest.

The simulations were made by iterating for each scenario the three variable parameters in 10
steps in the ranges given in Tables 1 and 2. For each parameter combination, ∆Rrs,2 was derived using
Equation (9). This equation requires a double calculation of the reflectance spectrum, i.e., for values
of x and 1.1x for the parameter of interest. For example, the sensitivity analysis for concentration
changes of phytoplankton in scenario X−was made by iterating C from 0.5 to 15 mg m−3 in 10 steps.
In each step, X = 1 g m−3 was set, Y was changed from 0.2 to 2 m−1 and S was changed from 0.010 to
0.020 nm−1. The reflectance spectrum was calculated for C and 1.1C for each parameter combination
to obtain the wavelength of maximum sensitivity and the induced reflectance change. The resulting
reflectance differences are the 1000 cyan circles labeled X− in diagram “C” of Figure 9.
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Figure 9. Maximum change in Rrs for a 10% change in the parameter indicated top right for the standard
scenarios. Parameter changes of f × 10% alter the shown ∆Rrs values approximately by the factor f.

The results of these simulations are shown in Figure 9 for the standard scenarios and in Figure 10
for the extreme scenarios as a function of the wavelength of maximum sensitivity.

Figures 9 and 10 reveal that ∆Rrs,2 = 10−5 sr−1 allows the resolution of 10% changes of X, Y and
S for all standard scenarios and for the majority of the conditions studied for the extreme scenarios.
However, C requires ∆Rrs,2 as fine as to 3 × 10−6 sr−1 for the standard scenarios and even below 1 ×
10−6 sr−1 for the extreme scenarios. High sensitivity is particularly required for the retrieval of low
phytoplankton concentrations in dark waters with low X or high Y (scenarios X−, X−−, Y++).

The derived ∆Rrs,2 values are the maximum changes in Rrs in the range of 400 to 800 nm. These
make 10% changes in the considered parameter principally detectable, but this does not necessarily
mean that the parameter can be identified and distinguished from other parameters. Figures 9 and 10
show that C, X, Y and S have no specific spectral region which could be attributed uniquely to one of
them, but each can induce strong changes to Rrs almost anywhere in the visible range. Thus, in most of
the considered water types, classification requires spectral information from other wavelengths with
less pronounced Rrs changes, i.e., the radiometric resolution should be even higher for quantitative
data analysis.
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Figure 10. Maximum change in Rrs for a 10% change in the parameter indicated top right for the
extreme scenarios. Parameter changes of f × 10% alter the shown ∆Rrs values approximately by the
factor f.

3.2.3. Optimal Rrs Quantization

A statistics of the maximum changes in Rrs induced by 10% concentration changes and by 0.002
nm−1 differences in the spectral slope of CDOM absorption is provided in Figure 11. The left plot
shows for each wavelength the medians of ∆Rrs,2 across all simulations of Figures 9 and 10. The right
plot shows a histogram of the wavelengths which are most sensitive to changes in C, X, Y and S.
The wavelengths of the local maxima are labeled.Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 28 
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Figure 11. Left: Medians of the maximum changes in Rrs induced by 10% concentration changes. Right:
Number of spectra used for calculating the medians and wavelengths of local maxima.

Most sensitive to changes in C, X, Y and S is the spectral region between 535 and 595 nm. Further
prominent ranges are 485–505 nm, 630–650 nm and 675–710 nm. The median of the maximum changes
is for most simulated cases between 10−4 and 10−3 sr−1. The median of 1.5 × 10−4 sr−1 obtained in
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Section 3.2.1 for resolving the spectral shape of reflectance spectra is inside this range, i.e., the two
approaches for estimating the optimal radiometric sensitivity lead to comparable results.

3.2.4. Radiometric Sensor Requirements

To estimate radiometric sensor requirements, radiance differences ∆L(λ) were simulated for ∆Rrs

values of 10−3, 10−4, 10−5 and 10−6 sr−1, which represent the four lowermost horizontal lines of Figure 8
to Figure 10 and the left plot of Figure 11. The calculations were made for sun zenith angles of 0◦, 20◦,
40◦, 60◦ and 70◦, using the mid-latitude summer atmospheric model of Modtran-6 [33] for a horizontal
visibility of 50 km. Figure 12 shows the resulting radiance differences. To make them comparable
with the sensitivity of existing satellite sensors, the noise-equivalent radiances NEL of MODIS and
OLCI on Sentinel-3 are also shown, representing instruments optimized for ocean color remote sensing.
Sentinel-2 has also been included as an example of a state-of-the art land sensor. NEL is the radiance
corresponding to the radiometric sensitivity of a sensor.Remote Sens. 2020, 12, x FOR PEER REVIEW 22 of 28 
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Figure 12. Radiance differences induced by Rrs changes of 10−3, 10−4, 10−5, 10−6 sr−1 for clear
atmospheric conditions and sun zenith angles of 0◦, 20◦, 40◦, 60◦, 70◦; noise-equivalent radiances of
Sentinel-2, Sentinel-3 OLCI and MODIS for comparison.

Figure 12 reveals that instruments with sensitivities comparable to Sentinel-2 allow the
differentiation of only reflectance differences in the order of ∆Rrs = 10−3 sr−1 for all considered
sun zenith angles, while sensors like OLCI on Sentinel-3 and MODIS can easily measure reflectance
differences of ∆Rrs = 10−4 sr−1, and ∆Rrs = 10−5 sr−1 can be resolved only above 650 nm. Differences of
∆Rrs = 10−6 sr−1 are too small for any of these sensors.

3.2.5. Signal-to-Noise Requirements

The signal-to-noise ratio at the top of the atmosphere is the sum of a component from the
atmosphere, SNRpath, and another from the water, SNRBOA (Equation (16)). The required SNRpath for
resolving Rrs differences of 10−3, 10−4, 10−5 and 10−6 sr−1 was simulated using Equation (17). These
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∆Rrs values represent the four lowermost horizontal lines of Figure 8 to Figure 10 and the left plot
of Figure 11. Modtran-6 [33] was used for calculating L(λ) and Ed(λ) for a mid-latitude summer
atmosphere at a horizontal visibility of 50 km and sun zenith angles of 0◦, 20◦, 40◦, 60◦ and 70◦.
Figure 13 shows the results. SNRpath increases strongly from long to short wavelengths and can be
very large, particularly for ∆Rrs < 10−4 sr−1. Figure 13 can be useful for relating the environmental
parameter ∆Rrs to the measurement parameter SNR at the top of the atmosphere for given SNRBOA.Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 28 
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Figure 13. Required signal-to-noise ratio of the path radiance for resolving Rrs differences of 10−3, 10−4,
10−5 and 10−6 sr−1 under clear atmospheric conditions for sun zenith angles of 0◦, 20◦, 40◦, 60◦ and 70◦.

SNRBOA is determined for both approaches to estimating the required resolution ∆Rrs, i.e.,
capturing the spectral shape of reflectance measurements (Equation (8)) and resolving concentration
changes (Equation (9)). The simulated values of ∆Rrs in the first approach have been shown in Figure 8,
those of the second approach in Figure 9 to Figure 11.

A summary of the second approach is given in Table 4 for the most sensitive wavelengths. It
quantifies SNRBOA and SNRpath and their sum, SNRTOA, for a sun zenith angle of 40◦. The chosen
wavelengths represent the labeled maxima of Figure 11 (right). The reflectance differences listed in
the ∆Rrs column are taken from Figure 11 (left). They represent the median of the maximum Rrs

differences over all standard and extreme deep water scenarios induced by 10% concentration changes
in water constituents and 0.002 nm−1 changes in the spectral slope of CDOM absorption. ∆λ indicates
the median optimal spectral resolutions of all scenarios (red curve of Figure 7).
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Table 4. Wavelengths most sensitive to concentration changes, their medians of the optimal spectral
resolution ∆λ, their median ∆Rrs of the induced Rrs differences and their medians of the signal-to-noise
ratio at the water surface (SNRBOA), for the atmospheric path radiance at a sun zenith angle of 40◦

(SNRpath) and at the top of the atmosphere (SNRTOA).

Wavelength
(nm)

∆λ

(nm)
∆Rrs
(sr−1)

SNRBOA SNRpath SNRTOA

488 1.8 3.3 × 10−4 62 151 213
501 1.6 4.0 × 10−4 21 108 129
543 1.9 2.5 × 10−4 26 118 144
566 2.1 6.8 × 10−4 13 36 49
580 0.8 8.0 × 10−4 16 28 44
588 0.6 2.0 × 10−3 14 11 25
638 4.3 6.8 × 10−4 13 21 34
676 6.7 5.6 × 10−5 56 203 259
705 1.2 1.9 × 10−3 19 5 24

The values of ∆Rrs and SNR in Table 4 can be interpreted as the lowest useful limits for designing
a sensor as they are derived for the one wavelength in the range of 400 to 800 nm with a maximally
induced reflectance change, and the median only represents half of the simulations. Most algorithms
however also require measurements at wavelengths of lower sensitivities in order to disentangle
the influence of different water constituents and eventually bottom substrates, i.e., they analyze the
spectral shape of the spectrum.

The values of ∆Rrs required for capturing the spectral shape have been shown in Figure 8 for all
simulated cases. Figure 14A summarizes these values in terms of quantiles representing 50%, 75% and
90% of all simulated spectra with ∆Rrs ≥ 10−6 sr−1. The 50% quantile represents the median.Remote Sens. 2020, 12, x FOR PEER REVIEW 24 of 28 
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Figure 14. Reflectance differences (A) and radiance differences (B) that must be resolved in order to
capture the spectral shape of reflectance spectra with a quantization of 100 levels for 50%, 75% and 90%
of all simulated cases. The radiance differences are shown for a sun zenith angle of 40◦ and compared
with the noise-equivalent radiances of the sensors OLCI on Sentinel-3 and MODIS.

Figure 14A reveals significant spectral variability of ∆Rrs, with very low values above 740 nm.
From 400 to 735 nm, the average 50% percentile is 1.2 × 10−4 sr−1, the average 75% percentile is 2.9 ×
10−5 sr−1 and the average 90% percentile is 1.0 × 10−5 sr−1. From 740 to 900 nm, the corresponding
values are 1.5 × 10−5 sr−1, 4.0 × 10−6 sr−1 and 1.8 × 10−6 sr−1.

Figure 14B shows the corresponding radiance differences ∆L for a sun zenith angle of 40◦, as
obtained using Equation (11). For comparison, the noise-equivalent radiances of the OLCI sensor on
Sentinel-3 and the MODIS sensor are also shown. It can be concluded from Figure 14B that satellite
sensors with a radiometric sensitivity comparable to OLCI on Sentinel-3 and MODIS are capable
of capturing the radiometric details for ~50% of the studied scenarios in the blue (400–450 nm), for
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~75–95% in the green (490–550 nm), for ~75% in the red (600–700 nm) and for ~50–60% in the near
infrared (720–900 nm).

Combining ∆Rrs from Figure 14A with the corresponding remote sensing reflectance Rrs yields
SNRBOA according to Equation (18), and applying Equation (17) to ∆Rrs yields SNRpath. The sum of
SNRBOA and SNRpath gives SNRTOA. Figure 15 shows the quantiles of SNRBOA and SNRTOA, which
represent 50%, 75% and 90% of all simulated reflectance spectra with ∆Rrs ≥ 10−6 sr−1.
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Figure 15. Signal-to-noise ratio at the water surface (A) and at the top of the atmosphere (B) required
for capturing the spectral shape of reflectance spectra with a quantization of 100 levels for 50%, 75%
and 90% of all simulated cases. The simulations are shown for a sun zenith angle of 40◦. The numbers
in (B) are the averages for the spectral ranges 400–450 nm, 560–580 nm and 600–900 nm.

The postulation behind the simulations for resolving spectral features is that the maximum
difference of a reflectance spectrum from 400 to 800 nm should have a quantization of 100 levels
(Equation (8)). Figure 15A translates this postulation into measurement requirements concerning the
signal-to-noise ratio at the water surface. The average SNRBOA across all scenarios for the spectral
range of 400 to 800 nm is 52 for the 50% quantile (median), 90 for the 75% quantile and 143 for the
90% quantile.

The SNR at the top of the atmosphere is governed by the path radiance, as illustrated above in
Figure 13. Figure 15B shows that SNRTOA has a minimum of 560–580 nm, some variability around an
adumbrated plateau from 600 to 900 nm and increases rapidly below 560 nm to high values from 400
to 450 nm. The averages in these ranges are given in the figure.

4. Summary and Conclusions

The main goal of the paper was to derive globally applicable requirements for measuring remote
sensing reflectance (Rrs) in terms of quantization (∆Rrs) and spectral resolution (∆). A number of
scenarios for optically deep and optically shallow waters were defined, which are expected to cover
most of the variety of reflectance spectra of inland and shallow coastal and coral reef waters on Earth.
Each optically deep water scenario is represented by the range and typical values of four parameters
characterizing the water constituents, while each optically shallow water scenario is defined by the
albedo of the bottom substrate or substratum cover type and by a set of water depths. Thousands of
reflectance spectra were simulated for each scenario by iterating the scenario-specific parameters. A
method was developed (Equation (7)) for deriving the spectral resolution, which captures all spectral
details present in Rrs for a given quantization ∆Rrs. ∆Rrs was derived using two approaches: (1) the
spectral shape of Rrs should be resolvable with a quantization of 100 levels from 400 to 800 nm; (2)
concentration changes in water constituents of 10%, spectral slope differences of 0.002 nm−1 of CDOM
absorption and depth differences of 20 cm shall produce measurable reflectance differences for at least
one wavelength. The results of ∆Rrs and ∆λ are presented in much detail in Sections 3.1 and 3.2. Both
parameters change significantly at around 740 nm. From 400 to 735 nm, the medians are ∆Rrs = 1.2 ×
10−4 sr−1 and ∆λ = 2.9 nm; the 90% percentiles are ∆Rrs = 1.0 × 10−5 sr−1 and ∆λ = 1.2 nm. From 740 to
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900 nm, the corresponding values are ∆Rrs = 1.5 × 10−5 sr−1 and ∆λ = 13.8 nm for the medians and
∆Rrs = 1.8 × 10−6 sr−1 and ∆λ = 2.3 nm for the 90% percentiles.

The secondary goal was to translate the ∆Rrs results to sensor and measurement requirements
for radiance sensors. Radiometric sensor requirements are defined by the noise-equivalent radiance
NEL. Radiance differences ∆L, induced by reflectance differences of ∆Rrs, are used as proxies for NEL.
Simulations of ∆L were made for specific values of ∆Rrs as a function of the sun zenith angle for a
mid-latitude summer atmosphere with 50 km visibility (Figure 12). A statistical evaluation for all
scenarios and a sun zenith angle of 40◦ is presented in Figure 14. To make the results comparable
with existing sensors, the derived requirements were compared with the specifications of OLCI on
Sentinel-3 and MODIS. These sensors would be capable of capturing the radiometric details for ~50%
of the studied scenarios in the blue, ~75–95% in the green, ~75% in the red and ~50–60% in the near
infrared for the studied environmental conditions.

Radiometric measurement requirements are defined by the signal-to-noise ratio (SNR). Over water,
the SNR at the top of the atmosphere is governed by the path radiance (Lpath). Equations were derived
for separating the contributions from the ground and the atmosphere (Equation (16)) and for expressing
SNR in terms of Rrs, ∆Rrs and Lpath (Equations (17) and (18)). Simulations of typical atmospheric SNRs
were made for specific values of ∆Rrs as a function of the sun zenith angle (Figure 13). A statistical
evaluation of all scenarios is presented in Figure 15 for a sun zenith angle of 40◦. It should be noted
that the SNR is a popular parameter for comparing measurements but cannot be used directly for
assessing a sensor because the SNR is not a sensor parameter.

Quantitative values of remote sensing reflectance differences (∆Rrs) and optimal spectral resolution
(∆λ) were derived for tens of thousands of simulations, which are expected to cover a wide range of
inland, coastal and reef waters on Earth. The simulations are based on the assumption that useful
remote sensing reflectance (Rrs) measurements shall be of very high quality in the sense that the spectral
shape of Rrs should have a quantization of 100 levels, and the spectral resolution should allow the
capture of all spectral details which are theoretically resolvable with that quantization. Measurements
reaching the derived optimal values ∆Rrs and ∆λ hence represent a best case for subsequent data
analysis but a worst case for sensor design.

The CEOS study [1] investigated the technical constraints for an aquatic ecosystem Earth
observation system and compared the SNRs at the top of the atmosphere resulting from the desired
∆Rrs values with realistically attainable SNRs for a sensor with a lens aperture of 30 cm and a ground
sampling distance between 17 and 33 m in a 400 km orbit. Not surprisingly, they differ considerably,
particularly for low sun elevation, turbid atmosphere and for retrieving phytoplankton in dark waters.
It can be expected that even sensors at the technological front-end (highly sensitive and low-noise
detectors with high dynamic range and large aperture of the telescope) are not able to measure data with
such high quality under all circumstances. Hence, trade-offs between spatial, spectral and radiometric
resolutions will be necessary to design a satellite sensor for inland and coastal waters. Simulations
similar to those presented here can help to optimize these trade-offs. Such simulations should cover,
in addition to representative aquatic scenarios like in this study, a reasonable range of atmospheric
conditions and sun zenith angles.

To assess the capabilities of a specific sensor for deriving a parameter of interest (x), the sequence
of steps must be reversed. The input are the sensor parameters (NEL, center wavelength and spectral
response of each band, viewing angle), atmospheric conditions and the sun zenith angle. After the
atmospheric transmission and the downwelling irradiance at the Earth’s surface have been calculated,
∆Rrs can be determined for each wavelength using Equation (14). To convert ∆Rrs(λ) into resolvable
differences of x, partial derivatives must be calculated numerically or an iterative approach applied,
since x and ∆x cannot be expressed explicitly as a function of Rrs. As Rrs measurements in optically
complex waters are frequently ambiguous [36], the number and accuracy of retrievable parameters
depends on the used algorithm and its strategy for handling ambiguities [38]. The assessment of
measurement capabilities should therefore also include retrieval algorithms.



Remote Sens. 2020, 12, 2247 24 of 26

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2247/s1:
simulated data, meta-analyses (statistical analyses, SNR calculations), source code and executable and configuration
files of the special version 5.2 of the software WASI, which was used for the simulations.

Author Contributions: Conceptualization, P.G. and A.G.D.; methodology, P.G.; software, P.G.; investigation,
A.G.D. and P.G.; simulations, P.G.; writing—original draft preparation, P.G.; writing—review and editing, P.G.
and A.G.D.; visualization, P.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The spectral measurements of the bottom substrates were provided by N. Pinnel, E. Botha
and D. Rogge. The specific backscattering coefficient of phytoplankton was provided by C. Giardino.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dekker, A.G.; Pinnel, N.; Gege, P.; Briottet, X.; Peters, S.; Turpie, K.R.; Sterckx, S.; Costa, M.; Giardino, C.;
Brando, V.E. Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2. 2018. Available
online: http://ceos.org/document_management/Publications/Feasibility-Study-for-an-Aquatic-Ecosystem-
EOS-v.2-hi-res_05April2018.pdf (accessed on 10 July 2020).

2. Palmer, S.; Kutser, T.; Hunter, P. Remote sensing of inland waters: Challenges, progress and future directions.
Remote Sens. Environ. 2015, 157, 1–8. [CrossRef]

3. Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring freshwater
aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sens. Environ.
2015, 167, 181–195. [CrossRef]

4. Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.M.; Ma, R.H.;
Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and
recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [CrossRef]

5. Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically-deep
and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [CrossRef]

6. Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic.
2016, 64, 105–122. [CrossRef]

7. Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year
retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [CrossRef]

8. IOCCG. Mission Requirements for Future Ocean-Colour Sensors; McClain, C.R., Meister, G., Eds.; Reports of the
International Ocean-Colour Coordinating Group (IOCCG); IOCCG: Dartmouth, NS, Canada, 2012.

9. Simulation Data of Inland and Reef Waters. Available online: https://doi.org/10.5281/zenodo.3817616
(accessed on 30 May 2020).

10. Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.;
Braga, F.; et al. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and
Perspectives. Surv. Geophys. 2019, 40, 401–429. [CrossRef]

11. Peters, S.; Hommersom, A.; Alikas, K.; Latt, S.; Reinart, A.; Giardino, C.; Bresciani, M.; Philipson, P.;
Ruescas, A.; Stelzer, K.; et al. Global Lakes Sentinel Services: Water quality parameters retrieval in lakes
using the MERIS and S3-OLCI band sets. In Proceedings of the SENTINEL-3 for Science Workshop, Venice,
Italy, 2–5 June 2015.

12. Eleveld, M.A.; Ruescas, A.B.; Hommersom, A.; Moore, T.S.; Peters, S.W.M.; Brockmann, C. An Optical
Classification Tool for Global Lake Waters. Remote Sens. 2017, 9, 420. [CrossRef]

13. Ylöstalo, P.; Kallio, K.; Seppälä, J. Absorption properties of in-water constituents and their variation among
various lake types in the boreal region. Remote Sens. Environ. 2014, 148, 190–205. [CrossRef]

14. Bricaud, A.; Morel, A.; Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the
UV and visible domains. Limnol. Oceanogr. 1981, 26, 43–53. [CrossRef]

15. Carder, K.L.; Harvey, G.R.; Ortner, P.B. Marine humic and fulvic acids: Their effects on remote sensing of
ocean chlorophyll. Limnol. Oceanogr. 1989, 34, 68–81. [CrossRef]

16. Pinnel, N. A Method for Mapping Submerged Macrophytes in Lakes Using Hyperspectral Remote Sensing.
Ph.D. Thesis, Technical University of Munich, München, Germany, 2007.

http://www.mdpi.com/2072-4292/12/14/2247/s1
http://ceos.org/document_management/Publications/Feasibility-Study-for-an-Aquatic-Ecosystem-EOS-v.2-hi-res_05April2018.pdf
http://ceos.org/document_management/Publications/Feasibility-Study-for-an-Aquatic-Ecosystem-EOS-v.2-hi-res_05April2018.pdf
http://dx.doi.org/10.1016/j.rse.2014.09.021
http://dx.doi.org/10.1016/j.rse.2015.05.023
http://dx.doi.org/10.1016/j.rse.2015.02.001
http://dx.doi.org/10.1016/j.rse.2011.11.013
http://dx.doi.org/10.1016/j.ecolind.2015.12.009
http://dx.doi.org/10.1016/j.rse.2019.111619
https://doi.org/10.5281/zenodo.3817616
http://dx.doi.org/10.1007/s10712-018-9476-0
http://dx.doi.org/10.3390/rs9050420
http://dx.doi.org/10.1016/j.rse.2014.03.023
http://dx.doi.org/10.4319/lo.1981.26.1.0043
http://dx.doi.org/10.4319/lo.1989.34.1.0068


Remote Sens. 2020, 12, 2247 25 of 26

17. Botha, E.J.; Dekker, A.G.; Park, Y.J. Remote Sensing of Previously Unmapped Marine Habitats on the South Coast of
Western Australia; National Research Flagship Wealth From Oceans Report to WA-DEC; WA South Coast
NRM, WA South West Catchments Council: Canberra, Australia, 2009; p. 53.

18. Botha, E.J.; Brando, V.E.; Anstee, J.M.; Dekker, A.G.; Sagar, S. Increased spectral resolution enhances coral
detection under varying water conditions. Remote Sens. Environ. 2013, 131, 247–261. [CrossRef]

19. Dekker, A.G.; Anstee, J.M.; Brando, V.E. Retrospective seagrass change detection in a shallow coastal tidal
Australian lake. Rem. Sens. Environm. 2005, 97, 415–433. [CrossRef]

20. Schnalzger, K. Spektrale Datenbank für den Untergrund der Ostsee sowie Einfluss auf die Bestimmung der
Wassertiefe. Master’s Thesis, University of Augsburg, Augsburg, Germany, 2017.

21. Mobley, C.D. Light and Water; Academic Press: San Diego, CA, USA, 1994.
22. Lee, Z.-P.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow

waters: 1. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [CrossRef] [PubMed]
23. Albert, A.; Mobley, C.D. An analytical model for subsurface irradiance and remote sensing reflectance in

deep and shallow case-2 waters. Opt. Express 2003, 11, 2873–2890. [CrossRef] [PubMed]
24. Albert, A. Inversion Technique for Optical Remote Sensing in Shallow Water. Ph.D. Thesis, University of

Hamburg, Hamburg, Germany, 2004.
25. Lee, Z.-P.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow

waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843.
[CrossRef] [PubMed]

26. Gege, P. Radiative transfer theory for inland waters. In Imaging Spectrometry of Inland and Coastal Waters:
State of the Art, Achievements and Perspectives; Mishra, D.R., Ogashawara, I., Gitelson, A.A., Eds.; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 25–67.

27. Gege, P. WASI (Water Colour Simulator). 2019. Available online: http://www.ioccg.org/data/software.html
(accessed on 9 December 2019).

28. Hartmann, G.M. Untersuchungen zum Absorptions- und Streuverhalten von Wasserinhaltsstoffen für die
Auswertung von Fernerkundungsdaten. Bachelor’s Thesis, Albert-Ludwigs-Universität Freiburg, Breisgau,
Germany, 1995.

29. Gege, P. Estimation of phytoplankton concentration from downwelling irradiance measurements in water.
Israel J. Plant Sci. 2012, 60, 193–207. [CrossRef]

30. D’Sa, E.J.; Miller, R.L.; Del Castillo, C. Bio-optical properties and ocean color algorithms for coastal waters
influenced by the Mississippi River during a cold front. Appl. Opt. 2006, 45, 7410–7428. [CrossRef]

31. Babin, M.; Stramski, D.; Ferrari, G.M.; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Variations in
the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal
waters around Europe. J. Geophys. Res. 2003, 108, C7. [CrossRef]

32. GLASS. Global Lakes Sentinel Services, D3.4 Adapted Water Quality Algorithms; 2014; 126p, Available online:
http://www.glass-project.eu/assets/Deliverables/GLaSS-D3.4.pdf (accessed on 10 July 2020).

33. Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; Van Den Bosch, J. MODTRAN6: A major upgrade of
the MODTRAN radiative transfer code. In Proceedings of the SPIE—The International Society for Optical
Engineering, San Diego, CA, USA, 17–21 August 2014; p. 9088. [CrossRef]

34. Hu, C.; Feng, L.; Lee, Z.; Davis, C.; Mannino, A.; McClain, C.; Franz, B. Dynamic range and sensitivity
requirements of satellite ocean color sensors: Learning from the past. Appl. Opt. 2012, 51, 6045–6062.
[CrossRef]

35. Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black
lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters.
Remote Sens. 2016, 8, 497. [CrossRef]

36. Defoin-Platel, M.; Chami, M. How ambiguous is the inverse problem of ocean color in coastal waters? J.
Geophys. Res. 2007, 112, C03004. [CrossRef]

37. Cael, B.; Chase, A.; Boss, E. Information content of absorption spectra and implications for ocean color
inversion. Appl. Opt. 2020, 59, 3971–3984. [CrossRef] [PubMed]

38. Jay, S.; Guillaume, M.; Minghelli, A.; Deville, Y.; Chami, M.; Lafrance, B.; Serfaty, V. Hyperspectral remote
sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling
and inversion of water reflectance. Remote Sens. Environ. 2017, 200, 352–367. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2012.12.021
http://dx.doi.org/10.1016/j.rse.2005.02.017
http://dx.doi.org/10.1364/AO.37.006329
http://www.ncbi.nlm.nih.gov/pubmed/18286131
http://dx.doi.org/10.1364/OE.11.002873
http://www.ncbi.nlm.nih.gov/pubmed/19471407
http://dx.doi.org/10.1364/AO.38.003831
http://www.ncbi.nlm.nih.gov/pubmed/18319990
http://www.ioccg.org/data/software.html
http://dx.doi.org/10.1560/IJPS.60.1-2.193
http://dx.doi.org/10.1364/AO.45.007410
http://dx.doi.org/10.1029/2001JC000882
http://www.glass-project.eu/assets/Deliverables/GLaSS-D3.4.pdf
http://dx.doi.org/10.1117/12.2050433
http://dx.doi.org/10.1364/AO.51.006045
http://dx.doi.org/10.3390/rs8060497
http://dx.doi.org/10.1029/2006JC003847
http://dx.doi.org/10.1364/AO.389189
http://www.ncbi.nlm.nih.gov/pubmed/32400669
http://dx.doi.org/10.1016/j.rse.2017.08.020


Remote Sens. 2020, 12, 2247 26 of 26

39. Hochberg, E.J.; Atkinson, M.J.; Andréfouët, S. Spectral reflectance of coral reef bottom-types worldwide and
implications for coral reef remote sensing. Remote Sens. Environ. 2003, 85, 159–173. [CrossRef]

40. Kutser, T.; Dekker, A.G.; Skirving, W. Modelling spectral discrimination of Great Barrier Reef benthic
communities by remote sensing instruments. Limnol. Oceanogr. 2003, 48, 497–510. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0034-4257(02)00201-8
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0497
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Scenarios 
	Optically Deep Water 
	Optically Shallow Water 

	Model 
	Determination of the Optimal Spectral Resolution 
	Determination of the Optimal Radiometric Sensitivity 
	Rrs. Quantization 
	Absolute Radiometric Resolution 
	Signal-to-Noise Ratio 


	Results 
	Spectral Resolution 
	Optically Deep Water 
	Optically Shallow Water 
	Optimal Spectral Resolution 

	Radiometric Sensitivity 
	Resolving Spectral Features 
	Resolving Concentration Changes 
	Optimal Rrs  Quantization 
	Radiometric Sensor Requirements 
	Signal-to-Noise Requirements 


	Summary and Conclusions 
	References

