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ABSTRACT

A wide range of embedded systems falls into the category of safety-critical systems.
Such systems impose different levels of safety requirements depending on how crit-
ical the functions assigned to the system are and on how humans interact with the
system. Safety requirements involve timing constraints, the violation of which may
lead to a system failure. Timing constraints are graded from soft to hard real-time
constraints. While satisfying soft real-time constraints requires only best-efforts
guarantees, hard real-time constraints are best-treated with worst-case analysis
methods for verifying all timing constraints. Weakly-hard real-time systems have
extra demands on the timing verification as they tolerate few deadline-misses in
certain distributions. Applying worst-case analysis methods, in which a task is
schedulable only when it can meet its deadline in the worst-case, to weakly-hard
real-time systems questions the expressiveness of the computed guarantees. Con-
sidering tolerable deadline-misses raises the need for weakly-hard schedulability
analyses to verify weakly-hard real-time constraints and to provide more expres-
sive guarantees.

This thesis addresses the schedulability analysis problem of weakly-hard real-
time systems. It presents an efficient analysis to compute weakly-hard real-time
guarantees in the form of a deadline miss model for various system models.

The first contribution is a deadline miss model for a temporarily overloaded
uniprocessor system with independent tasks under the Fixed Priority Preemptive
and NonPreemptive scheduling policy (FPP & FPNP) using Typical Worst-Case
Analysis. In our application context, the transient overload is due to sporadic
tasks, for example, interrupt service routines. We adopt the proposed analysis to
compute deadline miss models for independent tasks under the Earliest Deadline
First (EDF) and Weighted Round-Robin (WRR) scheduling policies.

In the second contribution, we extend the analysis to compute deadline miss
models for task chains. The extension is motivated by an industrial case study.

The third contribution of this thesis targets the system extensibility to bud-
get under-specified tasks in a weakly-hard real-time system. Adding recovery or
reconfiguration tasks such that the system still meets its weakly-hard timing con-
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straints is of interest of an industrial case study (satellite on-board software) that
is considered in this thesis.

We show formally and in experiments with synthetic as well as industrial test
cases that the analysis presented in this thesis can consider various scheduling
policies (FPP, FPNP, EDF, WRR), and can be extended to cover both independent
and dependent tasks. The thesis provides two practical solutions for two industrial
case studies, which are involved exclusively in a collaboration project between
Thales Research & Technology and iTUBS, which is a technology transfer company
associated with Technische Universität Braunschweig. The results are thus of real
practical value to be considered in the design process of weakly-hard real-time
systems.



KURZFASSUNG

Eine große Zahl von eingebetteten Systemen fällt in die Kategorie der sicher-
heitskritischen Systeme. Solche Systeme stellen unterschiedliche Sicherheitsan-
forderungen, je nachdem wie kritisch die dem System zugewiesenen Funktionen
sind und wie Menschen mit dem System interagieren. Sicherheitsanforderun-
gen beschreiben insbesondere das geforderte Echtzeitverhalten, dessen Verletzung
zu einem Systemausfall führen kann. Anforderungen an das Echtzeitverhalten
können unterschiedlich strikte Echtzeitbedingungen umfassen. Während die Er-
füllung weicher Echtzeitbedingungen nur wenn möglich gefordert ist, braucht es
zur Gewährleistung harter Echtzeitbedingungen die Anwendung von Worst-Case-
Analysen zur Überprüfung der zeitlichen Bedingungen in allen Fällen. Die beson-
dere Kategorie der schwach-harten Echtzeitsysteme hat zusätzliche Anforderun-
gen an die Timing-Verifikation, da sie wenige Deadline-Überschreitungen mit bes-
timmten Mustern tolerieren. Das stellt die Aussagekraft der mit Methoden der
Antwortzeitanalyse berechneten Grenzen in Frage und erhöht den Bedarf an Anal-
ysen, um die schwach-harten Echtzeitbeschränkungen zu verifizieren und aus-
sagekräftigere Garantien zu liefern.

Diese Arbeit befasst sich mit dem Problem der Scheduling-Analyse von schwach-
harten Echtzeitsystemen. Es stellt eine effiziente Analyse zur Berechnung von
schwach-harten Echtzeitgarantien in Form eines Deadline Miss Modells für ver-
schiedene Systemmodelle dar.

Der erste Beitrag ist ein Deadline-Überschreitungsmodell für ein temporär
überlastetes Uniprozess-System mit eigenständigen Aufgaben im Rahmen der Fixed
Priority Scheduling Policy (FPP & FPNP) mittels Typical Worst-Case Analy-
sis. In unserem Anwendungskontext sind sporadische Tasks die Ursache von tem-
porärer Überlast, wie zum Beispiel Interrupt Service Routines. Wir adaptieren die
vorgeschlagene Analyse für Earliest Deadline First (EDF) und gewichtete Round-
Robin (WRR) Scheduling.

Zweitens erweitern wir die Analyse, um ein Deadline-Überschreitungsmodell für
Taskketten zu berechnen. Die Erweiterung wird durch eine industrielle Fallstudie
motiviert.
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Der dritte Beitrag dieser Arbeit zielt auf die Erweiterbarkeit des Systems bei
unterdefinierte Tasks in einem schwach-harten Echtzeitsystem ab. Ziel ist es, ein
Budget für Wiederherstellungs- oder Rekonfigurationstasks herzuleiten, so dass
das System immer noch seine schwach-harten Echtzeitbedingungen erfüllt. Dies
ist von Interesse für eine industrielle Fallstudie (Satellitensoftware), die in dieser
Arbeit berücksichtigt wird.

Wir zeigen formal und in Experimenten mit synthetischen sowie industriellen
Daten, dass die in dieser Arbeit vorgestellte Analyse von hoher Flexibilität ist, um
verschiedene Planungsstrategien (FPP, FPNP, EDF, WRR) zu berücksichtigen
und um sowohl unabhängige als auch abhängige Tasks zu erweitern werden kann.
Die Arbeit zeigt zwei praktische Lösungen für zwei industrielle Fallstudien, die in
einem Kooperationsprojekt zwischen Thales Research & Technology und iTUBS,
einem Technologietransferunternehmen der Technischen Universität Braunschweig,
erarbeitet wurden. Die Ergebnisse sind somit von echtem Praxiswert, und können
im Designprozess schwach-harter Echtzeitsysteme als Hilfestellung dienen.
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1 | INTRODUCTION

"It is all about timing."

— Someone

Real-time systems are computer systems that must satisfy timing constraints
, i.e., respond before a predefined time interval elapses. The timing constraints
are imposed by the system environment or operational requirements [112]. Real-
time systems exist in various applications, for instance in automotive, e.g., airbags,
braking systems and electronic fuel injection; in space, e.g., the platform of satel-
lites [52]; and in defense, e.g., aerial video tracking system [54]. Figure 1.1 il-
lustrates a mission critical real-time system: aerial video tracking system where
the system is dedicated to displaying high-quality video images and detecting and
tracking moving objects. Both comprise functions with timing constraints. For
instance, the high-quality video runs at 25f/sec (frame per second) which implies
that the video frame processing subsystem has to deliver a processed frame every
40ms to the monitor.

Violating system timing constraints may jeopardize the correctness of the de-
livered service which leads to a system failure, e.g., an airbag in a vehicle has to
respond within a specific time interval, as otherwise the passenger’s life may be in
danger. Therefore, verifying the system performance against timing constraints is
of high importance particularly for safety-critical systems, in which a failure may
lead to severe damage to people or property.

Today’s trend in designing real-time systems (particularly in the automotive
domain) is to comprise networked functions realized by interactive Distributed
Real-Time Systems (DRTSs) [104], which leads to a better utility of the available
resources. Figure 1.2 shows the growing of number of Electronic Control Units
(ECUs), buses and signals in the Mercedes-Benz E-Class through five generations.
The fast-growing of network communication comparing to the number of ECUs
reflects the high degree of integration on each ECU. Although not all these signals
belong to safety-critical functions, designing such complex systems is a serious
challenge in the context of verifying the system performance against the timing
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2 CHAPTER 1

Figure 1.1: The functional view of an aerial video system, based on [54]. The video
frame procesing subsystem is dedicated to displaying high-quality video images,
while the Tracking & camera control subsystem is dedicated to detecting and
tracking moving objects.

constraints. To give an intuition on how complex the analysis can be, let us con-
sider the architectural view of the aerial video system example in Figure 1.3. A
heterogeneous architecture (FPGA, GPP, GPU) realizes the functions leading to
complex scenarios of interdependencies, which impact the system performance dra-
matically [59]. Verifying the system performance against the timing constraints
requires therefore a sophisticated performance analysis that comprehensively cap-
tures system properties and function dependencies. The next section is dedicated
to survey the main classes of performance analysis.

1.1 Performance Analysis

Consider GPP1 in Figure 1.3, and let us assume that each of the four functions
is executed by a single task, which is an executable entity of work [111]. Each
task needs to occupy GPP1 for an amount of time to be executed; this time
is called the execution time. Because of the interdependencies, each task is a
subject to be blocked, delayed, or preempted by other tasks. The time that a
task need to complete its execution including the execution time, blocking, delay
and preemption is called the response time. A deadline is the timing constraint
on a task completion due time [18]. Considering the timing properties of tasks in
tracking & camera control subsystem, the subsystem, which is a chain of tasks,
has an end-to-end delay in delivering control commands to the camera.
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Figure 1.2: Example: the growing of number of ECUs, buses and signals in the
Mercedes-Benz E-Class through five generations, based on [14].

Verifying the system performance requires computing guarantees on the timing
properties such as execution times, response times and end-to-end delays. Four
main classes of performance analysis exist to estimate the performance of real-
time systems, namely testing, simulation-based analysis, probabilistic analysis,
and worst-case analysis.

1.1.1 Testing

Testing is possible if the functions are complete because it applies external test
patterns on an executable model. Testing is generally satisfactory as it shows how
the system behaves in reality. However, testing does not guarantee a full coverage
of system states unless the test patterns have been proven to cover all possible
states. Moreover, testing is costly as it is applied only to the final design, and with
the increasing of the system size and the behavior complexity it is tough to define
test patterns that cover all system states [79].

1.1.2 Simulation-based analysis

Simulation-based performance verification [13, 56] is prevalent among the indus-
try, see, e.g., [76, 72]. In simulation-based methods, abstract models of the system
and the physical environment are coupled to capture dynamic and complex inter-
actions. Unlike functional verification, timing verification requires complex timed
models rather than the simplified un-timed models [99]. Simulation-based tools
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Figure 1.3: The architectural view of an aerial video system, based on [54]. The
functions are mapped to four different processors. The blue dotted arrow indicates
an interdependency via a shared resource.

have to be fed with stimuli sequences in order to cover all corner-cases to prevent
system failures. Identification of comprehensive simulation stimuli is practically
not realistic for modern complex systems. Instead, simulations like Monte Carlo
select random input to compute the output of the model. Typically, Monte Carlo
simulation repeats the computation hundreds or thousands of times based on differ-
ent randomly-selected inputs [101]. The difficulty of identifying full corner-cases
coverage stimuli disputes the eligibility of these methods to provide guaranteed
bounds for real-time systems, particularly the safe-critical ones. However, simula-
tion provides estimates of the average system performance [122].

1.1.3 Probabilistic analysis

Probabilistic analyses consider a real-time system model in which at least one
parameter, e.g., execution time, follows a probabilistic distribution. They (prob-
abilistic analyses) return probabilistic bounds on the system performance, for in-
stance the response time of a task is below a certain threshold with the probability
Prt. Note that the term stochastic is often used rather than probabilistic, because
random variables describing, e.g., the execution times of instances of a given task
can be seen as a stochastic process.

The analysis method is based on Markov process modeling, which reasons prob-
abilistically about the steady-state behavior of the system. It provides both ana-
lytical and numerical solutions for the deadline-miss probabilities of tasks, i.e., the
probability of having the response time > the deadline, by computing the complete
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Figure 1.4: The longest path of a CFG where each box represents a sequential
computation and the number in the box represents the time needed to execute
this box, based on [124].

probability function of the response time of each task [31].
Probabilistic bounds can be applied for modeling the impact of error occur-

rences on the response time of fault-tolerant systems, since faults can usually
be approximated as randomly distributed [6], and for soft real-time systems [18],
i.e., missing deadlines does not jeopardize the system correctness. Probabilistic
bounds are sufficient to guarantee an acceptable level of Quality-of-Service (QoS),
e.g., multimedia system in automotive.

The fundamental challenge of probabilistic analysis in timing verification is
twofold: 1) its high computational complexity, and 2) representing the execution
time of task instances with independent random variables [90].

Currently, most approaches [31, 71, 20, 21] are for single-processor systems and
cannot be extended to distributed systems because of the methods they use. A
notable exception is probabilistic real-time calculus (RTC) [103], which follows the
Compositional Performance Analysis (CPA), therefore, it is applicable to DRTSs.

1.1.4 Worst-case analysis

Worst-case analysis addresses defining the worst-case and best-case behaviors of a
system, it guarantees full performance corner-case coverage. There are plenty of
worst-case analysis based methods as they got the attention when the simulation-
based methods became ineffective to capture the corner cases of complex systems
[100, 124].

Worst-case methods compute upper and lower bounds on the timing properties
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of a system depending on well-defined models, e.g., arrival curves [99]. Consider
the task "Processing" in GPP1 in Figure 1.3, the worst-case analysis computes
the worst-case execution time of the task, i.e., the longest time that the task
needs to execute the longest path in its Control Flow Graph (CFG). Figure 1.4
illustrates the longest path of a CFG in which each box represents a sequential
computation, and the number in the box represents the time needed to execute
this box. To compute the worst-case response time of the task, i.e., the longest
response time, the worst-case analysis takes into account the worst-case execution
time, the maximum blocking, the maximum delay and the maximum preemption.

The worst-case scenario is over-approximated because the complex dependen-
cies are conservatively taken into account. Therefore, worst-case methods may
report too pessimistic bounds. Actually, the main challenge facing worst-case
methods is the pessimism of the computed bounds. However, considering the
worst-case scenario limits the need to check each individual system state which
makes worst-case methods ideal for design-space exploration.

Figure 1.5 illustrates the computed worst-case execution time of a task returned
by three classes of performance analysis (simulation, probabilistic, worst-case).
The exact worst-case execution time is a reference. On the one hand, simulation
reports an execution time smaller than the exact one, which makes it not preferable
for safety-critical systems. On the other hand, worst-case analysis reports an over-
approximated bound but yet safe. Probabilistic analysis returns the probability of
exceeding the execution time of a certain threshold. Consequently, the worst-case
analysis is preferable for safety-critical systems, for which, the analysis has to cover
all corner cases. However, the next section shows that many real-time systems,
including some safety-critical systems, need a less-than-worst-case analysis, which
is not listed in this section.

Time

P
ro
ba

bi
lit
y

simulation probabilistic worst-case exact

Figure 1.5: Worst case execution time by simulation, probabilistic and worst-case
analyses, based on [90].
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1.2 Beyond Worst-Case Timing Analysis

In real-time systems, missing a deadline is bound to have consequences. A real-time
task is considered hard if missing its deadline may jeopardize the system correct-
ness. If missing the deadline causes a performance degradation but no damage to
the system, then the task is considered firm [18]. If missing the deadline causes no
damage and the task result is still useful for the system, then the task is consid-
ered soft. Safety-critical tasks are considered in this context to be hard real-time
tasks. Because of the critical mission that the aerial video tracking system has,
Figure 1.3, all tasks are considered to be hard real-time tasks. However, the task
"Processing", which belongs to the video frame processing subsystem in Figure
1.1, can miss few deadlines without jeopardizing the correctness of the subsystem
due to the following fact: The human brain can detect and track an object using
13 frame per second and any video runs faster than 20f/sec makes no more im-
provement [16]. Because each task in the subsystem rather than "Processing" is
mapped to its own resource, we can assume that the task "Processing" is prone to
deadline-misses, which may lead to end-to-end deadline-miss. As the subsystem
provides a 25f/sec video, the task "Processing" may miss up to 5 deadlines every
1 second without jeopardizing the correctness of the subsystem. Therefore, the
task "Processing" does not fit in any of the three categories: hard, firm and soft.

When missing a deadline is admissible, the distribution of the deadline-misses
have to be bounded. Worst-case analyses are strict in verifying a real-time task,
and they do not bound such a distribution, rather, they tell us whether a real-time
task meets its deadline all the time or not. Probabilistic analysis, as has been
shown in the last section, can describe the distribution of deadline-misses as a
probability [31]. However, information about the sequence of occurrence is missing
in probabilistic bounds. Such information has quite an impact on the system
performance [85]. To clarify this point, suppose that the aerial video tracking
system in our example was designed in such a way that the task "Processing"
may miss its deadline. Assume now that a probabilistic analysis reports that
"Processing" has the probability of Pmiss = 0.07 to miss its deadline, which means
that "Processing" may miss 7 deadlines in a sequence of 100 frames (or 7 deadline-
misses every 4 seconds) with no further information about the distribution of these
deadline-misses. On the one hand, if these 7 deadline-misses occur in a row, the
system may fail in delivering a correct service because it is more than the admissible
bound (5 deadline-misses every 1 second). On the other hand, if they have the
distribution of, for instance, 5 deadline-miss followed with 20 deadline-hits1, the
correctness of the subsystem will not be impacted.

1In this thesis, we use "deadline-hit" (noun) as the opposite of "deadline-miss" and therefore
the plural form is "deadline-hits".
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As a conclusion, neither worst-case analysis nor probabilistic analysis are suit-
able for tasks for which missing deadlines is admissible and there is a need for
a less-than-worst-case analysis. Such an analysis is motivated with the fact that
admitting deadline-misses is of a high significance to relax and/or optimize the de-
sign of real-time systems [83], for instance, optimizing cost/performance in control
systems utilize the admissible deadline-misses [23]. To exploit a deadline-miss in
relaxing and optimizing the design of real-time systems, few questions have to be
answered: Where does the deadline come from? What does a deadline-miss mean
and which consequences does it have? The next two subsections try to answer
these questions.

1.2.1 Deadline in the design process

Deadlines, generally speaking, reflect the underlying physical nature of the system
[63]. For example, in reactive systems a task has to complete before the next
instance is activated (deadline = period).

Safety-based and performance-based criteria are used to establish deadlines
[73], thus, a deadline has different indications, e.g., [35]

• it constrains function delays in order to adjust the system timing;

• it avoids data loss due to overwriting or early reading, which guarantees the
data consistency;

• it avoids stack overflow due to overlapping job executions, which protects
the memory usage.

In our example, Figure 1.3, deadlines are for system timing.

1.2.2 Intrinsically deadline-miss-tolerant real-time systems

Depending on the significance of a deadline, the consequences of a deadline-miss
can be predicted. Each deadline-miss is an error, which may cause a system
failure [4]. A task tolerates a deadline-miss when this deadline-miss causes no
failure without error handling. The key point here is that not every deadline-miss
causes a failure. Control systems can intrinsically tolerate a bounded number of
deadline-misses due to the robustness of control algorithms [85]. Another example
of intrinsically deadline-miss-tolerant systems is the animated displays in which
frames must be updated at a certain rate to provide continuous motion; in this
case the acceptance of deadline-misses is related to human perception as we saw for
the subsystem video frame processing in our example. In the subsystem tracking &
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camera control, the acceptance of deadline-misses is determined by the robustness
of the smart algorithm in the "Target position prediction" task.

To conclude, we say that the hard real-time model cannot fully describe tasks
that tolerate few deadline-misses and the worst-case analysis is too strict to verify
the timing of such tasks. There is actually a need for a less-than-hard model and a
less-than-worst-case analysis. Weakly-hard real-time systems [7] have been defined
to model such systems.

1.3 Weakly-hard real-time systems

A weakly-hard real-time system has been defined for the first time in [7] as

"A system in which the distribution of its met and missed deadlines during a
window of time w is precisely bounded."

That defines a new category of real-time tasks, namely weakly-hard. The
notation (m, k) is used to represent the distribution of deadline-hits and deadline-
misses. This notation originates from the work on (m, k)-firm systems [47], which
addresses the same type of systems. A task is said to be weakly-hard if it can
tolerate m deadline-misses in a sequence of k deadlines. Formal definitions and
discussions take place in Chapter 2. The task "Processing" in our example can
tolerate m = 5 in a sequence of k = 25 depending on the fact presented in Section
1.2.

Clearly, the worst-case analysis cannot provide guarantees for weakly-hard real-
time tasks, thus, Bernat et al. proposed an analysis in [7] to compute the distri-
bution of deadline-misses for real-time periodic tasks with fixed offset. They com-
puted the number of deadline-misses in a time-window of k consecutive jobs along
the Hyper-period, i.e., the least common multiple (lcm) of all task periods. Sun and
Di Natale also proposed an analysis in [113] to compute tight bounds for offset-
free periodic tasks. The authors proposed an Mixed-Integer Linear Programming
MILP to check all possible scenarios within a time-window of k consecutive jobs.
Therefore, [113] can provide tighter bounds than [7] but with higher complexity.

This thesis considers weakly-hard real-time tasks and proposes an analysis to
compute weakly-hard real-time bounds for variety of system models as will be
elaborated in this thesis. The contribution of this thesis is addressed and detailed
in the next section.
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1.4 Research Objectives and Contribution

Throughout the introduction of this thesis, the necessity of tight and safe bounds
on the timing properties of real-time systems has been elaborated. This doctoral
thesis aims to bring more attention to the modeling and analysis of weakly-hard
real-time systems. Leveraging the properties of weakly-hard real-time systems
leads to relax the traditional hard real-time constraints and to compute more
expressive, tight and yet safe bounds for weakly-hard real-time tasks.

The core contribution of this thesis is: computing a deadline miss model for
independent weakly-hard real-time tasks that are scheduled on a temporarily over-
loaded uniprocessor system. A part of this work has been achieved in the course of
a collaboration project between Thales Research & Technology (TRT) and iTUBS
which is an associate company of Technische Universität Braunschweig (TUBS),
responsible for technology transfer. The overall objective of the collaboration
project consists in developing a framework of integrated tools assisting the system
architect in evaluating the timing behavior of the architecture based on weakly-
hard real-time guarantees in the form of a deadline miss model. The collaboration
project involved two case studies, which are considered and presented in this thesis.

The contribution can be detailed as follows:

• Computing weakly-hard real-time guarantees in the form of a deadline miss
model for independent tasks under Fixed Priority Preemptive and Nonpre-
emptive (FPP & FPNP) scheduling policies.

• The proposed analysis is adopted to compute deadline miss models for inde-
pendent tasks under Weighted Round-Robin (WRR) and Earliest Deadline
First (EDF) scheduling policies.

• An extension to address the first case study of TRT. The extension computes
deadline miss models for weakly-hard real-time systems with task dependen-
cies, that is to say, for a chain of tasks.

• System extensibility to budget recovery and reconfiguration tasks in a weakly-
hard real-time system. This extension addresses the second case study of
TRT.

The work presented in this thesis is significant to compute weakly-hard real-
time guarantees for tasks that can tolerate deadline-misses in a temporary over-
loaded system. This work is not a stand-alone work, rather, it is a basis of two
follow-up dissertations. The first one [2] is pursued at TUBS to provide weakly-
hard real-time guarantees in the form of a deadline miss model for a DRTS. The
second [38] is pursued at the University of Grenoble Aleps; it aims to bring formal
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proofs of the weakly-hard analysis. Both topics build upon the analysis proposed
in this thesis.

1.5 Outline

This thesis is organized as follows: Chapter 2 recalls basic definitions and for-
mally presents the system model. The core contribution of this thesis is shown in
Chapter 3 where an analysis to compute weakly-hard real-time guarantees in the
form of a deadline miss model will be presented for FPP and FPNP scheduling
policies. Later, the proposed analysis will be adopted to consider WRR and EDF
scheduling policies. In Chapter 4, the applicability, scalability, and pessimism of
the proposed deadline miss model will be open to question. The discussion will be
supported with experimental results. Two extensions will be motivated and pre-
sented in Chapters 5 and 6. In Chapter 5, the extension to a deadline miss model
for task chains will be motivated by and presented with an industrial case study
provided by TRT. The second extension is in Chapter 6. The system extensibility
will be studied for weakly-hard real-time systems to safely add recovery and re-
configuration tasks to the system. This chapter is driven by a second case study
provided by TRT as well. Finally, conclusions about this thesis will be drawn in
Chapter 7.





2 | SYSTEM MODEL AND PROBLEM
FORMULATION

"It isn’t that they can’t see the solution. It’s that they can’t see the problem."
— G. K. Chesterton

Missing deadlines and weakly-hard real-time systems are intrinsically linked. Miss-
ing deadlines are also intrinsically linked with overload conditions, in which the
processing capacity offered by the resource cannot satisfy the computational ca-
pacity requested by the tasks [18]. Overload conditions can be raised by different
sources, such as interrupt service routines triggered by sensors or exception han-
dling routines triggered by the operating system. External overload conditions can
cause, e.g., higher event density. Cyclic-and-spontaneous messages in a Controller
Area Network (CAN) bus can suffer from sporadic overload jobs [89]. In the de-
sign of real-time systems, it is not uncommon to fully specify the task related to
the main mission of the system and later consider the exception handling routines
and the interrupt service routines [52]. The execution of such routines may, how-
ever, perturb the execution of main mission tasks, leading to deadline-misses. In
other words, those routines make the system overloaded. If the main mission tasks
can tolerate deadline-misses, which means they are weakly-hard real-time tasks,
a weakly-hard analysis is needed to verify their schedulability under the overload
conditions.

This chapter presents the system model considered in this thesis and formally
defines the problem addressed in the main contribution. The chapter encompasses
formal definitions of the principal concepts that the thesis relies on, e.g., temporar-
ily overloaded system, weakly-hard real-time task and weakly-hard schedulability.

2.1 System Model

This section follows [82, 5] and focuses on the timing model of a real-time system.
This section goes further to identify weakly-hard real-time systems. The section
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starts with general definitions and moves to more specific definitions to formally
recognize the system model. Let us consider a simple sensor-control-actuator sys-

Figure 2.1: The timing model of a simple sensor-control-actuator system.

tem as in the left part of Figure 2.1. The functional view shows that there is
one function, the control algorithm, that reads from the sensor and sends control
commands to the actuator. This system is realized by an ECU and a CAN bus;
the sensor sends the value to the ECU as a message via the CAN bus, in turn the
ECU sends the control command as a message to the actuator via the CAN bus.
The timing model of this simple system, which is adequate for timing verification,
is an abstraction from the functional view and the architectural view. The right
part of Figure 2.1 shows the timing model of the simple system.

For the sake of consistency, the basic modeling formalism required for this
thesis will be presented next. A list of notations is shown in Table 2.1.

2.1.1 Principal definitions

Definition 2.1 (System). A system S comprises a set of tasks mapped to a set of
resources.

Definition 2.2 (Resource). A resource r is a physical entity provided with a sched-
uler, which arbitrates between tasks according to a scheduling policy.

Definition 2.3 (Task). A task τ is modeled as a tuple (C, A, D), where C is the
worst-case execution time, A is the activation model and D is the relative deadline.

Definition 2.4 (Execution time). The time needed to execute the task, including
overheads caused by the operating system, i.e., context switching, and taking into
account the hardware specifications.

A task τi contends for the resource after being activated by an event, i.e., an
interrupt or a message reception. The scheduling policy determines when τi can
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notation description
S System
r Resource
τ Task
Ci Worst-case execution time of τi
Di Relative deadline of τi
dni Absolute deadline of τi
R+
i Worst-case response time of τi
ℵi Activation trace for τi
iג Termination trace for τi

δ−i (n) The minimum distance function of τi
η+
i (∆t) The maximum arrival function of τi
Ui Utilization of τi
U Utilization of a resource
Z Task set
T Typical task set
O Overload task set
Ii Interfering task set with τi

dmmi(k) DMM of τi

Table 2.1: Table of notations.

occupy the resource. After being scheduled, τi executes until completion. One
execution of a task is called instance or job. During the execution, τi is subject
to be blocked or preempted by other tasks according to the scheduling policy
that applies to the resource. When multiple instances of τi are pending (ready
to execute), instances are stored in a ready queue and executed under the First-
In-First-Out (FIFO) manner. We call the tasks that can preempt or block the
execution of τi as interfering tasks. To describe the patterns of incoming event
streams that activate a task, the notion of traces will be presented.

Definition 2.5 (Activation trace). An activation trace ℵi of a task τi is a function

ℵi : N+ → R+ (2.1)

where ℵi(n) = t indicates the absolute time at which the n-th instance of τi is
activated.

Definition 2.6 (Termination trace). A terminations trace iג of a task τi is a
function

iג : N+ → R+ (2.2)
where i(n)ג = t indicates the absolute time at which the n-th instance of τi is
terminated (completes execution).
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Figure 2.2: Relation of activation traces and the maximum arrival function η+,
based on [82].

The activation model is an abstraction of the activation trace. In this thesis
we describe activation models using arrival curves.

Definition 2.7 (Arrival curves). The maximum and minimum arrival curves
η+
i (∆t) and η−i (∆t) of task τi are functions R+ → N+ such that for any half-
open time interval [t, t+ ∆t), η+(∆t) (η−(∆t)) defines the maximum (minimum)
number of events occur during this time interval.

Figure 2.2 shows how to abstract the maximum arrival function η+ from activa-
tion traces. Arrival functions are non-decreasing [64]. In addition, the maximum
arrival functions are sub-additive [64], i.e.,

∀∆t,∆t′ ∈ R+ : η+(∆t) + η+(∆t′) > η+(∆t+ ∆t′) (2.3)

The pseudo-inverse of arrival curves, distance functions, can be used as well to
describe the activation models.

Definition 2.8 (Distance functions). The minimum and maximum distance func-
tions δ−i (n), δ+

i (n) : N+ → R+ of task τi returns the minimum and maximum time
intervals, respectively, during which at most n events occur.

Arrival curves can be derived from distance functions as follows [32]:

∆t = 0 : η+(∆t) =0 (2.4)
∆t > 0 : η+(∆t) = max

n>1,n∈N
{n|δ−(n) < ∆t} (2.5)

η−(∆t) = min
n>0,n∈N

{n|δ+(n+ 2) < ∆t} (2.6)

Figure 2.3 shows the minimum distance function δ−(n) as a pseudo-inverse of
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Figure 2.3: The minimum distance function δ−(n) as a pseudo-inverse of the max-
imum arrival function η+(∆t) in Figure 2.2.

the maximum arrival function η+(∆t) in Figure 2.2. Minimum distance functions
are non-decreasing and super-additive, i.e.,

∀n, n′ ∈ N+ : δ−(n) + δ−(n′) 6 δ−(n+ n′) (2.7)

Note that another version of arrival curves η̃+
i (∆t) and η̃−i (∆t) has been defined

in [99]. In η̃+
i (∆t) and η̃−i (∆t) the considered time intervals are closed. While

the analysis for Fixed Priority Preemptive (FPP), for instance, uses right-open
intervals, the analysis for Earliest Deadline First (EDF) scheduling is based on
closed intervals to avoid the phenomenon of "not looking far enough" in the busy-
window analysis [33, 27]. The busy-window analysis will be presented in the next
chapter.

Next, we formally define a pending instance.

Definition 2.9 (Pending instance). For a given task τi, an instance n is said to
be pending at time t if

ℵi(n) 6 t < .i(n)ג

Now we can define when the resource is idle, which is needed to identify the
timing behavior of schedulers.

Definition 2.10 (Idle). A resource r is said to be idle at time t if there is no
pending instance at t of all tasks executing on r.

Definition 2.11 (Relative deadline). The relative deadline Di of a task τi is the
amount of time allowed after activating the task during which the task must com-
plete.

Definition 2.12 (Absolute deadline). The absolute deadline dni is a point of time
at which the n-th instance of a task τi has to complete execution.
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Definition 2.13 (Sporadic task). A task that is activated by events that rarely
occur and at unpredictable time such that δ+(2) = +∞ is called sporadic task.

An example of such tasks is routines for handling externally generated excep-
tion.

Another interesting timing property for timing verification is the response time.

Definition 2.14 (Response time). The response time Rn
i of the n-th instance of

task τi is the time elapsed between the activation and the completion of the instance

Rn
i = −i(n)ג ℵi(n) (2.8)

Definition 2.15 (Worst-case response time). The worst-case response time R+
i of

task τi is the longest response time that τi may experience

∀n ∈ N+ : R+
i > Rn

i (2.9)

Chapter 3 illustrates how to compute the worst-case response time using the
arrival curves.

When a scheduling policy, which defines how the contention between tasks will
be solved, can schedule a given task set Z such that all tasks meet their deadline
(R+

i 6 Di), we say the scheduling policy can find a feasible schedule.

Definition 2.16 (Interfering task set). The set of interfering tasks Ii ⊆ Z is a
set of tasks that can preempt or block the execution of τi.

2.1.2 Weakly-hard real-time system

Weakly-hard real-time systems and missing deadlines are intrinsically linked, and
missing deadlines are also intrinsically linked with overload conditions. Therefore,
we start with defining the overloaded systems.

Definition 2.17 (deadline-miss). A task τi has a deadline-miss if and only if

∃n ∈ N+ : Rn
i > Di (2.10)

Definition 2.18 (Utilization). The computation of utilization of a task τi requires
the evaluation a limit for time approaching infinity.

Ui = lim
∆t→∞

η+
i (∆t) . Ci

∆t
(2.11)
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the resource utilization is then:

U =
∑
i∈Z

Ui (2.12)

Note that the definition of utilization is equivalent to the definition of maximum
load in [32].

Definition 2.19 (Temporarily overloaded resource). A resource is temporarily
overloaded if the resource utilization U 6 1 and there is at least one deadline-miss
takes place.

Activating sporadic tasks such as exception handling routines may perturb the
execution of other tasks, leading to deadline-misses. The sporadic tasks represent
in this case a transient overload, which causes a temporarily overloaded resource.

Definition 2.20 (Temporarily overloaded system). A real-time system that has
at least one temporarily overloaded resource is a temporarily overloaded system.

Following the hard real-time model, a temporarily overloaded system is not
schedulable. However, missing a few deadlines in a sequence of instances of a task
is admissible for many systems due to, e.g., functionality robustness or human
perspective as has been shown in Section 1.2.2. Such tasks have an extra timing
requirement beside the deadline to specify the admissible number of deadline-
misses in a consecutive sequence of instances.

Definition 2.21 ((m, k) Constraint). An (m, k) constraint specifies the number
of deadline-misses m > 0 that is admissible for a task τi in any k consecutive
instances where k > m.

Let us now discuss how to specify (m, k) constraints based on safety. When a
transient overload causes a deadline-miss, it is said to be an active fault and the
deadline-miss is an error. The error may cause a failure, i.e., the system delivers
an incorrect service [4]. If the error causes no failure, it is said to be tolerable. For
a wide range of real-time systems not every individual deadline-miss will cause a
failure and a task can tolerate therefore a few deadline-misses with no need for
error handling.

To illustrate this point let us focus on control engineering. The deadline of a
controller task is defined as the associated delay of the minimized cost function that
guarantees the intended performance [73] [23]. This deadline is called performance
deadline [73]. Missing one performance deadline means that the controller output
will not be updated, however, not refreshing the output for a period may cause a
failure related to a deviation from the intended controlled system space trajectory.
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Hence, we say the controller task can tolerate few deadline-misses (say m) as long
as it refreshes the plant input before another deadline-miss takes place and causes
a failure. We define next the phrase "τi tolerates deadline-misses".

Definition 2.22. A task τi tolerates— without error handling— at mostm deadline-
misses out of any k consecutive instances and no failure will be triggered unless
τi misses m + 1 deadlines out of any k consecutive instances where m > 0 and
k > m.

When a specific level of Quality-of-Service (QoS) or other metrics (cost, en-
ergy consumption, etc.) is required then another proper (m, k) constraint can be
defined.

The definition of hard real-time systems can be derived by saying it is a system
in which m = 0 for all tasks. A real-time system whose tasks can tolerate a few
deadline-misses in a sequence of instances is known as Weakly-Hard Real-Time
(WHRT) system.

Definition 2.23 (WHRT task). A WHRT task is a task that tolerates a precisely
bounded number of deadline-misses in a sequence of k instances1.

Definition 2.24 (WHRT system). A WHRT system is a system that comprises
at least one WHRT task.

Note that this definition is tighter than the original definition in [7] because
it restricts the class of weakly-hard to tasks that can tolerate deadline-misses. In
the rest of this thesis, WHRT task and WHRT system refer to the new definitions:
Definition 2.23 and Definition 2.24, respectively.

This thesis considers a WHRT single-resource (uniprocessor) system
in which the transient overload is due to sporadic tasks, e.g., interrupt
service routine.

The transient overload that is due to extra sporadic instances, like cyclic-and-
spontaneous messages in a CAN bus, is not considered in this thesis. Considering
this kind of transient overload requires an analysis to extract the overload instances
from the activation and termination traces. This problem is addressed in [2, 60].

2.1.3 Weakly-hard schedulability

Verifying timing requirements of a given task set is the purpose of performing a
schedulability analysis. Classically, a system S is said to be schedulable if all its
tasks meet their deadline. Suppose that a task set Z is given, the problem is then

1 For the sake of brevity, we call such a sequence of k instances a k-sequence.
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to verify that ∀τ ∈ Z there is no deadline-miss. For WHRT systems, this condition
has to be updated to consider the (m, k) constraints.

Definition 2.25 (Weakly-Hard Schedulability). A WHRT task is said to be weakly-
hard schedulable if it meets its (m, k) constraint.

Worst-case response time analyses, which are used to verify the worst-case re-
sponse time against the deadline, cannot be used to verify the weakly-hard schedu-
lability. Therefore, we need an analysis to compute upper bounds on the number
of deadline-misses that a task may miss in a k-sequence and verify them against
the (m, k) constraints.

WHRT systems need two essential analyses: 1) specifying the (m, k) constraints
2) verifying the (m, k) constraints. This work focuses on verifying the (m, k)
constraints and it does not address the problem of specifying these
constraints. Specifying the constraints needs an application specific analysis to
study the impact of deadline-misses on system functions. Recent work [39, 12, 85]
in this direction indicate that this question is indeed considered as relevant in the
research community as well as in the industry.

2.2 Problem Statement

In this thesis, we consider that the task set Z consists of two subsets: 1) the
sporadic overload tasks that represent the transient overload, we call this subset
the overload task set O; 2) the other tasks, we refer to them as the typical task
set T . That is to say, Z = T ∪ O. We call a task τj ∈ O an overload task, and
its instances overload instances. Intuitively, within the time intervals where none
of the overload tasks are activated the system is not overloaded and no deadline-
misses occur.

The classification of tasks into typical and overload is possible in the consid-
ered system model because the overload is due to internal overload conditions, i.e.,
interrupt service routine, exception handling routines, recovery tasks and reconfig-
uration tasks. However, such a straightforward classification is not possible for all
temporarily overloaded system. In cases where such a distinction is not possible,
an algorithm to identify the overload tasks or overload instances is required [60].

For a given task τi ∈ T , the main contribution of the thesis addresses the
problem of how to upper bound the number of deadline-misses that may occur
within a k-sequence of τi. For that end, we show how to compute a Deadline Miss
Model (DMM) for a given task.

Definition 2.26. A deadline miss model DMM consists of a function

DMM = < dmmi(k) > (2.13)
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with
dmmi : N+ → N (2.14)

which returns an upper bound on the number of deadline-misses out of any k-
sequence.

We assume, for simplicity, that deadline miss models and their related func-
tions are indexed according to their associated task. In this context, dmmi is the
deadline miss model for task τi.

In this thesis, a deadline-miss-agnostic scheduling is assumed. Such a scheduler
lets all tasks run to completion even if a deadline-miss occurs. Also, an infinite
ready queue is assumed, thereby, there will be no overload reduction. Studying the
impact of killing the running task instance due to a deadline-miss or dropping the
next task instance/instances due to an enforcement policy defined in the scheduling
algorithm or a finite ready queue is out of the scope of this thesis. The reader,
who is interested in the case of finite ready queues, may check [3].

2.3 Summary

This chapter elaborated formally what a temporarily overloaded system is, and it
offered clean and precise definitions about WHRT systems, constraints, schedu-
lability analysis and guarantees. Later, the addressed problem in this thesis is
formally presented.

Considering the presented system model, Chapter 3 shows how to compute
DMMs for tasks under different scheduling policies. Each considered scheduling
policy will be presented thoroughly in Chapter 3. Therefore, this chapter intro-
duced only the principal concept behind scheduling policies.

Chapter 5 will add some specifications to the presented system model. These
specifications, namely task dependencies, will be elaborated formally.



3 | COMPUTATION OF DMMs FOR
INDEPENDENT WHRT TASKS

In this chapter, we present how to compute Deadline Miss Models (DMMs) for in-
dependent WHRT tasks scheduled on one resource considering different scheduling
policies. The DMM is computed for a given task τi and it upper bounds the num-
ber of deadline-misses that may occur within a sequence of k consecutive instances
of τi. We based our work on Typical Worst-Case Analysis (TWCA) [91].

TWCA computes a less-than-worst-case response time for a given task τi. It
also computes the maximum number of deviations from this new bound. There-
fore, there is a trivial DMM based on TWCA when it is applied to temporarily
overloaded systems. In this chapter, we first describe TWCA in a nutshell. Next,
we show how we improved over state-of-the-art TWCA to compute DMMs for
FPP, FPNP, WRR, and EDF scheduling policies.

We elaborate on how to compute DMMs for FPP and FPNP scheduling policies
in Section 3.2. In that section, we show that the problem of computing DMMs
is a multidimensional knapsack problem. Sections 3.3 and 3.4 show how to adopt
the proposed analysis to compute DMMs for WRR and EDF scheduling policies
respectively. The related work is addressed thoroughly in Section 3.5.

This chapter presents work that has been published in [50], [125], [48] as well
as [51] that is submitted to ACM TECS.

Notation 3.1. The analysis that is presented in this chapter is applicable for
computing and communication resources. When a communication resource is con-
sidered, it is proper to use the term "message" instead of "task" and "transmission
time" instead of "execution time". However, the terms task and execution time
are used for generality.

23
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3.1 Typical Worst-Case Analysis in A Nutshell

Methods addressing the worst-case timing scenario for a given real-time system
have been presented in Chapter 1. Results provided by these methods do not
reflect the frequency of worst-case occurrences even though, practically, the system
may rarely experience the worst-case scenario.

TWCA [91, 92] was introduced to bound the frequency of worst-case scenario
occurrences. The idea is to identify system behaviors considered as typical-case and
to consider remaining scenarios as the result of some sporadic overload. That is to
say the non-typical timing scenario is due to sporadic tasks, e.g., interrupt service
routines or due to extra sporadic instances like cyclic-and-spontaneous messages in
a CAN bus without causing any deadline-miss. Figure 3.1 shows sporadic instances

τs1 t

τs2

t

Worst-case

τ1 t

τ2 t

Typical-case Typical-case Non-typical

R+
i,typ R+

i

Figure 3.1: TWCA identifies system behaviors considered as typical-case and it
considers remaining scenarios (non-typical) as the result of some sporadic overload.
The red upward arrows indicate a sporadic overload instants.

in red. The absence of sporadic instances identifies the typical-case scenario, while
the presence of them identifies the non-typical scenario.

Besides the worst-case response time, TWCA computes for a given task τi
the longest response time considering the typical-case scenario, i.e., with absence
of sporadic instances. This bound is called typical worst-case response time and
denoted R+

i,typ
1. Also, TWCA computes the maximum number of deviations from

R+
i,typ which τi may experience in a time window of k consecutive executions. This

bound is called error model and denoted err(k). The error model is an upper
bound on the frequency of worst-case occurrences. In the example of Figure 3.1,
task τ2 experiences the worst-case scenario only once with R+

i = 3.5. In most cases,
the response time of τ2 is bounded with R+

i,typ = 2.5 and within a window of k = 7
executions, the response time of τ2 diverges from R+

i,typ only twice (erri(7) = 2).

1It is denoted TWCRT in the original work [91].
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Figure 3.2: TWCA in Design Process.

Figure 3.2 illustrates the inputs and outputs of TWCA. TWCA uses execution
traces (activation and termination traces). For a given task τi, TWCA computes
(R+

i,typ, erri(k)). The computation of R+
i,typ and erri(k) is not shown in this thesis.

TWCA does not consider the concept of the deadline, instead, its main concern
is to overcome over-provisioning for systems, in which the worst-case scenario is
the result of some rarely activated sporadic instances. However, there is a trivial
DMM based on TWCA when it is applied to temporarily overloaded systems.
Computing erri(k) as the maximum number of deviations fromDi instead of R+

i,typ,
makes erri(k) as a DMM for τi. This work is extending TWCA using response
time dependencies to compute tighter DMMs than erri(k).

3.2 DMM for Fixed Priority Scheduling Policies

In this section, we present our analysis to compute DMMs for FPP and FPNP.
TWCA is a response time based analysis, thus, the worst-case response time anal-
ysis represents a foundation for it. The concept of busy-window is a cornerstone in
computing a DMM using TWCA. For that reason we present first the worst-case
response time analysis, then we show how to compute a DMM for a given task
τi. The DMM computation is formulated as an integer linear programming (ILP)
problem and it will be relaxed to a linear programming (LP) problem for better
efficiency.
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Figure 3.3: The longest τi busy-window under FPP scheduling policy. The critical
instant is at t = 0.

3.2.1 FPP and FPNP scheduling policies

Tasks in the task set Z are assigned fixed priorities, i.e., the assigned priority πi
to τi ∈ Z will never change as the system is running. An instance of τi occupies
the resource when it has the highest priority among all ready instances. In FPP
when an instance of another task τj with a higher priorityn than τi becomes ready,
the instance occupying the resource will be preempted in the favor of the higher
priority ready instance and it resumes when it is the highest ready instance again.
In FPNP an instance will not be preempted till completion.

3.2.2 Worst-case response time analysis

We depend on the busy-window technique [65, 118]. The purpose of this section is
to show how to compute for a given task τi the length of the longest (worst-case)
τi busy-window, denoted BW+

i , and the worst-case response time R+
i .

Definition 3.1. For a given task τi, a τi busy-window BWi
2 is a maximal time

interval [t1, t2[ where ∀t ∈ [t1, t2[ the resource is busy executing instances of τi and
interfering tasks Ii.

The longest busy-window (worst-case busy-window) might not be observable
on execution traces (activation and termination traces). Therefore, we need to
produce it synthetically to obtain the critical instant [69], i.e., the point of time
at which τi and all interfering tasks are simultaneously activated. Lehoczky [65]

2It is called in some literatures as a level-i busy interval [118].
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generalized the concept of critical instant, and introduced the concept of busy-
window. Later, Thiele et al. [116] proved the correctness of producing the worst-
case busy-window using arrival curves. We obtain the critical instant by aligning
the arrival curves of τi and all interfering tasks such that the tasks are activated
simultaneously. Figure 3.3 shows the critical instant of three tasks.

Let us start with FPP. The set of interfering tasks Ii contains tasks of priority
higher or equal to τi, Figure 3.3 shows the longest τi busy-window. In literature,
the length of the longest τi bus-window BW+

i is computed based on the function
B+
i (q) that bounds the maximum time needed to process q consecutive instances

of a given task τi.

Lemma 3.1. For a given task τi ∈ Z with FPP, B+
i (q) is computed as follows:

B+
i (q) = q . Ci +

∑
j∈hp(i)

η+
j (B+

i (q)) . Cj (3.1)

where hp(i) is the set of tasks that have a priority higher or equal to τi:

hp(i) = {j | πj > πi, ∀j ∈ Z} (3.2)

Proof. The proof is presented in [107] and it depends on the argumentation in
[118]. The q-th instance will have to wait until all (q − 1) instances are executed
to completion requesting their worst-case execution time (first summand). The
q-th instances will be scheduled when it has the highest priority among all ready
instances, thus, it will have to wait until all ready instances of higher priority
tasks execute to completion requesting their worst-case execution time (second
summand). By Definition 2.7 η+

j (∆t) returns the maximum number of instances
that may be activated in a duration. Therefore, q instances of τi require at most
B+
i (q) to be fully processed.

If B+
i (q) 6 δ−i (q + 1), then the busy-window that include q instances does not

include the q+1-th instance. This can be used to determine the maximum number
Qi of instances of τi in a τi busy-window.

Qi = min{q > 1 | B+
i (q) 6 δ−i (q + 1)}. (3.3)

The length of the longest τi busy-window (it is called also the worst-case τi
busy-window) can then be computed as

|BW+
i | = B+

i (Qi) (3.4)

The analysis of FPNP is more complex due to boundary effects [27]. Here
we show the equations needed to compute the length of the longest busy-window
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Figure 3.4: The longest τi busy-window under FPNP scheduling policy.

and the worst-case response time. The set of interfering tasks Ii contains tasks
of priority higher or equal to τi and the task that has the longest worst-case
execution time among tasks of lower priority than τi. We omit the proofs and
further discussion as they are elaborated in [27, 5, 32].

For a given task τi, BW+
i is computed depending on wi(q):

wi(q) = (q − 1) . Ci + max
j∈lp(i)

{Cj}+
∑
j∈hp(i)

η+
j (wi(q)) . Cj (3.5)

where maxj∈lp(i){Cj} is the maximum blocking time from lower priority tasks. lp(i)
is the set of tasks of lower priority than τi:

lp(i) = {j | πj < πi,∀j ∈ Z} (3.6)

The maximum number Qi of instances in one busy-window is:

Qi = min{q > 1 | wi(q + 1) 6 δ−i (q + 1)}. (3.7)

Then the length of the longest busy-window is computed as follows:

|BW+
i | = wi(Qi + 1) (3.8)

The maximum processing time B+
i (q) of q consecutive instances is given as:

B+
i (q) = QDi(q) + Ci (3.9)

where QD+
i (q) is the longest queuing delay that the q-th instance may experience.

QD+
i (q) = (q − 1) . Ci + max

j∈lp(i)
{Cj}+

∑
j∈hp(i)

η̃+
j (QD+

i (q)) . Cj (3.10)

η̃+ needs to be considered due to boundary effects [27]. Note that using η̃+(QD+
i (q))

is equivalent to say η+(QD+
i (q) + ε) as mentioned in [5] [32]. Figure 3.4 shows the

longest τi busy-window and QD+
i .
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For both FPP and FPNP, the response time of every instance of τi is computed
by

Rq
i = B+

i (q)− δ−i (q) (3.11)

Theorem 3.1. The worst-case response time of τi is computed by

R+
i = max

16q6Qi

{B+
i (q)− δ−i (q)} (3.12)

Proof. It is proved in [32]. Any q instances require at most B+
i (q) to finish, and

the q-th instance arrives no earlier than δ−i (q) after the first instance in BW+
i .

Thus, the difference is an upper bound on the response time of the q-th instance
of τi in all τi busy-windows. Hence, the maximum of response times of instances
in BW+

i is the worst-case response time.

3.2.3 Deadline miss model computation

In this section we show how to compute a DMM for given task τi. The idea is to
exploit the concept of busy-window, which bounds the impact of transient overload
(sporadic tasks) in one busy-window.

Property 3.2. In a given execution trace, a τi busy-window satisfies:

∀j ∈ Ii : ℵj(q′) ∈ BWi → j(q′)ג ∈ BWi

When an instance of the interfering task τj is activated within BWi, then BWi

closes after this instance terminates. Remember that ℵj indicates an activation
trace of task τj and jג indicates a termination trace.

The above property implies that when sporadic instances (the transient over-
load) are activated in a busy-window BWi, their impact, i.e., missing deadlines, is
bounded in BWi. Therefore, this property of the busy-window will be exploited
to bound the DMM by:

1. bounding the number of deadline-misses of τi within one τi busy-window, let
Ni denote this bound.

2. bounding the number of τi busy-windows in which instances of the k-sequence
miss their deadline, let NBWmiss

i denote this bound.

Then, dmmi(k) can be bounded safely as

dmmi(k) := Ni × NBWmiss
i (3.13)
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Figure 3.5: The impact of overload task combinations on τ3 busy-windows: c̄1 =
{τ1, τ2} in (a), c̄2 = {τ1} in (b), c̄3 = {τ2} in (c) and c̄4 = {∅} in (d). The black
arrow indicates D3 and the red color indicates the overload tasks (τ1, τ2). Note
that N3 = 1.

Lemma 3.2. Let
Ni := #{q | 1 6 q 6 Qi ∧Rq

i > Di} (3.14)

Then Ni is an upper bound on the number of deadlines that τi may miss within
one τi busy-window.

Proof. The argumentation is twofold. Firstly, the longest τi busy-window contains
the maximum number Qi of instances within one τi busy-window.

Secondly, the longest τi busy-window maximizes the response time of all in-
stances 1 6 q 6 Qi. That is because BW+

i includes the largest number of instances
of τi and higher priority tasks within a duration of |BW+

i |. And all higher priority
instances are considered to request their worst-case execution time.

As a conclusion, the longest τi busy-window contains the maximum number of
deadline-misses that τi may experience within any τi busy-window.

Bounding NBWmiss
i is more complex. τi misses no deadline within a τi busy-

window during which no overload instances execute, see Figure 3.5 (d). On the
other hand, a τi busy-window experiences a deadline-miss when one or more over-
load instances are activated within the τi busy-window. Figure 3.5 (a), (b) and (c)
illustrate the three possible scenarios in which a τ3 busy-window will be impacted
because of experiencing sporadic instances. The one can observe that τ3 misses its
deadline when a τ3 busy-window experiences instances from τ1 and τ2 or only from
{τ2}. Hence, we first identify the combinations of sporadic tasks that may cause a
deadline-miss.

Definition 3.2. A combination c̄ is a subset of the overload task set O. Then a
combination could be a schedulable combination w.r.t. τi (causing 0 deadline-
misses) or unschedulable combination3.

3A schedulable combination can be considered as a dormant fault while an unschedulable one
is an active fault causing an error (deadline-miss).
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Figure 3.6: Ωj→i
k under FPP scheduling policy.

By Rc̄
i we denote the worst possible response time of τi in the task set T ∪ c̄.

In this way R+
i = RZ

i . We say that a combination c̄ ⊆ O is unschedulable w.r.t
τi if Rc̄

i > Di. In the same way we call the combination c̄ for which Rc̄
i 6 Di

a schedulable combination. Let C̃i denote the set of unschedulable combinations
w.r.t. τi.

To bound NBWmiss
i we can compute an upper bound on the number of un-

schedulable combinations that may interfere with the considered k-sequence. For
that end, we compute first an upper bound on the number of overload instances
of τj that may interfere with any τi busy-window containing instances of the k-
sequence.

Lemma 3.3. Ωj→i
k is an upper bound on the number of overload instances of τj ∈ O

that may interfere with any τi busy-window containing instances of the k-sequence.

∀j ∈ O : Ωj→i
k := η+

j (|BW+
i |+ δ+

i (k) +R+
i ) (FPP) (3.15)

Ωj→i
k := η+

j (|BW+
i |+ δ+

i (k) + (R+
i − Ci)) (FPNP) (3.16)

Proof. Figure 3.6 illustrates Ωj→i
k where the k-sequence is shown in green and the

sporadic instances are shown in red. The maximum arrival function η+
j (∆t) is an

upper bound on the number of instances that may be activated within a duration
∆t. The maximum arrival function is a non-decreasing function, thus, to compute
Ωj→i
k as an upper bound we have to consider the maximum time window during

which overload instances of τj may interfere with any τi busy-window containing
instances of the k-sequence. δ+

i (k) is the maximum distance between k instances.
BW+

i : any overload instance shares the same τi busy-window with the first
instance of the k-sequence, then it may impact its execution.

R+
i : any overload instance that may be activated within the response time of
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Figure 3.7: Packing overload instances into τ4 busy-windows in Example 3.1. X
indicates a deadline-miss.

the last instance of the k-sequence, may impact its execution (FPP). Because of
the nonpreemptive policy in FPNP, it is sufficient to consider R+

i − Ci.

For a given task τi and k, what we are looking for is to maximize the number
of unschedulable combinations that can be composed using Ωj→i

k ∀j ∈ O ∩ hp(i).

Example 3.1. Let us consider 4 tasks, π1 > π2 > π3 > π4, where τ1, τ2, τ3 are
overload tasks with Ω1→4

k = 2, Ω2→4
k = 2 and Ω3→4

k = 2. With 3 overload tasks we
can combine 23 combinations, assume that the set of unschedulable combinations
is C̃4 = {c̄1 = {τ1, τ2, τ3}, c̄2 = {τ1, τ2}, c̄3 = {τ1, τ3}, c̄4 = {τ2, τ3}} and the other
4 combinations are schedulable. Using the given Ωj→4

k values we can compose the
unschedulable combinations in 5 different ways as Figure 3.7 illustrates. Case 5
has the maximum number of impacted busy-windows by maximizing the number of
unschedulable combinations that can be composed using Ωj→4

k .

Lemma 3.4. Let xc̄ represent the number of composed instances of the unschedu-
lable combination c̄, then NBWmiss

i can be bounded as follows:

NBWmiss
i 6 max

{∑
c̄∈C̃i

xc̄

}
(3.17)

with ∑
c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O ∩ hp(i) (3.18)

Proof. The overload instances within a window of k-sequence will be combined
in unschedulable and schedulable combinations. Each unschedulable combination
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c̄ impacts no more than one τi bus-window, thus, with xc̄ 6 minj∈c̄{Ωj→i
k } in-

stances of c̄ there will be no more than xc̄ impacted busy-window. Upper bounding
NBWmiss

i implies maximizing
∑

c̄∈C̃i xc̄.

By substituting 3.17 and 3.18 in 3.13 we get the ILP formulation in 3.19 that
can be used to compute a DMM for a given task τi ∈ T .

Theorem 3.3. The ILP in 3.19 is a DMM for τi ∈ T when FPP or FPNP
scheduling policies are considered.

dmmi(k) := Ni . max
{∑

c̄∈C̃i

xc̄ :
∑

c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O∩hp(i), xc̄ ∈ N ∀c̄ ∈ C̃i

}
(3.19)

Proof. On the one hand, within one τi busy-window there will be no more than
Ni deadline-misses as has been proven in Lemma 3.2.

On the other hand, there will be no more than max
{∑

c̄∈C̃i xc̄

}
impacted τi

busy-windows (each includes at least one deadline-miss) as has been shown in
Lemma 3.4.

The ILP in Equation 3.19 provides, therefore, an upper bound on the number
of deadlines that τi might miss out of any k-sequence, i.e., a DMM.

In Example 3.1 and Figure 3.7, there will be:

1. case 1: xc̄1 = 2⇒
∑

c̄∈C̃ xc̄ = 2

2. case 2: xc̄1 = 1, xc̄2 = 1⇒
∑

c̄∈C̃ xc̄ = 2

3. case 3: xc̄1 = 1, xc̄3 = 1⇒
∑

c̄∈C̃ xc̄ = 2

4. case 4: xc̄1 = 1, xc̄4 = 1⇒
∑

c̄∈C̃ xc̄ = 2

5. case 5: xc̄2 = 1, xc̄3 = 1, xc̄4 = 1⇒
∑

c̄∈C̃ xc̄ = 3

Then dmm4(k) = 3×N4 is an upper bound on the number of deadline-misses that
task τ4 may miss out of any k consecutive instances.

The problem of computing a DMM as stated in the ILP 3.19 can be described as
packing as many unschedulable combinations as possible into τi busy-windows, see
Figure 3.7. Therefore, the problem becomes a multidimensional knapsack problem.
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The multidimensional knapsack problem is defined by the following ILP [74]:

maximize
N∑
j=1

pjxj (3.20)

subject to
N∑
j=1

aijxj 6 bi, i = 1, . . . ,m (3.21)

0 6 xj 6 uj, j = 1, . . . , N (3.22)
xj ∈ N, j = 1, . . . , N (3.23)

In our ILP we have: all items j = 1, . . . , N have the same profit pj, aij = 1, and
uj = +∞.

The proposed ILP 3.19 is not an efficient solution for two reasons:

• Computing the set of unschedulable combinations C̃ using the usual worst-
case response time analysis is not efficient because it is a fixed-point problem
(see Equation 3.10 and 3.1) and therefore it is of high complexity.

• Finding an approximate algorithm for the multidimensional knapsak problem
is not only NP-Hard [74] but also might have an exponential size input
because #{C̃} 6 2#{O} − 14.

In the next two subsections these limitations are tackled.

3.2.4 An efficient schedulability criterion

The proposed solution to compute dmmi(k) for a given task τi requires computing
the set of unschedulable combinations C̃i. Using the worst-case response time
analysis, which is presented in Section 3.2.2, to compute C̃i is not efficient because it
requires to compute the worst-case response time of τi considering a subset of tasks
Z ′ = T ∪ c̄ for all possible combinations. Note that there are 2#{O} − 1 possible
combinations and for each of which we will have to solve a fixed-point equation
(Equation 3.1 for FPP and Equation 3.10 for FPNP). Therefore, we present next
an efficient schedulability criterion to classify combinations into schedulable and
unschedulable for both FPP and FPNP respectively.

As a first step, we apply the worst-case response time analysis to compute
BW+

i and the response time Rq
i of all instances ∀q ∈ [1, Qi]. Next, we define for q

that has Rq
i > Di the following:

ρqi (t) :=
∑
j∈hp(i)

η+
j (t) . Cj + q . Ci − t ∀t 6 B+

i (q) (3.24)

4The combination c̄ = {} is always schedulable.
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Figure 3.8: To make τ4 finish before its deadline, we have to remove more workload
than what remains to process at some time point.

wlj,over(t) := η+
j (t) . Cj ∀j ∈ O ∩ hp(i),∀t 6 |BW+

i | (3.25)

Pqi := {t | δ−i (q) < t 6 δ−i (q) +Di} (3.26)

Intuitively, ρqi (t) refers to the workload in the worst-case τi busy-window that
remains to be processed at time t before the q-th instance of τi finishes. In contrast,
wlj,over(t) is the accumulated amount of overload from τj until time t. Note that
these values do not consider the instances arriving at or after t. Pqi corresponds to
all the activation time points (from higher priority tasks) between the q-th instance
of τi and its deadline, as well as the deadline point. In other words, Pqi represents
the time points where τi might finish its execution before the deadline. Figure 3.8
illustrates an example of 4 tasks with FPP. There are 4 points of time to check
the schedulability of τ4: t = 0, t = 5, t = 5.5, t = 6. ρi(t) is a piecewise function.
Within each piece, it decreases monotonically while wlj,over(t) remains the same.
It is sufficient to analyze only the end point, indicated in red, of each piece, i.e.,
the local minima. In this example we have: ρ1

4(t = 5) = 1,
∑

j∈O wlj,over(t =

5) = 2.5, ρ1
4(t = 5.5) = 1.5,

∑
j∈O wlj,over(t = 5.5) = 3.5, ρ1

4(t = 6 = D4) =
2.5,

∑
j∈O wlj,over(t = 6) = 3.5.

The three values are defined similarly for FPNP:

ρqi (t) :=
∑
j∈hp(i)

η+
j (t) . Cj + (q − 1) . Ci + max

j∈lp(i)
{Cj} − t ∀t 6 wi(q) (3.27)

wlj,over(t) := η+
j (t) . Cj ∀j ∈ O ∩ hp(i),∀t 6 |BW+

i | (3.28)
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Pqi := {t | δ−i (q) < t 6 δ−i (q) +Di − Ci} (3.29)

ρqi (t) refers to the workload in the worst-case τi busy-window that remains to
be processed at time t before the q-th instance of τi starts. Here Pqi represents the
time points where τi might start its execution and finish before the deadline.

If a task τj : j ∈ O and j /∈ c̄ then the overload due to τj is removed and
therefore the workload that remains to be processed at time t before the q-th
instance of τi finishes (FPP) respectively starts (FPNP) in the τi busy-window
corresponding to c̄ is ρqi (t)−wlj,over(t) so for every instance q of τi, there must be
a time point t before or equal to Di (FPP) respectively Di − Ci (FPNP), so that
ρqi (t)−

∑
j∈O∩hp(i),j /∈c̄ wlj,over(t) 6 0.

A sufficient and necessary (FPP) respectively sufficient (FPNP) criterion to
say that c̄ is a schedulable combination is given then as follows:

∀q ∈ [1, Qi], R
q
i > Di ∃t ∈ Pqi :

∑
j∈hp(i),j /∈c̄

wlj,over(t) > ρqi (t) (3.30)

To justify why the above condition is only sufficient under FPNP, let lpc̄(i) denote
the set of lower priority tasks than τi in the task set T ∪ c̄. That is:

lpc̄(i) = {j | πj < πi,∀j ∈ T ∪ c̄}

Intuitively, lpc̄(i) ⊆ lp(i) because T ∪ c̄ ⊆ Z. Therefore, maxj∈lp(i){Cj} >
maxj∈lpc̄(i){Cj}, and ρqi (t) in Equation 3.27 is over-approximated. In this case,
the condition in Equation 3.30 may not hold for a schedulable combination c̄.
However, when the condition in Equation 3.30 holds for a combination c̄, then c̄
is schedulable. That is to say, the condition in Equation 3.30 is sufficient under
FPNP.

Consequently, the one can deduce that the set

C̃i := {c̄ | ∃q ∈ [1, Qi], R
q
i > Di ∀t ∈ Pqi :

∑
j∈hp(i),j /∈c̄

wlj,over(t) < ρqi (t)} (3.31)

consists of all unschedulable combinations (FPP) respectively superset of un-
schedulable combinations (FPNP). In Figure 3.8, there is only one unschedulable
combination c̄3 = {τ1, τ3}, thus, C̃4 = {c̄3}.

3.2.5 An efficient LP solution

As mentioned before, directly computing dmmi(k) is impractical. Instead, an
LP relaxation is considered. xc̄ is an integer variable in 3.19, the LP relaxation
considers this variable as continuous xc̄ ∈ R+.
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dmm′i(k) = max Ni

∑
c̄∈C̃i

xc̄ (3.32)

s.t.
∑

c̄: j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O ∩ hp(i) (3.33)

xc̄ > 0 ∀c̄ ∈ C̃i . (3.34)

Trivially dmm′i(k) > dmmi(k), so this defines a DMM as well.
Ni is a constant, thus, any unschedulable combination is considered to have

the same impact. In other words, the above LP tries to use as much as possible
of the minimal unschedulable combinations (assign the largest possible number
to xc̄ when c̄ is a minimal combination). In Example 3.1, c̄2, c̄3, c̄4 are minimal
combinations while c̄1 is not; dmmi(k) is maximized only when xc̄2 , xc̄3 , xc̄4 are
maximized. Based on this observation we propose an algorithm using column
generation that solves dmm′i(k), producing upper bounds in the process. The dual
linear program of (3.32)–(3.34) reads as follows:

min
∑

j∈O∩hp(i)

Ωj→i
k yj (3.35)

s.t.
∑

j∈c̄, j∈O∩hp(i)

yj > Ni ∀c̄ ∈ C̃i (3.36)

yj > 0 ∀j ∈ O . (3.37)

We start with a reduced set of unschedulable combinations to a smaller sample
W ⊆ C̃i. Initially, this could be W := {O} (O is guaranteed to be unschedula-
ble). Let x∗ be an optimal primal solution, i.e., the values of xc̄ which report the
maximum DMM, and y∗ be an optimal dual solution, for this reduced LP, with
objective value z∗ := Ni

∑
c̄ x
∗
c̄.

In the generating columns based algorithm, we consider the LP with one vari-
able (one column) and we aim to find a violated constraint of the complete dual
LP to identify the next variable that will be added to the LP, which indicates the
next unschedulable combination that will be added to W , by computing

ν = min
c̄∈C̃i

∑
j∈c̄, j∈O∩hp(i)

y∗j . (3.38)

When there is no more variables that violate the constraint of the complete dual
LP, the column generation finishes. The next step is to identify whether z∗ is a
DMM (a single value for k):
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Lemma 3.5. If ν > Ni, then x∗ is optimal for 3.32–3.34, and z∗ > dmmi(k).

Proof. If the condition holds, then y∗ is feasible for 3.35–(3.37). By LP duality, it
follows that

z∗ = dmm′i(k) > dmmi(k)

This lemma allows us to deduce a DMM when column generation finishes, i.e.,
a globally optimal solution has been found.

As this might take a long time due to the exponential size of C̃i, we seek to
construct a DMM from suboptimal solutions as well. We define

dmm′′i (k) =
Ni

ν
z∗ . (3.39)

Lemma 3.6. If 0 < ν 6 Ni, then the obtained function dmm′′i is a DMM.

Proof. From the construction of ν 3.38, it follows that

∑
j∈c̄,j∈O∩hp(i)

Ni

ν
y∗j > Ni

for every c̄ ∈ C̃i. Consequently, Ni

ν
y∗ is a feasible solution for 3.35–3.37, with

objective value Ni

ν
z∗. Using weak LP duality, we get dmm′′i > dmm′i > dmmi, so

dmm′′i is indeed a DMM.

Algorithms. Before we can describe the overall algorithm, we discuss a subroutine
to compute ν. Following the characterization of C̃i, we can rewrite 3.38, given y∗,
as follows:

ν =min
∑

j∈O∩hp(i)

y∗jdj (3.40)

s.t. ∃q ∈ [1, Qi], R
q
i > Di ∀t ∈ Pqi :

∑
j∈O∩hp(i)

wlj,over(t)(1− dj) 6 ρqi (t)− ε

(3.41)
dj ∈ {0, 1} (3.42)

using a sufficiently small ε > 0.
The overall algorithm to compute dmmi(k) is shown in Algorithm 1.
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Algorithm 1: Get the approximate upper bound of LP (3.32)–(3.34)
1 W = {O}, dmm = k
2 repeat
3 Solve LP (3.32)–(3.34) (with W instead of C̃i), obtain primal solution

x∗, dual solution y∗, objective value z∗
4 Compute ν according to (3.40), let c̄ be the combination attaining the

minimum
5 if ν > Ni then
6 dmm = z∗

7 else
8 W = W ∪ {c̄}
9 if ν > 0 and Ni

ν
z∗ < dmm then dmm = Ni

ν
z∗

10 output upper bound dmm
11 until z∗ = dmm

3.3 DMM for WRR Scheduling Policy

In this section, we show how to compute DMMs for systems scheduled with a
variant of Round-Robin (RR) called Weighted Round-Robin (WRR). This section
is structured in the same way as previous one. A representation of WRR scheduling
is given. Then, we recall the state-of-the-art worst-case response time analysis[99].
Finally, the DMM computation comes to light.

3.3.1 WRR scheduling policy

In operating systems, RR is considered as a preemptive extension of FIFO5 [109].
However, it also can be seen as a work-conservative extension of Time-Division-
Multiple-Access (TDMA) [36, 99]. RR scheduler enables a task τi ∈ Z to occupy
the resource for a predefined amount of time, called time slot6 θ, before assigning
the resource to the next tasks in a cyclic fashion. In this thesis, we are interested
in WRR, which is a variant of RR. In WRR, each task has a different time slot θi
based on intended share of the scheduled resource. The maximum resource cycle
time, denoted WRRturn, can be determined:

WRRturn =
∑
i∈Z

θi (3.43)

5It is also called First-Come-First-Serve (FCFS) [109]
6It is also called time quantum or time slice [109]
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When it is τi turn and there is no pending instance of τi, the resource will not
be assigned to τi and the scheduling algorithm tests τi+1. Otherwise, τi occupies
the resource with no preemption for at most θi units of time. If τi did not com-
plete executing at the end of its time slot, it will be preempted by the scheduling
algorithm, otherwise, τi is allowed to execute the next pending instances under the
FIFO manner if there is any.

Whereas the classical round-robin is used for soft real-time systems or for best
efforts QoS, WRR is used for hard real-time systems such as Asynchronous Trans-
fer Mode (ATM) local area network [94] and Ethernet switches [115].

3.3.2 Worst-case response time analysis

WRRturn = 15

τ1

τ2

τ3

θ3 = 5

|BW+
3 | = 70

R+
3 = 45

Figure 3.9: The longest τ3 busy-window under WRR.

We aim to compute the length of the longest τi busy-window and the worst-case
response time R+

i for a given task τi.
The critical instant, i.e., the starting point of the longest busy-window BW+

i ,
is the point of time at which all tasks are simultaneously activated right after the
time slot of τi has expired. The set of interfering tasks Ii = Z \{i} because WRR
is a dynamic priority scheduling policy. We compute |BW+

i | iteratively starting
with |BW+

i | = Ci as follows:

|BW+
i | :=

∑
j∈Z

η+
j (|BW+

i |) . Cj (3.44)

Lemma 3.7. Equation 3.44 converges when the utilization U 6 1.

Proof. By Definition 2.17, any load will be fully processed within a bounded in-
terval when U 6 1.



CHAPTER 3 41

Let Qi denotes the number of τi instances within BW+
i , then

Qi = η+
i (|BW+

i |) (3.45)

To compute the worst-case response time R+
i , we use the function B+

i (q) – as
we did for FPP – that bounds the maximum time needed to process q consecutive
instances of a given task τi. Figure 3.9 shows the longest τi busy-window.

Lemma 3.8. For a given task τi with WRR, B+
i (q) is computed as follows:

B+
i (q) = q . Ci +

∑
j∈Z\{i}

min
(⌈q . Ci

θi

⌉
× θj , η+

j (B+
i (q)) . Cj

)
(3.46)

Proof. The proof of this theorem follows the same argumentation in Lemma 3.1.
The q-th instance will have to wait until all (q− 1) instances are executed to com-
pletion requesting their worst-case execution time (first summand). Each instance
of τi needs to be scheduled at most dCi

θi
e times to complete execution. Therefore,

an instance of τi gets interference from τj by at most dCi

θi
e . θj. However, if τj

needs only n 6 dCi

θi
e time slots to complete execution and Cj 6 n . θj, then an

instance of τi gets interference from τj by Cj because WRR is a work-conserving
scheduler. Processing q consecutive instances of τi gets interference from τj by
min

(⌈
q . Ci

θi

⌉
× θj , η+

j (B+
i (q))× Cj

)
(second summand).

Theorem 3.4. The worst-case response-time R+
i is then computed by

R+
i = max

16q6Qi

{B+
i (q)− δ−i (q)} (3.47)

Proof. It is proved in Theorem 3.1. Because B+
i (q) is the maximum time to process

q instances, and δ−i (q) is the minimum distance between these q, the response time
of the q-th instance in BW+

i is an upper bound on the response time of the q-th
instance in all τi busy-windows. Therefore, the worst-case response time of τi is
the maximum of response times of instances in BW+

i .

3.3.3 Deadline miss model computation

In this section we show how to adopt TWCA to compute DMMs for real-time
tasks sharing a resource under WRR scheduling.

Similar to Section 3.2, to compute a DMM:

• we compute an upper bound Ni on the number of deadlines that τi may miss
within one busy-window;
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Γ1
3 = 10

τ1

τ2

τ3
Λ1

3 = 15R+
3 = 70

Figure 3.10: Λi and Γi where τ2 is an overload task. The black upward arrow
indicates D3.

• we propose a criterion to compute efficiently the unschedulable combinations
, see Definition 3.2;

• we compute an upper bound Ωj→i
k on the number of overload instances of

τj that may interfere with any τi busy-window containing instances of the
k-sequence.

Compute Ni.

Lemma 3.9. Let
Ni := #{q | 1 6 q 6 Qi ∧Rq

i > Di} (3.48)

Then Ni is an upper bound on the number of deadlines that τi may miss within
one busy-window.

Proof. The proof of this theorem follows the same argumentation in Lemma 3.2.
Response times of instances in BW+

i upper bound the response times of in-
stances in all τi busy-windows. Therefore, the longest τi busy-window contains
the maximum number of deadline-misses that τi may experience within any τi
busy-window.

Schedulability criterion. A task τi misses its deadline when it experiences
interfering from certain combinations of overload tasks, those are known as un-
schedulable combinations. Other combinations, which do not drive τi to miss
its deadline, are called schedulable combinations, see Definition 3.2. To compute
DMMs using TWCA, we compute the set of unschedulable combinations. Just
like FPP and FPNP, it is not efficient to use the worst-case response time analysis
because it requires to solve a fixed-point equation (Equation 3.46) for each possible
combination and therefore it is of high complexity.

Here, we present a sufficient condition on a combination c̄ that guarantees the
schedulability of the q-th instance of τi. Since we proved in Theorem 3.4 that
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the worst-case response time is found in the longest τi busy-window BW+
i , it is

sufficient and necessary to apply our sufficient condition on instances in BW+
i .

Our approach starts with computing BW+
i and the response times of instances

∀q ∈ [1, Qi]. When q misses its deadline, then it has a lateness Λl
i of:

Λq
i := Rq

i −Di (3.49)

Figure 3.10 shows the lateness of task τ3. Let wlqj,over denote the contribution
of the overload task τj in δ−i (q) +Di:

wlqj,over := min
(⌈q . Ci

θi

⌉
× θj , η+

j (δ−i (q) +Di)× Cj
)
∀j ∈ O (3.50)

Any other combination c̄ rather than c̄1 = O causes a lateness shorter than Λq
i . c̄l

causes at most a lateness of

Λq
i −

∑
j∈O,j /∈c̄

wlqj,over (3.51)

In Figure 3.10, if τ3 meets its deadline, then the execution of the second instance
of τ1 will not interfere with the execution of τ3. Let Γqi denote the interfering
workload that appear after δ−i (q) +Di. This workload will not interfere any more
with the τi’s instance if it meets its deadline. Hence, we can say that the lateness
caused by c̄ is refined to:

Λq
i − Γqi −

∑
j∈O,j /∈c̄

wlqj,over (3.52)

q meets its deadline if its lateness is 6 0. Thus, c̄ is a schedulable combination if

∀q ∈ [1, Qi] :
∑

j∈O,j /∈c̄

wlqj,over > Λq
i − Γqi (3.53)

We compute Γqi as follows:

Γqi :=
∑

j∈Z\{i}

max
(
αj − βj, 0

)
(3.54)

Where αj denotes the workload of τj up to the completion time of q-th instance
(B+

i (q)), and βj denotes the workload of τj up to the relative deadline (δ−i (q)+Di).
From Equation 3.46, we can compute αj directly:

αj = min
(⌈q . Ci

θi

⌉
× θj , η+

j (B+
i (q))× Cj

)
(3.55)
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Γ1
3 = 0

τ1

τ2

τ3
Λ1

3 = 15R+
3 = 70

Figure 3.11: A corner case shows that the schedulability condition is sufficient:
Γ1

3 = 0.

Computing βj is not direct like αj. To define a safe and conservative con-
dition, we should not over-approximate Γqi , rather, it is safe when it is under-
approximated. In Figure 3.10, τ1 has C1

θ1
/∈ N. The figure illustrates that α1 =

min{40, 50} = 40 which means that the workload beforeDi is bounded by dCj

θj
e×θj

and not Cj. To safely approximate Γqi we over-approximate βj to cover the case
when Cj

θj
/∈ N:

βj = min
(⌈q . Ci

θi

⌉
× θj ,

⌈ η+
j (δ−i (q) +Di)× Cj

θj

⌉
× θj

)
(3.56)

Theorem 3.5. A combination c̄ is schedulable if (sufficient condition):

∀q ∈ [1, Qi], R
q
i > Di :

∑
j /∈c̄

wlqj,over > Λq
i − Γqi (3.57)

Proof. When the lateness of q w.r.t. c̄ is 6 0, then q meets its deadline. We
showed that Λq

i − Γqi −
∑

j∈O,j /∈c̄ wl
q
j,over is an over-approximation on the lateness

of q w.r.t. c̄. Γqi is under-approximated as Figure 3.11 shows. Γ1
3 = 0 although the

first time slot of the second instance of τ1 will never interfere with the execution of
τ3 when it meets its deadline. There might be a case in which q meets its deadline
w.r.t. a combination c̄′ although

∑
j /∈c̄′ wl

q
j,over < Λq

i − Γqi .
When all τi instances within BW+

i meet their deadline, then τi is guaranteed
to be schedulable w.r.t. c̄.

Consequently, the following set contains all unschedulable combinations w.r.t
τi:
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C̃i := {c̄ | ∀q ∈ [1, Qi], R
q
i > Di :

∑
j /∈c̄

wlqj,over < Λq
i − Γqi} (3.58)

Compute Ωj→i
k . The last step to compute a DMM using TWCA is computing

an upper bound Ωj→i
k on the number of overload instances that may impact the

execution of any instance of the k-sequence.

Lemma 3.10.

∀j ∈ O : Ωj→i
k := η+

j (|BW+
i |+ δ+

i (k) +R+
i ) (3.59)

Proof. The idea behind this lemma is similar to Lemma 3.3. We should carefully
bound the window of k-sequence by considering the maximum distance between k
instances δ+

i (k) and sufficient time windows before and after it during which the
execution of the first and the last instances of the k-sequence might be impacted.
|BW+

i |: any overload instance interferes with the busy-window during which
the first instance of the k-sequence is activated, then it may impact its execution.

R+
i : any overload instance that may be activated within the response time of

the last instance of the k-sequence, may impact its execution.

Compute DMM. We can now formulate our problem of computing a DMM of
a given task τi ∈ T as an ILP.

Theorem 3.6. The ILP in the following equation is a DMM for a given task
τi ∈ T when WRR scheduling policy is considered.

dmmi(k) := Ni . max
{∑

c̄∈C̃i

xc̄ :
∑

c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O, xc̄ ∈ N ∀c̄ ∈ C̃i

}
(3.60)

Proof. Similar argumentation as in Theorem 3.3.

3.4 DMM for EDF Scheduling Policy

EDF scheduling has been proved to be optimal [30] in the sense of feasibility under
certain conditions. This means that if there exists a feasible schedule for a task
set, then EDF scheduling is able to find a feasible schedule as well. Also, EDF is
able to schedule a task set with a utilization up to U = 1. However, EDF is less
predictable than fixed priority scheduling, especially for systems may miss their
deadline. EDF has another drawback related to handling overload: it is possible
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in the extreme case that the activation of new task, such as exception handling
routine, causes all tasks to miss their deadline. This phenomenon is known as the
domino effect. Handling overload conditions under EDF has been addressed by
plenty of papers [19, 61, 70] where the overload sources are unexpected or unknown.
TWCA applies to systems for which the overload is expected and modelled by
arrival curves, see Definition 2.7. TWCA aims to compute DMMs for tasks that
are vulnerable to deadline-misses due to transient overload. Hence, establishing
an on-line planning [96, 11] to dynamically handle overload conditions is not in
the scope of this section.

In this section, we present a method for computing a DMM for independent
tasks under EDF scheduling policy. This section follows the same structure as
the sections 3.2 and 3.3: presentation of the EDF scheduling policy, worst-case
response time analysis and DMM computation.

3.4.1 EDF scheduling policy

τ1

τ2

τ3
|BW+| = 14

Figure 3.12: The longest busy-window under EDF scheduling policy. The black
upward arrow indicates Di.

EDF is a dynamic priority scheduling algorithm, i.e., a task priority is changed
regularly upon the strategy followed in the scheduling policy. In EDF, the task
with the closest absolute deadline gets the resource. We consider a preemptive
EDF scheduling, so the execution of a task may be interrupted by the instance
of another task with an earlier absolute deadline. In addition, EDF assigns the
highest priority to the instance with a missed deadline to complete execution.
Therefore, it is a deadline-miss agnostic scheduler, i.e., it schedules tasks and lets
them run to completion even if they have missed their deadline. Note that offset
is not considered in this section.
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3.4.2 Worst-case response time analysis

It is sufficient for hard real-time systems to test the schedulability with no need to
computing the response time. In this case, a sufficient and necessary schedulability
test can be satisfactory. In this work we are interested in computing the response
time and in the schedulability test as well. However, finding the worst-case re-
sponse time of a task is not trivial when EDF scheduling is considered. In this
section, we show how to compute the worst-case response time R+

i for a given task
τi and the length of the longest busy-window [110].

Note that for EDF, the busy-window is not defined w.r.t. a specific task as we
did for FPP, FPNP, and WRR, rather, it is defined w.r.t. the task set. Therefore,
we use BW+ to denote the busy-window. Figure 3.12 shows BW+.

Under EDF, the worst-case response time is not found necessary in the longest
busy-window.

Lemma 3.11 ([110]). The worst-case response time of a task τi is found in a busy-
window in which all tasks other than τi are released synchronously at the beginning
of the busy-window and then at their maximum rate.

Proof. This lemma is lemma 4.1 in [110]. The key argument to prove this lemma
is that if all instances of tasks different from τi are "shifted left" such that they
are released synchronously at the beginning of the busy-window, the workload of
these instance cannot diminish.

To compute the response time for an instance ` of τi activated at a with absolute
deadline d`i , it is sufficient to be aware about a part of the busy-window in which
only task instances with absolute deadline smaller than or equal to d`i execute. This
part of the busy-window relative to the absolute deadline d`i is named deadline-d
busy-window and Li(a) denotes its length.

We are looking for an instance ` activated at time a > 0 such that R`
i is the

worst-case response time: R+
i = R`

i . The first instance of τi in the busy-window is
activated at α0

i (a):
α0
i (a) = a− δ−i (η+

i (a)) (3.61)

BW+ is the maximum length of any busy-window, therefore, the significant
values of a are in the interval [0, BW+ − Ci[. Furthermore, in [110] author claims
that it is not difficult to see that the local maxima of Li(a) are found for those
values of a, such that in the arrival pattern there is at least an instant of a task
different from τi with deadline equal to d`i , or in the longest busy-window, i.e.
α0
i (a) = 0. Then it is sufficient to say:

R+
i = max

a=d−Di
d∈D

{R`
i} (3.62)
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where R`
i is the response time of an instance ` activated at a, and D is the set of

absolute deadlines of other tasks when they are released synchronously at t = 0:

D = ∪j∈Z{dl|dl = δ−j (l) +Dj ∧ dl < |BW+|, l ∈ N∗} (3.63)

τ1

τ2

τ3
a = 0

R0
3 = 3

a = 8

R8
3 = 3

τ4

|BW+| = 16

Figure 3.13: The response time of the instances of τ3 that are activated at a = 0
and a = 8. See Example 3.2 that is based on [110].

τ1

τ2

τ3
a = 2

R2
3 = 2

a = 10

R10
3 = 4

τ4

Figure 3.14: The response time of the instances of τ3 that are activated at a = 2
and a = 10.

Example 3.2. Let us consider the task set shown in Table 3.1. We want to
compute the worst-case response time of τ3. In this system |BW+| = 16 as Figure
3.13 shows. The set D is: D = {6, 8, 9, 12, 14, 15, 16}. The equivalent values of a
are shown in Table 3.1. The worst-case response time is highlighted in red. Figures
3.13, 3.14, 3.15, 3.16 and 3.17 illustrate the response time of instances that are
activated at a.
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τ1

τ2

τ3
a = 3

R3
3 = 3

τ4

Figure 3.15: The response time of the instance of τ3 that is activated at a = 3.

τ1

τ2

τ3
a = 6

R6
3 = 2

τ4

Figure 3.16: The response time of the instance of τ3 that is activated at a = 6.

3.4.2.1 Algorithm to compute worst-case response time

We start with bounding the length of the busy-window |BW+| iteratively starting
with |BW+| =

∑
j∈Z Cj using the following equation:

|BW+| :=
∑
j∈Z

η+
j (|BW+|) . Cj (3.64)

After bounding |BW+|, we can compute D which represents the set of candi-
dates to bound the worst-case response time, Equation 3.63.

The next step is to bound the contribution of tasks in the deadline busy-window
Li(a). Assume that the beginning of the busy-window is at t0 = 0. Up to time t,
η+
j (∆ = t − 0) instances of τj will have been released for j 6= i and there will be
no more than η̃+

j (a +Di −Dj) instances contribute in Li(a).

Wi(a, t) =
∑
j 6=i

Dj6a+Di

min{η+
j (t), η̃+

j (a +Di −Dj)} . Cj + λi(a, t) . Ci (3.65)
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τ1

τ2

τ3
a = 9

R9
3 = 4

τ4

Figure 3.17: The response time of the instance of τ3 that is activated at a = 9.

task Ci Di Ti
τ1 1 4 4
τ2 2 9 6
τ3 2 6 8
τ4 2 12 16

a R`
3

0 3
2 2
3 3
6 2
8 3
9 4
10 4

Table 3.1: The worst-case response time analysis of τ3, based on [110].

Where λi(a, t) is equivalent to δi(a, t) in [110]:

λi(a, t) =

{
min{η+

i (t− α0
i (a)), η̃+

j (a)} t > α0
i (a),

0 otherwise.
(3.66)

Then, the deadline busy-window Li(a) is bounded as follows:L
(0)
i (a) =

∑
j 6=i

Dj6a+Di

Cj + I{α0
i (a)=0} . Ci

L
(m+1)
i (a) = Wi(a, L

(m)
i (a))

(3.67)

Where

I{α0
i (a)=0} =

{
1 α0

i (a) = 0,

0 otherwise.
(3.68)

Note that Equation 3.67 is equivalent to Equation 3 in [110].
The response time of instance ` that is activated at a is then:

R`
i = max{Li(a)− a, Ci} (3.69)

The computation of the worst-case response time of a given task τi is shown in
Algorithm 2.
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Algorithm 2: Compute the worst-case response time of τi under EDF
1 Compute |BW+| ;
2 for d ∈ D do
3 a = d−Di;
4 t0 = 0;
5 α0

i (a) = a− δ−i (η+
i (a));

6 Compute Li(a) (3.67);
7 Compute R`

i (3.69);

8 R+
i = max{R`

i}

3.4.2.2 Sufficient and necessary schedulability test

For EDF scheduling, a sufficient and necessary schedulability test has been devel-
oped based on the demand bound function.

Definition 3.3. Demand bound function dbfi is defined as follows:

dbfi(t) := η̃+
i (t−Di) . Ci (3.70)

Theorem 3.7. A task set Z is schedulable if and only if:

∀t ∈ D :
∑
∀i∈Z
Di6t

dbfi(t) 6 t (3.71)

Proof. It has been proven in Theorem 6 in [69] and Theorem 3.1 in [110] that if
a deadline-miss can occur in a busy-window, then a deadline-miss occurs in the
longest busy-window. Therefore, it is sufficient to test the schedulability in the
longest busy-window.

At each point of time t ∈ D if the demanded workload to be processed up to t
is less than t, then the absolute deadline at t will be guaranteed to be met. Thus,
it is necessary to test the schedulability ∀t ∈ D.

3.4.3 Deadline miss model computation

We now show how TWCA can be adapted to compute DMMs for real-time tasks
that are scheduled with EDF.

To compute a DMM for a given task τi using TWCA:

1. we compute an upper bound Ni on the number of deadlines that τi may miss
within one busy-window;
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2. we propose a criterion to compute efficiently the unschedulable combinations
, see Definition 3.2;

3. we compute an upper bound Ωj→i
k on the number of overload instances of

τj that may interfere with any busy-window containing instances of the k-
sequence.

Compute Ni. Satisfying Property 3.2 implies that the impact of overload in-
stances is enclosed in the busy-window during which they have been executed.
Hence, the number of deadlines that τi may miss within one busy-window due to
one or more overload instances can be bounded.

Lemma 3.12. For a given task τi, let BWi indicate the set of busy-windows that
each of which satisfies: all tasks but τi are activated synchronously at the beginning
of the busy-window and then at their maximum rate; and the first instance of τi in
the busy-window is activated at a where a = d−Di : d ∈ D. Also, ∀b ∈ BWi let nb
indicate the number of deadline-misses within the busy-window b. Let

Ni = max
∀b∈BWi

{nb} (3.72)

Then Ni is an upper bound on the number of deadlines that τi may miss within
one busy-window.

Proof. Unlike FPP, FPNP and WRR, there is more than one busy-window can-
didate in EDF during which response times of all instances of τi upper bound
response times of instances in other busy-windows.

It has been proven in [110] that within a busy-window in which all tasks but
τi are activated synchronously at the beginning of the busy-window and then at
their maximum rate, the workload of all other tasks cannot diminish and the
response time of instances of τi within this busy-window can only increase. A
certain distribution of the interfering workload will cause the maximum number
of deadline-misses to τi within a busy-window. Such a busy-window is not neces-
sary to be the longest one, in which a = 0. Therefore, all possible busy-window
candidates have to be checked.

Schedulability criterion. A task τi misses its deadline when it experiences in-
terfering from unschedulable combinations, see Definition 3.2. To compute DMMs
using TWCA, the set of unschedulable combinations has to be computed. In EDF
scheduling policy, a sufficient and necessary schedulability test based on the de-
mand bound function is used [110]. The demand bound function is defined in
Definition 3.3, and the schedulability test is presented in Equation 3.71. Based
on this schedulability test we compute the set of unschedulable combinations as
follows:
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Lemma 3.13. A combination c̄ is unschedulable if (necessary schedulability con-
dition) the task set T ∪ c̄ is not schedulable:

∃t ∈ Dc̄ :
∑
∀j∈T ∪c̄
Dj6t

dbfj(t) > t (3.73)

where
Dc̄ = ∪j∈T ∪c̄{dl|dl = δ−j (l) +Di ∧ dl < |BW+|, l ∈ N∗}

Proof. The condition in Equation 3.73 implies that there is at least one instance
of τj : ∀j ∈ T ∪ c̄ misses its deadline. However, it does not mean that the given
task τi misses its deadline with the presence of c̄. That is to say, the generated set
of unschedulable combinations using the above condition is a superset of the set
of unschedulable combinations w.r.t. τi.

The superset of unschedulable combinations w.r.t. τi is then:

C̃i := {c̄ | ∃t ∈ Dc̄ :
∑
∀i∈T ∪c̄
Di6t

dbfi(t) > t} (3.74)

Note that for EDF scheduling ∀i, j ∈ T : C̃i = C̃j because C̃ is computed
regardless the considered task as explained in Lemma 3.13.

Compute Ωj→i
k . Computing a DMM using TWCA requires computing an upper

bound Ωj→i
k on the number of overload instances that may impact the execution

of any instance of the k-sequence.

Lemma 3.14. Ωj→i
k is bounded as follows:

∀j ∈ O : Ωj→i
k := η̃+

j (|BW+|+ δ+
i (k) + max{Di −Dj, 0}) (3.75)

Proof. Figure 3.18 illustrates Ωj→i
k . We know that η̃+

j (∆) returns the maximum
number of instances that may occur within a closed time interval. Just like for
FPP and WRR, Lemma 3.3 and 3.10 respectively, we should carefully bound the
window of k-sequence by considering the maximum distance between k instances
and sufficient time windows before and after it during which the execution of the
first and the last instances of the k-sequence might be impacted.

δ+
i (k): the longest closed time duration that contains k consecutive instances

is bounded by δ+
i (k). An overload instance that occurs during it may have an

impact on the response times of the k-sequence.
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τj

Dj

Ωj→i
k = 3

τi

Di

|BW+| δ+
i (k) Di −Dj

k-sequence

Figure 3.18: Ωj→i
k under EDF scheduling policy. The black upward arrow indicates

D.

|BW+|: An overload instance will have no impact on the first instance of the
k-sequence unless they belong to the same busy-window. |BW+| is proven to be
the maximum length of a busy-window.

max{Di−Dj, 0}: Any overload instance with an absolute deadline beyond the
absolute deadline of the k-th instance has no impact on it. In Figure 3.18, the
third instance of τj is activated after the k-th instance of τi by Di−Dj and it may
therefore interfere with the execution of the k-th instance.

Compute DMM. Each unschedulable combination may impact at most one
busy-window causing at most Ni deadline-misses. The number of impacted busy-
windows varies depending on the way we combine the available

∑
j∈O Ωj→i

k overload
instances in unschedulable combinations. To conservatively compute the DMM,
we need to maximize the number of impacted busy-windows, thus, the following
theorem:

Theorem 3.8. We compute a DMM for any task τi using the ILP in the following
equation.

dmmi(k) := Ni . max
{∑

c̄∈C̃i

xc̄ :
∑

c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O, xc̄ ∈ N ∀c̄ ∈ C̃i

}
(3.76)

Proof. Similar argumentation as in Theorem 3.3.
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3.5 Related Work

In this section we address the research papers that are related to this chapter.
The related work will be shown in two categories: papers that provide WHRT
guarantees and papers that provide probabilistic guarantees.

In control engineering, a natural application domain of real-time computing
beside signal processing and others, the period/deadline is an efficient interface
between control & timing [128]. On the one hand, the deadline represents the
control latency to guarantee stability. On the other hand, the shorter the deadline,
the better performance and robustness can be guaranteed [23]. Therefore, a better
compromise can be achieved between control performance and timing performance
by accepting few deadline-misses. Many research papers have been dedicated to
optimizing the establishing of deadlines [108, 73, 23, 41]. It has been shown that
the hard deadline represents the maximum allowable control latency to guarantee
stability and it is typically several times larger than the sampling period [108].
The deadline that is set to be equal to the period, Magalhães et al. in [73] called
it the performance deadline, can be missed safely as along as the hard deadline is
guaranteed. From the timing viewpoint, there is a need for a less-than-worst-case
analysis that accepts deadline-misses as long as they are tolerable by the controller.

3.5.1 WHRT analysis

Hamdaoui et al. coined in [47] the notation (m, k)-firm to define the timing con-
straints of real-time tasks. A real-time task can tolerate at most m deadline-misses
in a k-sequence. Ramanathan in [97], and Quan and Hu in [88] exploited the nota-
tion (m, k)-firm to manage overload in control applications by taking the advantage
of tolerating deadline-misses. Their system model considers periodic tasks with
FPP scheduling.

The system in which tasks follow the (m, k)-firm model was formally defined by
Bernat et al. in [7] as weakly-hard real-time systems. Bernat et al. defined a WHRT
analysis to provide bounds on the maximum number of deadline-misses that a task
may miss within a given time window. The system model considers tasks that are
scheduled with a known initial offset. The proposed analysis computes the number
of deadline-misses in a time-window of k consecutive instances along the system
hyper-period (i.e., the least common multiple of all task periods), therefore, [7] is
only defined for periodic tasks.

Sun et al. presented in [113] a WHRT schedulability analysis that bounds the
maximum number of deadline-misses within a time window of k consecutive in-
stances using an MILP. The system model considers offset-free tasks. The MILP
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checks all possible scenarios within a time-window of k consecutive instances.
Therefore, [113] can provide tighter bounds than [7] but with higher complex-
ity. [113] is limited to periodic tasks; and does not scale beyond 20 tasks and
k > 10 [80].

In [85], Pazzaglia et al. researched the performance cost of deadline-misses
in control systems. Their contribution can be considered as the first analysis to
extract safe (m, k) constraints for control systems.

Kumar et al. proposed an analysis in [62] in the context of RTC [24]. In
that paper, rare events represent the possible deviation from the nominal timing
model (corresponding to the typical model in TWCA [91]). The presented analysis
computes the settling time, i.e., the longest time window after the rare event until
the system returns to normal. In addition, the overshoot during the settling time
quantifies how many deadline-misses may then occur. The main difference with
TWCA is that [62] considers only a single temporal overload.

Establishing an on-line scheduling framework for WHRT systems has been
addressed in [8]. Bernat and Cayssials proposed an on-line scheduling framework
called Bi-Modal Scheduler that is characterized by two modes of operation. WHRT
constraints are guaranteed to be satisfied by switching, whenever necessary, from
a normal mode to a panic mode for which schedulability tests exist that guarantee
the constraints on the allowed number of deadline-misses. Similarly, [67] proposed
an on-line (m, k)-firm enforcement policy for control systems with nonpreemptive
EDF scheduling. In this thesis, we aim to compute DMMs for tasks that are
vulnerable to deadline-misses due to transient overload. Hence, establishing an
on-line scheduling is out of the scope of this thesis.

3.5.2 Probabilistic analysis

A stochastic analysis of periodic real-time systems is presented in [31, 71]. The
analysis follows the probabilistic real-time model in which at least one parameter is
described by a random variable. The analysis is applicable to uniprocessor systems
under FPP or EDF. The probability that a task misses its deadline in an infinite
window size is computed. The stochastic model has been further developed in [58]
for the case of dependent variables.

Carnevali et al. considered in [20] periodic tasks sharing a uniprocessor under
FPNP scheduling policy. In that paper, they presented a probabilistic deadline-
miss analysis. The analysis supports the derivation of the probability of missing
a deadline within time t. In this work, instances are discarded as soon as their
deadline is missed. The analysis requires solving Markov renewal equations, which
makes the analysis computationally extremely expensive.
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In [103], Santinnelli and Cucu-Grosjean presented a probabilistic calculus. The
analysis is developed in terms of sufficient probabilistic schedulability conditions
for task systems with either FPP or EDF scheduling policies. That work follows
CPA, therefore, it is applicable to DRTSs. The probability of missing a deadline
of a periodic or non-periodic task in an infinite window size can be derived from
the proposed analysis.

Probabilistic real-time approaches [31, 71, 20, 103], at least in principle, could
be used to compute the probability of missing m deadlines out of k consecutive
instances. This analysis is likely to be computationally extremely expensive when
applied to the (m, k) analysis. However, probabilistic deadline guarantee is not
sufficient because information about the sequence of occurrence is missing in prob-
abilistic bounds. Such information has quite an impact on the system performance
for real-time systems such as automatic control systems [84]. Instead, a precise
bound on the distribution of the system met and missed deadlines in time is nec-
essary and this can be done using (m, k)-firm model [67].

In [120] some predefined tasks are allowed to miss their deadlines occasionally
in uncertain or faulty execution conditions due to soft errors. Real-time guarantees
were computed to determine if the system can provide full timing guarantees, i.e.,
all tasks meet their deadline, or limited timing guarantees, i.e., a subset of tasks
met their deadline, and to determine the maximum interval length until the system
will again provide full timing guarantees. The system model considers independent
sporadic tasks in a uniprocessor system under a fixed-priority scheduling policy.
With the same system model used in [120] and based on probabilistic WCETs,
Chen et al. proposed an analysis in [25] to calculate the probability of missing
m consecutive deadlines of a task in faulty execution conditions due to soft er-
rors. Later, Von Der Brüggen et al. presented in [121] two directions to evaluate
the probability of missing a deadline. One approach is based on analytical upper
bounds that can be efficiently computed in polynomial time at the price of pre-
cision loss based on Hoeffding’s and Bernstein’s inequalities. Another approach
convolutes the probability efficiently over multinomial distributions.

In the meantime of writing this thesis two interesting papers have been pub-
lished [38, 2], which build on top of the results presented in this manuscript.
Ahrendts et al. in [2] proposed an analysis to compute end-to-end WHRT guar-
antees in the form of a DMM for switched network using TWCA. That analysis
is the first work that addresses the schedulability problem of distributed WHRT
systems. In [38], Fradet et al. presented a formal proof of TWCA using the Coq
proof assistant [87]. That work is the first formal proof of an analysis for computing
weakly-hard guarantees.



58 CHAPTER 3

3.6 Summary

Throughout this chapter, we have an analysis presented to compute WHRT guar-
antees in the form of a DMM for temporarily overloaded uniprocessor systems
scheduled with FPP, FPNP, WRR or EDF scheduling policies using TWCA. The
DMM computation was formulated as an ILP that is independent of the scheduling
policy. The coefficients of the objective function and the constraints are computed
according to the considered scheduler. An LP relaxation was proposed to improve
the solution efficiency.

In the next chapter, we discuss the efficiency, scalability, and complexity of the
proposed analysis as well as the pessimism of the computed DMMs and general
properties on DMMs.



4 | ANALYTICAL AND EXPERIMEN-
TAL EVALUATION OF DMMs

This chapter discusses properties of DMMs and the efficiency of the proposed
analysis through intensive and detailed experiments.

4.1 Analytical evaluation of DMMs

In this section we underline some properties of dmmi(k), then we analytically
evaluate the complexity of computing a DMM using the proposed analysis. We
address the sources of pessimism in computing DMMs as well, and we show the
impact of the schedulability criterion, which is used to classify the combinations
into schedulable and unschedulable, on the quality of computed DMMs.

Let us recall here the formula for computing DMMs given in Section 3.2.3.

dmmi(k) = Ni . max
{∑

c̄∈C̃i

xc̄ :
∑

c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O, xc̄ ∈ N ∀c̄ ∈ C̃i

}
(4.1)

Note that it does not depend on the scheduling policy. What changes w.r.t. to
the considered scheduling policy is how Ni, C̃i, and Ωj→i

k are computed.

Property 4.1. dmmi is a non-decreasing function:

∀k1, k2 ∈ N+ : k1 < k2 → dmmi(k1) 6 dmmi(k2) (4.2)

Proof. In the computation of dmmi(k), Ni is a constant and independent of k.
Also, whether a combination c̄ is schedulable or not is independent of k. However,
xc̄ is bounded by Ωj→i

k , which is a function of k as Lemma 3.3 shows.
If k1 < k2, then Ωj→i

k1
6 Ωj→i

k2
. Therefore, the packing1 of Ωj→i

k1
instances into the

time window of k1 is valid for the time window of k2 and more overload instances
can only increase the number of impacted busy-windows. Thus, dmmi(k1) 6
dmmi(k2).

1Remember that the problem of computing DMMs is a multidimensional knapsack problem.

59
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Figure 4.1 illustrates, dmmi is a step function with a step size = Ni.
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k

d
m
m
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k
)

Figure 4.1: dmmi(k) for k = [1, 3, 5, 11, 20, 26, 55, 110, 127, 227] where Ni = 1,
depending on the synthetic example used in [50, 125].

4.1.1 Complexity

The general scheduling problem, i.e., mapping n tasks to m resources such that all
timing constraints are met, has been proven to have the complexity NP-Complete
[40].

The ILP presented in Equation 4.1 to compute dmmi(k) is a multidimensional
knapsack problem as has been shown in Section 3.2.3. Finding an approximate
algorithm, i.e., an algorithm that compute suboptimal solution, for a multidimen-
sional knapsack problem is NP-Hard [74]. However, Algorithm 1 has the complex-
ity of P.

4.1.2 Sources of pessimism

Computing dmmi(k) using the proposed analysis has three main sources of pes-
simism:

1) Ni is only an upper bound on the number of deadlines that τi may miss
within one busy-window. Not every unschedulable combination causes the same
number of deadline-misses. Figure 4.2 illustrates this case. While the combination
c̄1 = {τ1, τ2} causes two deadline-misses and therefore Ni = 2, c̄2 = {τ2} cannot
cause more than one deadline-miss. When Ni = 1, there is no pessimism related
to Ni.
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τ1

τ1

τ2

τ2

τ3

τ3

τ4
X X

(a)

τ4 X
(b)

Figure 4.2: Ni as a source of pessimism in the computations of dmmi(k). The
black upward arrows indicate the deadline. X indicates a deadline-miss.

2) TWCA assumes that every busy-window within the time window of the k-
sequence experiences the maximum interference from all tasks τi ∈ T . This may
not be possible given the activation models of tasks in T within the time window
of the k-sequence. Consequently, the maximum number of impacted busy-windows
are over-approximated.

Figure 4.3 shows a scenario in which τ4 meets its deadline even with the presence
of the unschedulable combinations c̄2 = {τ2}. Over a k-sequence, two busy-windows
that both experience c̄2 cannot both miss deadlines because they cannot both be
interfered by τ3. Compare Figure 4.2.b with Figure 4.3 to observe the effect of τ3.

3) When a sporadic task τj has more than one instance within the longest
busy-window. Let ωj denotes the number of instances of τj within BW+

i . In a
combination, each task τj has a Boolean representation: either ωj instances are
activated as early as possible according to the activation model of τj when τj ∈ c̄
or none of them when τj /∈ c̄. Note that experiments show that this limitation
rarely incurs pessimism.

4.1.2.1 Schedulability criterion impact

When the schedulability criterion is a sufficient and necessary condition for schedu-
lability, it does not introduce any additional pessimism to the computation of
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τ1

τ2

τ3

τ4

Figure 4.3: Second source of pessimism in the computation of dmmi(k). When τ3

does not interfere with τ4, then the combination c̄2 = {τ2} is not unschedulable
any more.

DMMs because it returns the exact set of unschedulable combinations. However,
when the schedulability criterion is only a sufficient condition then it may lead to
an over-approximation of dmmi(k) because it returns a superset of unschedulable
combinations.

To clarify the impact of having only a sufficient schedulability criterion, con-
sider the following system with 4 tasks τ1, τ2, τ3, τ4 where τ1, τ2, τ3 are overload
tasks. We want to compute dmm4(10) Assume that every combination c̄ of two
tasks or more is an unschedulable combination, and there is Ω1→4

10 = Ω2→4
10 =

Ω3→4
10 = 1. There is only enough to impact one busy-window, therefore, dmm4(10) =

Ni × 1. If the schedulability criterion is a sufficient condition such that the com-
bination c̄ = {τ1} is considered unschedulable, hence, dmm4(10) = Ni × 2.

4.2 Experiments

To evaluate extensively the proposed analysis, sets of synthetic test cases were
developed considering a variety of systems. The experiments cover the FPP, FPNP,
WRR and EDF scheduling policies, and they aim to study and illustrate the impact
of different factors such as utilization, system size, etc. on the computation of
dmmi(k).

Specifically, we investigated:

• How large the running time of our analysis is, and how it evolves as a function
of k or of the number of unschedulable combinations.

• How the amount of sporadic overload impacts the provided guarantees.

• For the fixed-priority case, we additionally compared the preemptive and the
non-preemptive case, as well as the impact of the priority assignment on the
computed guarantees.
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Note that the computed dmmi(k) using Equation 4.1 for a given task and
a given k might be dmmi(k) > k due to the over-approximation in computing
dmmi(k). To eliminate such non-reasonable results we compute dmmi(k) in the
experiments as follows:

dmmi(k) = max
{
k,Ni.max

{∑
c̄∈C̃i

xc̄ :
∑

c̄:j∈c̄∈C̃i

xc̄ 6 Ωj→i
k ∀j ∈ O, xc̄ ∈ N ∀c̄ ∈ C̃i

}}
(4.3)

In the computation of DMMs, we consider three cases:

• k 6 Qi where Qi is the maximum number of instances of τi in one busy-
window: dmmi(k) = min{k,Ni}.

• ns = 1 where ns is the number of sporadic overload tasks: dmmi(k) =
min{k,Ni . Ωs→i

k }.

• k > Qi ∧ ns > 1: we compute dmmi(k) using Equation 4.3.

Before presenting the obtained results, we detail the process that we followed to
generate our test cases. This process follows the guidelines provided in [26].

4.2.1 Synthetic test case generation

Our synthetic test cases consist of a set of tasks with a worst-case execution time,
a period (for periodic tasks), a minimum distance function (for sporadic tasks),
and a relative deadline. Every task set Z consists of typical tasks that are chosen
to be periodic in this experiments, and overload tasks, i.e., Z = T ∪ O. The
following steps summarize how we generated them:

• We first choose the number of tasks n = #{Z} and the number of overload
tasks ns = #{O}. We then decide on the system utilization to be shared
among the tasks.

• UUnifast [9] is applied to assign a share of the system utilization to each
task (sporadic or periodic, typical or overload).

• For typical tasks, we assign periods randomly chosen in a predefined set of
harmonic values. Then, the worst-case execution time of typical tasks is
computed as follows: Ci = Ui ∗ pi, where pi denotes the period of the typical
task τi. Note that δ−i (n) = (n− 1) . pi.
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• Generating minimum distance functions for sporadic tasks is not straightfor-
ward and there is no standard approach for this. In particular, they have to
be super-additive, i.e., δ−(a+ b) > δ−(a) + δ−(b) for all a, b [53]. To achieve
this, we depended on the definition of Uj of a sporadic task, which is defined
as follows (see Definition 2.18):

Uj = lim
n→∞

(n− 1) ∗ Cj
δ−j (n)

We first randomly assign the worst-case execution time for each sporadic task
τj ∈ O such that Cj ∈ [mini∈T {Ci},maxi∈T {Ci}]. The justification of this
choice is to not bias the activation model of τj toward having a high density
of instances by selecting short execution times or low density by selecting
long execution times. Then, we compute δ−j (N) = (N − 1) ∗ Cj/Uj, with
a sufficiently large N (for all our experiments δ−j (100) is much larger than
the longest τi busy-window). We generated then a trace of N instances such
that the first one is at 0 and the last one is at δ−j (N) and N − 2 instances
in between. We use pyCPA [33] to extract the minimum distance function
from the generated trace (model.TraceEventModel(trace)).

To guarantee a wide variety of system models, we chose the various parameter
values as follows.

• Number of tasks n ∈ [3, 25] and number of sporadic overload tasks ns ∈
[1, 20]. On the one hand, a system with n < 3 makes no sense to be ana-
lyzed. On the other hand, scheduling 25 tasks on one resource is realistic
and acceptable, see the case study in Chapter 6.

• Total utilization is
U ∈ {0.4, 0.5, 0.6, 0.7, 0.8}.

For many software design standards, e.g., ECSS Standard E-ST-40C for
space software [34], the resource utilization should not exceed 0.75. Re-
sources in the generated test cases therefore rang from average to maximum
allowed utilization.

• The transient overload UO has a share of

UO/U ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2}.

The generated test cases range from being slightly overloaded to highly over-
loaded.
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• Each typical task is assigned a relative deadline

Di ∈ {0.6, 0.8, 1, 1.2, 1.4} × δi(2).

Thus, the deadline can be constrained (Di 6 δ−i (2)), implicit (Di = δ−i (2))
or arbitrary (Di > δ−i (2)).

Note that we chose to have a range of values rather than just intervals to facili-
tate the study of parameters impact. These configurations apply to all experiments
otherwise specified.

4.2.2 Fixed priority scheduling policy

We performed experiments for fixed-priority scheduling over 5000 synthetic test
cases. We generated 5 sets of 1000 test cases. Every set of 1000 test cases has the
same total utilization, e.g., U = 0.4. Priorities are assigned randomly to tasks.
∀τi ∈ T we compute dmmi(k) for k ∈ {10, 50, 100, 500, 1000}. In our experiments,
we normalize dmmi(k) to 1 by reporting

v = max
i∈T
{dmmi(k)/k} (4.4)

That facilitates the comparison between system with different number of tasks and
between dmmi(k) for different k.

4.2.2.1 Impact of k on the running time
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Figure 4.4: The average running time as a function of k.
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Providing guarantees for large values of k is challenging for approaches that
check all possible scenarios of a time window of k consecutive instances such as
[113]. Figure 4.4 shows the average running time of computing dmmi(k) as a
function of k. Each point on the curve is the average running time over the 1000
test cases with a given utilization U ∈ {0.4, 0.5, 0.6, 0.7, 0.8}.

The logarithmic shape of the curve is not surprising because Ωj→i
k increases

logarithmically as k increases. As Ωj→i
k constrains the ILP in Equation 3.19, the

size of the problem also grows logarithmically.

4.2.2.2 Impact of #{C̃} on the running time
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Figure 4.5: Number of steps that the LP solution needs to compute dmmi(k) w.r.t.
the number of sporadic overload tasks.

The size of the set of unscheduable combinations {C̃i} inflates exponentially
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whenever the number of sporadic overload tasks increases. However, the LP relax-
ation presented in Algorithm 1 tackles this issue by relying on column generation
to bound dmmi(k), which does not require to iterate over the set {C̃i}. This ex-
periment underlines the efficiency of the LP relaxation by reporting the number
of algorithm steps, see Algorithm 1, as a function of the number of sporadic tasks
ns.

Figure 4.5 presents the maximum and the median number of algorithm steps
that were required to compute dmmi(k) in this experiment. The maximum possible
number of steps for each value of ns, i.e., 2ns because every step we add a new
variable (unschedulable combination) to the LP, is plotted in black to illustrate
the efficiency. Note that the y-axis is log-scaled. Even for ns = 20, there is no
need for more than 324 steps. To convince the reader more about the results, we
plot the mode of algorithm steps, i.e., the value that appears most often, for each
value of ns.
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Figure 4.6: The average and the median of the running time as a function of ns .
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In addition to the number of steps in the LP relaxation algorithm, we also
study (see Figure 4.6) the average and the median running time of computing
dmmi(k) and the median as a function of ns.

As expected, the curves grow exponentially. However, even for ns = 20 the
average does not exceed 29.578 seconds and 50% of test cases with ns = 20 have
a running time 6 7.789 seconds.

Note that n the number of all tasks in a task set has no impact on the running
time nor on the quality of results.

4.2.2.3 Impact of sporadic overload

In this thesis, we consider temporarily overloaded real-time systems in which U 6 1
and at least one instance of a typical task misses its deadline. However, the
considered sporadic overload may result in ∀k ∈ N+ : dmmi(k) = k due to the
pessimism in TWCA. The sources of pessimism are presented in Section 4.1.2. In
such a case, we say that the sporadic overload has a permanent impact on the
computed dmm(k) function. Otherwise, when ∃k ∈ N+ : dmmi(k) < k, we say
the sporadic overload has a transient impact. We show in this experiment how
far TWCA can be useful to check the schedulability of WHRT tasks along with
the share of UO. For this end, Table 4.1 shows the quartiles of v, which is the
normalized value of dmmi(k) presented in Equation 4.4, for all the generated test
cases but only for k = 100. The table is organized in 5 sub-tables; one per system
utilization. Note that, v = 1 implies that the sporadic overload has a permanent
impact on dmm(k).

The table illustrates that the impact of the sporadic overload is relative to the
total utilization U (one could also say that: it is relative to the typical utilization
UT ). For instance, when U = 0.4 and UO = 0.06 (UO/U = 0.15), the sporadic
overload has a transient impact for 50% of the test cases because v 6 0.555.
However, when U = 0.6 and UO = 0.06 (UO/U = 0.1), the sporadic overload has
a transient impact for only 25% of test cases with v 6 0.62. For U = 0.8 any
sporadic overload with UO > 0.008 may have a permanent impact.

The utilization of a sporadic overload task is defined as follows (see Definition
2.18):

Uj = lim
∆t→∞

η+
j (∆t) . Cj

∆t

On the one hand, Cj has an influence on Ni and the schedulability of c̄ : j ∈ c̄. On
the other hand, η+

j (∆t) constrains the ILP through Ωj→i
k . Hence, one can observe

in general that the smaller the ratio UO/U the fewer deadlines will be missed.
However, for a given Uj the deadline miss model of τi may change depending on
the specifications of Cj and η+

i (∆t). A long execution time of τj may increase Ni,
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U 0.4
UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.01 0.02 0.03 0.02 0.05
Q1 0.02 0.04 0.1 0.19 0.21 0.3525
Q2 0.0324 0.08 0.19 0.38 0.555 0.8935
Q3 0.07 0.16 0.4537 0.84 1 1
Max 0.9071 1 1 1 1 1
U 0.5

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.01 0.01 0.05 0.05 0.02
Q1 0.02 0.07 0.18 0.2675 0.38 0.61
Q2 0.035 0.145 0.425 0.69 0.895 1
Q3 0.1 0.39 0.9925 1 1 1
Max 1 1 1 1 1 1
U 0.6

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.02 0.04 0.05 0.04 0.1
Q1 0.03 0.09 0.26 0.62 0.9 0.915
Q2 0.0708 0.2312 0.76 1 1 1
Q3 0.1412 0.5187 1 1 1 1
Max 0.64 1 1 1 1 1
U 0.7

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.02 0.07 0.03 0.1 0.02
Q1 0.04 0.1725 0.63 1 1 1
Q2 0.11 0.4482 1 1 1 1
Q3 0.2525 1 1 1 1 1
Max 1 1 1 1 1 1
U 0.8

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.01 0.06 0.14 0.05 0.04
Q1 0.1 0.4 1 1 1 1
Q2 0.2 1 1 1 1 1
Q3 0.5975 1 1 1 1 1
Max 1 1 1 1 1 1

Table 4.1: Sporadic overload impact. Quartiles of v for k = 100 under FPP
scheduling policy.
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but at the same time there will be fewer instances of τj which implies that fewer
busy-windows will be impacted. In contrast, a short execution time may decrease
Ni but in the favor of increasing η+

i (∆t). The problem of budgeting for sporadic
overload tasks under the constraint that periodic tasks must satisfy a given DMM
is the topic of Chapter 6.

Despite the pessimism introduced by our technique for computing dmmi(k),
TWCA can validate many more systems than the standard worst-case analysis.
For instance, if tasks can tolerate no more than m = 6 out of k = 100, TWCA
can accept 530 test cases in these experiments, which is about 10.6% while the
worst-case analysis rejects all of them as unschedulable.
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Figure 4.7: The average running time as a function of the utilization.

We now study the running time of the proposed analysis. Figure 4.7 shows the
average running time of the computation of dmmi(k) as a function of U . Each
point on the curve is the average running time over the 1000 test cases with a
given utilization for k ∈ {10, 50, 100, 500, 1000}.

As expected, the running time increases exponentially with U due to the in-
creasing number of unschedulable combinations (when U is large, any sporadic
overload causes deadline-misses). However, even for U = 0.8 the average running
time does not exceed 4 seconds so TWCA can still be applied for systems of that
size.

4.2.2.4 Impact of priority assignment (Rate Monotonic)

Priority assignment is known to play a crucial role in ensuring schedulability.
It does therefore also impact the quality of computed DMMs. This experiment
considers the Rate Monotonic (RM) approach to assign priorities. In RM: the
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UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.01 0.02 0.02 0.03 0.01
Q1 0.02 0.0425 0.1 0.1681 0.2375 0.26
Q2 0.04 0.11 0.2391 0.4097 0.5175 0.6437
Q3 0.1192 0.216 0.42 0.8927 1 1
Max 1 1 1 1 1 1

Table 4.2: Impact of priority assignment. Quartiles of v for U = 0.4 and k = 100
under RM scheduling policy.

shorter the period, the higher the priority. Sporadic overload tasks have the highest
priorities in the task set to interfere with all tasks in T .

The experiments reported here are for 1000 test cases generated as explained
in Section 4.2.1 for U = 0.4. We choose a low utilization because we are not
willing to study the impact of U in this experiment. Therefore, we reduce this
impact by setting U = 0.4. Table 4.2 shows the quartiles of the reported value
v = maxi∈T {dmmi(k)/k}. v is slightly improved over the random assignment in
Table 4.1 for UO/U = 0.15 and 0.2.

RM does not improve significantly over random assignment when a deadline-
miss occurs. The values of v in Table 4.2 are sometimes even larger than those
in 4.1 for U = 0.4. This is surprising because RM is proven to be an optimal
priority assignments for FPP. We want to study this further, and for this end we
study the number of preemptions. It is known that RM increases the number of
preemptions [17] which implies that τi gets delayed more and more (and thus Ni

increases) as the number of preemptions increases. Thus, the key point here is
Ni. Table 4.5 shows the quartiles of Ni for FPP with random priority assignment
and RM with U = 0.4. One can observe that RM yields more deadline-misses
within one busy-window than a random priority assignment. Remember that Ni

is a source of pessimism in computing dmmi(k), see Section 4.1.2.

4.2.2.5 Priority assignment impact (Deadline Monotonic)

This experiment considers the Deadline Monotonic (DM) approach to assign pri-
orities. In DM: the shorter the relative deadline, the higher the priority. Sporadic
overload tasks have the highest priorities in the task set.

Another 1000 synthetic test cases are generated as explained in Section 4.2.1
for U = 0.4. Table 4.3 shows the quartiles of v = maxi∈T {dmmi(k)/k}. There is
no improvement over the random assignment of priorities, see Table 4.1.

Table 4.5 shows the quartiles of Ni for DM with U = 0.4. Just like for RM,
DM yields more deadline-misses within one busy-window than a random priority



72 CHAPTER 4

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.01 0.01 0.02 0.02 0.03 0.03
Q1 0.02 0.04 0.12 0.16 0.245 0.23
Q2 0.0438 0.1 0.28 0.45 0.6 0.66
Q3 0.1052 0.2441 0.5743 0.96 1 1
Max 1 1 1 1 1 1

Table 4.3: Impact of priority assignment. Quartiles of v for U = 0.4 and k = 100
under DM scheduling policy.

assignment.

4.2.2.6 Preemption impact

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.02 0.02 0.04 0.04 0.06 0.04
Q1 0.04 0.06 0.12 0.2175 0.28 0.3292
Q2 0.06 0.1 0.22 0.39 0.4763 0.5887
Q3 0.1126 0.18 0.38 0.651 0.86 1
Max 0.63 1 1 1 1 1

Table 4.4: Preemption impact. Quartiles of v for U = 0.4 and k = 100 under
FPNP scheduling policy.

The previous two experiments underline the impact of preemptions on the
quality of the computed DMMs. We continue this discussion further by studying
non-preemptive fixed-priority scheduling. We studied FPNP and presented an
analysis to compute a DMM under FPNP in Section 3.2.

The experiments presented in this section are based on 1000 test cases gen-
erated as explained in Section 4.2.1 with a total utilization U = 0.4. Table 4.4
shows the quartiles of the reported value v = maxi∈T {dmmi(k)/k}. Table 4.2,
when compared with Table 4.1, shows that the FPNP policy yields better results
than FPP (with RM, DM or random priority assignment). Table 4.5 provides an
explanation for this: For 75% of the test cases, Ni = 1 in the FPNP case, which
eliminates a key source of pessimism in the DMM computation.

At this point, we can propose the following conclusions about the efficiency of
our analysis for fixed priority scheduling.

• TWCA reports pessimistic bounds.

• TWCA scales well w.r.t. k and ns.
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FPNP FPP RM DM
Min 1 1 1 1
Q1 1 1 1 1
Q2 1 1 2 2
Q3 1 2 3 4
Max 9 18 41 30

Table 4.5: Quartiles of Ni for U = 0.4

• The LP relaxation in Algorithm 1 is sufficiently efficient.

• TWCA implies better to nonpreemptive scheduling.

• TWCA implies better to a relatively low transient sporadic overload.

• TWCA can be used to check whether a sporadic overload has a transient or
a permanent impact.

4.2.3 EDF scheduling policy

In this section, we study how TWCA performs for systems scheduled with EDF.
We generated 5000 synthetic test cases depending on the general setting up

in Section 4.2.1. The total utilization covers U = 0.9 besides the range of values
mentioned in the general setting up. Each sporadic overload task has a relative
deadline equal to its worst-case execution time to enforce the typical tasks to
miss their deadlines because the cases in which the task set is schedulable are not
interesting for our experiments.

DMM was computed for each typical task τi ∈ T for

k = η+(∆) : ∆ = {1, 10, 50, 100} × |BW+|,

where |BW+| is the length of the longest busy-window. Zhang and Burns showed
in [126] that a task may have hundreds of instances in the busy-window. That
helps to do a fair comparison between tasks. Then for each test case, the value
v = maxi∈T {dmmi(k)/k} was reported.

For the schedulability test, we implemented the Quick convergence Processor-
demand Analysis (QPA) algorithm [126] that reduces significantly the number
of iterations required to check the schedulability of a given task set. The QPA
algorithm is presented in Theorem 5 in [126], and it applies for periodic or sporadic
tasks (defined by the minimum inter-arrival time) with arbitrary deadline. Thus,
we need first to prove that it applies to tasks with arbitrary arrival curves. Theorem
5 presented for a given task set Z the following algorithm:
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t← max{di | di < L};
while (h(t) 6 t ∧ h(t) > dmin)
{if (h(t) < t) t← h(t);
else t← max{di | di < t};}
if (h(t) 6 dmin) the task set is schedulable;
else the task set is not schedulable;
where:
L is the length of the worst-case busy-window, i.e., L = |BW+|.
dmin = mini∈Z{Di}.
h(t) =

∑
i∈Z max{0, 1+b t−Di

Ti
c} is the demand bound function of periodic tasks

where Ti denotes the period of τi.
To prove that the above algorithm applies to arbitrary arrival curves we only

need to prove that the demand bound function applies to arbitrary arrival curves.
Fortunately, this has been proved in, e.g., [43]. Therefore, we rewrite the above
algorithm using the function dbf(t), which is given in Equation 3.70, for our tasks
that are modelled using arbitrary arrival curves. The algorithm is illustrated in
Figure 4.8, where d∆ = max{di | 0 < di < |BW+| ∧ dbf(di) > di}.

Algorithm 3: QPA algorithm for tasks that are modelled using arbitrary
arrival curves, based on [126].
1 t← max{di | di < |BW+|};
2 while dbf(t) 6 t ∧ dbf(t) > dmin do
3 if dbf(t) < t then
4 t← dbf(t);

5 else
6 t← max{di | di < t};

7 if dbf(t) 6 dmin then
8 the task set is schedulable;

9 else
10 the task set is not schedulable;

4.2.3.1 Sporadic overload impact

Similarly to the experiment in Section 4.2.2.3, the quartiles of v are presented in
Table 4.6 for each value of the sporadic overload share UO/U . EDF provides quite
an improvement on DMMs. The reason is that, once a tasks misses its deadline,
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Figure 4.8: QPA algorithm, based on [126].

it gets a high priority, which helps keep Ni small and thus dmmi(k) is improved.
Another reason is that EDF can schedule a load up to U = 1, which impacts
the schedulability of sporadic overload combinations (a lot of combinations will be
simply schedulable). TWCA, therefore, applies perfectly to EDF. Nevertheless,
when a sporadic overload has a permanent impact v = 1 other approaches have to
be used, e.g., RED [19] and Dover [61], to handle such overload conditions.

EDF scheduling sacrifices no task, instead, it fairly distributes the deadline-
misses. Therefore, it is not possible to predict which task will miss its deadline.
The real-time architect needs an analysis like TWCA not only to compute the
DMMs but also to predict the tasks that may miss their deadline.

4.2.3.2 Domino effect

Under overload conditions it is possible that all tasks miss their deadlines, this phe-
nomenon is called domino effect. When the system utilization U > 1, the domino
effect may last forever. In this work we are interested in systems for which U 6 1
as discussed in Chapter 2. The domino effect represents an undesirable behavior
that must be avoided. In order to avoid domino effects, the operating system and
the scheduling algorithm must be explicitly designed to handle domino effects in
a controlled fashion [18]. Algorithms like RED [19] and Dover [61] are designed to
detect overload conditions and eliminate domino effects by rejecting/postponing
few instances in order to minimize the damage due to a deadline-miss.

The domino effect could be defined as follows: If ∀i ∈ Z : Ni > 0, we say the
system may suffer from the domino effect.

The above necessary condition can be used to conservatively predict the occur-
rence of the domino effect. The dynamic and unpredictable behavior of embedded
real-time systems will eliminate an off-line sufficient and necessary condition for
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U 0.4
UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.004 0.0067 0.0133 0.015 0.02 0.016
Q1 0.007 0.016 0.04 0.05 0.0725 0.0546
Q2 0.0133 0.024 0.0533 0.0883 0.12 0.0955
Q3 0.0193 0.032 0.08 0.1308 0.2 0.1588
Max 0.06 0.14 0.22 0.3067 0.7 0.53
U 0.5

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.0025 0.005 0.01 0.0133 0.0133 0.012
Q1 0.008 0.015 0.0437 0.06 0.1 0.1
Q2 0.012 0.025 0.07 0.095 0.1925 0.19
Q3 0.02 0.04 0.12 0.18 0.3383 0.4167
Max 0.06 0.1 0.48 0.49 1 1
U 0.6

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.0025 0.0033 0.01 0.0067 0.005 0.02
Q1 0.0067 0.0167 0.05 0.08 0.1465 0.1525
Q2 0.012 0.03 0.0856 0.15 0.24 0.2854
Q3 0.02 0.05 0.15 0.32 0.5007 0.6667
Max 0.08 0.2933 0.56 0.9 1 1
U 0.7

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.0026 0.0055 0.0171 0.0183 0.01 0.0267
Q1 0.0067 0.02 0.075 0.1227 0.215 0.2519
Q2 0.0143 0.04 0.1515 0.2825 0.636 0.5715
Q3 0.0283 0.0735 0.278 0.555 0.9757 1
Max 0.06 0.2 0.8 1 1 1
U 0.8

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.0021 0.0011 0.0093 0.0133 0.0078 0.0076
Q1 0.0075 0.04 0.135 0.2444 0.3012 0.474
Q2 0.02 0.0727 0.2571 0.5333 0.686 1
Q3 0.03 0.112 0.48 1 1 1
Max 0.14 1 1 1 1 1
U 0.9

UO/U 0.001 0.01 0.05 0.1 0.15 0.2
Min 0.001 0.0025 0.0031 0.0476 0.0313 0.0571
Q1 0.02 0.06 0.2724 0.505 0.6767 1
Q2 0.032 0.1141 0.5699 1 1 1
Q3 0.0514 0.23 1 1 1 1
Max 0.18 1 1 1 1 1

Table 4.6: Sporadic overload impact. Quartiles of v under EDF scheduling policy,
based on [51].



CHAPTER 4 77

Message P J C θ D R+

τ1 40 2 6 2 38 26
τ2 40 2 6 3 38 20
τ3 40 20 4 4 20 12
τ4 100 20 6 3 80 20

Table 4.7: Timing characteristics of considered tasks under WRR scheduling pol-
icy. P,J, C, θ, and D denote respectively: period, jitter, worst-case execution time,
time slot, relative deadline. Based on [48].

predicting the domino effect. An alternative solution would be to analyze all pos-
sible busy-windows within which all tasks participate. If in one busy-window all
tasks miss the deadline, then the domino effect occurs. Although it is a tighter
condition, this solution does not seem feasible because the size of such set will be
extremely huge. In this work, thus, we adopt the necessary condition in the above
lemma to safely predict the occurrence of the domino effect.

Our experiments, based on the above necessary condition, show that about
40% of the generated task sets will never experience a domino effect. In other
words, we can say that in the worst-case the guarantees computed by TWCA are
sufficient to describe the behavior with the presence of transient overload for 40%
of systems that follow our system model. Keep in mind that we conservatively
predict the occurrence of the domino effect, which makes these results pessimistic
and therefore TWCA should be in practice more useful.

4.2.4 WRR scheduling policy

In this experiment the general setting up was relaxed such that a single resource
with 4 tasks scheduled according to WRR policy is considered with fixed timing
characteristics. This task set is derived from the industrial challenge presented in
WATERS 2015 by TRT [54]. The timing characteristics are shown in Table 4.7.
The worst-case response time analysis shows that no task misses its deadline, see
the most right column in Table 4.7.

The given model represents the typical model of the system and we want to
study how sporadic overload would impact its schedulability, thus, we added 4
synthetic sporadic overload tasks as follows: Each overload task τs has Cs = 2, θs =
2. The typical utilization is Utyp ≈ 0.59, the overload utilization was budgeted as
follows:

Uover = (a/(1− a)) ∗ Utyp.

where a = UO/U and UO/U ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2} as in the general
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setting up.
The experiment was repeated 5000 times. In each test case a new synthetic

sporadic overload was generated. Every set of 1000 test cases has the same share
UO/U . dmmi(k) was computed for the 4 tasks in the system with k = 100.

4.2.4.1 Sporadic overload impact

Uover/Utyp 0.001 0.01
Message τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

Min 0 0 0.02 0 0.04 0.04 0.04 0
Q1 0 0 0.04 0 0.1 0.1 0.14 0
Q2 0.02 0.02 0.05 0 0.12 0.12 0.21 0
Q3 0.03 0.03 0.05 0 0.1 0.13 0.25 0
Max 0.06 0.06 0.12 0 0.24 0.27 0.33 0

Uover/Utyp 0.05 0.1
Message τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

Min 0.06 0.1 0.12 0 0.08 0.08 0.34 0
Q1 0.2675 0.25 0.53 0 0.57 0.38 0.91 0
Q2 0.36 0.3 0.63 0 0.83 0.56 1 0
Q3 0.45 0.37 0.74 0 1 0.93 1 0
Max 1 0.9 1 0 1 1 1 0

Uover/Utyp 0.15 0.2
Message τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

Min 0.12 0.12 0.32 0 0.21 0.12 0.26 0
Q1 1 0.69 1 0 1 0.99 1 0
Q2 1 1 1 0 1 1 1 0
Q3 1 1 1 0 1 1 1 0
Max 1 1 1 0 1 1 1 0

Table 4.8: Sporadic overload impact. Quartiles of dmmi(100)/100 under WRR
schededuling policy.

Table 4.8 shows the quartiles of dmmi(k)/k for the four tasks. While τ4 meets
all its deadline, almost every sporadic overload with a share of UO/U > 0.1 have
a permanent impact (v = 1) on τ3, i.e., al instances of τ3 miss their deadline.

To explain the results in Table 4.8 let us look at Figure 4.9 that shows the
average of dmmi(100) over 1000 test cases for each value of Uover/U . Figure
4.9 shows that τ4 misses no deadline. τ1 misses more deadlines than τ2, and τ3

misses more deadlines than τ1 and τ2. To explain that, we need to look at Table
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Figure 4.9: The scheduling policy (WRR) impact on DMMs.

4.7 where the one observe that τ1 has C1/θ1 = 3, τ2 has C2/θ2 = 2 and τ3 has
C3/θ3 = 1, where Ci is the worst-case execution time of τi and θi is the time
slot. This ratio implies that each instance of τi may get at most an interference
of (Ci/θi) . (WRRturn − θi), in other words, a message with large Ci/θi will suffer
from any overload instance more than messages with small Ci/θi. However, τ3 has
relatively shorter deadline than τ1 and τ2, which implies that it has larger set of
unschedulable combinations C̃3.

4.2.5 A comparison between the impact of sporadic over-
load on different scheduling policies

From the experiments that studied the impact of sporadic overload, one can ob-
serve that the impact varies depending on the scheduling policy. To emphasize
this point with a fair comparison between the considered scheduling policies, we
design a new experiment. This experiment recalls the second quartile Q2 from
Tables 4.1, 4.6 and 4.8 for FPP (arbitrary priority assignments), EDF and WRR
(τ3) for U = 0.6. 1000 synthetic test cases were generated under FPNP scheduling
policy with U = 0.6 and the same for RM and DM. Figure 4.10 presents Q2 as a
function of Uover/U for the considered scheduling policies.

While EDF has the best curve, i.e., tasks are slightly impacted by the sporadic
overload and they therefore have low number of deadline-misses comparing to
other scheduling policies, FPP has the worst. However, EDF suffers from the
unpredictability and the domino effect. Sporadic overload has less impact on tasks
under FPNP comparing to FPP, RM, and DM because it (FPNP) causes smaller
Ni as we showed in Table 4.5. FPP (arbitrary priority assignments), RM and DM
have a high level of isolation between tasks such that hard real-time tasks can
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Figure 4.10: How the scheduling policy alters the sporadic overload impact.

meet their deadline. Remember that the results reported in Figure 4.10 represent
the maximum number of deadline-misses v = maxi∈T {dmmi(k)/k}.

This experiment can be useful in the design process of WHRT system to assist
the system architect in selecting a proper scheduling policy.

4.3 Summary

In this chapter, we underlined some properties of dmmi(k), then we analytically
evaluated the complexity of computing a DMM using the proposed analysis. We
addressed the sources of pessimism in computing DMMs as well, and we showed
the impact of the schedulability criterion on the quality of computed DMMs.

Throughout the the experiments, we studied the efficiency, scalability and ap-
plicability of TWCA. A synthetic test case generator was developed in order to
achieve the evaluation; we generated a total of 20000 synthetic test cases. The
experiments covered the FPP, RM, DM, FPNP, WRR and EDF scheduling poli-
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cies. We investigated: 1) How large the running time of our analysis is, and how
it evolves as a function of k or of the number of unschedulable combinations. 2)
How the amount of sporadic overload impacts the provided guarantees.

The experiments show that TWCA reports pessimistic bounds. However, it
scales well w.r.t. k and ns. The experiments demonstrate that the impact of
sporadic overload varies depending on the scheduling policy. In general, TWCA
applies better to a relatively low transient sporadic overload.

We present more experiments in Chapter 5 and Chapter 6 to evaluate the two
extensions.





5 | DEADLINE MISS MODELS FOR
TASK CHAINS

Real-time systems with functional dependencies between tasks (that is, such that
task can activate each other) often require end-to-end (as opposed to task-level)
guarantees. Many such systems are weakly-hard in the sense that they can accept
longer end-to-end delays if one can bound their frequency.

The analysis presented in Chapter 3 and Chapter 4, does not cover task depen-
dencies. This represents a limitation to its applicability in practice, as motivated
by a case study directly derived from industrial practice at Thales Research &
Technology (TRT). In this chapter, we present an extension of TWCA to provide
end-to-end DMMs. To achieve that we exploit task chain properties that arise
from the priority assignment of tasks in FPP systems. This extension has been
published in [49].

This chapter is organized as follows: first, we present a case study provided by
TRT as a motivation for this extension, and we formulate the addressed problem.
Section 5.2 revisits the worst-case latency analysis proposed by [105], which rep-
resents a foundation for our analysis. The extension of TWCA will be presented
in Section 5.3. Section 5.4 shows our experimental results.

5.1 Case Study and Problem Statement

This chapter is motivated by and validated on an industrial case study provided by
TRT. Figure 5.1 represents the system to be analyzed where tasks have precedence
constraints forming task chains. The system shown in Figure 5.1 is temporarily
overloaded by two sporadic task chains σa and σb and WHRT guarantees are
needed for chains σc and σd. Therefore, we present a method to compute end-
to-end DMMs for FPP systems with task chains. This bounds the number of
potential deadline-misses in a given sequence of executions of a task chain. The
approach is an extension of TWCA, for which we exploit task chain properties
derived from the priority assignment of tasks in a way similar to [105].
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R1 : FPP

σd [200:200]

τ1d [11:38]

τ2d [10:6]

τ3d [9:27]

τ4d [5:6]

τ5d [2:38]

σc[200:200]

τ1c [8:4]

τ2c [7:6]

τ3c [1:41]

σb[600]

τ1b [13:10]

τ2b [12:10]

τ3b [6:10]

σa[700]

τ1a [4:10]

τ2a [3:10]

Figure 5.1: Model of the case study. The following notations are used: task chains
are specified as σ[δ−(2) : D] and tasks with τ [π : C]. Chains σc and σd are
periodically activated while σa and σb are sporadic, overload chains.

5.1.1 System model

In this section, we enrich the system model presented in Chapter 2 with task
dependencies. We consider uniprocessor systems consisting of a finite set of m
disjoint task chains scheduled according to the FPP scheduling policy. A task
chain is a sequence of distinct tasks, which activate each other. Tasks in a system
are required to belong to exactly one chain. Note that, neither fork/join nor cycles
are in the scope of this work.

Definition 5.1. A task chain σa, a ∈ [1,m], is defined by a finite sequence
(τ 1
a , τ

2
a , . . . , τ

na
a ) of distinct tasks for some na ∈ N+, meaning that the output of

τ ia is connected to the input of τ i+1
a for i ∈ [1, na − 1]. Every task chain σa is

assigned

• an activation model defining the frequency of arrival at the input of τ 1
a ;

• an arbitrary relative deadline Da.

The tasks in σa are denoted τ ia, τ ja etc. Task τ ia denotes the i-th task in task
chain σa. The number of tasks in σa is denoted na. The first task in σa, i.e. τ 1

a , is
called the header task of σa and the last one, i.e. τna

a , is called the tail task.
Figure 5.2 shows an example system with two task chains:

σa = (τ 1
a , τ

2
a , τ

3
a , τ

4
a , τ

5
a , τ

6
a ), σb = (τ 1

b , τ
2
b , τ

3
b ).
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We denote C the set of task chains. This set is partitioned into SC and
AC, which contain respectively the synchronous and asynchronous chains. Syn-
chronous and asynchronous chains are specified in the same way but behave dif-
ferently at execution: In a synchronous chain σa an incoming instance cannot be
processed until the previous instances of σa have finished [105]. In an asynchronous
chain σb an incoming instance is processed independently from previous instances.

FPP scheduled processor

τ1a/7 τ2a/9 τ3a/5 τ4a/2 τ5a/4 τ6a/1

task chain σa

τ1b /8 τ2b /3 τ3b /6

task chain σb

Figure 5.2: A system task structure with chains and task priorities. τ 5
a/4 denotes

the fifth task in the task chain σa with a priority equal to 4.

The activation models of task chains are defined using arrival curves i.e., func-
tions η−a (∆T ), η+

a (∆T ), and the pseudo-inverse representation of arrival curves
δ−b (k), δ+

b (k), see Definition 2.7.
A task τ ia is defined by: (1) an arbitrary priority πia and (2) an upper bound on
its execution time Ci

a (we take 0 as a lower bound).
The timing behavior of a task τ ia is as described in Chapter 2. Preemption delays
are due to the task being blocked by higher priority tasks from other task chains,
but also by higher priority tasks from the same chain if it is asynchronous. In
contrast, tasks in a synchronous chain cannot be preempted by other tasks of the
same chain, even if they have higher priority. Task τ ia finishes latest after having
been scheduled for Ci

a units of time.
The timing behavior of a task chain σa is an infinite sequence of task chain

instances, where a task chain instance is made of one instance of each task in the
chain such that the finish time of task τ ia corresponds to the activation time of
task τ i+1

a (assuming τ ia is not the last task in the chain). The activation of task τ 1
a

follows the activation model of σa.
The latency of an instance of a task chain σa is the time interval between the

activation of the header task of σa and the finish time of the tail task of σa. The
worst-case latency of σa is the longest latency over all instances of σa. An instance
of σb is said to miss its deadline if its latency exceeds the relative deadline of
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σb. Similarly to what is considered in Chapter 3, we consider a deadline-agnostic
scheduler.

As usual in TWCA, we suppose that deadline-misses are caused by rarely ac-
tivated sporadic chains, e.g., interrupt service routines or recovery chains. These
chains cause transient overload, increasing chain latencies which may cause deadline-
misses, hence their name: overload chains. We assume that the set of overload
chains is identified and denoted Cover.

Definition 5.2. A deadline miss model for a task chain σb is a function dmmb :
N+ → N such that dmmb(k) bounds the maximum number of deadline-misses in a
window of k consecutive executions of σb.

In this chapter, we address the problem of computing DMMs of task chains in
temporarily overloaded systems.

5.2 Latency Analysis Revisited

Let us first revisit the worst-case latency analysis of systems with task chains
presented in [105]. Consider two chains σa and σb. To quantify the interference of
σa on σb we distinguish two cases:

1. some tasks in σa have lower priority than all tasks in σb; in that case, σa will
be blocked by σb every time it reaches one of those tasks.

2. In any other case, σa is said to arbitrarily interfere with σb. This means that
every time σa is triggered, we suppose that it may entirely execute before σb
can be scheduled again. As we will see later, there is no guarantee however
that this will happen.

Definition 5.3. A chain σa is said to be deferred by chain σb if

∃i ∈ [1, na], π
i
a < min

16j6nb

{πjb}

Otherwise it is arbitrarily interfering with σb.

The set of chains deferred by σb is denoted DC(b) and the set of chains arbi-
trarily interfering with σb is denoted IC(b).

For a chain σa that is arbitrarily interfering with σb, interference on σb can be
directly derived from the number of instances of σa. If σa is, however, deferred by
σb, then interference is defined based on the concept of segment of σa w.r.t. σb.
Intuitively, a segment of σa w.r.t. σb represents a subchain of σa that may interfere
with σb.
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Definition 5.4. A segment of σa w.r.t σb is a maximal subchain (τ ia, τ
i+1
a , . . . , τ i+ka )

of σa, i ∈ [1, na] and k ∈ [0, na−1], with the convention1 that task identifiers should
be read modulo na and such that

∀l ∈ [0, k], πi+la > min
16j6nb

{πjb}

Note that we (conservatively) assume that a segment may span over two in-
stances of σb. Sba denotes all such segments.

Example 5.1. Chain σa in Figure 5.2 has 2 segments w.r.t. chain σb: (τ 1
a , τ

2
a , τ

3
a )

and (τ 5
a ). Note that τ 4

a and τ 6
a have lower priority than τ 2

b and are therefore not
part of any segment.

Definition 5.5. The critical segment of a chain σa deferred by σb, denoted sa,b, is
the segment (τ ia, τ

i+1
a , . . . , τ i+ka ) of σa w.r.t. σb that maximizes computation time,

i.e.,
∑

06l6k C
i+l
a .

The critical segment sa,b is highlighted in orange in Figure 5.3.

Definition 5.6. Consider an asynchronous chain σa. We denote sheader
a the header

segment of σa defined as the subchain (τ 1
a , τ

2
a , . . . , τ

i
a) where i ∈ [1, na − 1] is the

smallest integer such that τ i+1
a has the lowest priority in σa. If τ 1

a has the lowest
priority then sheader

a is empty.

In Figure 5.4, the header segment of σa is (τ 1
a , τ

2
a , τ

3
a , τ

4
a , τ

5
a ) because τ 6

a has the
lowest priority in σa. In the same way, the header segment of σb is (τ 1

b ). Definition
5.6 is useful for bounding the self-interfering in computing the busy-window of an
asynchronous chain.

Definition 5.7. Consider an asynchronous chain σa. If σa is deferred by σb
then we denote sheader

a,b the header segment of σa w.r.t. σb defined as the sub-
chain (τ 1

a , τ
2
a , . . . , τ

i
a) where i ∈ [1, na− 1] is the smallest integer such that τ i+1

a has
lower priority than all tasks in σb.

In Figure 5.4, the header segment of σa w.r.t. σb is (τ 1
a , τ

2
a , τ

3
a ) because τ 4

a has
the priority 2, which is lower than all priorities of tasks in σb.

Definition 5.8. If σa is deferred by σb then all segments in σa are deferred seg-
ments except sheader

a,b when σa is asynchronous.

We now revisit the worst-case latency analysis introduced in [105] and propose a
description that is similar to worst-case response-time analysis as explained in [91].

1That is, if i+ l > na then it should be read (i+ l) modna.
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Definition 5.9. For a given task chain σb, a σb-busy-window is a maximal time
interval [t1, t2[ where ∀t ∈ [t1, t2[ the resource is busy executing instances of σb and
interfering tasks from other task chains.

Definition 5.10. The q-instance busy time of a chain σb is the maximum time
it may take to process q instances of σb within a σb-busy-window starting with the
first of these q instances.

Theorem 5.1. The q-instance busy time of σb ∈ C is bounded by

B+
b (q) := q × Cb

+ max(0, η+
b (B+

b (q))− q)× Csheader
b

if σb ∈ AC

+
∑

σa∈IC(b)

η+
a (B+

b (q))× Ca

+
∑

σa∈AC∩DC(b)

η+
a (B+

b (q))× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)

Csa,b

(5.1)

where Cx denotes the sum of the execution time bounds of the tasks in segment or
chain x.

Proof. The above equation is made of five components:

1. The first line corresponds to the time needed to actually perform the q com-
putations;

2. The second component accounts for the interference of additional instances
of σb which may arrive while the q instances under consideration are being
processed. Note that these instances will at most interfere until they have
to execute the lowest priority task in σb. This component only applies to
asynchronous chains;

3. The third element represents the interference from arbitrarily interfering
chains, synchronous or asynchronous;

4. The fourth line deals with interference from deferred, asynchronous chains.
Instances can arbitrarily queue up which allows the header segment to in-
terfere arbitrarily. For all other segments at most one instance can be back-
logged because tasks between segments have lower priority than tasks within
segments. Each such instance can interfere for at most one segment (see
below).
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R1 : FPP

σa τ1a/7 τ2a/9 τ3a/5 τ4a/2 τ5a/4 τ6a/1

σb τ1b /8 τ2b /3 τ3b /6

P
ri
or
ity

σb-busy-window σb-busy-window

τ 2
a

1

τ 1
b

1 2

τ 1
a

1

τ 3
b

1 2

τ 3
a

1

τ 5
a

1

τ 2
b

1 2

τ 4
a

1

τ 6
a

1

Figure 5.3: A σb-busy-window. Both σa and σb are synchronous task chains and
σa is deferred by σb. The critical segment sa,b is highlighted in orange and the
deferred segment s = (τ 5

a ) is highlighted in vermilion.
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R1 : FPP

σa τ1a/7 τ2a/9 τ3a/5 τ4a/2 τ5a/4 τ6a/1

σb τ1b /8 τ2b /3 τ3b /6

P
ri
or
ity

σb-busy-window

τ 2
a

1 2

τ 1
b

1 2

τ 1
a

1 2

τ 3
b

1 2

τ 3
a

1 2

τ 5
a

1 2

τ 2
b

1 2

τ 4
a

1 2

τ 6
a

1 2

Figure 5.4: A σb-busy-window. Both σa and σb are asynchronous task chains and
σa is deferred by σb. sheader

a,b , the header segment of σa w.r.t. σb, is highlighted in
green and the deferred segment s = (τ 5

a ) is highlighted in vermilion. sheader
b , the

header segment of σb, is highlighted in grey.
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5. The fifth component in the equation accounts for the interference from de-
ferred, synchronous chains. Here only one instance per chain may interfere
for at most one segment (see below).

The correctness of the last two components in Equation (5.1) relies on the
following property.

Lemma 5.1. Tasks of a chain σa that are in different segments cannot execute
instances corresponding to the same chain instance in the same σb-busy-window.

Proof. Segments are maximal sequences of tasks with a priority higher than or
equal to the lowest priority task, say τ ib , in σb. This means that between two
segments of σa there is at least one task, say τ ja , that has lower priority than τ ib . In
order to execute these two segments for the same instance of σa, one has to execute
τ ja . Since τ ja has lower priority than all the tasks in σb, this can only happen after
σb closes its current σb-busy-window.

Figure 5.3 illustrates the σb-busy-window when both σa and σb are synchronous
task chains, and Figure 5.4 illustrates it when both σa and σb are asynchronous
task chains.

The maximum number of instances of σb in a σb-busy-window is

Qb = η+
b {|BW

+
b |} (5.2)

where the length of the longest σb-busy-window is computed as follows:

|BW+
b | := η+

b (|BW+
b |)× Cb

+
∑

σa∈IC(b)

η+
a (|BW+

b |)× Ca

+
∑

σa∈AC∩DC(b)

η+
a (|BW+

b |)× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)

Csa,b

(5.3)

Theorem 5.2. The latency of a task chain σb is bounded by

WCLb = max
16q6Qb

{B+
b (q)− δ−b (q)} (5.4)

Proof. This proof proceeds exactly as the proofs in Theorem 3.1.
Any q instances require at most B+

b (q) to finish, and the q-th instance arrives
no earlier than δ−b (q) after the first instance in B+

b (q). Thus, the difference is an
upper bound on the response time of the q-th instance of σb in all σb-busy-windows.
Hence, the maximum of response times of instances in B+

b (Qb) is the worst-case
response time.
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5.3 Typical Worst-Case Analysis for Task Chains

The main objective of TWCA is to bound the number of deadlines-misses of a task
chain σb, which may be caused by an instance at the input of an overload task
chain σa. For that, we need to know over how many σb-busy-windows an instance
of σa may span.

We already know that, in a chain σa, the execution of tasks corresponding to
the same instance of σa cannot take place in the same σb-busy-window if those
tasks are in different segments. This implies that an instance of σa spans over at
least as many σb-busy-windows as there are segments of σa w.r.t. σb.

Note that there is no guarantee that a segment of σa will be executed within
one σb-busy-window. It implies that Property 3.2 is not satisfied. We introduce
the notion of active segment, which applies to subsegments that are guaranteed to
be executed in the same σb-busy-window.

Definition 5.11. An active segment of σa w.r.t σb satisfies:

1. it is a subchain2 of a segment (τ ia, τ
i+1
a , . . . , τ i+ka ) of σa where i ∈ [1, na] and

k ∈ [0, na − i], i.e., ∀l ∈ [0, k], πi+la > min16j6nb
{πjb}; and

2. when k > 1 (the active segment contains more than one task):

∀l ∈ [1, k], πi+la > πtail
b

where τ tail
b denotes the tail task of σb.

In other words, the active segment is the maximal subchain whose execution
is guaranteed to not span over multiple σb-busy-windows. Note that the above
definition implies that the active segment can be a single task τ ia with πia < πtail

b

because the second condition does not apply for a single-task active segment.

Example 5.2. In Figure 5.2, chain σa has three active segments: (τ 1
a , τ

2
a ), (τ 3

a ), (τ 5
a ).

(τ 3
a ) is an active segment because π3

a > π2
b and the tail task of σb has no influence

here.

Lemma 5.2. The execution of an active segment of σa w.r.t. σb cannot span over
more than one σb-busy-window.

Proof. Once the execution of an active segment of σa w.r.t. σb has started, τ tail
b

will not be able to execute because the active segment is blocking it or a task
preceding it, and therefore the current σb-busy-window cannot be closed, until the
whole segment

2Here, i+ l is always smaller than or equal to na.
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Note that an active segment is part of a segment in the sense of Definition 5.4.
As a result, we easily conclude from Lemma 5.1 and 5.2 that two active segments
of chain σa may be executed within one σb-busy-window if and only if they are
part of the same segment of σa.

We now have all the ingredients needed to show how we extend TWCA to
handle task chains. We follow here the same approach as the one for systems
with independent tasks explained in Section 3.2. For the rest of the section we
suppose given a chain σb and k > 1, and we focus on the computation of dmmb(k),
that is, a bound on the number of deadlines that σb can miss out of a k-sequence,
i.e., k consecutive instances. We assume that there is at most one instance of
an overload chain σa in a σb-busy-window. As a result, we can without loss of
generality consider our overload task chains as synchronous.

5.3.1 Deadline miss model computation

To compute a DMM, our strategy is again to

• compute an upper bound Nb on the number of deadlines that σb may miss
within one busy-window;

• define C̃b, the set of unschedulable combinations w.r.t. σb;

• compute an upper bound Ωa→b
k on the number of instances of σa that could

impact the considered k instances of σa.

Computation of Nb.

Lemma 5.3. Let

Nb := #{q | 1 6 q 6 Qb ∧Bb(q)− δ−b (q) > Db} (5.5)

Then Nb is an upper bound on the number of deadlines that σb may miss within
one busy-window.

Proof. The proof proceeds like that of Lemma 3.2. On the one hand, Qb is the
maximum number of instances in a σb-busy-window. On the other hand, response
times of instances in B+

b (Qb) upper bound the response times of instances in all
σb-busy-windows.

Computation of Ωj→i
k .
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Lemma 5.4. Let
Ωa→b
k := η+

a (δ+
b (k) + WCLb) + 1 (5.6)

Then Ωa→b
k is an upper bound on the number of instances of σa that could impact

the considered k instances of σb.

Proof. Clearly, instances of chain σa that occur after the first instance of chain
σb in the k-sequence is activated and before the last instance in the k-sequence
finishes may have an impact on the latencies in the k-sequence. There are at most
η+
a (δ+

b (k) + WCLb) such instances. In contrast, an instance of σa that arrives after
the last instance of chain σb in the k-sequence has finished does not impact the
k-sequence. Finally, we have assumed that there is at most one instance of σa in
a σb-busy-window so that at most one instance of σa before the k-sequence can
impact it.

5.3.2 Combinations for TWCA of task chains

For the case where tasks are independent, a combination is defined as a set of
overload tasks. The DMM computation based on this definition heavily relies
on the fact that one overload instance impacts exactly one busy-window. In the
context of task chains, we have seen in the previous sections that one instance of
a task chain σa may span over several σb-busy-windows. As a result, the impact of
one overload instance is not limited here to one σb-busy-window. We have however
also shown that the execution of an active segment of σa is restricted to a single σb-
busy-window. Hence our choice to define combinations based on active segments
rather than tasks or task chains.

Definition 5.12. A combination c̄ is a set of active segments w.r.t. σb such that
if two active segments of the same chain σa are in c̄ then they are part of the same
segment of σa w.r.t. σb.

Note that our definition excludes combinations that cannot execute within one
σb-busy-window based on our definition of segment.

Example 5.3. There are four possible combinations of the active segments of
chain σa in Figure 5.2: {(τ 1

a , τ
2
a )}, {(τ 3

a )}, {(τ 5
a )}, {(τ 1

a , τ
2
a ), (τ 3

a )}.

Definition 5.13. A combination c̄ is schedulable (w.r.t. σb) if σb is guaranteed
not to miss any deadline in a σb-busy-window in which only the active segments
in c̄ execute (in addition to non-overload chains). Otherwise c̄ is said to be un-
schedulable.
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5.3.2.1 Criterion of schedulability

We present here an efficient criterion to determine whether a combination c̄ is in
C̃b or not. Let us reorganize Equation 5.1 for the multiple busy-time computation
to show explicitly the contribution of the overload chains of a combination in the
multiple busy time (and the latency) of σb.

B c̄
b (q) := q × Cb

+ max(0, η+
b (B c̄

b (q))− q)× Csheader
b

if σb ∈ AC

+
∑

σa∈IC(b)\Cover

η+
a (B c̄

b (q))× Ca

+
∑

σa∈AC∩DC(b)

η+
a (B c̄

b (q))× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)\Cover

Csab

+
∑

σa∈Cover

∑
s∈Sa

Cs × rc̄
s

(5.7)

where rc̄
s is a Boolean, which holds exactly when s ∈ c̄.

A combination c̄ is schedulable if B c̄
b (q)− δ−b (q) 6 Db for all q ∈ [1, Qb]. Now,

let us define Lb(q) as follows.

Lb(q) := q × Cb
+ max(0, η+

b (δ−b (q) +Db)− q)× Csheader
b

if σb ∈ AC

+
∑

σa∈IC(b)\Cover

η+
a (δ−b (q) +Db)× Ca

+
∑

σa∈AC∩DC(b)

η+
a (δ−b (q) +Db)× Csheader

a,b
+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)\Cover

Csab

(5.8)

Then we now have a much simpler sufficient condition for schedulability: c̄ is
schedulable if

∀q ∈ [1, Qb], Lb(q) +
∑

σa∈Cover

∑
s∈Sa

Cs × rc̄
s 6 δ−b (q) +Db (5.9)

Consequently, one can deduce that the superset of unschedulable combinations
w.r.t. σb is then:

C̃b := {c̄ | ∃q ∈ [1, Qb], Lb(q) +
∑

σa∈Cover

∑
s∈Sa

Cs × rc̄
s > δ−b (q) +Db} (5.10)
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5.3.3 An ILP formulation for the DMM

Theorem 5.3. Let us define dmmb(k) as

dmmb(k) := max
{
Nb

∑
c̄∈C̃b

xc̄ | ∀σa ∈ Cover,∀s ∈ Sa,
∑

{c̄∈C̃b | s∈c̄}

xc̄ 6 Ωa→b
k

}
(5.11)

where

• xc̄ is the variable constraining the number of busy-windows that could contain
one instance of the k-sequence and suffer from an overload corresponding to
c̄ ∈ C̃b;

• Sa denotes the set of active segments of σa.

Then dmmb(k) is a DMM for σb.

Proof. Assume that we have Ωa→b
k for all chains σa. In the worst case, each active

segment of σa also impacts σb Ωa→b
k times. As in Section 3.2, we here also face

a multi-dimensional knapsack problem where items correspond to unschedulable
combinations and capacities to Ωa→b

k for every line s associated with an active
segment of overload chain σa. So considering that xc̄ stands for the number of times
that a combination c̄ is used in the packing under consideration, we want to find
the packing that maximizes the number of deadline-misses of σb — which is equal
to the number of unschedulable combinations used multiplied by the maximum
number of deadline-misses due to each combination. This packing is constrained
by the fact that active segments cannot be used in more combinations than is
allowed by their corresponding Ωa→b

k .

We have now shown how we can reuse the ILP solution in Equation 3.19 for
systems with task chains with limited changes.

5.4 Experiments

5.4.1 Industrial case study

We first present the experiments performed based on the TRT case study, which
is illustrated in Figure 5.1. Remember that the system is a single-core processor
provided with an FPP scheduler. Four task chains share the resource, namely
σa, σb, σc and σd, where σa and σb are overload chains. In the following experiments
we focus on providing DMMs for σc and σd.
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The worst-case latency WCL of task chains σc and σd was computed as de-
scribed in Section 5.2. The analysis results show that the system is not schedulable
as σc can in the worst-case miss its deadline, see Table 5.1.

task chain WCL D
σc 331 200
σd 175 200

Table 5.1: WCL of task chains σc and σd [49].

A second analysis, in which all overload chains are abstracted away, reveals
that the system is schedulable and σc meets its deadline if neither σa nor σb are
activated. We thus perform TWCA as presented in this chapter. The computed
DMM of σc is shown in Table 5.2 — σd is schedulable and therefore does not need
a DMM.

task chain DMM
σc dmmc(3) = 3, dmmc(76) = 4, dmmc(250) = 5

Table 5.2: dmm(k) for task chain σc [49].

Let us provide additional details resulting from this DMM computation. Both
chains σa and σb arbitrarily interfere with σc because neither has a task with a
priority lower than 1, which is the lowest priority in σc. As a result σa and σb
have only one segment, respectively (τ 1

a , τ
2
a ) and (τ 1

b , τ
2
b , τ

3
b ). These two segments

are also active segments because the priority of the tail task of chain σc is lower
than all priorities in these segments (see Figure 5.1). Therefore, no constraints
on combining active segments are needed. The set of combinations thus has three
elements: c̄1 = {(τ 1

a , τ
2
a )}, c̄2 = {(τ 1

b , τ
2
b , τ

3
b )}, and c̄3 = {(τ 1

a , τ
2
a ), (τ 1

b , τ
2
b , τ

3
b )}.

Based on the schedulability criterion introduced in the previous section , c̄3 is the
only unschedulable combination, so in this case the TWCA is fairly simple.

To generalize the results obtained on the industrial case study, while preserv-
ing practical relevance, we arbitrarily modify the priority assignment to generate
random systems with different scenarios.

5.4.2 Synthetic test cases

We arbitrarily assign priorities to show the impact of priority assignments on
the schedulability and the deadline miss models. In this experiment we ran-
domly choose 1000 assignments to test our analysis intensively. Figure 5.5 shows
dmmc(10) and dmmd(10). Notice first that out of the 1000 assignments generated,
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Figure 5.5: dmmc(10) and dmmd(10) [49].

chain σc is schedulable (misses no deadline) 633 times. More interestingly, chain
σd is schedulable only 307 times out of 1000. TWCA in that case is very useful as
for more than 500 of the remaining systems it can guarantee that no more than
3 out 10 deadlines can be missed. Note that we have repeated our experiment 30
times and observed similar results.

5.5 Related Work

To the best of our knowledge, there is no state-of-the-art method for the compu-
tation of weakly-hard guarantees in real-time systems with task dependencies.

Extensive research has focused on the schedulability analysis of hard real-time
systems with task dependencies. This includes approaches focusing on offset analy-
sis [44] but also more general precedence models [45]. In [105], Schlatow and Ernst
presented an upper bound on the end-to-end latency of task chains in real-time
systems, on which we base our work in this chapter. Later in [106], they extended
the analysis to consider complex precedence and blocking relations. Recently, Gi-
rault et al. presented in [42] an analysis to compute upper and lower bounds
on the worst-case latency to estimate the tightness of the WCL. Their analysis
distinguishes between header, inner and tail segments, and it investigates the exe-
cution dependencies between interfering task chains. Therefore, they showed that
the computed upper bound on WCL is much tighter than the one computed in
[105]. Computing lower bounds on WCL would be a good tool to investigate the
pessimism of TWCA.

In contrast, there is little in the literature regarding the analysis of WHRT
systems (see Section 3.5 for related work). However, non of these works can handle
task dependencies.
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5.6 Summary

In this chapter, we presented an extension of TWCA that is the first method for
computing end-to-end deadline miss models for systems with task dependencies.
This bounds the number of potential deadline-misses in a given sequence of in-
stances of a task chain. Our approach addresses uniprocessor systems with FPP
scheduling. We show how state-of-the-art TWCA can be extended using recent
results in the analysis of hard real-time systems with task dependencies. Specif-
ically, we show how we can formulate our problem as a knapsack problem. Our
approach is validated on a realistic case study inspired by industrial practice and
synthetic variants of it. This work with the case study has been demonstrated at
RTAS 2017 [55].





6 | BUDGETING UNDER-SPECIFIED
TASKS IN WEAKLY-HARD
REAL-TIME SYSTEMS

Quantifying the time budget available to add security, monitoring or recovery tasks
such that the system still meets its timing constraints is an interesting problem in
the design of real-time systems [127]. In WHRT systems, specifying parameters
of any extra task, e.g., recovery task, has to take into consideration the (m, k)
constraints of system tasks. This is the problem addressed in this chapter, as
motivated by a case study inspired by industrial practice in the course of the
collaboration project between TU Braunschweig and TRT. Thales Alenia Space
(TAS) [114] provided the considered case study.

In this work, we present an extension of slack analysis [28] for budgeting in the
design of WHRT systems. Slack analysis can help to anticipate the impact of new
tasks on the system schedulability. The case study will be used to motivate and
validate the proposed analysis. The four main contributions of this chapter are:

• an extension of slack analysis to compute the maximum slack, which guar-
antees that no more than m deadline-misses out of k consecutive executions
can happen;

• an execution time budget for under-specified tasks based on the multiframe
task model [77] where we consider that each under-specified task has two
execution times: a long one and short one;

• a methodology that explains why and how this method should be used safely
in the design of systems that have hard and weakly-hard requirements;

• a case study dealing with satellite on-board software, which shows the prac-
tical usefulness of weakly-hard constraints and how to guarantee them.

The contribution in this chapter is the second extension to the core contribution
of this thesis and it has been published in [52].

101
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This chapter is organized as follows: first we present a case study provided by
TRT as a motivation for this extension, and we formulate the addressed problem
in Section 6.1. Section 6.2 shows how to budget the under-specified tasks to satisfy
hard real-time constraints. We present in Section 6.3 an extension of slack analysis
and our general approach for budgeting based on the multiframe task model. In
Section 6.4 we summarize the methodology that we propose. We present our
experimental results in Section 6.5 and discuss related work in Section 6.6. Section
6.7 concludes.

6.1 Case Study and Problem Statement

In this section we introduce the case study that motivates the work presented in
this chapter.

6.1.1 Satellite on-board software

A satellite comprises two main parts: the platform and the payload. The payload
realizes the main satellite mission. The payload is typically characterized by high
computation requirements but in the general case its software is considered at best
firm or soft real-time.

The platform is the service module that governs the satellite and ensures the
execution of the mission. The platform on-board software (OBSW) implements
all major functions of the satellite.

A subset of those OBSW functions are characterized by hard real-time require-
ments. In contrast, some tasks executing some less critical functions, may oc-
casionally miss deadlines without catastrophic consequences on the mission, and
at most some performance degradation. One example is the Attitude and Orbit
Control System (AOCS) functions, where sensor acquisition and processing are
somehow robust to occasional deadline-misses because of the intrinsic robustness
of the implemented control laws.

The OBSW is however traditionally designed, analyzed and implemented with
techniques typical of safety-critical, hard real-time systems. This implies that all
tasks defined for the OBSW are considered as hard real-time and treated as such
in the schedulability analysis used to confirm the system feasibility. The analysis
is performed using representative worst-case operational scenarios. The reason for
this choice is twofold:

1. It is much easier to prove to clients that the system is schedulable and ful-
fills the mission goals by treating all tasks as hard real-time, with a design
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process and analysis equations consolidated along several years, and without
admitting exceptions on the treatment of task deadlines.

2. The OBSW development team does not know completely the possible con-
sequences of deadline-misses from the point of view of performance degrada-
tion or function losses, as such knowledge requires deep analysis at system
/ avionics level. It is therefore not obvious to understand if deadline-misses
are admissible in the overall mission context.

Current satellite OBSW is typically executed on a single-core processor us-
ing an FPP scheduling policy. Considering the tasks as hard real-time leads to
a resource over-provisioning. The standard for space software engineering [34]
specifies the utilization margin of the resource (1 − U) with 25% for Critical De-
sign Review (CDR). By relaxing the constraints to WHRT, we aim to reduce the
over-provisioning.

Table 6.1 shows a representative task set and the real-time attributes of each
task. The attributes are representative of a high-load scenario for the OBSW in
a mission operational mode. Each task τi in the given system is characterized by
its:

• priority index πi; for simplicity of notation, we assume that tasks are given
in order of their static priority, i.e., τj has higher priority than τi for every
j < i;

• type of task release pattern: periodic (P), software sporadic (S), hardware
sporadic (HWS), i.e., triggered by an interrupt, background task;

• worst-case execution time Ci; this value is not based on static analysis but
rather on the observed execution times;

• period or interarrival time Ti;

• relative deadline Di — all deadlines are constrained (Di 6 δ−i (2));

Note that some tasks specified as sporadic have in fact a pseudo-periodic be-
havior.

Table 6.1 includes two different kinds of tasks:

(i) nominal tasks : tasks that are active and executed in the represented opera-
tional scenario;

(ii) recovery tasks : tasks that are involved in asynchronous fault handling or
recovery activities and are triggered only on given fault / error occurrences.
They are marked as gray in the table.
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Name π Type C T D
τ1 1 HWS 0.56 15.625 15.625
τ2 2 P 0.76 15.625 15.625
τ3 3 P 15 125 31.25
τ4 4 P 25.03 125 46.875
τ5 5 P 7.5 62.5 62.5
τ6 6 P 6.15 125 125
τ7 7 P 1.2 125 125
τ8 8 P 0.9 1000 500
τ9 9 P 1.95 250 250
τ10 10 S 10000 125
τ11 11 S 125
τ12 12 P 1.2 125 125
τ13 13 P 5.15 250 203.125
τ14 14 P 1.2 1000 500
τ15 15 P 22.5 500 500
τ16 16 P 3.5 250 250
τ17 17 P 27 500 500
τ18 18 HWS 1.5 1000 1000
τ19 19 P 16 1000 1000
τ20 20 P 19.1 1000 1000
τ21 21 S 1000
τ22 22 P 88.8 2000 2000
τ23 23 P 2 32000 32000
τ24 24 P 1 32000 32000
τ25 25 P 1 1000 1000
τ26 26 S 20 1000 1000
τ27 27 S 40 2000 2000
τ28 28 S 1.5 2000 2000
τ29 29 S 1.5 2000 2000
τ30 30 P 0.2 32000 32000

Table 6.1: A task set representative of OBSW. π,C, T , andD denote respectively:
priority, worst-case execution time, period/minimum distance, deadline. The time
unit is ms.
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Among the nominal tasks, some have real-time constraints that we will consider
as hard real-time; others can be considered as WHRT, as they can withstand
occasional deadline-misses without significant system-level consequences.

6.1.2 Problem statement

The specification of recovery tasks typically occurs in the latest development
phases, and therefore their characteristics are not known until late in the de-
velopment cycle. The execution of such recovery tasks may however perturb the
execution of nominal tasks, leading to deadline-misses that would potentially in-
duce a degradation of the system performance.

Configuring the timing attributes of the recovery tasks represents a challenging
timing issue for the real-time architect. It is important to guarantee that the re-
configuration and recovery tasks can accomplish their functions, which are related
to the safety of the spacecraft. At the same time, it is necessary to preserve a
sound timing behavior for the nominal tasks.

Moreover, the timing behavior of the recovery tasks must be established and
assessed as early as possible in the development, as in later phases the development
of the rest of the software system approaches completion, with little freedom for
significant modifications.

The reader should note that the problem statement regards finding a conve-
nient method for assigning attributes and guarantees to such tasks, rather than
establishing a complete fault tolerance strategy [102][75] for the on-board software
and the satellite. The latter requires a much more global reasoning at system level
and it is not in the scope of this work. There are several mechanisms (hardware
and software) that are devoted to the implementation of such global fault tolerance
strategy for a given satellite, and the method we seek would simply concur to their
definition in a convenient manner.

To solve this problem, there is a need for a timing verification method fulfilling
two conditions:

(i) applicability at early design stages;

(ii) a guarantee on the provided upper bounds for the tasks’ response times.

Worst-case response time analysis seems well adapted to solve the timing chal-
lenge mentioned above, since its applicability already starts with the early concep-
tual design phases and it provides formal proofs based on a mathematical model of
the system timing behavior. These proofs allow calculating safe lower and upper
bounds on the response times, thus guaranteeing corner-case coverage.
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Classic worst-case response-time analysis would however not be able to take
into account the weakly-hard nature of some tasks, and would just check that
deadlines of those tasks are met in the worst case. This would lead to an under-
estimation of the timing budget available for the recovery tasks (and therefore to
ensure the safety functions), which could be delicate, especially in case of a system
with a high CPU load.

The real-time architect needs a method that takes into account the weakly-hard
nature of some tasks, and can provide him/her with means to perform tradeoffs
on the budget to be assigned to the recovery tasks. Such a method would be
considered attractive in this context.

Let us now formulate the problem. We consider a single processing resource
that schedules a task set Z = {τ1, τ2, . . . , τn} according to the FPP scheduling
policy. Each task τi ∈ Z is modeled by its

• worst-case execution time Ci

• activation model described using arrival curves

• priority πi

• constrained relative deadline Di 6 δ−i (2)

The task set Z is partitioned into nominal tasks, which are fully specified, and
recovery tasks, for which only priorities and deadlines are known, such that we call
these under-specified tasks. We denote by N the set of nominal tasks and R the
set of under-specified tasks. Under-specified tasks are considered to be sporadic.
WHRT constraints are assumed to be given for nominal tasks.

Our problem is to provide a set of constraints on the execution times and the
activation patterns of the tasks in R that is sufficient (and ideally necessary too)
to guarantee (m, k)-schedulability of all tasks in N , where a task is said to be
(m, k)-schedulable if it misses no more than m deadlines out of a sequence of k
consecutive executions.

6.2 Budgeting with Hard Real-Time Constraints

The problem in this section is to provide a set of constraints on the load incurred
by the tasks inR (i.e., recovery tasks, a.k.a. under-specified tasks) that is sufficient
to guarantee schedulability of all tasks in the nominal mode.

This section assumes that the reader is familiar with the worst-case response
time analysis of FPP, which is elaborated in Section 3.2.2. Namely, the reader
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should be aware of the concept of τi busy-window. However, the needed equations
are listed here for better readability:

• The multiple activation busy time, see Eq. 3.1

B+
i (q) = q . Ci +

∑
τj∈hp(i)

η+
j (B+

i (q)) . Cj.

• The maximum number of instances of τi in a τi busy-window, see Eq. 3.3

Qi = min{q > 1 | B+
i (q) < δ−i (q + 1)}.

• The length of the longest τi busy-window, see Eq. 3.4

|BW +
i | = B+

i (Qi).

• The response time of every instance of τi, see Eq. 3.11

Rq
i = B+

i (q)− δ−i (q).

• The response time of τi, see Eq. 3.12

R+
i = max

16q6Qi

{Rq
i}.

Let us first recall some results related to slack analysis [28, 66, 98, 117].

Definition 6.1. The slack S0
i of task τi is the maximum amount of processing time

available to an instance of τi that may be stolen from any instance of τi without
causing its deadline to be missed.

The slack of a task τi can be computed by noticing that any τi idle-window
between the completion of an instance of τi and its deadline can be used for
computation of that instance without causing it to miss its deadline.

Definition 6.2. By τi idle-window we refer to any maximal time interval between
two τi busy-windows.

Theorem 6.1. For FPP scheduling, the slack of τi is equal to the sum of all τi
idle-windows between the critical instant and Di in the worst-case busy-window.

This is illustrated in Figure 6.1.
Let us now focus on a task τi in the nominal mode. Denote Ri the set of under-

specified tasks with a priority higher than τi. We can directly reuse the concept
of slack to budget the under-specified tasks.
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Figure 6.1: Worst-case busy-window analysis. The slack S0
4 of τi is shown.

Lemma 6.1. Let S0
i be the slack of τi in the system made of only nominal tasks

(i.e., excluding under-specified tasks). If 1)
∑

τr∈Ri
Cr 6 S0

i and 2) ∀τr ∈ Ri :
δ−r (2) > Di then τi is schedulable.

Proof. This follows directly from the definition of slack. Note that we need to
ensure that at most one instance of any under-specified task will interfere with a
given instance of τi for the result to hold.

We now relax the second constraint in the above lemma to consider multiple
instances of an under-specified task in one busy-window.

Lemma 6.2. Let BW 0
i be the longest τi busy-window obtained by analyzing the

nominal task set with an additional load of size S0
i . That is:

BW 0
i := min{∆T > 0 | ∆T = Ci + S0

i +
∑

τj∈N∩ hp(i)

η+
j (∆T )× Cj}

If
∑

τr∈Ri
η+
r (BW 0

i )× Cr 6 S0
i then τi is schedulable.

Proof. Again, this follows directly from the definition of slack. In this case the slack
used by an under-specified task τr is shared among several of its instances.

We can now state our general result on how to budget under-specified tasks to
guarantee hard real-time schedulability of all nominal tasks.

Theorem 6.2. If for all τi ∈ N∑
τr∈Ri

η+
r (BW 0

i )× Cr 6 S0
i (6.1)

then the system is schedulable.
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Proof. The above equation and Lemma 6.2 guarantee together that all nominal
tasks remain schedulable in presence of under-specified tasks satisfying the given
constraints.

If this budget is acceptable then there is no need to consider budgeting for the
weakly-hard case. The rest of this chapter is dedicated to proposing solutions if a
larger budget is needed for execution times of the under-specified tasks.

6.3 Budgeting with Weakly-Hard Real-Time Con-
straints

The problem is now to provide a set of constraints on the load incurred by the
tasks in R that is sufficient to guarantee weakly-hard schedulability, see Definition
2.25, of all tasks in the nominal mode rather than (hard) schedulability.

Again, we first focus on a task τi in the nominal mode, this time supposing that
it has an (m, k) constraint, i.e., τi may miss no more than m out of k deadlines.
Denote Ri the set of under-specified tasks with a priority higher than τi.

Section 3.2 shows that the standard way to establish (m, k)-schedulability using
TWCA is to consider a sequence of k consecutive instances of τi and to prove that
no more than m instances in this sequence may miss their deadline. In the case of
this work the instances of under-specified tasks can be considered as overload since
they are not taken into account by the initial worst-case analysis. We can therefore
adapt TWCA to our context. We reuse in particular the following notations.

• Ni, the number of deadline-misses that occur in the longest τi busy-window
BW +

i of the system with nominal and under-specified tasks, see Definition
3.2.

• Ωr→i
k , the maximum number of instances of higher-priority under-specified

task τr that may occur within a window of k-sequence, see Definition 3.3.

Ωr→i
k = η+

r (BW +
i + δ+

i (k) +R+
i )

and Ωi the sum over all higher-priority under-specified tasks:

Ωi =
∑
τr∈Ri

Ωr→i
k

Let ∆T ik denotes the time window of k-sequence:

∆T ik = BW +
i + δ+

i (k) +R+
i
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Hence, Ωr→i
k = η+

r (∆T ik).
Notice here that budgeting according to constraints on Ni and ∆T ki is not

easy as these parameters themselves depend on the parameters of the under-
specified tasks. In the next section we first focus on how to relate the load budget
of recovery tasks and Ni, i.e., the maximum number of deadline-misses in a single
busy-window.

6.3.1 Extending the concept of slack to weakly-hard systems

Let us start with a few lemmas.

Lemma 6.3. There can be more than one instance of a given task τi in one τi
busy-window only if that task misses its deadline in that busy-window. Formally:
Qi > 2 only if R+

i > Di.

Proof. By definition of Qi, B+
i (Qi) 6 δ−i (Qi + 1) and for any q < Qi, B+

i (q) >
δ−i (q + 1). For q = 1 : B+

i (1) > δ−i (2). We work with constrained deadlines so
Di 6 δ−i (2) so B+

i (1) > Di. As B+
i (1) = R1

i and therefore R+
i > B+

i (1) we can
conclude that R+

i > Di.

This lemma is easily generalized to consecutive deadline-misses:

∀q < Qi, R
q
i > Di.

This result is useful for us as it directly relates the number of deadline-misses in a
busy-window with the length of that busy-window. In particular, we obtain that
Ni = Qi − 1 if B+

i (Qi) 6 δ−i (Qi) +Di.
Let us now go one step further and extend the slack analysis of Section 6.2 to

systems in which a bounded number of deadline-misses are allowed.

Definition 6.3. For µ ∈ N, the µ-slack of a task τi, denoted Sµi , is the maximum
amount of processing time that may be stolen from τi in a τi busy-window without
causing more than µ deadlines of τi to be missed in a row.

The µ-slack of a task τi can be computed in a way similar to the usual slack
but focusing on the (µ+ 1)-th deadline instead of the first deadline.

Theorem 6.3. For FPP scheduling, the µ-slack of τi is equal to the sum of all
τi idle-windows between the critical instant and δ−i (µ + 1) + Di in the worst-case
busy-window.

Proof. The above condition guarantees that the (µ+ 1)-th deadline is met.
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Let us now introduce a definition, which will be useful to bound BW +
i and R+

i .

Definition 6.4. Let BW µ
i be the longest τi busy-window obtained by analyzing the

nominal task set with an additional load of size Sµi . We know that such a busy
window contains exactly µ+ 1 instances of τi so:

BW µ
i := min{∆T > 0 | ∆T = (µ+ 1)× Ci + Sµi +

∑
τj∈N∩ hp(i)

η+
j (∆T )× Cj}

Since τi may not miss more than m deadlines in a row, we can conclude that
BW +

i 6 BW m
i . Similarly, R+

i is bounded by the response times of τi observed in
BW m

i . We thus know how to define ∆T ki . Let us now state the condition which
guarantees that τi may not miss more thanm deadlines in a row, and thus Ni = m.

Lemma 6.4. If
∑

τr∈Ri
η+
r (BWm

i ) × Cr 6 Smi then τi cannot miss more than m
deadlines in a row.

Proof. This is a direct consequence of the definition of m-slack.

At this point, it may seem that the intuitive, if pessimistic, way to budget the
under-specified tasks is to require that

∑
τr∈Ri

η+
r (∆T ki )×Cr 6 Smi . This, however,

is not a sufficient condition for (m, k)-schedulability. The reason is that the same
load incurred by under-specified tasks may result in more deadline-misses if they
happen in different busy-windows. This is the meaning of the following lemma.

Lemma 6.5.
∀µ ∈ N+ : Sµi > (µ+ 1)× S0

i

Proof. Consider a sequence of µ + 1 consecutive instances of τi. Remember that
S0
i is the sum of all τi idle-windows between the critical instant and Di in the

worst-case busy-window. Because deadlines are constrained, this is smaller than or
equal to the sum of all τi idle-windows between the critical instant and δ−i (2) in the
worst-case busy-window. Allowing only S0

i slack for each instance in the sequence
furthermore assumes that the critical instant may repeat for each instance, which
is pessimistic compared to the way Sµi is computed. As a result, Sµi provides more
slack than (µ+ 1)× S0

i .

The consequence of this is that a safe bound on the budget for the under-
specified tasks must be based for now on S0

i .

Lemma 6.6. Let Λi = (m+ 1)× S0
i . If∑

τr∈Ri

η+
r (∆T ki )× Cr 6 Λi

then τi is (m, k)-schedulable.
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Proof. We have to prove that a load of Λi within ∆T ki causes no more than m
consecutive deadline-misses if it occurs in one τi busy-window, and no more than
m non-consecutive deadline-misses if it distributes over several busy-windows.

• The first condition is directly satisfied by Lemmas 6.4 and 6.5.

• Suppose now that Λi is distributed over n τi busy-windows with lb denoting
the load in each busy-window:

∑n
b=1 lb = Λi. For each lb let µb denote the

maximum number of (consecutive) deadline-misses that may be caused by lb
(µb > 0). We have to prove that

∑n
b=1 µb 6 m. By definition we know that

lb > Sµb−1
i for all lb so from Lemma 6.5 we can derive that lb > µb × S0

i . If
we now sum this over all lb we get

n∑
b=1

lb >
n∑
b=1

µb × S0
i

Since
∑n

b=1 lb = Λi = (m + 1)× S0
i we can conclude that m + 1 >

∑n
b=1 µb,

which is what we had to prove.

Theorem 6.4. If for all τi ∈ N with an (m, k) schedulability constraint∑
τr∈Ri

η+
r (∆T ki )× Cr 6 (m+ 1)× S0

i (6.2)

then the system satisfies its hard and weakly-hard requirements.

Proof. This results is a direct consequence of Lemma 6.6.

This result is obviously quite pessimistic. It is clear at this point that obtaining
better bounds requires us to use a more fine-grained model of how load distributes
over busy-windows. We investigate this possibility in the next section.

6.3.2 Budgeting for multiframe tasks

Here, we focus on a specific application scenario and assume that each under-
specified task performs two activities:

• A frequent monitoring activity with a relatively short execution time aiming
at analyzing deviations from safe state in the system and perform some
rapid recovery or triggering higher-level recovery, characterized by a short
minimum distance between two consecutive occurrences.
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• A less frequent failure recovery activity (e.g., an avionics reconfiguration
procedure), which requires a longer execution time and characterized by a
longer minimum time distance between two consecutive executions.

Based on the behavior described above, the execution time model of any under-
specified task τr can be characterized by (C l

r, C
s
r , x) where:

• Cs
r is the short execution time corresponding to the recovery activity of the

task;

• C l
r is the long execution time corresponding to the error handling activity of

the task;

• x is the number of short execution times between two long execution times.

Based on this new model we again address the problem of providing a set of
constraints on the execution times and activation patterns of the tasks in R that
is sufficient to guarantee weakly-hard schedulability of all tasks τ in the nominal
mode.

Another interesting model is when a task has a single execution time but with
varying densities. However, this work focuses only on different execution times.

Let us first focus on a task τi in the nominal mode with an (m, k) constraint,
i.e., τi may miss no more than m out of k deadlines. Denote Ri the set of under-
specified tasks with a priority higher than τi, Ωr→i

k = η+
r (∆T ki ) for all τr ∈ Ri and

Ωi =
∑

r∈Ri
Ωr→i
k .

Let us first formulate a hypothesis, which is consistent with the application
scenario mentioned at the beginning of this section.

Hypothesis 1. For each task τr ∈ Ri, we allow only one instance out of Ωr
i to

have a long execution time C l
r. The other Ωr

i − 1 instances of τr within ∆T ki will
be bounded by the short execution time bound Cs

r .

In a way that is similar to TWCA as explained in Section 3.2 we now introduce
the concept of combinations.

Definition 6.5. A τi combination is a tuple c̄ = (c1, c2, . . . , c|Ri|) such that each
task τr ∈ Ri corresponds to one cr in the tuple and cr = 0 or cr = Cs

r or cr = C l
r.

We use the notation cc̄
r to refer to the execution time of τr in combination

c̄. Note that we exclude here the possibility for several instances of the same
under-specified task to be in the same τi busy-window. That is, we suppose that
∀τr ∈ Ri : δ−r (2) > BW m

i .
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Definition 6.6. Let µ(c̄) denote the maximum number of deadline-misses that
may be caused by a combination c̄. Formally we have:

S
µ(c̄)−1
i <

∑
τr∈Ri

cc̄
r 6 S

µ(c̄)
i

with the convention that S−1
i = 0. If µ(c̄) = 0 then c̄ is called schedulable,

otherwise it is said to be unschedulable.

Of course µ(c̄) depends on the values chosen for the various execution times
C l
r and Cs

r for τr ∈ Ri. Our strategy for budgeting the under-specified tasks is to
first assign values on µ(c̄) for all combinations and then in a second step to assign
execution time budgets.

Hypothesis 2. We suppose that a combination containing only short execution
times of under-specified tasks cannot be unschedulable. That is,

∑
τr∈Ri

Cs
r 6 S0

i .

Again this hypothesis seems realistic given the application context.
Based on the notion of combination we can define gangs, which correspond to

distributions of the Ωi instances within ∆T ki . More specifically, a gang is a packing
of instances of the under-specified tasks into the τi busy-windows of ∆T ki .

Definition 6.7. A gang G is a set of combinations that contain at least one long
execution time and such that for all τr ∈ Ri

• #{c̄ ∈ G | cc̄
r > 0} 6 Ωr→i

k

• #{c̄ ∈ G | cc̄
r = C l

r} = 1

Notice that we ignore combinations that do not contain any long execution
time as they cannot lead to deadline-misses. Note also that each combination
appears at most once in a gang (since there can be only one long execution time
of each task within ∆T ki ).

We use Gi to denote all possible gangs with respect to τi.

Lemma 6.7. If ∀G ∈ Gi :
∑

c̄∈G µ(c̄) 6 m then τi is (m, k)-schedulable.

Proof. The above condition guarantees that no matter how instances of under-
specified tasks align, they can never result in more than m deadline-misses.

This lemma trivially extends to upper bounds on the µ(c̄) as we formulate now.

Lemma 6.8. For all c̄, let µc̄ be an upper bound on µ(c̄). If ∀G ∈ Gi :
∑

c̄∈G µc̄ 6
m then τi is (m, k)-schedulable.
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Now, one thing which does not appear in the above lemma is that the µ(c̄) are
not independent from each other.

Definition 6.8. There exists a partial order 6 on combinations such that c̄1 6 c̄2

if and only if the execution times in c̄1 are all smaller than their counterpart in
c̄2, i.e.,

∀τr ∈ Ri : cc̄1
r 6 cc̄2

r

Lemma 6.9. If c̄1 6 c̄2 then µ(c̄1) 6 µ(c̄2).

Proof. This directly follows from the fact that c̄1 6 c̄2 implies that the load in-
curred within one τi busy-window by the under-specified tasks in c̄1 is smaller than
that in c̄2.

Theorem 6.5. Suppose that you have assigned the µc̄ such that ∀G ∈ Gi :∑
c̄∈G µc̄ 6 m. Then any assignment of the cc̄

r such that for all combination c̄,∑
r∈Ri

cc̄
r 6 Sµc̄

i guarantees the (m, k)-schedulability of τi.

Proof. This follows directly from Lemma 6.8 and the definition of µc̄-slack.

Note that there always exists such an assignment.
Now that we have presented our solution for budgeting under-specified tasks

based on the multiframe execution time model, let us show how it proceeds on an
illustrative example.

Example 6.1. Consider as an example a system with only one task τ3 in the
nominal mode and two under-specified tasks τ1 and τ2, as illustrated in Figure 6.2.
Task τ3 has a (2, 10) constraint. τ1 and τ2 have priorities higher than the priority
of τ3, and no more than 2 instances within ∆T ki .

Figure 6.2 shows gang G = {c̄1, c̄4, c̄7} where c̄1 = (C l
1), c̄4 = (Cs

1 , C
l
2) and c̄7 =

(Cs
2) — to improve readability we omit 0s in the representation of combinations.

There are five combinations containing at least one long execution time:

c̄1 = (C l
1), c̄2 = (C l

2), c̄3 = (C l
1, C

s
2), c̄4 = (Cs

1 , C
l
2), c̄5 = (C l

1, C
l
2)

There are three more combinations containing at least one short execution time:

c̄6 = (Cs
1), c̄7 = (Cs

2), c̄8 = (Cs
1 , C

s
2)

Let us now focus on gangs. Remember that gangs consist of combinations contain-
ing at least one long execution time and that two combinations with the long same
execution time cannot be in the same gang. We only list here maximal gangs.

G1 = {c̄1, c̄2},G2 = {c̄1, c̄4},G3 = {c̄2, c̄3},G4 = {c̄3, c̄4},G5 = {c̄5}
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τ1

unschedulable combination

τ2

schedulable combination

τ3

∆T ki
C l
r Cs

r

Figure 6.2: A gang of τ1 and τ2 within ∆T ki where τ3 has a real-time constraint
(2, 10).

This yields the following constraints, the first five of which are directly derived
from the gangs while the remaining four constraints are obtained by comparing
combinations.

1. µc̄1 + µc̄2 6 2

2. µc̄1 + µc̄4 6 2

3. µc̄2 + µc̄3 6 2

4. µc̄3 + µc̄4 6 2

5. µc̄5 6 2

6. µc̄1 6 µc̄3

7. µc̄3 6 µc̄5

8. µc̄2 6 µc̄4

9. µc̄4 6 µc̄5

One solution to this set of constraints is, e.g., µc̄1 = 1, µc̄2 = 1, µc̄3 = 1, µc̄4 =
1, µc̄5 = 2.

Assuming we have chosen the above assignment for the µc̄, we now have to
define the constraints to be satisfied by the execution times of tasks, one per com-
bination and then one for the short execution times.

1. C l
1 6 S1

i

2. C l
2 6 S1

i

3. C l
1 + Cs

2 6 S1
i

4. Cs
1 + C l

2 6 S1
i

5. C l
1 + C l

2 6 S2
i

6. Cs
1 + Cs

2 6 S0
i

Any solution to this set of constraints guarantees (m, k)-schedulability of τi.
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6.4 Methodology

Let us now summarize the methodology that we propose to provide the architect
with simple answers helping him/her dimension the tasks that are still under-
specified in the system.

1. We first compute an execution time budget for the under-specified tasks
which guarantees hard real-time constraints (zero deadline-misses). If this
execution time budget is acceptable for the architect then we do not need to
go further.

2. If, however there is a need for larger execution times for the under-specified tasks,
we then compute a second execution time budget which guarantees weakly-
hard constraints. Taking into account weakly-hard constraints we can allow
more load within shorter time windows but over longer time windows the
load available for under-specified tasks is still limited.

3. If the activation patterns of the under-specified tasks are known and a mul-
tiframe execution time model is meaningful we can propose more relaxed
bounds on execution times budgets.

6.5 Experiments

Let us now provide some experimental results we have obtained using the cplex
constraint solver on budgeting under-specified tasks. We first address the moti-
vational example of Section 6.1 and then present experiments made on synthetic
test cases.

6.5.1 Industrial case study

The case study presented in Section 6.1 is a system made of a single resource and
a task set shown in Table 6.1 where 27 tasks are in the nominal mode and there
are 3 recovery and reconfiguration tasks τ10, τ11, τ21 which are under-specified.

As discussed before in Section 6.1, all OBSW is currently typically analyzed
with hard real-time techniques; and yet by experience, the overall system is still
quite robust to occasional deadline-misses, although at the moment there is no
necessity to formally evaluate such tolerance in the state-of-the-practice process.

For the sake of the case study we propose some WHRT constraints for tasks
that are purposely quite aggressive: the reader could notice that in some cases a
tolerance of 1 deadline every 2 seconds is admitted for some tasks. This would
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permit to ascertain the robustness (at least from the point of view of real-time
constraints) of such representative task set even in case of severe degradation
(which would require high sporadic load for the recovery activities).

The worst-case response time analysis of the nominal mode shows that the
system is schedulable. Our goal is to synthesize a load budget for the under-
specified tasks τ10, τ11, τ21 which guarantees that all WHRT constraints described
in Table 6.2 are satisfied. We show first the constraints on the execution times and
activation models of the tasks in R which guarantee absence of any deadline-miss
before providing the same result when a few deadline-misses are tolerated.

task τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20

(m,w) (1,2) (1,4) (1,8) (1,4) (1,4) (1,4) (1,8) (1,8) (1,8)
(m, k) (1,16) (1,16) (1,8) (1,8) (1,16) (1,8) (1,8) (1,8) (1,8)
task τ22 τ23 τ24 τ25 τ26 τ27 τ28 τ29 τ30

(m,w) (1,16) hard hard (1,8) (1,8) (1,16) (1,16) (1,16) hard
(m, k) (1,8) hard hard (1,8) (1,8) (1,8) (1,8) (1,8) hard

Table 6.2: Real-time constraints of tasks in N ′. (m,w) represents the maximum
number of allowed deadline-misses m every w seconds, (m, k) means that a task
may miss at most m deadline out of k consecutive instances.

Note that tasks {τ1, . . . , τ9} have higher priority than the recovery and recon-
figuration tasks so their timing properties do not depend on the budget of tasks
in R. They will therefore be excluded from our study. We denote by N ′ the
remaining tasks with lower priority, that is: N ′ = N \ {τ1, . . . , τ9}.

6.5.1.1 Budgeting with hard real-time constraints

If we want to guarantee that the system is schedulable then the budget to be
shared between the under-specified tasks is S0

i = 48.01ms. If this budget is not
sufficient for the architect we can propose a budget with WHRT guarantees.

6.5.1.2 Budgeting with weakly-hard real-time constraints

If the architect can accept to work with weakly-hard rather than hard guarantees
then the available budget for the recovery tasks is (m+ 1)× S0

i = 96.02 ms.
This budget is twice as much as the budget for the hard real-time case. We

can obtain even better bounds by using a more fine-grained model of how load
distributes over busy-windows.
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6.5.1.3 Budgeting for multiframe tasks

Let us assume that for all τi ∈ N there are at most Ω10 = 1, Ω11 = 3 and Ω21 = 2
instances of the under-specified tasks within ∆T ki . The following execution times
guarantee (m, k)-schedulability of all tasks.

C l
11 = 24.005, Cs

11 = 12.0025

C l
10 = 24.005, Cs

10 = 12.0025

C l
21 = 24.005, Cs

21 = 12.0025

This means in particular that the budget that is available for the under-specified
tasks within ∆T ki is at least 108.015 ms. Note that there are many other possible
assignments for the µ values which lead to different execution times.

6.5.2 Synthetic test cases

In this section, we present a set of synthetic test cases to test more extensively
our approach on a variety of systems. In this experiment we study the impact of
different characteristics such as utilization, (m, k) constraints, system size, etc.

For that purpose 1000 task sets were randomly generated following the ap-
proach explained in Section 4.2.1. We define a set of tasks Z with a priority, a
worst-case execution time, a period, a deadline, and an (m, k) constraint. Re-
member that only the under-specified tasks have a multiframe model, therefore,
we generate one worst-case execution time for the nominal tasks. We picked up a
utilization among U ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, then the number of tasks is chosen
to be ∈ [1, 20] and periods are harmonic. The worst-case execution time is then
computed Ci = Ui ∗ Ti. Deadlines = {0.6, 0.8, 1} ∗ Ti as our approach supports
only constrained and implicit deadlines. We generate a random (m, k) for each
task in the system such that: k ∈ [2, 100],m ∈ [1, k − 1]. The number of under-
specified tasks is limited to r = 3 and the maximum number of instances of each
under-specified task is generated randomly to be in [1, r2].

6.5.2.1 Results

Figure 6.3 shows in the form of a histogram how much we gain in terms of load
budget for the under-specified tasks by using a multiframe task model with weakly-
hard constraints instead of using a single worst-case execution time with hard real-
time constraints. Note that the results in the former case are obviously at least as
good as those for the latter case.
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Figure 6.3: The relation between loadMF and loadH [52].
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Figure 6.4: The relation between the gain of load and r [52].

Figure 6.3 shows for example that for 198 task sets the load budget in the
multiframe case (loadMF ) is between 5 and 10 times larger than the load budget
in the hard case (loadH), that is:

5 <
loadMF

loadH
6 10

The load we gain, however, is related to the number of under-specified tasks.
Figure 6.4 shows that the larger the number of under-specified tasks the less load
we gain, that is due to sharing the available slack among more under-specified
tasks, which makes the long execution C l shorter.

Additional experiments show that there is no impact of the utilization on the
load we gain. The number of periodic tasks causes no degradation on the load we
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gain by using multiframe task model. Note that we have repeated our experiment
10 times, i.e., we generated 10 groups of task sets each of which includes 1000 task
sets, and observed similar results.

6.6 Related Work

The work presented in this chapter most closely relates to sensitivity analysis, slack
analysis, multiframe task systems and WHRT systems. Note that determination
of bounds on unspecified system parameters is the scope of Parametric Model
Checking [29] [57]. Even if such approaches are known to have difficulty scaling
up to even simple settings, it would be interesting to see if these approaches could
apply to our problem.

This work focuses on budgeting under-specified tasks for WHRT systems. Al-
though the under-specified tasks in our case study (OBSW) are recovery tasks,
schedulability analysis of fault-tolerant real-time systems [15] [68] is not in the
scope of this work.

Sensitivity analysis is used to provide guarantees on the schedulability of
a system in case of uncertainty on the system parameters. In [10] Bini et al.
introduced an analytical sensitivity analysis for FPP scheduled periodic task sets
with constrained deadlines (i.e., D 6 T ). Work by [123] and [81] propose solutions
for sensitivity analysis of systems with activation patterns specified with arrival
curves. Racu et al. [93] applied sensitivity analysis in DRTSs.

In contrast to all these papers, our work proposes for the first time a solution for
the sensitivity analysis of WHRT systems: We constrain the admissible load that
under-specified tasks in the system can use without violating WHRT constraints
in FPP scheduled task sets with arbitrary activation patterns and constrained
deadlines.

Slack stealing is a scheduling algorithm proposed by [66] to schedule aperiodic
tasks by stealing all the processing time it can from the periodic tasks without
causing their deadlines to be missed. Similar algorithms based on slack stealing
have been proposed by other authors [28] [98] [117]. These algorithms do not take
into account any weakly hard guarantees and they, therefore, bound the maximum
slack in a window of size Di. In our approach, however, we consider (m, k) weakly-
hard requirements and we thus bound the maximum slack in a window of size
δ−i (m+ 1) +Di.

The multiframe task model was proposed originally in [77] to provide a less
pessimistic schedulability test than [69] for hard real-time systems. This model
assigns to each periodic task N execution times (C0, C1, . . . , CN), the execution
time alternates between them where the execution time of the i-th instance of
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the task is C((i−1)modN) where i > 1. In this work we use a specific case of the
multiframe task model for sporadic tasks that assigns two execution times: long
C l and short Cs where within a time window ∆ one instance of the task uses the
long execution time while the rest use the short execution times. We propose our
multiframe task model in a context of budgeting under-specified recovery tasks
(sporadic) to provide the recovery tasks with more load for WHRT systems.

Weakly-hard systems [7] is a concept that guarantees that out of k consec-
utive executions of a task, not more than m deadline-misses may occur. The ap-
proach of [91] and the related articles provide analyses to verify such constraints.
In this work we reuse the concepts developed in these papers to better budget
under-specified tasks.

6.7 Summary

In this chapter, we have shown how to budget under-specified tasks in the early
design of WHRT systems by providing sufficient conditions, which guarantee (m, k)
schedulability. This is particularly useful in industrial practice because it often
happens during design that some parts of a task set are fully specified while other
parameters, e.g., regarding recovery or monitoring tasks, do not become available
before much later. Existing budgeting techniques, which are restricted to hard
real-time constraints, can help anticipate how these missing parameters influence
the behavior of the whole system, but they are likely to yield execution time
budgets that are too tight to be useful. We have shown that using weakly-hard
rather than hard guarantees, whenever possible, results in much more applicable
execution time budgets. The results are thus of real practical value for the design
of systems such as the on-board software system discussed in the chapter.

Note that in this chapter we have not at all addressed the issue of the complexity
of the analysis. The reason for that is that this does not appear to be a limiting
factor for industrial applicability at this point. It would however be interesting to
better understand how far the presented approach can scale and how much we can
improve its efficiency.
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The pairing of the cyber and physical in cyber-physical systems (CPS) [95] imposes
different levels of safety requirements depending on how critical the functions as-
signed to the system are and on how humans interact with the system. Such
safety requirements involve timing constraints, the violation of which may lead
to a system failure. Hence, not only applications of classical domain, e.g., au-
tomotive, avionics, etc., but also applications of emerging technology may have
timing requirements. Timing constraints are graded from soft to hard real-time
constraints. While satisfying soft real-time constraints requires only best-effort
guarantees, hard real-time constraints are best treated with worst-case analysis
methods for verifying all timing constraints. WHRT systems have extra demands
on the timing verification as they tolerate few deadline-misses in certain distribu-
tions. In worst-case analysis methods, a task is schedulable only when it can meet
its deadline in the worst-case, therefore, guarantees computed using worst-case
analysis methods are not satisfactory for WHRT systems. Considering tolerable
deadline-misses raises the need for weakly-hard schedulability analyses to verify
WHRT constraints ((m, k) constraints) and to provide more expressive guarantees.

This thesis addressed the schedulability analysis problem of WHRT systems.
It presented an efficient analysis to compute WHRT guarantees in the form of a
deadline miss model for various system models. The core contribution of this thesis
was a deadline miss model for a temporarily overloaded uniprocessor system with
independent tasks under the FPP and FPNP scheduling policies using TWCA. In
our application context, the transient overload is due to sporadic tasks, for example
interrupt service routines. The proposed analysis was adopted to compute deadline
miss models for independent tasks under the WRR and EDF scheduling policies.

The thesis exposed the complexity of computing a DMM and it showed the
necessity for a compromise between the pessimism of the computed guarantees and
the time efficiency of the analysis. Experimental results showed the scalability of
TWCA w.r.t. k and the system size. Interestingly, the results illustrated how the
scheduling policy alters the impact that sporadic overload has on the quality of the
results. The EDF scheduling policy provided the best DMMs but at the expense of
missing the predictability, i.e., every task is susceptible to deadline-miss, and the

123
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possibility of suffering from the domino effect. FPNP, however, provided better
DMMs comparing to FPP and RM and at the same time it kept the predictability
due to its fixed priority behavior.

A part of this work has been achieved in the course of a collaboration project
between Thales Research & Technology and Technische Universität Braunschweig.
The collaboration project involved two case studies, which necessitated extensions
to the core contribution in order to tackle the problem raised by these case studies.
The first extension presented an analysis to compute deadline miss models for
WHRT systems with task chains under FPP. The extension showed how TWCA
can be extended using recent results in the analysis of hard real-time systems with
task dependencies. The approach was validated on the first case study, which was
inspired by industrial practice, and synthetic variants of it. The second extension
is dedicated to budget recovery and reconfiguration tasks in a WHRT system such
that tasks of the system guarantee (m, k) schedulability. This extension handled
the second case study. Existing budgeting techniques, which are restricted to hard
real-time constraints, can help anticipate how these missing parameters influence
the behavior of the whole system, but they are likely to yield execution time
budgets that are too tight to be useful. The proposed analysis showed that using
weakly-hard rather than hard guarantees, whenever possible, results in much more
applicable execution time budgets.

Although this thesis touched upon an already addressed topic, i.e., WHRT
systems, the analysis presented in this thesis is of high flexibility allowing us to
consider various scheduling policies (FPP, FPNP, EDF, WRR) and to cover both
independent and dependent tasks. The analysis is of manageable computation cost
and scales well with k and the system size. Furthermore, the proposed analysis
is compatible with CPA which makes it extendible to DTRSs which permits to
provide end-to-end deadline miss models for more complex task models.

The thesis provided two practical solutions for two industrial case studies,
which are involved exclusively in the collaboration project. The results are thus
of real practical value to be considered in the design process of WHRT systems.

7.1 Applications of TWCA Out of This Thesis

TWCA has been applied to case studies outside of this thesis. The following list
collects and summarizes the works that exploited TWCA:

• CAN bus analysis with Daimler. [89] demonstrates how TWCA can be
used to analyze a real CAN bus with complex activation patterns. Authors inves-
tigated the effects of these load patterns and showed how the necessary parameters
can be derived and verified from traces and specifications.
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• Case studies with Bosch. It has been shown also in [39] that the weakly-
hard guarantees provided by TWCA can be used, e.g., for efficient verification of
closed-loop properties of control software.

• TWCA at runnable granularity. A variant of TWCA is provided in
[1] that is fine-grained enough to provide hard and weakly-hard response time
guarantees for runnable entities. If real-time guarantees are only available at task
granularity, the strictest real-time requirement of a runnable entity determines the
real-time requirement of the entire task. However, by giving real-time guarantees
for each runnable entity, this over-provisioning can be avoided.

• Typical worst-case execution time. In [119], authors extended TWCA
to cope with periodic tasks that have varying execution times. Taking the ro-
bustness of control applications into account, they derived upper bounds for the
overload models of each task, along with possible typical worst-case execution
times (TCET), as needed for the TWCA.

• Anomaly detection. The timing behavior of a safety-critical system could
be considered as a prediction mechanism of various attacks against such system. In
[46], authors proposed a prediction configuration for real-time tasks with temporal
constraints to predict the abnormal behavior of these tasks. They used in partic-
ular the TWCRT to define a bound that represents the least privilege temporal
bound for each real-time task.

7.2 Ongoing Work and Outlook

We have shown throughout this thesis that TWCA is an extendible framework that
can be generalized to cover more more complex system models such as DRTSs. In
fact, there is a running project considering the contribution of this thesis to provide
WHRT guarantees in the form of a deadline miss model for a DRTS. The project,
which is called TypicalCPA, is funded by the Deutsche Forscungsgemeinschaft1
(DFG) [37]. Ahrendts et al. in [2] presented a CPA extension of TWCA to compute
an end-to-end WHRT guarantees for switched network. However, the presented
DMM in this thesis is over-approximated by two main sources of pessimism, which
have been formally and experimentally determined in Chapter 4. There is therefore
room for providing a more tight DMM with feasible complexity by tackling these
two sources of pessimism.

The state-of-the-art in the analysis of safety-critical real-time systems, includ-
ing this thesis, is based on pen-and-paper proofs, which are hard to reuse and may

1The project is under the contract number 168/30-2.
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contain errors. A way to avoid this is to require that timing analysis results be
formally proven, machine-checkable, and independently verifiable. To this end, the
RT-PROOFS project [86] is laying the foundations for the computer-assisted veri-
fication of schedulability analysis results by (i) formalizing foundational real-time
concepts using the Coq proof assistant and (ii) mechanizing proofs of busy-window-
based end-to-end latency analysis, the analysis approach of greatest practical rel-
evance (e.g., used by SymTA/S). In this context, Fradet et al. presented in [38] a
formal proof of TWCA based on this thesis using the Coq proof assistant [87].

Chapter 6 proposed a formal analysis to check the capability of scheduling a
new task in a WHRT system. That assists in establishing an accepting/rejecting
process for dynamic systems. The project controlling concurrent change (CCC)
[22], which is funded by DFG, aims to use formal models and methods to do in-
field integration and test. CCC addresses critical applications where updates and
new functions can be integrated in the field. In-field integration imposes therefore
appropriate methods and platform architectures ensuring the same quality as lab
based integration. [78].

Finally, we need to acknowledge the need for complementary work related to
WHRT systems as mentioned in Section 6.1, in particular in relation with the
impact of deadline-misses on system functions. Recent work [39, 12, 85] in this
direction indicate that this question is indeed considered as relevant in the research
community as well as in the industry.
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