
Mining BPMN Processes on GitHub for Tool
Validation and Development⋆

Thomas S. Heinze1, Viktor Stefanko2, and Wolfram Amme2

1 Institute of Data Science
German Aerospace Center (DLR)

thomas.heinze@dlr.de
2 Institute of Computer Science
Friedrich Schiller University Jena

[wolfram.amme,viktor.stefanko]@uni-jena.de

Abstract. Today, business process designers can choose from an increas-
ing number of analysis tools to check their process model with respect
to defects or flaws, before, e.g., deploying the model in a process engine.
Answering questions about the tools’ effectiveness though is difficult,
as their validation often lacks empirical evidence. In particular, for a
modeling language like BPMN, where the process is the product, tools
are validated by means of case studies or even artificial process examples.
We here advocate instead an approach to systematically mine software
repositories on GitHub.com for a large corpus of BPMN business process
models and discuss how it can be used for tool validation and guiding
tool development, using the example of the linting tool BPMNspector.

1 Introduction
Mining software repositories, i.e., the systematic retrieval, processing and anal-
ysis of data about software artifacts and software development from software
forges and repositories, has drawn considerable attention in recent years. On
the one hand, the increasing popularity and usage of platforms like GitLab.com,
Bitbucket.org, SourceForge.net or GitHub.com for collaborative software de-
velopment provide a tremendous source of data, encompassing software from
a rich and heterogeneous spectrum of domains. On the other hand, the data
mining techniques available today have made it possible to start to seize this
treasure, and thus allow to answer research questions and empirically validate
hypotheses on the development and usage of IT and software systems based upon
real-world data. While the research field is mainly focused on source code of con-
ventional programming languages, mining software repositories can as well help
to understand more about the use of other artifacts in software development [12].

In particular the area of modeling languages, such as the Unified Modeling
Language (UML) or the Business Process Model and Notation (BPMN) [4], can
benefit from a data-driven approach like mining software repositories. There is a
common lack of larger datasets with real-world models, which hinders empirical
research in this area [20,28,30]. Retrieving systematically a corpus of models by
⋆ The final authenticated version is available online at https://doi.org/10.1007/

978-3-030-49418-6_13.

https://doi.org/10.1007/978-3-030-49418-6_13
https://doi.org/10.1007/978-3-030-49418-6_13


mining software repositories promises to overcome this lack. For instance, research
questions on how modeling languages are used in practice can be investigated
based on the mined corpus, in order to distinguish the more frequently used and
important parts of a language from unimportant parts and thus guide language
and tool development. Analyzing the different modeling styles in the corpus allows
for identifying best practices and guidelines to help model designers. Furthermore,
best practices and tools proposed by academic research or by industry can be
validated in a more realistic manner. Currently, there are often case studies,
including only a small and homogeneous set of models, or artificial examples used
when evaluating new tools and methods, with consequences for an evaluation’s
validity. Instead using a large set of real-world models as retrieved by mining
software repositories allows for increasing validity. In this respect, the prior work
on the creation of the Lindholmen dataset with UML models mined from software
repositories on GitHub.com was an inspiration for this paper [12,28].

Empirical research is limited by the access to primary sources. Especially
in case of modeling languages used for business processes, like BPMN, where
the model is usually the product and thus subject to strict nondisclosure restric-
tions [30], this can pose an insurmountable challenge. Previous empirical studies
on business process modeling and BPMN were using methods like experiments,
surveys or case studies, each implying limitations to their generalizability [23]. In
an experiment, a certain aspect, e.g., a modeling practice, is typically researched
by differentiating two groups based on the aspect. The need to provide a large
population and to strictly control the experiment’s environment for all other
variables, however, restricts the applicability of this method to narrow research
problems. Surveys allow for more general problems, but are subject to bias,
introduced, e.g., by the selection of survey participants or by inaccurate responses
from the participants. Case studies are frequently used and in particular allow
for insights into real-world practices and constraints. Compared to experiments,
there is though no control of environment and influencing variables. Furthermore,
reproducibility and comparability is usually not given. Due to the often homoge-
neous origin of business process models included in case studies, their findings
also need to be validated by other research to increase generalizability [20,23].
Most of the empirical research focused on conceptual process models and omitted
implemented and executable process models [23]. This also applies to community
efforts to assemble collections of business process models like the BPM Academic
Initiative [20], which mostly covers educational process models. Mining software
repositories for business process models, as introduced in the following can be
seen as another empirical approach, complementing established methods.

In this paper, we present our efforts to create a corpus of BPMN process
models by mining software repositories hosted on GitHub.com. Due to the sheer
amount of repositories and the bottleneck caused by the GitHub API ’s rate
limit, we limited our search to a random subset of 6,163,217 repositories, or
10% of all repositories on GitHub.com in November 2018. As a result, we were
able to identify 1,251 repositories with at least one potential BPMN artifact
and overall 21,306 potential artifacts. We thereby discovered a wide range of
file formats, indicating the various uses of BPMN, e.g., modeling conceptual



process models or implementing executable processes. Further narrowing our
search to business process models in the BPMN 2.0 XML serialization format
and removing duplicates, we eventually gained a corpus of 8,904 distinct BPMN
process models, conjoined with corresponding repository metadata. Based on this
data, we studied descriptive questions on the usage of BPMN on GitHub.com.
We also ran the analysis tool BPMNspector [10] for all the collected business
process models to exemplify the use of the corpus for tool validation. Notably,
the tool reported at least one violation of BPMN’s syntax and semantic rules for
7,365 business process models or 83% of our corpus, which indicates the need for
linting tools like BPMNspector. In summary, our contributions are:

– To the authors’ knowledge, we provide the first corpus of BPMN, comprising
8,904 unique business process models in the BPMN 2.0 serialization format,
which is retrieved by mining software repositories on GitHub.com.

– In doing so, we confirm the feasibility of the mining software repositories
approach for BPMN, which can therefore also be used by others to complement
their empirical research on business process models.

– We confirm results on the frequency of violations of BPMN’s syntax and
semantic rules, which have already been reported for a case study in [10],
and thus demonstrate the usefulness of linting tools like BPMNspector.

The rest of the paper is structured as follows: We first provide a brief overview
of BPMN and available analysis tools in Sect. 2. Our methodology, i.e., the
systematic retrieval and analysis of BPMN process models on GitHub.com is
described in Sect. 3. In Sect. 4, we present our findings with respect to the usage
of BPMN on GitHub.com and the effectiveness of the analysis tool BPMNspector.
Sect. 5 contains a discussion of related work. We conclude the paper in Sect. 6.

2 BPMN and Static Process Analysis

In the following, we shortly sketch the use of the BPMN process modeling
language for business processes and provide a brief overview of the several static
analysis tools, which are available for helping process designers in identifying
modeling flaws and errors prior to process deployment and execution.

The Business Process Model and Notation (BPMN) [4] defines a industrial
standard for the IT support of business processes and business process manage-
ment. The language in its current version 2.0 provides a notation for defining
the central artifact of a business process lifecycle [8], i.e., the process model,
supporting process modeling on a conceptual level as conduced by domain experts
as well as the fully-automated deployment and execution of implemented business
process models in process engines like Activiti1, Camunda2, or jBPM 3. To this
end, the BPMN standard not only includes a graphical modeling notation, but
1 https://www.activiti.org
2 https://camunda.com
3 https://www.jbpm.org

https://www.activiti.org
https://camunda.com
https://www.jbpm.org


<definitions ...
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL">

<process id="process">
<startEvent id="start">

<outgoing>flow1</outgoing>
</startEvent>
<sequenceFlow id="flow1" sourceRef="start"

targetRef="task" />
<userTask id="task" name="theTask">

<incoming>flow1</incoming>
<outgoing>flow2</outgoing>

</userTask>
<endEvent id="end">

<incoming>flow2</incoming>
</endEvent>
<sequenceFlow id="flow2" sourceRef="task"

targetRef="end" />
</process>

</definitions>

Fig. 1. Graphical modeling notation and process interchange format of BPMN.

also a machine-processable serialization format for process model interchange
and the natural language definition of an execution semantics. In Fig. 1, a simple
sample BPMN process model, consisting of a single human task, is shown in its
graphical modeling notation as well as in the XML-based interchange format.

Process modeling with BPMN is known to be error-prone, in particular when it
comes to executable business processes [9,10,22]. This is due to deliberate decisions
on the language’s design, e.g., unstructured vs structured process modeling and
implied control flow errors, and to the complexity of applications and underlying
technologies [29]. To illustrate the latter, consider an executable process package
deployed on a process engine like Camunda, which not only includes the BPMN
process model, but also XML schema files, Groovy or JavaScript code snippets,
Java classes, and various configuration scripts. Accordingly, there exists a large
body of work on process analysis tools, both from industry and academic research,
to help process designers to detect modeling errors as early as possible.

Proposed tools span the whole spectrum of static analysis, i.e., automated
rule-based inspection of process models for finding modeling errors or flaws.
Linting tools, like bpmnlint4 or BPMNspector [10] can be used to check business
process models for suspicious and non-portable modeling styles, mostly on the
syntactical level. More elaborate tools allow for checking conformance to best
practices, e.g., Signavio5, or identifying control and data flow anomalies, e.g.,
deadlocks [31], processing of undefined data [29], and support even more specific
analysis problems like data leak detection [13,16]. Eventually, full-fledged model
checking and verification tools can prove the compliance of a process model to
certain desirable properties, e.g., proper termination known as soundness [9], by
mapping the process model to a formalism like Petri nets [7,14]. Recapitulating
the tool evaluations in the literature, we observe the frequent use of case studies,
where the most thorough evaluation in [9] comprises 735 process models.
4 https://github.com/bpmn-io/bpmnlint
5 https://www.signavio.com

https://github.com/bpmn-io/bpmnlint
https://www.signavio.com


3 Mining Software Repositories for BPMN

In this section, we introduce the approach of mining software repositories and
discuss the several ways for retrieving software artifacts and metadata from
software repositories hosted on GitHub.com. Based upon this, we present our
implemented mining process for creating a corpus of BPMN processes models.

Systematically mining software repositories can be seen as a traditional data
mining task, including steps for defining a research objective, selecting and
extracting data, data preparation and cleansing, data analysis and eventually
interpreting the analysis results. The most important data sources for repository
mining are public software forges, where in particular GitHub.com plays a promi-
nent role due to the sheer number of its hosted repositories. There are several
ways for extracting data from software repositories on GitHub.com:

GitHub API. GitHub.com provides the public REST-based GitHub API v3 6,
which allows for extracting repository metadata, e.g., specific commits, number
of repository contributors or main programming language, as well as information
on the repository structure and the repository contents. The API can be accessed
without or with authentication, supporting up to 60 or 5.000 queries per hour,
respectively. Repository mining using the API is therefore often implemented using
authenticated access with a smaller or larger set of different user credentials [11,12].
Note that there also exists the GitHub API v4 7, which allows for queries based
on the GraphQL language. There apply similar rate limits.

GHTorrent. The GHTorrent8 project provides an alternative way for extracting
repository data from GitHub.com, thereby avoiding any rate limits. It basically
consists of two databases, one for mirroring the stream of events (push events,
pull requests, etc.) for software repositories on GitHub.com and one for repository
metadata, populated by interlinking and analyzing the events’ contents [11]. The
resulting databases can be accessed via web services or by using the provided
dumps to set up local database instances. However, as only repository metadata
and events are included, neither the repository structure nor the repository
contents can be directly accessed. As a project similar in nature, GHArchive9

provides a database with the repositories raw event data only.

Google BigQuery. In recent years, several datasets containing data on GitHub.com
software repositories are provided via Google’s BigQuery10 service, including
GHTorrent and GHArchive. There is as well a dedicated dataset11 for GitHub.com
including repository contents for a significant fraction of its repositories, though
not all. Using the BigQuery service allows for querying massive datasets like the
6 https://developer.github.com/v3
7 https://developer.github.com/v4
8 http://ghtorrent.org
9 http://gharchive.org

10 https://cloud.google.com/bigquery
11 https://cloud.google.com/bigquery/public-data (table github repos.contents)

https://developer.github.com/v3
https://developer.github.com/v4
http://ghtorrent.org
http://gharchive.org
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery/public-data


Repository
Selection

GHTorrent GitHub

Data
Extraction

Filtering and
Cleansing

GitHub
API v3

Analysis

1 2 3 4

BPMN
Spector

Fig. 2. Schematic illustration of the mining process.

above-mentioned with SQL queries in a scalable manner. However, as in case of
GitHub API v3, rate limits apply. Notably, 1TB per month can be accessed freely,
which is instantly consumed when querying on tables with repository contents.

Web Scraping and Git. Since GitHub.com implements a web interface for man-
aging and accessing hosted software repositories, conventional web scraping can
also be used for extracting repository data out of the websites’ HTML code.
Eventually, knowing the URL of a software repository allows for cloning the
repository using the standard git tooling. However, as cloning a repository is
time-consuming due to downloading its complete history and all its contents, this
may not scale in the presence of thousands or even millions of repositories.

Our approach of mining software repositories for BPMN 2.0 process mod-
els uses a combination of the methods discussed above, inspired by previ-
ous work on the creation of the Lindholmen dataset with UML models from
GitHub.com [12,28]. The approach consists of four steps, which we conducted in
the beginning of 2019, see also Fig. 2: (1) Get a list of repositories hosted on
GitHub.com and select a proper subset thereof, (2) Find and extract potential
BPMN process model artifacts as well as associated metadata, (3) Examine the
artifacts to identify BPMN 2.0 process models and clean up the resulting data, (4)
Analyze the resulting set of process models for answering our research questions:

Repository Selection. In the first step, we used the GHTorrent database
to get a list of all software repositories on GitHub.com. To this end, a local
copy of the MySQL database was setup downloading the most recent database
dump (mysql-2018-11-01, 85GB). Querying table projects allowed for randomly
selecting a set of 6,163,217 repositories, which comprises 10% of all non-forked
and non-deleted repositories on GitHub.com in November 2018.

Data Extraction. All 6,163,217 repositories have been examined for BPMN
process model artifacts, using three steps for each repository. Similar to [12],
the default branch of the repository (master in most cases, though not always)



and its latest commit is identified first, using up to three queries to the GitHub
API. Afterwards, the repository structure is accessed for this commit, in order to
generate the list of files for the repository, again querying the GitHub API. We
reused and adapted the Python scripts12 from [12,28] for implementing this step.
Note that alone this step would require more than 100 days for our repository
subset using the credentials of a single user due to the rate limit imposed by
the GitHub API. In order to increase throughput, we therefore conducted data
extraction using several user credentials, which were donated, in parallel. However,
this step was still the bottleneck of our approach and lasted 31 days.

Based on the resulting lists, we then scanned for potential BPMN process
model artifacts. Having tried several heuristics, we opted for simply including
all files with the term "bpmn" in their name or file extension. As a result, we
found 1,251 repositories with at least one potential artifact and overall 21,306
potential artifacts. Each of the identified repositories was then cloned locally
with the standard git tooling. Metadata was extracted from the downloaded
repositories using Code Maat13. Information about the repository, its metadata
and the identified artifacts were stored in a relational database for later analysis.

Filtering and Cleansing. We expect to find a wide range of file formats,
including images with graphical process models and source code of various pro-
gramming languages as included in process packages deployed on process engines.
Nonetheless, BPMN defines a standard XML-based interchange format, and most
tools support to import and export using this format. For our corpus of BPMN
process models, we focused on this format and filtered for XML files contain-
ing a schema reference matching the BPMN 2.0 serialization standard [4], i.e.,
http://www.omg.org/spec/BPMN/20100524/MODEL. Furthermore, we looked for
duplicates using the tooling Duplicate Files Finder14 and only kept distinct files
in the resulting corpus of 8,904 BPMN process models.

Analysis. In the final step, we analyzed the retrieved metadata and the identified
BPMN process models. The former analysis was mainly implemented by querying
a relational database. For the latter analysis, we processed the models and ran
the tool BPMNspector15 [10] for them. The tool’s reports were fed back into the
database and afterwards analyzed and aggregated using SQL queries.

4 Results and Discussion

The results of our mining process are presented and discussed in this section. In
general, the generated corpus of BPMN process models allows for addressing a
multitude of research questions and for validating various hypotheses. Due to
space constraints, we here focus on the following research questions:
12 https://github.com/LibreSoftTeam/2016-uml-miner
13 https://github.com/adamtornhill/code-maat
14 http://doubles.sourceforge.net
15 https://github.com/uniba-dsg/BPMNspector

https://github.com/LibreSoftTeam/2016-uml-miner
https://github.com/adamtornhill/code-maat
http://doubles.sourceforge.net
https://github.com/uniba-dsg/BPMNspector


Research Question 1: Are there projects which use BPMN on GitHub.com?
This first questions is used to study the feasibility of the mining repositories
approach. Obviously, if there are no BPMN models on GitHub.com, the
approach can not be used for empirical studies on BPMN. An answer to this
question also helps in understanding BPMN’s state of practice on GitHub.com.

Research Question 2: How diverse is the corpus of BPMN process models?
As mentioned in Sect. 1, the generalizability of an empirical study is influenced
by the availability of heterogeneous and comprehensive data. We here do not
address this question directly. Instead, we analyze indicators as the number
of original models, the geographical origin of repositories, the models’ age,
size, and frequency of changes. Deeper analysis is prospect to future work.

Research Question 3 : How common are violations of BPMN’s syntax and
semantic rules as identified by BPMNspector?
With this question, we want to understand, if there is the need for tools
like BPMNspector with respect to the compliance of process models to the
BPMN standard. An answer to this question could guide the development
of process modeling tools, e.g., through the integration of respective linting
tools, or help in classifying certain rules of the BPMN language as obsolete.

The corpus of BPMN process models and more information, including the list of
identified repositories and their metadata, is available online [15]16. The scripts
used to implement the mining process can be obtained from the same source.

4.1 Usage of BPMN on GitHub.com

We have found 21,306 potential BPMN process model artifacts, included in
1,251 repositories on GitHub.com, which represents a 0.02% share of the overall
6,163,217 analyzed software repositories. Filtering for file formats, we identified
serialized BPMN 2.0 process models to be the largest fraction among all the
artifacts, counting for more than two thirds as shown in the following table:

File XML XML Images Other
format (BPMN 2.0) (other) (*.png, *.jpg, etc.) (*.jar, *js, etc.)

Number of 16,907 384 1,635 2,380
artifacts (79.3%) (1.8%) (7.7%) (11.2%)

When just considering the serialized BPMN 2.0 process models, the identified
artifacts where distributed over 928 software repositories.

While we apparently used a very simple heuristic for identifying BPMN
process models and therefore may have missed many BPMN models hosted on
GitHub.com, we nevertheless found a substantial number of artifacts and also of
serialized BPMN 2.0 files. The resulting number of BPMN process models clearly
exceeds the numbers used in case studies (compare with Sect. 2), but is smaller
than the numbers reported for UML models (21,316 in [12] and 93,596 in [28]).
The share of 0.02% of repositories with at least one potential BPMN process
16 https://github.com/ViktorStefanko/BPMN_Crawler

https://github.com/ViktorStefanko/BPMN_Crawler


model artifact is also smaller than the share of 2.8% reported for UML in [12].
The results can be well explained by UML being a family of general-purpose
modeling languages, while BPMN is a domain-specific modeling language. Note
that UML is also older than BPMN. The reports on UML also present a larger
fraction of images among the identified UML models (51.7% in [12] and 61.8%
in [28]), which may be reasoned by their more permissive heuristic to consider
files with terms like "diagram" or "design" in their name as UML models.

Answer to Research Question 1: There have been 1,251 repositories
with at least one potential BPMN process model artifact, containing
21,306 potential artifacts and 16,907 serialized BPMN 2.0 models.

4.2 Properties of Identified BPMN Artifacts

The next question concerns the diversity of identified BPMN process models. A
first hint for an answer is given by the different types of files. As already noted
above, found file formats range from XML, over image formats, to source code of
programming languages. Assuming that images are used for conceptual models
and source code may indicate executable process models, the formats reflect the
different uses of BPMN along the business process lifecycle.

Age. We also looked at the age of the identified potential BPMN process model
artifacts, i.e., the time passed since their last modification in a repository. Unsur-
prisingly, most artifacts are recent. More than each third artifact was modified
in the last year at the time of conducting the study in the beginning of 2019:

Age in years < 1 1 2 3 4 > 4 n.a.
Number of 7, 656 5, 154 3, 291 2, 344 712 2, 079 70
artifacts (36.0%) (24.2%) (15.4%) (11.0%) (3.3%) (9.8%) (0.3%)

We though sporadically found artifacts older than 8 years, which thus do not
reference the BPMN 2.0 standard. The results can be well explained by the
exponential growth of the number of software repositories on GitHub.com.

Updates. The number of updates, i.e., commits implying changes on a given
artifact, excluding artifact creation, was also analyzed. We found that 16,285 or
over two third of the potential BPMN process model artifacts are never updated.
For the remaining artifacts, the number of updates is low, such that only 7.6%
of the artifacts are updated more than once, as shown in the following table:

Number of updates 0 1 2 3 > 3 n.a.
Number of 16, 285 3, 378 620 572 427 24
artifacts (76.4%) (15.9%) (2.9%) (2.7%) (2.0%) (0.1%)

BPMN process models thus seem to be rather static contents of software reposi-
tories on GitHub.com. These results are in line with the findings for UML in [12],
where they found that only 26% of the UML models are updated at least once.



Geographical Location. Information on the geographical distribution of potential
BPMN process model artifacts was investigated using location information for
contributors to a software repository, if available. Unfortunately, we were only
able to retrieve the locations of 627 contributors for 395 repositories, or 31.6% of
all analyzed 1,251 repositories. Furthermore, a contributor of a repository may
not necessary contribute to a process model. However, our findings, as shown
below, at least indicate that the artifacts originate from several regions:

Location China Germany USA Switzerland France Other
Number of 92 90 90 24 22 309

contributors (14.7%) (14.4%) (14.4%) (3.8%) (3.5%) (49.2%)

Duplicates. Furthermore, we analyzed whether the identified potential BPMN
process model artifacts are distinct or if there are any duplicates. We found
surprisingly many duplicates, almost one half of all artifacts are duplicates of
other artifacts, either in the same or in another repository, lowering the number
of distinct artifacts to 10,707 or 50.3%. In the following table, we show how often
duplicates occur among the identified BPMN process model artifacts:

Number of occurences 1 2 3 4 5 6 7 8 > 8
Number of artifacts 8, 030 852 571 193 110 219 272 342 118

As can be seen, all duplicates can be traced back to 2,677 unique artifacts or
12.6% of all artifacts. In the majority of cases, there are no more than 5 duplicates
of a unique artifact, though we also found artifacts with up to 89 duplicates. Just
considering serialized BPMN 2.0 process models, we made the same observation,
with 8,904 distinct process models and 8,003 duplicates thereof. Why there are
so many duplicates is an open question. Possible reasons may be found in the
reuse of process models, which are part of platforms like the Camunda process
engine, in several software repositories, or repositories that are manually derived
from other software repositories avoiding GitHub.com’s forking mechanism [12].

Size. Analyzing process model size was conducted for the 8,904 distinct process
models in the BPMN 2.0 serialization format. The XML-based format includes
the XML node <process>, which defines a process’ logical structure [4]. To get
a simple measure for the size of a model, we thus simply counted the number of
children elements for the <process> node. As can be seen in the following table,
the corpus of BPMN 2.0 process models includes a range of different model sizes:

Number of nodes 1 − 10 11 − 20 21 − 50 51 − 100 > 100 n.a.
Number of 1, 881 2, 714 2, 346 978 878 107

artifacts (21.1%) (30.5%) (26.3%) (11.0%) (9.9%) (1.2%)

While half of the process models are small and contain no more than 20 XML
element nodes, we find a substantial share of medium-sized models. There are also
larger models in the corpus. Notably, 57 process models contain more than 1,000
nodes. The largest model even contains 4,096 nodes. In [20], they report similar
results for BPMN process models collected by the BPM Academic Initiative. The



average number of nodes there is 16 and the largest model contains 156 nodes.
Note that the numbers can though not be directly compared, since we count
element nodes in the XML serialization format of a process, which is larger than
the sum of its activities and gateways reported in [20].

Answer to Research Question 2: While the majority of identified
artifacts are static and recent contents of a software repository, we
also found artifacts which are older than 8 years, updated more than
once and come from different geographical regions. At least half of
the potential BPMN process model artifacts and half of the serialized
process models are distinct, yielding a corpus of 8,904 unique BPMN
2.0 process models. The corpus contains models of various sizes.

4.3 BPMNspector Analysis Results

The third research question concerns the frequency of violations against BPMN’s
syntax and semantic rules, as reported when applying the linter BPMNspector to
the 8,904 BPMN 2.0 process models. BPMNspector has been designed to check
models for compliance with the BPMN standard [4]. Checks include BPMN’s
schema validation, referential integrity, and more sophisticated constraints [10].
Violations against the rules imposed by the standard, on the one hand, impede
the portability of process models between different tools and vendors and, on the
other hand, can cause unexpected behavior when process models are executed [21].

Results of the analysis revealed issues for almost all the process models. While
we were not able to run the analysis for 57 process models, we identified only
1,471 process models or 16.5% of all 8,904 models to be compliant with respect
to the standard. All other 7,376 models, a share of 82,8%, were analyzed to have
at least one violation of rules of the BPMN standard. Overall, BPMNspector
reported 150,168 rule violations for our corpus of BPMN 2.0 process models. We
also took a closer look into the reported issues and found a large fraction to
be violations of rules Ext.023, Ext.101 and Ext.107, as can be seen in the
following tables, showing the Top-5 rule violations with respect to the number of
models with at least one violation and the absolute number of violations:

Rule Ext.101 Ext.023 Ext.107 Ext.150 Ext.151
Models with 5, 299 5, 206 5, 112 1, 846 1, 796

violation (59.5%) (58.5%) (57.4%) (20.7%) (20.2%)

Rule Ext.023 XsdCheck Ext.107 Ext.092 Ext.101
Absolute 58, 015 43, 516 7, 398 6, 788 6, 699
Number (38.6%) (29.0%) (4.9%) (4.5%) (4.5%)

Rules Ext.023, Ext.101, Ext.107 refer to the non-compliant definition of
sequence flows in the BPMN 2.0 serialization format17. According to the standard,
a sequence flow must be redundantly defined using a node <sequenceFlow> and
17 http://bpmnspector.org/ConstraintList_EXT.html

http://bpmnspector.org/ConstraintList_EXT.html


nodes <incoming> and <outgoing> for the flow’s source and target nodes, respec-
tively (also compare with Fig. 1). If one is missing, BPMNspector reports an issue.
The other shown rules denote violations of BPMN’s XML schema (XsdCheck),
missing or ambiguous sources of data associations (Ext.092), or missing incom-
ing sequence flow (Ext.150) and missing outgoing sequence flow (Ext.151).
We additionally repaired violations of rules Ext.023, Ext.101, Ext.107 in
the process models using a tool18 provided alongside with BPMNspector. As a
result, the number of models with at least one rule violation shrank to 4,106, still
constituting a share of 46.1%, and the absolute number of violations to 64,652.

The authors of BPMNspector found similar results when evaluating their tool
using a case study of 66 BPMN process models. Though, they reported only a
share of 42 models or 63.6% to be non-compliant to the standard’s rules. They
also identified the largest fraction of violations referring to the wrong use of
sequence flows. The high frequency of rule violations can be reasoned by missing
tool support, as discussed in [21]. However, as most process engines tolerate the
violations reported by BPMNspector, the results may also indicate that at least
some rules of the BPMN standard are obsolete [10]. In summary, our corpus
of BPMN process models confirmed the results of the case study in [10] and
therefore provided further empirical evidence for the usefulness of BPMNspector.

Answer to Research Question 3: Violations of BPMN’s syntax and
semantic rules as reported by BPMNspector are frequent in the cor-
pus of BPMN process models, affecting 82,8% of the models.

5 Related Work

Most related to our work is the creation and research on the Lindholmen dataset19,
which was also the inspiration for our approach. The creators of the dataset
describe the used mining software repositories approach [12], introduce the
dataset [28], and report on insights gained about the use of UML on GitHub.com
by analyzing the dataset, e.g., in [5,18]. Their main research question was though
on the usage of UML in conventional software development, while we were
mainly interested in using our corpus to validate analysis tools for BPMN
process modeling. The Lindholmen dataset is considerably larger than our corpus,
currently counting 93,596 UML models [28]. Note again, that UML is a family of
general-purpose modeling languages while BPMN is one domain-specific modeling
language. They also put more effort into the identification of graphical models,
using machine learning in order to identify images which contain UML. Due to our
research objective, we were more interested in BPMN’s XML-based serialization
format. The authors are not aware of any other work, which systematically mines
software repositories to create a corpus of BPMN business process models. There
though exists approaches in BPM research, which mine software repositories for
18 https://github.com/matthiasgeiger/BPMNspector-fixSeqFlow
19 http://oss.models-db.com/

https://github.com/matthiasgeiger/BPMNspector-fixSeqFlow
http://oss.models-db.com/


other purposes. The authors in [3] argue to use repository metadata to mine
software development processes. According to their approach, metadata can be
for example used to create GANTT charts based on the contributors activities [2]
or to classify repository contributors into roles, e.g., developers or testers [1].

As mentioned in Sect. 1, most empirical research on BPMN is based on
experiments, surveys or case studies. Notable tool evaluations, going beyond the
usual number of included process models, are [9] with 735 customized UML process
models and [22] with 585 BPMN models. There have also been several community
efforts to create open model collections [17]. For business process modeling, the
BPM Academic Initiative provides a platform to create and share process models
for academic teaching. The authors report on 1,903 different process models in [20],
including BPMN, created by 4,500 users and spanning different model size and
complexity. The recent number of models is 29,285, but data collection has stopped
and the focus is on conceptual business process models [17]. Also note the need
for executable process models and their difference to conceptual models [23]. A
similar platform was presented by the name RePROSitory [6], currently including
174 business process models. Another initiative is the BenchFlow project [30],
where process models were collected from industrial partners and used for process
engine benchmarking. The authors claim to have collected 8,363 models, with a
share of 64% of BPMN [30]. Unfortunately, the collection is not public.

Another line of empirical research focuses on the quality of business process
models and modeling practices [24]. In [25], process metrics like modularity or
complexity are used for predicting modeling errors based on the analysis of
a collection of 2000 conceptual models. Experiments where used in [26,27] to
investigate on modeling styles in order to better understand and support process
designers. More recent work investigated on best practices for BPMN modeling
by inspecting practices in industrial process models [22]. Analyzing similarities
and differences of these analyses and our corpus is a prospect of future work.

6 Conclusion

In this paper, we describe our efforts to systematically extract a corpus of BPMN
business process models from software repositories hosted on GitHub.com. Mining
10% of all repositories yielded 21,306 potential BPMN process model artifacts,
originating from 1,251 repositories, which after further filtering and cleansing
constituted a corpus of 8,904 distinct serialized BPMN 2.0 process models. The
corpus can be used to answer various empirical research questions on the use of
business process models. We here demonstrate, how to complement an existing
case study for the linting tool BPMNspector with an evaluation on a much larger
scale. Doing so, we can confirm results on the frequency of violations of the
BPMN standard, thus showing the need for analysis tools like BPMNspector.

Threats to Validity. There are a number of threats that affect the validity
of our approach. For a general discussion on the threats of mining software
repositories, we refer the reader to [19]. Process modeling in software repositories



may not resemble industrial practice and our results may thus not generalize
beyond open software development and academia [19,23]. This is a common threat
to external validity, which we also find for other studies, e.g. [20]. Analyzing
the transferability of empirical results about software repositories and academia
to an industrial context is an open research question. We therefore advocate
the complimentary use of our approach with other empirical research methods.
Furthermore, we just mined GitHub.com and did not consider other software
forges. Since GitHub.com counts the largest number of hosted repositories, we
though believe that our results apply for most open software development. Due
to the heuristics used for the identification of BPMN models, we also have missed
process models and thus may underestimate certain effects [12], e.g., model
duplication or the frequency of graphical process models. We therefore only
provide a descriptive analysis of the use of BPMN on GitHub.com and do not use
our corpus for inferential statistics and prediction. Finally, due to GitHub.com
being a dynamic environment, repositories may change or be removed over time.

References

1. Agrawal, K., Aschauer, M., Thonhofer, T., Bala, S., Rogge-Solti, A., Tomsich, N.:
Resource Classification from Version Control System Logs. In: EDOC Workshops
2016. pp. 1–10. IEEE (2016)

2. Bala, S., Cabanillas, C., Mendling, J., Rogge-Solti, A., Polleres, A.: Mining Project-
Oriented Business Processes. In: BPM 2015. pp. 425–440. Springer (2015)

3. Bala, S., Mendling, J.: Monitoring the Software Development Process with Process
Mining. In: BMSD 2018. pp. 432–442. Springer (2018)

4. Business Process Model and Notation (BPMN), Version 2.0. Object Management
Group (OMG) Standard (2011), https://www.omg.org/spec/BPMN/2.0/PDF

5. Chaudron, M.R.V., Fernandes-Saez, A., Hebig, R., Ho-Quang, T., Jolak, R.: Diver-
sity in UML Modeling Explained: Observations, Classifications and Theorizations.
In: SOFSEM 2018. pp. 47–66. Springer (2018)

6. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: RePROSitory: a Repository
Platform for Sharing Business PROcess modelS. In: BPM PhD/Demos 2019. pp.
149–153. CEUR (2019)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. & Softw. Techn. 50(12), 1281–1294 (2008)

8. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, 2 edn. (2018)

9. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
BPM 2009. pp. 278–293. Springer (2009)

10. Geiger, M., Neugebauer, P., Vorndran, A.: Automatic Standard Compliance Assess-
ment of BPMN 2.0 Process Models. In: ZEUS 2017. pp. 4–10. CEUR (2017)

11. Gousios, G.: The GHTorent dataset and tool suite. In: MSR 2013. pp. 233–236.
IEEE (2013)

12. Hebig, R., Quang, T.H., Chaudron, M., Robles, G., Fernandez, M.A.: The Quest
for Open Source Projects that use UML: Mining GitHub. In: MODELS 2016. pp.
173–183. ACM (2016)

https://www.omg.org/spec/BPMN/2.0/PDF


13. Heinze, T.S., Amme, W., Moser, S.: Process Restructuring in the Presence of
Message-Dependent Variables. In: ICSOC 2010 Workshops. pp. 121–132 (2010)

14. Heinze, T.S., Amme, W., Moser, S.: Static analysis and process model transformation
for an advanced business process to Petri net mapping. Softw.: Pract. & Exp. 48(1),
161–195 (2018)

15. Heinze, T.S., Stefanko, V., Amme, W.: Mining von BPMN-Prozessartefakten auf
GitHub. In: KPS 2019. pp. 111–120 (2019), https://www.hb.dhbw-stuttgart.de/
kps2019/kps2019_Tagungsband.pdf

16. Heinze, T.S., Türker, J.: Certified Information Flow Analysis of Service Implemen-
tations. In: SOCA 2018. pp. 177–184. IEEE (2018)

17. Ho-Quang, T., Chaudron, M.R.V., Robles, G., Herwanto, G.B.: Towards an In-
frastructure for Empirical Research into Software Architecture: Challenges and
Directions. In: ECASE@ICSE 2019. pp. 34–41. IEEE (2019)

18. Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M.R.V., Fernandez, M.A.: Practices
and Perceptions of UML Use in Open Source Projects. In: ICSE-SEIP 2017. pp.
203–212. IEEE (2017)

19. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.E.: The Promises and Perils of Mining GitHub. In: MSR 2014. pp. 92–101. ACM
(2014)

20. Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards Understanding Process
Modeling – The Case of the BPM Academic Initiative. In: BPMN 2011 Workshops.
pp. 44–58. Springer (2011)

21. Lenhard, J., Ferme, V., Harrer, S., Geiger, M., Pautasso, C.: Lessons Learned
from Evaluating Workflow Management Systems. In: ICSOC 2017 Workshops. pp.
215–227. Springer (2017)

22. Leopold, H., Mendling, J., Günther, O.: Learning from Quality Issues of BPMN
Models from Industry. IEEE Software 33(4), 26–33 (2016)

23. Lübke, D., Pautasso, C.: Empirical Research in Executable Process Models. In:
Empirical Studies on the Development of Executable Business Processes, pp. 3–12.
Springer (2019)

24. Mendling, J.: Empirical Studies in Process Model Verification. In: ToPNoC II, pp.
208–224. Springer (2009)

25. Mendling, J., Sánchez-González, L., Garćıa, F., Rosa, M.L.: Thresholds for error
probability measures of business process models. J. Syst. Softw. 85(5), 1188–1197
(2012)

26. Pinggera, J., Soffer, P., Fahland, D., Weidlich, M., Zugal, S., Weber, B., Reijers,
H.A., Mendling, J.: Styles in business process modeling: an exploration and a model.
Software and Systems Modeling 14(3), 1055–1080 (2015)

27. Pinggera, J., Zugal, S., Weidlich, M., Fahland, D., Weber, B., Mendling, J., Reijers,
H.A.: Tracing the Process of Process Modeling with Modeling Phase Diagrams. In:
BPM 2011 Workshops. pp. 370–382. Springer (2011)

28. Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M., Fernandez, M.A.: An extensive
dataset of UML models in GitHub. In: MSR 2017. pp. 519–522. IEEE (2017)

29. Schneid, K., Usener, C.A., Thöne, S., Kuchen, H., Tophinke, C.: Static analysis of
BPMN-based process-driven applications. In: SAC 2019. pp. 66–74. ACM (2019)

30. Skouradaki, M., Roller, D., Leymann, F., Ferme, V., Pautasso, C.: On the Road to
Benchmarking BPMN 2.0 Workflow Engines. In: ICPE 2015. pp. 301–304. ACM
(2015)

31. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: ICSOC
2007. pp. 43–55. Springer (2007)

https://www.hb.dhbw-stuttgart.de/kps2019/kps2019_Tagungsband.pdf
https://www.hb.dhbw-stuttgart.de/kps2019/kps2019_Tagungsband.pdf

