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Study of Systematic Bias in Measuring Surface
Deformation With SAR Interferometry

Homa Ansari

Abstract—This article investigates the presence of a
new interferometric signal in multilooked synthetic aperture
radar (SAR) interferograms that cannot be attributed to the
atmospheric or Earth-surface topography changes. The observed
signal is short-lived and decays with the temporal baseline;
however, it is distinct from the stochastic noise attributed to
temporal decorrelation. The presence of such a fading signal
introduces a systematic phase component, particularly in short
temporal baseline interferograms. If unattended, it biases the esti-
mation of Earth surface deformation from SAR time series. Here,
the contribution of the mentioned phase component is quantita-
tively assessed. The biasing impact on the deformation-signal
retrieval is further evaluated. A quality measure is introduced
to allow the prediction of the associated error with the fading
signals. Moreover, a practical solution for the mitigation of this
physical signal is discussed; special attention is paid to the
efficient processing of Big Data from modern SAR missions
such as Sentinel-1 and NISAR. Adopting the proposed solution,
the deformation bias is shown to decrease significantly. Based on
these analyses, we put forward our recommendations for efficient
and accurate deformation-signal retrieval from large stacks of
multilooked interferograms.

Index Terms—Big Data, deformation estimation, differential
interferometric synthetic aperture radar (SAR) (DInSAR),
distributed scatterers (DSs), error analysis, near real-time (NRT)
processing, phase inconsistencies, signal decorrelation, time-series
analysis.

I. INTRODUCTION

S AN established geodetic technique for Earth surface
deformation monitoring, the accuracy of the interfero-
metric synthetic aperture radar (InSAR) time-series analysis
should be well quantified and the potential error sources must
be known. Any uncertainty in the accuracy of the InSAR
products compromises their reliability in sensitive applications.
Persistent scatterer interferometry (PSI) is among the pio-
neering techniques for improving the accuracy of the InSAR
[1] in deformation retrieval. Exploiting the phase stable
persistent scatterers (PS) within the time series, PSI avoids
a major limitation of InSAR, namely, the signal decorre-
lation [2]. Using the high signal to noise ratio (SNR) PS
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measurements, another error source of InSAR is mitigated
through the separation of the atmospheric signals from the
deformation. The PSI technique has been perfected since its
invention, and its accuracy has been studied thoroughly [3].

The low density of PS in nonurban areas motivated the
invention of complementary techniques to PSI. These methods
exploit partially decorrelating areas in time-series analysis.
Referred to as distributed scatterers (DS), such areas pertain to
an ensemble of natural scatterers that share similar scattering
characteristics. A variety of methods have been put forward
to allow the use of DS in deformation estimation, with small
BAseline subset algorithm (SBAS) [4] and SqueeSAR [5]
as the overarching approaches. The shortcoming of natural
scatterers of DS is their inherent phase noise caused by signal
decorrelation. Common to all DS techniques, spatial averag-
ing, or multilooking, is employed to reduce this stochastic
noise in the interferograms.

The purpose of this article is to investigate the accuracy
of the multilooked interferograms with regard to the DS
techniques. Different studies have been dedicated to the vali-
dation of DS with independent geodetic techniques, such as
Global Navigation Satellite Systems (GNSS) measurements
(see [6]). Being spatially sparse, such independent measure-
ments restrict the comprehensive study of the DS behavior.
Here, we consider a different validation approach to reveal a
peculiar systematic signal in the multilooked interferograms.
If unattended, the mentioned signal can severely bias the
deformation estimates of DS. We investigate the accuracy
of the deformation estimates in the presence of this signal
to highlight the role of different DS techniques in either
exacerbation or mitigation of the deformation bias.

Following the theoretical background of Section II,
we design different comparison approaches in Section III to
shed light on the following propositions.

1) The multilooked interferograms reveal a systematic sig-
nal that cannot be explained by the topographic or
atmospheric variations and interfere in the accurate esti-
mation of the deformation. Such signals are short-lived
and decay with the temporal baseline, rendering the short
temporal baseline interferograms to be more error-prone.
Hereafter, we refer to this effect as the fading signal
to reflect that it is inherently a short-lived but physical
phase contribution.

2) At interferogram level, the magnitude of the signal can
be small compared with the well-known InSAR error
sources such as atmospheric perturbations. However, the
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propagation of this negligibly small error through the
time series of interferograms compromises the accuracy
of deformation.

3) Focusing on two conventional InSAR deformation prod-
ucts, the estimates of surface-displacement time series
and displacement velocity are both compromised in the
presence of the fading signal.

4) The fading signal may be induced by different physical
phenomena. The understanding of the source of this
signal and its modeling is a current research topic
[71-[9]. Lacking a generic model to explain the behavior
of the fading signal makes the calibration of these errors
intricate.

5) Using the temporal data redundancy within the time
series, i.e., by exploiting all possible interferograms,
the fading signal is significantly mitigated in the mul-
tilooked interferograms. This mitigation improves the
accuracy of both displacement time series and displace-
ment velocity estimates.

After the careful examination of these propositions in
Sections IV-VI, we put forward our suggestions for achieving
accurate deformation monitoring with DS in Section VII.

The focus of this article is on observing the fading sig-
nal and its mitigation using the data-adaptive approaches.
Occasionally, different hypotheses are put forward to explain
the physical phenomena behind the fading signals; however,
the in-depth validation of the theses is beyond the scope of
this article.

II. TECHNICAL BACKGROUND
A. Single-Look Versus Multilooked Observations

In a time series of n SAR acquisitions, each pair of a
so-called master and slave acquisitions allows the formation
of an interferogram. The latter is the phase difference between
the two complex-valued images, relative to the master acqui-
sition. For each choice of master acquisition, n — 1 common-
master interferograms exist within the time series. In total,
n(n — 1)/2 multimaster interferograms may be formed for
each time series. As the target of geodetic applications, Earth
surface deformation is estimated from all or a subset of these
interferograms. Therefore, the accuracy of the deformation
estimates is governed by the quality and number of the
exploited interferograms.

In this work, we distinguish between two types of observa-
tions in the interferograms: single-look versus the multilooked
interferometric phases. An example of the former is PS, where
the single complex-valued pixels are exploited within the
time series. The latter observations are the result of spatial
averaging common for the DS regions.

For the case of PS, the multimaster interferograms of the
single-look observations are highly redundant. A mere subset
of n—1 common-master interferograms allows the reconstruc-
tion of all possible interferogram combinations within the time
series, for example

for PS N A¢ik = W(A¢1m — A¢km)
g A§Zsimk = W(Aglsim - AQZskm - AQZsik) =0. (1)
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Here, W(x) = mod{x + #,27} — n, m indexes the master
acquisition; here and after, the amplitude of the interferograms
is disregarded for brevity of notation. A¢;, is an indicator for
the consistency of phase components within the time series [8].

As the second category of observations, DS are character-
ized by the homogeneous areas that undergo signal decorre-
lation. Therefore, the single-look observations within the DS
region have low SNR. The remedy in improving the SNR is to
perform spatial averaging within the homogeneous DS region
and form multilooked observations. All advanced DS-InSAR
techniques employ multilooking, although some techniques
include single-look observations [10], [11] or use data-adaptive
and, thereby, feature-preserving methods [5], [12]. Although
effective in noise reduction, multilooking changes the statisti-
cal properties of the interferograms. It reduces the redundancy
among the n(n — 1)/2 interferogram combinations, such that
(1) no longer holds. A residual component is observed among
each of the three arbitrary multilooked interferograms, that is

for DS : Agiue = W(A@im + Ay + Adpii) 0 (2)

implying that the phase information of the DS regions is
inconsistent among the arbitrary interferograms. Two effects
may be observed for the DS phases.

1) E{A¢;.i} = 0, reflecting the stochastic noise caused by

signal decorrelation.

2) E{A¢in) # O, indicating a variant systematic signal

among the multilooked interferograms.
Here, E shows the statistical expectation of the accompanied
random variable.

The former stochastic effect translates to noise in the
deformation estimates. More critical is the latter systematic
effect that may be present in a subset of the interferograms,
and therefore revealed in certain interferogram triplets. The
systematic effects introduce a fading signal in the affected mul-
tilooked interferograms. If present and not mitigated properly,
they are interpreted as deformation and bias the estimates.

The peculiar fading signal is raised by multilooking and
absent in single-look observations. Therefore, the discrepancy
between the single-look and multilooked observations can be
used to investigate first the presence of the fading signals and
finally their impact on biasing the deformation estimates. This
rationale is adopted throughout this article and expanded in
Sections III-B and III-C.

As the target for geodetic application, the atmospheric and
surface-deformation signals are consistent within the arbitrary
interferograms [8], i.e., A¢;, = 0 holds for the phase compo-
nents corresponding to these signals. The reason is that these
physical sources uniformly affect all scatterers within the DS
region; therefore, their net residual effect vanishes in E{A¢; .}
[8], [13]. To safeguard against the fading signals, one needs
to retrieve the consistent component of the interferograms or,
in other words, reconstruct the consistency among them.

B. Reconstruction of Consistency

One approach to reconstruct the consistency is to discover
the physical source of the fading signals, accurately model
their scattering behavior and, thereby, phase contribution, and
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compensate the corresponding phase from the multilooked
interferograms. As one source of the fading signals, we refer
the reader to the variation in the moisture content of the
scattering media. The effect of moisture on InSAR is stud-
ied and modeled in [7]. Based on the proposed moisture
model, the corresponding phase contribution is estimated
from the residual phase of (2) in [9]. The multilooked
interferograms may further be compensated by the estimated
moisture-induced phase to form consistent interferograms [9].
The consistency in this case is reconstructed by calibrating the
fading signal’s phase component.

As our investigations on two distinct regions reveal,
the behavior of the fading signal varies significantly across
different data sets, land cover, etc. Therefore, the mentioned
moisture model does not suffice in explaining the observed
inconsistencies (see Section VI), rendering the calibration
ineffective. For instance, to explain the observed fading signal
over part of our test sites, we propose an alternative model to
moisture variation in Section VI. This analysis serves as an
example to show that for a an effective calibration, we either
need to perform comprehensive research on various possible
physical sources of inconsistencies and design case-specific
models to explain the interferometric phase of each source or
to design a generic model applicable to all possible sources of
inconsistencies. In both cases, further studies on various test
sites are inevitable. This model-based approach in the recon-
struction of consistency is subject to comprehensive research,
hence, as of present, still inapt for systematic deformation
monitoring.

A practical approach in the reconstruction of consistency
is to retrieve the consistent components of the phase within
the time series, i.e., by explicitly imposing the condition
of A¢yx = 0 among all the n(n — 1)/2 interferograms
within the time series. This approach is initially designed
to reduce the stochastic noise within the interferogram stack
[5], [14]. However, as it will be revealed by the analysis of
this article, it significantly reduces the effect of systematic
phase inconsistencies as well. Referred to as phase linking,
the method is explained in Section II-C. Phase linking does
not consider a specific model for the fading signal, and
it rather gains robustness to such signals by exploring the
temporal data redundancy of the interferograms. Successful
phase reconstruction by phase linking may be due to the
exploitation of sufficiently large number of interferograms
within long time series; especially, the long temporal baseline
interferograms that are less prone to the short-lived fading
signal. However, the examination of this thesis is beyond
the scope of this article. Within the scope of this article,
we substantiate that phase linking is an efficient and practical
solution to reconstruct the consistency.

C. Phase-Linking Techniques

After its pioneering authors, we define phase linking as
the estimator that retrieves n — 1 independent common-master
interferograms from the partially redundant n(n — 1)/2 multi-
master interferograms [14]. Here, we shortly introduce phase
linking.
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Without loss of generality, we concentrate on one DS region
(see [5], [12] for the algorithmic details of the DS region
selection). The DS is comprised of an ensemble of the spatially
homogeneous region of p pixels in a time series of n synthetic
aperture radar (SAR) images, arranged in a matrix Z € C"*?,
Based on the central limit theorem, Z follows the zero-mean
n-variate Complex Circular Gaussian (CCG) distribution [2].
Under the validity of this distribution, the sample covariance
matrix or its normalized version sample correlation matrix
(SCM) suffices for the full description of the DS. The SCM,
denoted by C, is a Hermitian matrix whose off-diagonal
elements pertain to all possible multilooked interferograms I ;;
within the time series and their corresponding coherence T,
that is

LCi = Lk = Adix (3)
[Cik] = Tix. “4)

Various phase-linking approaches are defined based on dif-
ferent modelings of the SCM [15], [16]. In an earlier
work, we proposed a computationally efficient approach to
phase linking called Eigen-decomposition-based Maximum-
likelihood-estimator of Interferometric phase (EMI) [15]. This
proposal decreases the computational cost by reformulating
phase estimation into the following Eigen-decomposition prob-
lem [15]:

¢ = L(argmin, {v/" (CoT ") v;})
subject to v/, = 1
and vv; =0 (%)

where v; is an arbitrary complex vector of size n x 1 and o is
the Hadamard product.

¢ is a vector of n wrapped phase values. It contains
the consistent interferometric phase component within the
exploited interferograms. This phase information is used for
the retrieval of the deformation signal. EMI allows the con-
venient estimation of this phase series by taking the smallest
Eigenvector of the matrix C o T ™.

Note that, as common in InSAR, the estimation of absolute
phase is ambiguous. An arbitrary image in the time series is
selected as a reference scene, and its phase is set to zero and
the remaining phases are measured relative to these arbitrary
data.

III. METHODOLOGY IN ACCURACY ASSESSMENT

In this section, we explain our experiments to reveal the
existence and impact of the phase errors in the multilooked
interferograms. The design of these experiments is based on
the following rationale.

1) Any systematic discrepancy between the single-look and
multilooked observations is an indicator of the fading
signals (see Section II-A).

2) Should inconsistent systematic effects exist within the
multilooked interferograms, the deformation estimates
vary depending on which interferograms are exploited.

As the benchmark of the experiments, we perform PSI to
retrieve the deformation based on single-look observations.
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Exploiting various combinations of multilooked interfero-
grams, we further perform multiple processing rounds to
investigate the impact on the deformation estimates. In the
first processing round, we exploit all possible interferograms
within the time series, as explained in Section II-C. In the
following processing rounds, we test the ingestion of different
subsets of the interferograms; the corresponding estimator for
this processing is introduced in Section III-A.

As explained in Section III-B, the resulting deformation
estimates from the different processing schemes are evaluated
against the benchmark PSI to study the estimation bias.
In Section III-C, we expand on our experiments to reveal the
existence of the fading signals in multilooked interferograms
and quantify their magnitude and impact on the deformation
estimates.

A. Enhanced Short Temporal Baseline Subset Algorithm

To allow the ingestion of different subsets of the interfero-
grams and evaluate the impact on the deformation estimates,
we designed a variation of the SBAS technique of [4]. The
difference with respect to the conventional SBAS is twofold.

1) The baseline constraint is only imposed on the temporal
separation between the acquisition pairs.

2) Phase linking is performed on the chosen interferogram
subset. Deformation estimation follows based on the
wrapped phase estimates.

Refraining from unwrapping the interferograms and perform-
ing phase linking on the subset instead, the designed approach
is less prone to the propagation of the phase unwrapping
errors. To reflect these differences with the conventional
method, we refer to this approach as Enhanced Short temporal
BAseline Subset algorithm (E-StBAS). Note that E-StBAS is
composed of a single subset of a fully connected network of
interferograms. Contrary to the generic SBAS approach, here,
there are no multiple, possibly isolated, interferogram subsets.

The chosen interferogram subset is comprised of bw number
of shortest temporal baseline interferograms per acquisition
in the time series, such that the total number of exploited
interferograms reads as

m= bTw(Zn —bw —1). (6)

Compared with the conventional phase linking, here, a band
matrix will replace the full SCM (see Fig. 1). The bandwidth
of the matrix is defined by the parameter bw. The consistent
phase based on these interferograms is reconstructed by the
following iterative optimization:

R 1 bw o
P ; AP

¢, =/ o ; Liivk eXP(] Adiivk — ik ) .
The iterations can be initialized by the largest Eigenvector of

the band matrix C*, that is

(7)0 = Z(argmaxvi{viHCb“’vi})
subject to viHv,- =1,
and v/'v; = 0. (@)
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(a) (b)

Fig. 1. Different levels of data exploitation within the interferogram stacks.
Top sketch mimics SAR images with dots and the exploited interferograms
with arcs; the sketch below shows the corresponding SCM, where the
diagonal elements refer to the images and the filled off-diagonals represent
the employed interferograms. Images are assumed to be temporally sorted.
(a) Partial exploitation of the data with short temporal baseline interferograms
of up to band bw. (b) Full exploitation of the interferograms with full SCM.

In practice, (8) provides a sufficient approximation such that
the iteration by (7) is unnecessary. As in Section II-A, @ con-
tains the consistent interferometric phase component within
the exploited subset. This phase information is used for the
retrieval of the deformation signal.

B. Evaluation of Deformation Bias

Retrieving the consistent phase series for DS using either
EMI or E-StBAS, the standard PSI processing [1], [17] is
employed on the high SNR DS to mitigate initially the
atmosphere and estimate eventually the deformation [5].
Two products may be retrieved from the deformation signal,
namely, the relative displacement time series of size n — 1
per DS and, more concisely, the modeled mean displacement
velocity as a single parameter per DS.

The intention is to evaluate the accuracy of both DS-derived
products. We opt for the PS deformation measurements as the
benchmark for validation.

The performance evaluation is conducted as follows: a spa-
tial grid of size 1 km? is chosen for downsampling both
displacement time series and displacement velocity maps.
Atmospheric and ground motion signals are assumed to be
stationary within this spatial window. For all PS and DS
within the defined reference grid cells, a weighted average
of the deformation signal substitutes the sparse estimates.
The weighting is based on the a posteriori coherence of PS
[17] and DS [5]. For the latter scatterers, the clutter is dis-
regarded using a constant false-alarm-rate detector. Following
this approach, the downsampled DS and PS deformations are
directly comparable. From this point on, the calculation of the
estimation bias in the deformation products is straightforward

€4(xy) = {dps(x.y) — (dps(x.y)) 9)
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where (.) shows the mentioned weighted averaging operator,
x,y are the spatial coordinates of the downsampled grid, and
€4 1s the evaluated bias. Subscript d can represent either the
displacement values in the time series or the displacement
velocity.

This evaluation will result in a time series of displacement
bias as well as the overall displacement velocity bias for
the entire time series. Both biases are calculated over the
downsampled spatial grid.

C. Evaluation of Interferometric Phase Bias

We intend to track the bias in displacement velocity to
the exploited multilooked interferograms. We first introduce a
measure to quantify the interferometric phase bias that pertains
to the fading signals. Using error propagation, we introduce
a second measure to calculate the expected displacement
velocity bias from the phase biases.

In the introduction of our first measure, we assume to know
the interferometric phase A, which is free of the systematic
and stochastic inconsistencies (see Section II-A). Knowing
this phase, the error of the multilooked interferograms can
be evaluated for each DS at each interferogram, that is

Eng () = Airxy) — Ak (x,y). (10)

Here, A¢ shows the multilooked phases over the DS regions,
subscripts i, k refer to the master and slave acquisition index,
and x,y are the spatial coordinates of the DS. The phase
A can be substituted, for example, by high SNR single-look
observations (see Section IV-D for the practical approach to
the evaluation of the phase error).

In principle, one can estimate the phase bias from the phase
errors by allowing an averaging operator on a chosen ensem-
ble; the averaging is necessary to reduce the stochastic noise.
In our bias estimation, we choose a temporal averaging within
the time series. The averaging is performed on the calculated
phase error of each DS within the interferograms with an
identical time lag [ separation from their respective master
scene. A normalization with respect to the temporal baseline
of the interferograms is further considered. Following the
temporal averaging and baseline normalization, the intended
measure reads as

1 ! €Ay (1))
51 y) = il D
= Z At i

i=1

Y

where &' is the average phase bias of each DS region per
time lag [. The temporal normalization allows the direct
comparison of the calculated phase biases without the concern
for their variable temporal baseline. It as well eases the error
propagation from the interferogram level to the displacement
velocity, as explained in the following.

We quantify further the expected bias in the displace-
ment velocity given the biases of interferograms by intro-
ducing a second measure. To commence, let us simplify the
phase reconstruction of (7) by assuming uniform weighting,
ie., Vi,k € {1,...,n} : T;; = 1. Furthermore, we assume
that the phase errors are small enough that the small-angle
approximation holds, i.e., Zexp( jeA¢) A €p4. Furthermore,
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the mentioned temporal normalization of (11) is necessary to
propagate the phase bias to the displacement velocity bias. Fol-
lowing the mean propagation law for the linear models [18],
the displacement velocity bias reads as

bw

1 2
e DL
k=1

where 1 is the radar wavelength. To recapitulate, the intro-
duced error propagation assumes the following.

(12)

1) The present phase error of the multilooked observations
is small.

2) All interferograms are equally weighted in phase esti-
mation.

The first simplification holds for short temporal baselines,
where the decorrelation noise is negligible enough not to
violate the small-angle approximation. The second simplifi-
cation is more likely to have an effect on the estimation of
the phase and displacement velocity bias. Nevertheless, €4,
provides a mean to verify the evaluated biases in Section III-B
with the predicted displacement velocity bias from the phase
errors in the multilooked interferograms. In the case of positive
verification, we may conclude that the cause of deformation
biases stems from the multilooked interferograms and rules
out other plausible sources in raising the deformation biases.

IV. ANALYSIS OF BIASES

For the study of the bias, a test site is chosen in the
island of Sicily, Italy. The test site is regularly monitored by
Sentinel-1 A and B, providing abundant data with a minimum
revisit of six days. The data set is composed of 184 acquisi-
tions from October 2014 to September 2018 of ascending.

The geographical location, main cities, and the land-cover-
classification map of the region are provided in Fig. 2. The
prevailing land cover of the test site is in the form of crop and
grassland. The studied area covers approximately 15000 km?.
Note that in different analyses of this section, different regions
of the test site are covered. These regions are marked in Fig. 2
(top) by the two polygons. We refer to these regions at
the caption of each figure to follow. Sicily is monitored by
different studies, such as [19], [20], which potentially allows
independent performance comparison.

Following the introduced methods in Section III, the biases
in the displacement time series and velocity as well as the
multilooked interferograms are studied in this section.

A. Comparison Scenarios

The intention is to define a scientifically credible exper-
iment that can isolate the impact of multilooked phases on
deformation estimation.

We perform three different DS analyses for deformation
retrieval. All steps of the processing and the corresponding
latent parameters are kept identical, and the only difference
is in consistency reconstruction (see Section II-B). With ref-
erence to Sections II-C and III-A, different number of inter-
ferograms and different phase-estimation methods are used to
retrieve the consistent interferograms, namely, the following:
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Fig. 2. Chosen site in Sicily, Italy. (Top) Google Earth map providing the
optical image and major cities; the two polygons show the covered regions
by various studies of this section. (Bottom) Land-cover classification map
from the ESA GlobCover Project. The majority of the region is classified as
rain-fed croplands and vegetation in the form of crop and grassland.

1) E-StBAS with a bandwidth of five;
2) E-StBAS with a bandwidth of ten;
3) EMI performing phase linking on full SCM.

The defined experiment is summarized in Table 1.

Identical to the three cases, interferometric wide area
processing (IWAP) chain [21] is used for deformation esti-
mation, and the estimation of consistent interferograms is
integrated in this chain. As the first step toward DS processing,
the statistically homogeneous ensembles surrounding each
pixel are detected. The amplitude-based Anderson—Darling
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TABLE I

SUMMARY OF THE COMPARED APPROACHES FOR THE ESTIMATION OF
DISPLACEMENT VELOCITY. PSI IS USED FOR THE EVALUATION OF
B1AS AND DISPERSION

Phase SCM Estimation Estimation
Estimation Bandwidth Bias Dispersion
bw [mm/yr] [mm/yr]
E-StBASS 5 —6.50 2.58
E-StBAS10 10 -3.05 1.55
EMI full SCM —0.24 0.70

statistical similarity test [12] with a false-alarm rate of 5%
is chosen as the detection method. The search window for the
test comprises of 25 and 7 looks in the range and azimuth
direction, respectively. The effective number of looks is, how-
ever, approximately half in each direction. The homogeneous
ensembles are exploited for the adaptive multilooking of the
direct interferograms as well as the estimation of the SCM
at the DS region. A constant false-alarm-rate detector is
further used to detect the signal bearing DS and exclude the
low-quality regions from the deformation analysis [22]. The
latter regions pertain to fast decorrelating scatterers such as
water bodies and dense vegetation.

In addition to the abovementioned three DS comparison
cases, we perform a conventional PSI [17] and treat the result
as the benchmark for our analysis to follow.

Note that in the overall four processing rounds, the ref-
erence scene and the reference point are identical. More-
over, the latent parameters are kept identical or chosen
in a data-driven fashion to ensure the credibility of the
comparisons.

Fig. 2 shows the retrieved displacement velocity map of
these four described schemes. In the following sections,
the results are quantitatively analyzed.

B. Bias in Displacement Velocity

We are interested in the quantitative error of the dis-
placement velocity maps reported in Fig. 3. Following the
described method in Section III-B, the PS scheme is taken
as the benchmark. According to (9), the discrepancy between
the velocity estimated by each of the three DS schemes is
evaluated against this benchmark over a downsampled grid.
Fig. 4 shows the evaluated €,, of each scheme over the test site.
Fig. 5 depicts the empirical probability density function (PDF)
of the accumulated discrepancies over the entire test site. The
first- and second-order moments of these PDFs provide a
measure for the overall bias and dispersion of each method in
the estimation of the displacement velocity. These performance
indicators are summarized in Table I.

As revealed by the comparisons, both the bias and dis-
persion decrease when more interferograms are exploited for
phase and, consequently, deformation estimation. The overall
performance of the E-StBAS techniques is observed to be
worse than the achievable precision of 1-2 mm/year for the
Sentinel-1 data stacks [23], [24], while the exploitation of the
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Fig. 3. Displacement velocity maps of three different DS processing schemes. (a) E-StBAS5 with bw = 5. (b) E-StBAS10 with bw = 10. (¢) EMI using full
SCM compared with (d) benchmark PSI processing corresponding to the white polygon of Fig. 2 (top). The reference scene and reference point are identical

in all maps. Positive motion shows an uplift.
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Fig. 4. Displacement velocity bias €4, estimated according to (9) for (a) E-StBASS, (b) E-StBASI10, and (c) EMI using full SCM. The covered region is

shown by the white polygon of Fig. 2 (top).
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Fig. 5. Empirical PDF of the displacement velocity bias evaluated by (9),
reported for the three DS processing schemes. The first g-order and second
o-order moments of these Empirical PDFs indicate the overall bias and
dispersion of the velocity estimates, respectively. The increase in the number
of exploited interferograms improves the overall accuracy of deformation
estimation.

full covariance matrix helps EMI in retaining this potential
performance.

C. Bias in Displacement Time Series

We further extend the bias analysis by evaluating the dis-
crepancy in the displacement time series. The latter time series

is the outcome of spatiotemporal phase unwrapping and the
removal of the estimated topographic and atmospheric signal
components.

Similar to the previous section and following the method in
Section III-B, the displacement bias between each DS scheme
and the benchmark PSI result is evaluated for each available
time epoch. The displacement bias is, therefore, evaluated per
acquisition and over the downsampled grid by (9).

For a compact visualization of the temporal behavior,
the box-whisker diagrams are chosen here. Each diagram
represents the spatially accumulated bias measures for each
acquisition in the stack. The diagram provides a robust
presentation of the distribution of univariate data. The box
represents the interquartile range, i.e., 50% concentration of
the data around the median. The whiskers show the extent of
the data excluding the outliers. The outliers are considered
as samples falling beyond a threshold defined by the 3x
interquartile range from the box boarders. Hence, a portion
of the data equivalent to 7x interquartile range is represented
by the diagram. The box-whisker diagram concisely depicts
the following robust statistical measures.

1) Median: Marked by the central line of the box. It is a
robust measure of the average displacement bias.
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Fig. 6. Box-whisker plots of the displacement error for each acquisition in the time series, with respect to its temporal baseline, presented for different DS
processing schemes of (a) E-StBASS, (b) E-StBAS10, and (c) EMI scheme on full SCM. The bias and dispersion of the displacement estimates are inferred
from the boxplot. Both performance measures improve by including more interferograms in phase estimation.

2) Interquartile Range: Visible from the length of the as a measure for the normality of the distribution
rectangular box. It is a robust measure for the dispersion of displacement error. A skewed distribution indi-

of the displacement estimates.

cates a systematic discrepancy between the PS and

3) Skewness: Inferred from the asymmetry between the the DS.
upper and lower parts of the box-whisker around Fig. 6 depicts the box-whiskers for the three compared DS
the median. Skewness is the third moment of data schemes. The average displacement bias of each acquisition is
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Fig. 7. Temporal trends of the average bias in displacement estimation for the
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resulted from the removal of the linear trend. (Bottom) Similar four-year
periodic trend wrapped and averaged annually to report the behavior per
time of year. The linear variation of the displacement bias prevails on the
periodic changes, which are attributed to the variations of the scattering such
as moisture or biomass changes.

provided in Fig. 7. The following conclusions are drawn from
the three mentioned figures.

1) Both the bias and dispersion of the displacement esti-
mates increase with the temporal baseline. The error
propagation is more severe where fewer interferograms
are exploited.

2) A prevailing linear trend is observed for E-StBASS and
10, implying the persistent presence of physical source
of bias in the DS over the entire time series.

3) The overall skewness of the box-whiskers reduces in
EMI compared with E-StBAS5 and E-StBAS10, indi-
cating the reduced systematic errors in the EMIL.

4) A small periodic trend is observed, which is damped
where more interferograms are exploited.

5) Exploiting all multimaster interferograms and applying
EMI for the reconstruction of consistency significantly
reduces the bias in displacement estimation.

D. Tracking the Bias to Multilooked Interferograms

Up to this point, we observed an increased bias in the
displacement velocity as well as a prevailing presence of a
linear physical signal in the displacement time series. The
observed signals are absent in the result of single-look PS
measurements and fade when exploiting all the interferograms
within the time series; therefore, they cannot be justified
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as the surface topography change. In this section, we seek
for the cause of this linear trend in the direct multilooked
interferograms and attempt to predict the error budget in the
displacement velocity from the phase bias of the mentioned
interferograms.

Following the method in Section III-C, the focus here is on
the quantification of the interferometric phase bias at varied
time lags. Note that according to (10) and (11), AJ) is required
for the evaluation of the phase error. From the analysis in
the previous sections, we observed a negligible submillimetric
discrepancy between the single-look PS measurements and
the estimated phases of EMI approach. Therefore, we may
approximate the single-look PS phases by the estimated phases
based on the full SCM, i.e., the EMI result, and use the latter
as the benchmark A¢ for the evaluation of the phase bias.
Having this benchmark, ¢' is evaluated for VI € {1, ..., 10}.
Fig. 8(a) and (b) depicts an example of the estimated phase
biases for / =1 and / = 10. These time lags correspond to the
average temporal baseline of 8 and 78 days, respectively (we
resorted to the calculation of the average temporal baseline for
each time lag due to the irregular temporal acquisition of the
images). The empirical PDF of the spatially accumulated &'
measures for variable time lags are provided in Fig. 8(c) (top),
and the bottom figure provides the evolution of the average
phase bias over time. From these observation, we conclude
that the short temporal interferograms, with a smaller time
lag /, are more biased than the longer baselines. This observed
trend will assist us in the proposal of a simple physical model
for the source of phase biases in Section VI.

We further scale §' by the temporal baseline and convert the
resulted phase bias to a slant range to provide the average pre-
dicted range bias 6r! in millimeter. Fig. 9 depicts this measure.
Inspecting the overall trend of the bias per baseline in Fig. 9(c),
the range bias shows the same behavior of attenuation with
a temporal baseline. However, the bias is seen to increase
slightly up to 24 days, and the attenuation starts only from
this time. One hypothesis for this trend is that there are two
competing scattering mechanisms, which become dominant at
different time scales. Initially, the scatterers that cause the
bias are dominant. Over time, these scatterers decorrelate, and
the initially weaker but long-term coherent, scatterers slowly
prevail, yielding a reduction in the bias. The validation of
this hypothesis requires dedicated research, as does any other
physical explanation in this article.

Moving to the prediction of the displacement velocity bias
explained in Section III-C, the phase bias of the multilooked
interferograms is propagated to (12). From the integration of
the &' measure and their proper normalization and conversion,
€4, is further evaluated for the two processing schemes of
E-StBASS and E-StBAS10. Note that the two schemes are
equivalent to exploiting interferograms with an average tem-
poral baseline of up to 30 and 78 days, respectively. Fig. 10
shows the predicted displacement velocity bias based on the
observed phase biases. The empirical PDF of the accumulated
€q4, measures in Fig. 10(c) provides the average bias of these
processing schemes over the test site. The predicted bias reads
as 5.43 and 3.38 mm/year for E-StBASS5 and 10 respectively.
Comparing these biases with the empirical values from the bias
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Fig. 9.
equivalent to the average temporal baseline of eight days and (b) / = 10 equivalent to an average temporal baseline of 78 days. Positive values show the range
delay. The latter two figures are in the radar coordinate system and cover the region shown by the black polygon of Fig. 2(top). (c) (Top) Empirical PDF
of the spatially accumulated dr! measures per time lag. (Bottom) Average phase bias as a function of the temporal baseline. The biases are submillimetric
and small compared with the atmospheric perturbations. The propagation of these small biases compromises the performance of the E-StBAS processing
schemes.

Observed bias in slant range dr' for different time lags corresponding to the phase bias of Fig. 8(a) and (b). Reported for a time lag of (a) [ = 1

estimates of Table I confirms that the measured biases in the
deformation estimates are caused by the interferometric phase
biases. Note that the discrepancy between the predicted and the
empirical displacement velocity bias is due to two approxima-
tions: the underlying simplification of the error propagation
scheme (explained in Section III-C) and the approximation
of A¢g by the reconstructed phases of EMI. The sign change
between the predicted and empirical values only stems from
the difference in the convention for setting the direction of
positive displacement.

V. INVESTIGATION ON AN ARID REGION

Here, we aim at observing the fading signal on a different
climate and land cover compared with Sicily. For this purpose,
we chose an area in Qinghai province, China, located in the
Tibetan plateau. The area covers approximately 50000 km?,
and Fig. 11 (left) provides the geographical extent of the
region as well as its land-cover-classification map. Comparing
the latter with Fig. 2, here, 83% of the region is bare areas
and 15% is vegetated. The type of vegetation is mostly
herbaceous. Fig. 12 provides a comparison between the overall
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Chosen site in Qinghai province, China, located in Tibetan plateau. (Left) Land-cover-classification map (data from ESA GlobCover Project).

(Right) Sign of the predicted velocity bias. The average trend over bare and vegetated areas is seen to follow the opposite signs.

temporal coherence of the two regions by the empirical PDF
of the a posteriori coherence of the two regions (for more
details on this phase quality measure and its relation to phase
stability, see [15], [22]). This pronounced difference in the
a posteriori coherence profiles further assures the disparity
of the two studied regions. Using Sentinel-1 data for the
time span of October 2014 to November 2019, 104 single-
look complexes (SLCs) comprise our data set. Contrary to
Sicily, here, only Sentinel-1 A data are available, rendering
the increase in the minimum revisit time to 12 days. Table II
provides a comparison between the data set of this test site
and Sicily, Italy.

We repeat the experiments of Section IV-D for the current
test site. With reference to this section, the phase bias J' is
calculated for the time lags of / € {1, ..., 10}. These time lags
correspond to an average temporal baseline of 18—177 days.
Note that for the current data set, the average temporal baseline
per time lag is increased compared with the Sicily test site,
implying that the number of short temporal baseline interfero-
grams is decreased compared with our previous analysis. The
empirical PDF of ¢ per time lag is reported in Fig. 13. For
the sake of brevity, we only provide the bias map of ¢' here
[Fig. 14(a)]. Comparing Fig. 13 with Fig. 8(c), the following
is observed.
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TABLE II

COMPARISON OF THE STUDIED TEST SITES. DUE TO IRREGULAR
ACQUISITION OF THE DATA WITHIN THE TIME
SERIES, THE AVERAGE TEMPORAL BASELINE
Is CALCULATED FOR EACH TIME LAG

Test Sat.  Time No. Average Average
Site D Span of Baseline Baseline
SLCs Lag-1 Lag-10
Sicily- S1 Oct. 2014-
Ttaly AB  Sep.2018 B4 8 days 78 days
Qinghai-  S1 Oct. 2014- ‘
China Nov. 2019 104 18 days 177 days
14 T T T T T T T T T T T ™
Eoe=ee Sicily-Ttaly b
2 Qinghai-China, Tibetan Plateau ﬂ‘
- #
10 — o
C H
s 1
A i
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0.4 0.6 0.8 1.0
A Posteriori Coherence
Fig. 12.  Empirical PDF of a posteriori coherence over the two regions;

the difference in the coherence profiles indicates the disparity of the two
investigated regions.

1) Being an arid region, the overall phase bias is lower than
Sicily.

2) The overall bias is in the opposite direction, indicating
phase deficit, while in Sicily, a prevalent phase excess
was observed.

3) The sign change in bias indicates that here a different
physical source causes the fading signal compared with
Sicily;

4) Despite these observed discrepancies, the general con-
clusion of attenuation of bias with a temporal baseline
is verified in this test site.

In addition to the prevalent phase deficit in this region,
Fig. 14(a) reveals the phase excess over the herbaceous
vegetated areas. As evident from this figure, a clear signal
is present, which is correlated with the ground features. This
figure confirms that the phase discrepancies in the multi-
looked interferograms are systematic. Recall that in Sicily
[Fig. 8(a) and (b)], the phase bias was unidirectional and the
current disparity in the sign of the bias was not observed. This
duality of the phase bias behavior reaffirms our argument that
modeling and calibration of the fading signal are more intricate
than mitigating it by proper phase estimation. We deem the
in-depth interpretation of the observed fading signals worth-
while and necessary; however, it falls beyond the scope of this
article.

Identical to Section IV-D, ¢, is further evaluated to predict
the minimum expected error on the deformation velocity maps
for E-StBAS3, E-StBASS5, and E-StBAS10. The three schemes
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in Fig. 8(c), here, phase deficit is the prevailing trend.

are equivalent to exploiting interferograms with an average
temporal baseline of up to 54, 90, and 177 days, respectively.
Fig. 14(b) is presented as an example of the predicted error
maps for E-StBASS5. Fig. 15 provides the empirical PDF of
the predicted bias for the three schemes. From the comparison
of these figures with Fig. 10, the following is observed.

1) The dominant bias shows an apparent motion toward the
satellite on the contrary to the case of Sicily.

2) As opposed to Sicily, here, two trends with opposite
signs are observable, and the sign of the bias is in
agreement with Fig. 14(a).

3) Increasing the number of interferograms, the bias is
observed to decrease.

4) The bias is in general lower than the case of Sicily;
however, note that the temporal baselines are longer in
the Tibetan region.

In these comparisons, it should be kept in mind that the Tibetan
site has fewer short baseline interferograms as the six-day
revisit of Sentinel-1 is not applicable here.

Furthermore, coregistering the error map and the land cover,
we observe that, on average, the direction of the bias over the
bare areas is toward the satellite, while it is in the opposite
direction over the herbaceous vegetation (see Fig. 11). The
experiment with this test site manifests the complexity of the
physical interpretation of the fading signal and the possible
variability of the underlying phenomena.

VI. MODELING OF PHASE BIAS

From the analysis of the two test sites, we observe two
general behaviors of the fading signal that is correlated with
the land cover. Over the vegetated areas of both the Sicily
and Tibetan test sites, an apparent delaying effect is observed,
which induces a motion away from the satellite. Over the bare
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Fig. 14. Repeated experiment with the Tibet data set. (a) 0! as the average phase bias of lag 1 interferograms, and the average temporal baseline for
these interferograms is equivalent to 18 days. (b) €4, as the predicted error in displacement velocity reported for E-StBAS5 scheme, exploiting up to 90-day
interferograms. These maps are in the radar coordinate system. In comparison with Sicily, here, two general trends with opposite signs are observed, rendering
the physical interpretation of the fading signal more intricate. Note that in these predictions, positive bias is related to phase excess; therefore, positive velocity
bias corresponds to a motion away from the satellite.
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Fig. 15. Empirical PDF of the predicted error in displacement velocity. The
deformation velocity bias is predicted as —0.16, —0.60, and —0.98 mm/year
for E-StBAS10, E-StBASS, and E-StBAS3, respectively. The corresponding
threshold on the temporal baseline reads as 54, 90, and 177 days, respectively.
Contrary to Sicily, here, a biasing motion toward the satellite is observed.

areas of Tibet, on average, the observed motion is toward the
satellite. The focus here is on providing a physical explanation
for these overall trends. The extensive validation of these
hypotheses as well as their fit to the data at hand is subject
to the dedicated research. Over the bare areas of the Tibetan
test site, the moisture model of [7] can justify the sign of the
bias. The typical behavior for soils is to get wet fast and dry
slowly. According to [8], the nonlinear moisture model in [7]
predicts that the cumulative phase change corresponding to a
certain moisture change is larger if the change is observed
through many small steps compared with that if it happens
suddenly or through larger steps. Therefore, slow drying
(moving apparently toward the satellite) should prevail over
fast wetting. If there is a bias from the moisture cycle, this
should appear as a motion toward the satellite. The mentioned
model is confirmed by the observations with real data [7], [9];
however, its fit to the Tibetan data set is not pursued here.

Over the vegetated areas of the two test sites, the sign of
the bias is incompatible with the moisture model. Contrary
to this, the closure phase behavior over dense vegetation
was explained in [9] with the same model presented in [7].
However, in the current two test sites, the observed vegetation
is mostly in the form of sparse grass and croplands and
herbaceous vegetation. If a moisture bias is present here, it is
overshadowed by some other biasing signal. An alternative
hypothesis for this land cover is that we are observing biomass
growth, with an apparent motion away from the satellite, which
introduces extra range delay or phase excess. Based on this
hypothesis, a model is proposed here. Let us consider the
temporal decorrelation model of [25]

Fix = yoexp(=10tikl/T) + Voo (13)

with y¢ and y, respectively, as a short-term decaying and a
long-term persistent coherence of an arbitrary interferogram,
ot as its temporal baseline, and 7 as the duration of signal cor-
relation. To include the observed systematic phase variation,
this model is generalized as follows:

I = y1exp(jppi0tiz) exp(— 10t il /71)

+72exp(jpp20ti ) exp(—=10ti k] /72) + Yoo (14)
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Fig. 16. Modeling the observed average phase bias (Top) and coherence

(Bottom) according to the proposed biomass growth model of (14).

The model is comprised of three scattering behaviors: a
persistent coherence and two decorrelating parts with varied
time constants. Introducing a temporally variable phase term
by pg, the latter two decorrelating parts explain the vanishing
bias with temporal baselines. The phase of this complex model
explains the observed phase bias in an arbitrary interferogram
pair.

To examine the biomass model, we chose a single burst
over Sicily. Excluding the fast decorrelated areas such as water
bodies and the stable PS-like scatterers, the average coherence
for each temporal baseline is calculated over this burst. Simi-
larly, the observed average phase bias of &' VI € {1, ..., 70} is
evaluated. Using (14), the observed coherence and phase bias
are modeled. The modeling yields a short-temporal scattering
of 71 = 11 days with y; = 0.18, ps; = 0.03 rad/day, a longer
term scattering of 7o = 50 days with y, = 0.25, pg> =
0.002 rad/day, and a persistent coherence of y,, = 0.13. The
result of this model fit is depicted in Fig. 16. As seen from
the latter, the model successfully approximates the observed
phase bias and coherence. Further validation is required for
the use of the proposed model in the calibration of the biasing
phase.

Note that in [26], as one of the pioneering works in
coherence modeling, a correlation duration of 40 days for
the C-band data is predicted. Our three-component model
with 77 = 11, 1, = 50, and an implicit 73 & 0o may
be approximated by the mentioned model and its correlation
duration of 40 days.

Upon comprehensive study and validation of the two
moisture and biomass models, they may be used in the
model-based reconstruction of phase consistency, as explained
in Section II-B.

VII. DISCUSSION AND RECOMMENDATIONS

In this article, we primarily focused on the observation
of a peculiar systematic signal in InSAR. We conclude the
following.
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1) Multilooked interferograms reveal a short-lived, sys-
tematic phase component that cannot be attributed to
the atmospheric or surface topography variations. This
systematic phase component is absent in the single-look
phase observations.

2) Phase bias is larger for the shorter temporal baseline,
albeit more coherent, interferograms.

3) The sign, magnitude, and temporal behavior of the
fading signal vary at different regions and land covers.
This variability renders the calibration of the fading
signal intricate.

4) The magnitude of the phase bias in each multilooked
interferogram may be deemed small, especially com-
pared with the atmospheric perturbations. However, with
the attenuation of atmospheric phase and the propagation
of the interferogram phase bias within the time series,
the corresponding error for the displacement velocity
estimation is alarming.

5) The propagation of even small phase biases in long time
series compromises the accuracy of the displacement
velocity maps from an achievable submillimetric to
centimetric per year level.

Studying the effect of the observed signal for interferogram
time series, we established the following.

1) The redundancy of the multimaster interferograms is
decreased as the result of the present systematic signals.

2) Exploiting the temporal data redundancy in large time
series yields a degree of robustness of the phase-retrieval
algorithms to such phase errors.

3) The major role in the gained robustness is played by the
inclusion of the long-term scatterers in long temporal
baseline interferograms.

Moreover, we shortly discussed the possibility of modeling the
phase biases.

1) A complex-valued decorrelation model is proposed as
an approximation of the observed bias over vegetated
areas.

2) The proposed decorrelation model helps in the interpre-
tation of the physical phenomena behind the systematic
phase component. However, as of present, we lack ade-
quate experimentation and validation of this simplified
model for the calibration of the biomass-related phase
bias.

3) Two regions were studied and a different behavior of the
fading signals was evident. Understanding the physical
sources of these signals in the multilooked interfero-
grams is subject to comprehensive research.

4) Due to the lack of comprehensive research thus far,
the use of model-free phase linking in the mitigation
of phase errors is one of the most viable approaches in
safeguarding against the fading signals.

As hypothesized, the presence of fading signal compromises
the accuracy of InSAR in deformation analysis. This problem
is highly exacerbated for Big Data processing. Common
practice in such processing is to exploit mostly short temporal
baseline interferograms [20], [27], [28]. The logic behind such
data exploitation is to reduce the number of interferograms by
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using the most coherent and, thereby, highest SNR observa-
tions in the time series. However, the analysis of this article
proves that these interferograms are the most affected by the
inconsistent fading signals and, therefore, the least reliable for
deformation retrieval. This observation challenges the quality
of the short temporal interferograms and warns against solely
using these observations.

Should the small baseline processing scheme be desired for
deformation retrieval, we recommend to safeguard against the
impact of systematic phase biases by the following.

1) Excluding the short temporal baseline interferograms
and using long baselines to decrease the overall phase
error.

2) Predicting phase errors according to Section III-C and
(11) to exclude the short temporal baseline interfer-
ograms with a significant error relative to a desired
accuracy.

3) Predicting deformation error budgets according to
Section III-C and (12); choosing the optimum number of
long temporal interferograms (similar to bw parameter)
for achieving a desired accuracy.

4) The phase series pertaining to single-look PS could be
the benchmark for the mentioned error predictions.

However, according to our experiments, the choice of optimum
baseline of interferograms for reliable deformation estimates
varies for different types of DS. Furthermore, the additional
analysis on the optimum number of interferograms increases
the computational burden of processing. In principle, the bias-
prone DS can be discarded from the deformation analysis at
the cost of spatial coverage. The introduced ¢/ measure and a
posteriori coherence provide effective features for the robust
detection of error prone DS.

For reliable deformation monitoring, we advocate the use
of phase linking on full SCM, which is fully data-adaptive.
We highlight that there are two issues against the use of
phase linking: its robustness over fast decorrelating DS and
its computational efficiency. To expand on the former, in case
there are no sufficient long-term scatterers to provide stability
over long temporal baselines, phase linking might effectively
exploit only short temporal baselines, and therefore preserve
the bias. We expect such scenarios over forest and dense
vegetation. To provide a remedy for the computational cost
of phase linking, we have previously proposed EMI in [15]
and a sequential estimator in [29]. According to our extensive
wide area processing experience, partially reported in [30]
and [31], EMI provides a viable efficient solution for phase
linking and does not pose a challenge for Big Data processing.
The sequential estimator further helps to avoid the redundant
computations of phase linking in stream processing of large
time series [29] (see Fig. 17). This estimator is based on
data compression, and it significantly reduces the number
of exploited interferograms while retaining the capability to
reconstruct the consistency robustly. The accuracy of this
sequential algorithm is studied and proven to retain the
millimeter-per-year-level target [30].

Our final recommendation for ensuring the accuracy in
deformation monitoring is to introduce a new intermediate
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Artificial
Interferograms

Fig. 17.  Efficient exploitation of Big Data stacks using the sequential
estimator [29]. With reference to Fig. 1, the sequential estimator divides the
data stack into isolated batches. Between the batches, the lost information is
retrieved by the formation of the compressed images (shown by the dot in
between the two fully connected networks) and the artificial interferograms
depicted with the respective arcs and dark shaded in the SCM. The dashed
arcs represent the contribution of the isolated batches in the formation of the
compressed images. Following this rationale, the full SCM of Fig. 1(b) is
recursively approximated to avoid redundant calculations while retaining the
accuracy in phase estimation.

product level for InSAR, namely, the reconstructed consistent
wrapped phase series using EMI and the sequential estimator.
The following holds for the envisioned product:

1) contain the consistent physical signal components such
as, but not limited to, atmospheric variations and surface
displacements;

2) significantly reduce the interferometric phase bias and
stochastic noise, thereby enhancing the reliability of
InSAR for deformation retrieval;

3) reduce the amount of interferometric data from the
n(n—1)/2 pairwise interferograms within the data stack
to a time series of n — 1 higher quality and, optionally,
downsampled interferograms;

4) provide a unified product for accurate deformation mon-
itoring to the user community.

This article was dedicated to the analysis of C-band SAR. The
magnitude of the fading signals and, hence, the corresponding
errors are expected to increase with the wavelength. Therefore,
larger effects are expected and observed for L-band SAR [8],
rendering the introduced phase product even more essential to
the L-band.
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