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ABSTRACT

In Paper I [O. Coquand and M. Sperl, J. Chem. Phys. 152, 124112 (2020)], we derived analytical expressions for the structure factor of the
square-shoulder potential in a perturbative way around the high- and low-temperature regimes. Here, various physical properties of these
solutions are derived. In particular, we investigate the large wave number sector and relate it to the contact values of the pair-correlation

function. Then, the thermoelastic properties of the square-shoulder fluids are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142662

I. INTRODUCTION

The square-shoulder potential is one of the simplest purely
repulsive potentials with a hard core. It can be expressed as

+o00, 0<r<R
U(r)=4 Uy, R<r<AR (1)
0, AR,

where R is the particle’s diameter and A > 1.

Such a potential shares with the hard-sphere potential the prop-
erties of being short-range and fully repulsive, and it has two natural
hard-sphere limits (U << kgT and Uy > kpT), but the presence of an
additional length scale significantly enriches the properties of such a
system compared to the simple hard-sphere one. Indeed, beyond its
simplicity that allows easier theoretical computations, a number of
studies have demonstrated that the square-shoulder potential and its
smoother counterparts—the so-called core-softened potentials—can
be of real physical significance in various physical contexts.'

First, it possesses a rich crystalline phase diagram,1 1,12,18,22,29,35
which presents isostructural phase transitions,”” allows for various
types of crystal phases with high sensitivity to the value of 1,”""* and
has an even more involved structure such as stripe phases””” or qua-
sicrystals.”"" Such behaviors are not purely theoretical and can be
observed in a number of real systems such as cesium or cerium,’

nanocrystals,” or colloids. Some unusual behaviors have also been
reported in the amorphous solid phase.'”"”

Second, the fluid phase of repulsive potentials with two length
scales is known to reproduce some water-like anomalies, 147172022
such as negative thermal expansion coefficient, re-entrant melting at
high pressures, or anomalous specific heat upon cooling (see Ref. 16
and the references therein). While the need for an attractive part in
the potential to reproduce a genuine liquid-liquid phase transition is
still debated,'”"” it is thus fair to claim that the square-shoulder fluid
is a simple toy-model that displays a number of exotic properties.

Moreover, as explained in Ref. 35, the success of the square-
shoulder potential is not only due to its simplicity but also to the
universality of some of the phenomena it describes: although such
a discontinuous potential is expected to be a poor description of
many natural phenomena at the microscopic scale, it seems to cap-
ture most of the structural properties of the soft repulsive potentials,
as long as the density of the fluid is low enough to ensure that
multiple overlaps are scarce (note that A plays a key role here). In
particular, the presence of a hump in the free energy of the square-
shoulder system can explain the richness of its crystalline phase
diagram.”

Despite all these, very little is known about structural proper-
ties of the square-shoulder fluid from a theoretical point of view.
In Paper I,' we derived temperature expansions for the square-
shoulder structure factor S(q) [respectively, organized in powers of
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I' = Uo/kgT at high temperatures and p = exp(-T') at low tempera-
tures]. In this paper, we discuss some of the physical properties of the
square-shoulder fluid that can be deduced from these expansions.
First, we focus on the large-g sector of the structure factor, which
is related to the discontinuities of the pair-correlation function g(r)
and thus to the equation of state (from the pressure pathway ). In
particular, we show that such discontinuities can be read directly
from the smooth asymptotic form of S(q), which may be relevant
when one wants to extract the discontinuities from a set of numer-
ical data, for example, where the very sharp variations and decrease
in g(r) can make it a quite delicate task. Then, we discuss the prop-
erties of the equations of state that can be built from S(g) in both
regimes and which give access to the thermoelastic properties of the
fluid. The fact that we can write them analytically allows us to assess
their precision in the low-density regime by comparing them to the
virial expansion.

This paper is organized as follows: Section IT discusses the large-
q asymptotic behavior of the structure factor. Section III discusses
the equations of state. Finally, Sec. IV concludes the paper.

Il. LARGE-q BEHAVIOR

The large-q sector of the structure factor contains important
information about the physics of the square-shoulder fluid. First, it
is related to the sharpest variations of g(r), such as its discontinuities,
which are sufficient to derive the pressure equation of state of the
fluid,””

g R

; T [s®) + X (R ~g(R))]. @

Second, there is evidence that the large-g behavior of the structure
factor could be related to the dynamics of arrest, that is, the liquid—
glass and glass—glass transitions in such systems."”

In this section, we decipher part of the information contained
in the large-q sector of the structure factor of the square-shoulder
fluid.

A. Toy model

First, recall that in the hard-sphere case, the large-q behavior is
given by

S(q) ~ 1+p‘*Z—2RB(<p> cos(qR), 3)

q—+oo
where B(¢) = g(R") is the contact value, given by

3 2+¢
2(1-¢)?

within the Percus-Yevick approximation.

In order to investigate what type of behavior is to be expected
for the square-shoulder potential, we propose to study the follow-
ing toy-model. Suppose that the pair-correlation function g(r) of the
system under investigation can be split as follows:

B(¢) “)

g(r) =go(r) +&u(r), 5)
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where go is the pair correlation of a reference system, which is
supposed to be known, and g; has the following form:

g1(r) =08 0(ro—1) e ol (6)

the function 6 being the Heaviside step function. The unknown
added part consists of a discontinuous jump at r = ro, whose value
is determined by A,. The jump value is then exponentially damped,
with a characteristic length I. The typical shape of such a function is
represented in Fig. 1. Note that we do not suppose that g is a small
perturbation term, and the only hypothesis we make is that A, is
compatible with the constraint that g(r) > 0.
The corresponding structure factor is thus

S(@)=1+p [ dr(g() =D =Su(@) +a8i(@. )

where So(q) is the structure factor of the reference system. The
remainder is then given by

8si(g)=p [ dra(ne™

= %/Owo dugl(g)usin(u). (8)

The ansatz equation (6) can then be used to get an explicit expression
for the integral,

+oo
AS1(q) = % A, f due” Oy in(u), 9)

Uy

where we have defined the dimensionless quantities 1y = q ro and
I, = q I Finally, the formula

b
/; e™usin(u) du = [{(ufzz)z - rlazucos(u))
b
1- 0(2 o . au
+ (7(1 ) s u) sm(u)}e ]u (10)
with the replacement & — — 1/I,, can be applied to yield the final
result,

4mp I 28
ASi(q) = —L A T
1(q) 7 g[(lﬁ T 1) cos(up)

L, E(1-B)\ .
+(1+l§ up + (f+l§)2))sm(uo)], (11)

1.0
g1(r)
0.8
0.6
0.4

0.2

1 2 3 4 5 6 77

FIG. 1. Typical shape of the function g4 given in Eq. (6), represented here for
ro=1,Ag=1and/=1.
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corresponding to the following large-q behavior:

4
qzro Ay cos(qro) (12)

ASi(q) ~ p
q—>+oo
compared with Eq. (3).

All in all, the addition of an evanescent 8-type discontinuity to
the pair correlation function generates a large-q leading contribu-
tion with a form very similar to the hard-sphere one, i.e., cos(g)/q.
The amplitude of the oscillations is determined both by the jump
value A, = g(rg) — g(ry) and the characteristic length at which
the jumps show up ro, which also fixes the frequency of the oscil-
lations. The result is independent of the damping length [, which
indicates that the precise form of the damping function is of little
importance in our reasoning, which may thus be generalized to any
kind of sufficiently fast decreasing damping function.

B. Case of the temperature expansions

Let us begin with the low-temperature case. From the definition

of Q,

S(q) = [Q()Q(-9)] ™" (13)

and its explicit temperature expansion (Eqs. 19-22 of Ref. 1), the
large-g structure of S can be worked out. As can be anticipated from
the asymptotic behavior in the hard-sphere case [Eq. (3)], the inter-
esting behavior is captured by the Fourier transform of the direct
correlation function ¢g, related to S(g) by

1
1-pecg

In the low-temperature regime, and at first order in the p-expansion,
its leading behavior can be written as

S(q) = (14)

J
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4 4
A 7rR+B1 TR

' q*

~

¢ cos(qR) + B, @ cos(gd), (15)
q

g—+oo

where d = AR.
The coefficients of this decomposition are

3p(4¢(A-1) +1-21%)

A=p 283(1 - ¢)2 > (16)

B = p, (17)

5. 2t¢ (6(¢ — DA +A(A* — 6¢) (2 +7¢) + 3¢(1 +8¢))
P 205(1— ¢)? ’

(18)
where ¢ = A’ is the packing fraction of the outer core. It is a particu-
larly relevant quantity in the low-temperature regime where it gives
the packing fraction of the corresponding asymptotic hard-sphere
system when T — 0. Note that a similar behavior was already pointed
out in the case of a square-well potential,”® which is quite similar
to the square-shoulder from this perspective. In the p — 0 limit,
only a part of B, survives, and the expected hard-sphere result is
recovered.

From the study performed with the help of our toy-model, it
is natural to wonder how these coefficients are related to the dis-
continuities of the pair correlation function. The values of g(r) in
the vicinity of the discontinuities can be obtained directly from the
Ornstein-Zernike equation since Q is now explicit. The results are
as follows:

g(R") =p, (19)

g(d)=

$(3+15¢ +1*(5+¢) — 8A(1+2¢))
M(1 - ¢)?

g(d+) = 2(?t(i)2 -p

. (21

The first equation yields a quantitatively wrong result but
should not come as a surprise as it is a direct consequence of the
hypotheses we made to perform the low-temperature expansion. In
the third one, the hard-sphere contact value appears explicitly, which
ensures that everything is consistent in the low-temperature limit.
Given the constraints 0 < ¢ < 1 and A > 1, the first order correction
to g(d") is always negative.

Guided by the toy-model study, one can check that B; = g(R")
and B, = g(d*) — g(d”), namely, the behavior of the square-
shoulder system in the low-temperature limit is consistent with the

J

BPr  1+2¢+3¢°

(6A%0(¢— 1) +4Ag(2+ ¢) — 3¢(1 +2¢) + A* (2 - 3¢ — 2¢7))
P (1 9)?

20=1)¢(N(A+1)(2+7¢) - 3¢(1+8¢) +A(2+ ¢ +6¢°))

) (20

(

hypothesis that the addition of a shoulder inside the core of a hard-
sphere system modifies the pair correlation function in such a way
that the main effects can be captured by the addition of a discontinu-
ity at the inner-core diameter, the amplitude of which then quickly
decreases.

Moreover, Eq. (15) shows that the asymptotic oscillatory behav-
ior of ¢4 (or equivalently the structure factor) presents some beating
phenomenon, with two frequencies fixed by the two length scales R
and d, and amplitudes depending on the jump values of the asso-
ciated pair correlation function. This confirms the conjecture in
Ref. 19 that the contact values can be read from the characteristics
of the large-q beating signal.

Finally, the pressure equation of state can be deduced from
Eq. (2) and the above results,

p (1-9¢)

V(1= g¢) . (22)
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The first term is the usual hard-sphere result in the Percus-Yevick
approximation. The first order correction at low temperatures yields
a small decrease in the fluid’s pressure as one could have expected:
when a shoulder is created inside the hard core, the fluid’s particles
tend to become softer, hence the reduced pressure.

A similar study can be conducted on the high-temperature
structure factor. The direct correlation function has the same asymp-
totic behavior as in Eq. (15). For completeness, the full expression of
the coefficients A, By, and B, are given in Appendix A.

For the sake of simplicity, we will not write here the full expres-
sions of the values of g around the discontinuities. However, it can
be checked by using the form of Q and the Ornstein-Zernike equa-
tion that By = g(R") and B, = g(d") — g(d") still hold. These equa-
tions can also be used to derive the pressure equation of state in the
high-temperature limit. The first order temperature correction to the
hard-sphere limit yields a small increase in pressure, consistent with
the intuition one can have about adding a repulsive shoulder to a
hard-sphere system.

Note that these results hold independent of the sign of . As an
aside result, we thus proved that a similar mechanism is at play in
systems interacting via a square-well type of potential—the attrac-
tive counterpart of the square-shoulder potential—at least in the
high-temperature limit, which is common to both square-well and
square-shoulder systems. Indeed, the asymptotic form of the direct
correlation function has been shown to be the same as Eq. (15) [see
Eq. (12) of Ref. 38 or Eq. (4) of Ref. 40]. Our results suggest that the
amplitude of the beatings observed in the square-well systems™ "’
is directly related to the jump values of the pair correlation func-
tion in those systems as well (square-well systems have two jumps as
well). Therefore, this type of large-g behavior seems to be indepen-
dent of the nature of the interaction—attractive or repulsive—and to
be generic, to some extent, for interaction potentials with two length
scales.

C. Discussion

From all the results above, and our toy-model, we can deduce
that the main effect of the addition of finite-potential shoulder to a
hard-sphere system—be it inside or outside the hard-core—on the
pair correlation function is the addition of a discontinuity, whose
amplitude gets strongly damped at large distances.

However, the following should be noted:

e This explanation is not complete. Indeed, if the toy model
reproduces well the observed behavior for the oscillating
part of the large-q tail, it does not explain the generation of
the non-oscillating part characterized by A.

e It should not be understood that the ansatz equation (6)
provides a complete description of the physics at play; it
just captures the main effects. For example, let us apply the
results of our toy-model to the hard-sphere fluid. We choose
as reference system the zero-density limit of the system,
whose pair correlation function is simply given by

J
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8 (r) = 0(r—R). (23)
The corresponding structure factor is then
So (q)=1+ ﬂ(chos(qR) +sin(qR)). (24)

7
The finite density system is defined with an additional jump
value of Ay = B(p) — 1 located at r = R. From the previ-

ous study, we deduce that the correction to the asymptotic
behavior is

(25)

—

A5i() = p"es (Bl9) 1) cos(aR),
which, combined with Eq. (24), gives the well-known result.
However, this does not mean that the pair correlation func-
tion of a finite density hard-sphere fluid always have the
form of Eq. (6). In particular, additional oscillatory behav-
ior is not captured by this ansatz. The form of Eq. (6) gives
insight into the general form of the pair correlation function
(jump at contact and relaxation toward 1), which drives the
most prominent effects but misses sub-leading corrections.
Note that this general shape is precisely the information we
kept to build our truncated pair correlation function [see
Eq. (28) of Ref. 1].

Ill. EQUATIONS OF STATE

We now discuss the thermodynamical properties of the struc-
ture factors computed in Ref. 1.

A. Low-temperature expansion
1. Compressibility equation of state

The compressibility equation of state is derived from the fol-
lowing equation:™

S(0) = phaTyr = &2, (26)
Xo

where yr is the fluid’s isothermal compressibility and xo is the

isothermal compressibility of an ideal gas. From this equation, one

can derive that
P f — dy,
p Jo S(0,y)

where it has been made explicit that the structure factor depends on
the packing fraction of the system. Note that whenever the Percus-
Yevick approximation is made, one should expect that the compress-
ibility equation of state [Eq. (27)] and the pressure equation of state
[Eq. (2)] yield different results.”

In the low temperature case, our previous expression of the
structure factor can be integrated to finally yield

@7)

PPy 1+¢+¢”  4(51'-321+27)In(1 - ¢)

p (1-¢) PA*

+p2()t4(—10 +23¢ = 22¢7) + 201(32 = 79¢ + 65¢°) — 27(2 - 5¢ + 4¢”) )

DL . (28)
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This is indeed different from Eq. (22). The first term in Eq. (28)
is the usual Percus-Yevick result for hard spheres, and the next
terms are the first order corrections in p.

Most importantly, knowing both equations of state enables us
to build a third one whose natural p — 0 limit is the more accurate
Carnahan-Starling equation of state, which is known to reproduce
the hard-sphere equation of state’' with a quite high accuracy. In
order to do so, we must simply define™

PPy _ 2PBPLr 1Py
p 3 p 3p

(29)

It is thus expected that such an equation reproduces the physics of
the square-shoulder fluid at low temperatures with a good accuracy.
Interestingly, it is completely analytical.

In order to test the accuracy of the equation of state [Eq. (29)],
we compare it to the data obtained by numerically solving the
Ornstein-Zernike equation with the Roger-Young closure,”” which
presents the advantage of being thermodynamically consistent. The
results are displayed in Figs. 2 and 3.

For A very close to one, the agreement between the analyti-
cal Percus—Yevick and numerical Rogers-Young data appears to be
quite good in appropriate regimes of temperature. However, when A

P
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increases, the agreement deteriorates as the packing fraction rises.
A similar phenomenon was observed at the level of the structure
factor,' and it stems from the fact that for A and ¢ big enough, ¢
grows so large that the low-temperature hard-sphere limit becomes
ill-defined (see Ref. 1 for a more detailed discussion).

2. Low @ behavior

At low densities, the equation of state should match the virial
expansion, which can be used to assess the precision of our approx-
imation. Since we know that the hard-sphere part of the Carnahan-
Starling equation of state only matches exactly the first three virial
coefficients,” we will cut the ¢ expansion at order ¢*. In that case,
Eq. (29) becomes

BPE} 1
ol )

109A* — 180* 1360 +45) ,
10-2 ) 30
The virial expansion, on the other hand, yields
PV
/37:1+62(T)p+33(7*)p2, (31)

e P

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

40
4
/l
L]
30F /‘ .
’,
P
‘/0 .
20} -
’,(- °
el
10f P

FIG. 2. Evolution of the dimensionless pressure P = P/p for A = 1.05. The dashed blue line is the low-temperature result, the solid red line is the high-temperature result,
and the dots are data obtained within the Rogers-Young closure. Top-left: ' = 0.01 (T* = 100); top-right: T = 0.05 (T* = 20); bottom-left: T = 4.5 (T* ~ 2.2); bottom-right:

r=59(T*=17).
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FIG. 3. Evolution of the dimensionless pressure P = P/p for A = 1.15. The dashed blue line is the low-temperature result, the solid red line is the high-temperature result,
and the dots are data obtained within the Rogers—Young closure. Top-left: T = 0.1 (T* = 10); top-right: T = 0.5 (T* = 2); bottom-left: T = 4.5 (T* ~ 2.2); bottom-right: I’ = 5.9

(T*=1.7).
where the coefficients 5; are known analytically for the square- This should not come as a surprise: in order to be able not to make
shoulder potential at this order.””"® Below, the expressions of the assumptions on ¢, some other parts of the structure factor have been
virial coefficients are given as a function of the coefficient y=1—¢7", approximated.
which contains the temperature dependence, In the case where the shoulder’s width is small, the precision
, of our low-temperature truncation in the low density regime can be
B, - 2nR (1 N y(A3 B 1))) assessed as
3 BPir PPV 4pd 32 2
7'[2R6 5 5 - (32) —_— = ? + O((p ,8 P ), (34)
B3=T((5—15y+16y —-6y") +180%)° (y - 1) P p
_32/\3)}(), 1)- 18)&4(1 B )/)2)/ . /16(x(1 P 6y2)). where § = A — 1 characterizes the smallness of the shoulder.
3. Thermoelastic coefficients
Then, taking into account the fact that ¢ = A’g, it appears that From the equation of state [Eq. (29)], it is possible to com-
Eqgs. (30) and (31) match perfectly at order ¢ifp=1-7y.Suchaform  pute the different thermoelastic coefficients, which fully characterize
of p fulfills the requirements set by the low-temperature expansion. the elastic response of the fluid as a function of temperature in this
We will therefore from now on use this as an explicit form of p. regime. We recall that, in this framework, increasing the tempera-
The expansion at order ¢” is not exactly equivalent to the virial  ture is equivalent to inducing a softening of the outer core of our
expansion, even when Bs is expanded in powers of p, system of particles, which is completely hard at zero temperature.
First, the isothermal compressibility can be obtained from
@ _ M .2 261° + 181" — 1520° +1170* - 9 (33) Eq. (26). In the following, in order to lighten notations, we will
p p P 916 ' work with dimensionless quantities denoted with a bar. Hence,
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the dimensionless isothermal compressibility can be defined as
Xt = xr/x0. Its p-expansion reads

(=Y 208(1-0) iy o .
AT = Pi(¢) 3P () [A*(12¢" - 49¢° + 56¢” — 61¢ — 12)

—61 (1 — ¢)* (26 — 3) +4A(15¢" — 44¢° + 58¢° + 224 + 3)
~3¢(20¢" - 61¢” +80¢ + 15)], (35)
where
Pi() = 1+4¢ +4¢” —4¢° + ¢*. (36)

Note that the first term in Eq. (35) is exactly the result
expected for the Carnahan-Starling equation for hard-spheres.”

J

Pa(9) 2p
T*Pi(¢)  3(T*)2A4¢P1(¢)?

a=
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We will therefore split the expression of yr into the hard-sphere
compressibility and the low-temperature correction, which we shall
denote Ayr. Its evolution is represented in Fig. 4. The first order cor-
rection being positive means that softening the core of the particles
leads to an increase in the fluid’s compressibility, in agreement with
physical intuition.

Next, the thermal expansion coefficient a can be computed. It

is defined as
1/0V
-—(=). 37

* \% ( oT )P (37)
To define its dimensionless counterpart, we first define a dimen-
sionless temperature T* = 1/T = kgT/Uy. The dimensionless thermal
expansion coefficient is thus & = «a x kg/Up. It reads

{(A=1)(¢ - 1)¢[P1(9)(1(20 - 44¢ + 49¢" - 7¢°)

+12 (A +1)(20 - 44¢ + 55¢” — 19¢° + 6¢") + 3(=36 + 90¢ — 71¢° — 11¢° + 10¢"))

+2T°(1 - ¢) (A(10 +22¢ - 29¢” - 86¢° +81¢" - 31¢°)

+AA+1)(10 +22¢ — 35¢* — 71¢° + 81¢* — 37¢° — 6¢° + 3¢)

+3(5¢" - 10¢° +44¢° — 153¢" +187¢° — 35¢° — 45¢ — 18) )]

—4(1+ T)P3(A)(1 - 9)*Pr(¢) In(1 - §) }, (38)

where we used the following functions:

Pa(g) =1-2¢° +¢",

(39)
P3(A) = 50" — 321 +27.

Once again, the first term corresponds to the Carnahan-
Starling hard-sphere result.”” Hence, A& containing the first cor-
rections to hard spheres can be defined. Its evolution is plotted in
Fig. 5. In most cases, the first order correction is negative, which
means that softening the spheres reduces the fluid’s ability to dilate
upon temperature increases. Interestingly, for high enough values of
p (typically p 2 0.4, see Fig. 5), a region emerges at low density where

AXT
.08
0.06 |
004l

002l

0 0.1 0.2 0.3 0.4 0.5 0.6 ¢

FIG. 4. Evolution of the dimensionless correction to the isothermal compressibility
with the outer-core packing fraction for A = 1.2. The full line corresponds to p = 0.2
(T* =0.62), and the dotted one corresponds to p = 0.6 (T* = 1.96).

this correction changes sign. This shows that something non-trivial
occurs in the fluid at moderate temperatures. We shall discuss this a
bit more later.

Note that such a behavior is only possible if Aa has a non-
trivial p-dependence, which is not obvious at first glance from
Eq. (38). However, it should be kept in mind that T* = —1/In(p)
so that in addition to the expansion in powers of p, the thermal
expansion coefficient also includes subdominant logarithmic and
square-logarithmic corrections, which in turn allow for a richer
phenomenology as the temperature is varied.

Aa
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N
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FIG. 5. Evolution of the dimensionless correction to the thermal expansion coeffi-
cient with the outer-core packing fraction for A = 1.2. The full line corresponds to
p=0.2(T* =0.62), the dashed one corresponds to p = 0.4 (T* = 1.09), and the
dotted one corresponds to p = 0.6 (T* = 1.96).
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FIG. 6. Evolution of the dimensionless thermal expansion coefficient with the outer-
core packing fraction for A = 1.75 (full line) and A = 1.95 (dashed line). The
temperature is given by p=0.3 (T* = 0.83).

The full thermal expansion coefficient is also an interesting
quantity since it is related to some anomalies of the square-shoulder
fluid.'® In particular, we want to know whether it can be nega-
tive for some regimes of parameters. In the case of the low tem-
perature expansion, such a case can indeed occur, as shown in
Figs. 6 and 7, for some non-trivial range of packing fraction and
temperature. Such a behavior, however, does not show up for val-
ues of A close to 1, hence the unusually high values chosen in
Figs. 6and 7.

First, Fig. 6 displays the evolution of & with ¢. In that case, if
A is big enough (typically bigger than 1.5), a region of negative &
appears at high packing fractions, which grows bigger and bigger as
A is increased. One should not be confused by the very high values
of ¢ involved; here, the shoulder width is quite large so that they
typically correspond to quite low values of the packing fractions of
the hard cores (see the caption of Fig. 7, for example). It should
also be noted that in our formalism, where the low-temperature
expressions are built from their close hard sphere limit, ¢ cannot
be bigger than 1, no matter how small ¢ is. Anyway, it is expected
that if this condition is not fulfilled, the structure of the fluid (or
solid) is driven by many-body effects not captured by our simple
potential.”

Then, the behavior of & with respect to the temperature is exam-
ined in Fig. 7. It appears that the negativity is never kept up to
arbitrarily low temperature. This should not come as a surprise: it

a
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FIG. 7. Evolution of the dimensionless thermal expansion coefficient with p for
¢ = 0.9. The full line corresponds to A = 1.75 (¢ ~ 0.17), and the dashed-line
corresponds to A = 1.95 (¢ ~ 0.12).
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is clear from Eq. (38) that the very-low temperature regime is con-
trolled by the hard-sphere contribution, which is always positive.
The subleading term is of order p ln(p)z, which means that (i) it
actually vanishes as p — 0, but (ii) it can easily grow quite large as
we go away from that limit. Because of such logarithmic corrections,
it is expected that numerical values of & are much more sensitive to
higher orders than the other quantities we discussed so far. Some
caution is thus required when interpreting the numbers showing up
on those charts.

Finally, we compute the isochoric compression coefficient Sy,
defined as

Pv= %(%)v (40

As for @, a dimensionless counterpart is defined through By = Bv
x kp/Up. Its expression is then

B - :
T 3(T*)A¢(1+ ¢+ ¢* - ¢°)
x {2¢[A* (20 - 44¢ + 55¢° — 19¢° + 6¢") — 61°¢° (1 - ¢)”
+2M(15¢" — 13¢° — 131¢° + 157¢ — 64)
+3(36 - 90¢ + 71¢° + 11¢° — 10¢")]
+8P5(A)(1-¢)’In(1-¢)}. (41)

In the Carnahan-Starling equation of state, the right-hand
side depends only on ¢."' Since in the definition of Eq. (40), By
is defined at constant volume, that is, constant ¢, the hard-sphere
Carnahan-Starling value of By is simply 1/T, in agreement with
the first term of Eq. (41). Once again, the explicit presence of T*
gives rise to logarithmic corrections to the p-expansion. The cor-
rection to the hard-sphere result ABy is well-defined and is rep-
resented in Fig. 8. It being always negative means that softening
the particles leads to a reduced ability to increase pressure as the
temperature rises. With the kinetic pressure picture in mind, such
a result seems reasonable: softer particles when agitated rigorously
increase the inner-pressure of the fluid less efficiently as if they were
hard.

All these results can be put together to check for thermodynam-
ical consistency. Indeed, from Egs. (29), (35), (38), and (41), it can

N, T
-0.2

-03F}

FIG. 8. Evolution of the dimensionless correction to the isochoric compression
coefficient with the outer-core packing fraction for A = 1.2. The full line corresponds
top=0.2 (T* = 0.62), and the dotted one corresponds to p = 0.6 (T* = 1.96).
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be checked that
a =PBvyr, (42)

as required.

As a final result, we can combine all these equations with
Mayer’s relation to get the difference between the two molar heat
capacities Cp and Cy. Equation (42) can be used to further simplify

J

Pa(¢)’
(1-¢)*Pi(¢)

N 2pP(¢)
3M$(1 - ¢)4Pi(¢)?

Cp-Cy =

ARTICLE scitation.org/journalljcp

the relation
_2
— — w2 O
Cp-Cv=(T")"—, (43)
XT

where we defined the dimensionless molar heat capacities by divid-
ing by the ideal gas constant R. All in all, the heat capacity difference
results in

{8*P2(9) (V' (129" - 49¢" + 56¢° — 61¢ - 12)

—617¢(1 - ¢)7(2 - 3¢) +4A(3 +22¢ + 58¢° — 41¢° + 15¢") — 3¢(15 + 80¢ — 61¢° +20¢°) )

_ %[¢(1 ~ )X = 1)(Pi(¢)(1(20 - 44¢ + 49¢” — 7¢°) + A2 (A + 1) (20 - 44¢ + 55¢° — 19¢° + 6¢")
+3(10¢" - 11¢° - 71¢” +90¢ — 36) ) + 277 (1 - ¢) (A(10 +22¢ — 29¢° — 86¢° + 81¢" — 31¢°)
+A7(A+1)(10 +22¢ — 35¢° — 71¢° + 81¢* — 37¢° — 6¢° + 3¢")
+3(5¢" - 10¢° +44¢° — 153¢" +187¢° + 35¢” — 45¢ — 18)) ) + 4(1 + T*)P3(A) (1 - ¢)'P1(¢) In(1 - ¢)]}. (44)

The first term of this equation is the expected result for Carnahan-
Starling hard spheres.”” A first order correction due to the softness
of the outer core can be therefore defined, and it is denoted ACpy. Its
evolution with ¢ is represented in Fig. 9. The first order correction is
always negative, which is to be related to the lesser ability of the fluid
to expand when T increases.

4. Spinodal line

The introduction of a new length scale in the hard-sphere
potential allows for a richer phase diagram. As a matter of fact,
it is a priori possible to define two fluid phases for the square-
shoulder system: one with particle diameter R and one with parti-
cle diameter d, called in the following low-density and high-density
fluids, respectively. While it is expected that at low temperatures,
the particles are typically too hard to allow for the existence of
the low-density fluid, it is still possible to investigate whether our
solution allows for such a transition at a moderate temperature.
Obviously, this requires to extrapolate the solution a bit beyond

-4}

FIG. 9. Evolution of the dimensionless correction to the heat capacity difference
with the outer-core packing fraction for A = 1.2. The full line corresponds to p = 0.2
(T* =0.62), and the dotted one corresponds to p = 0.6 (T* = 1.96).

the regime in which it is expected to be accurate. Therefore, the
following results should be treated with caution: the aim is more
to establish a qualitative picture than to give reliable quantitative
values.

The prospective fluid-fluid transition will be investigated
through the study of a possible spinodal line between the two
phases. The latter is characterized by a diverging isothermal com-
pressibility or equivalently a vanishing 1/S(0) according to Eq. (26).
For the sake of simplicity, we will perform this study with use of
the latter equation so that our expression for yr is a bit different
from Eq. (35).

The temperature at which the condition 1/5(0) = 0 is realized
corresponds to p = po, with

~ A1+ 2¢)
T 20(A = 1) (4A(1+ A+ 22) + ¢(5A3+ 512451 -27))

Po (45)

This solution must moreover be such that 0 < pg < 1 [by the defini-
tion of p = exp(—T)]. The first inequality is automatically satisfied by
any po obeying Eq. (45). Thus, only the second one can be violated if
¢ and A are not properly chosen. The limiting case condition py = 1
is a simple polynomial of order 2 in ¢ whose roots are

CA4-30) £/Pa(})

=7 2P12(A)

(46)

with
Pa()) = 191° — 881° + 541" + 161°. (47)

The roots ¢.. are well defined only as long as Px(A) > 0. This con-
dition is always true except in the interval [A{; A} ], where A| ~ 1.03
and A} ~ 1.23 are the two real roots of P,.
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Another important quantity is the point A5 where P, vanishes.
Its value is given by

L1 (2(191+9\/451))1/3 2/3( 5 )1/3
A= o[ AEEEVR) e 2 )
3 5 191 + 9v/451

~1.32.

(48)

The evolution of ¢.. is represented in Fig. 10.
All in all, if

e 1< A< A{, the spinodal equation py < 1 has a solution for
any ¢ € [¢1; ¢_]. However, as can be seen on the graph in
Fig. 10, both boundaries are negative so that such values of
¢ can be discarded on physical grounds.

o A <A< Aj, the spinodal equation has no solution.

o A <A< Ag, the spinodal equation is solved for any ¢ € [¢_;
¢+]. However, ¢ must in addition be less than 1. This is not
realized for ¢ (1) = ¢—(AJ) ~ 1.14. Therefore, acceptable
solutions only exist if A > 13, with

_1 48
A5 =SVY = _yr~124,  (49)
5V/Y*
where
v+ _ (38880 -6480V/6)'"  2[6(6+V/6)]'"* 0
- 5 52/3 :

e A; < A, the spinodal equation is solved for any ¢ > ¢_(A).
Typical values are ¢_(1g) ~ 0.39 and

\/_ 3

hm ¢-(1) =¢> = ~0.14. (51)

To conclude, the low—temperature expansion of the hard-
sphere solution allows for a fluid-fluid transition but only for certain
ranges of parameters. First, this spinodal only exists for the largest
possible values of p, that is, moderately low temperature. Then, it
requires a sufficiently large outer core, with typically § > 24%, and a
packing fraction bigger than a lower bound ¢_ that does not vanish,
even for infinitely large particles.

Once again, it should be kept in mind that the quantita-
tive aspects of this study can be quite sensitive to the order of
truncation in the p expansion, which is all the more true that the
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FIG. 10. Evolution of the solutions to the equation py = 1 as a function of the outer-
core diameter. The bounds A} and A3 between which the solutions are not defined
anymore have not been represented for clarity.
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spinodal line shows up only for moderate ps. However, the quan-
titative picture—spinodal line that shows up for sufficiently high
temperatures, densities, and shoulder width—should be a reliable
outcome of this study.

B. High-temperature expansion

1. The compressibility route to the equation of state

As for the low-temperature case, the compressibility equation
[Eq. (26)] can be used to compute the equation of state. How-
ever, the integral in Eq. (27) cannot be performed analytically with
the high-temperature structure factor because the expression of ¢
dependence of S(0) is too involved. Therefore, the compressibility
equation of state associated with our high-temperature solution can-
not be made explicit, which also means that we cannot build an
explicit Carnahan-Starling-like equation, as in the low-temperature
case.

One way to simplify the expressions further, and be able to
perform the packing fraction integral, is to expand everything in
powers of §. In order to do so, let us set some notations, and the
first correction to S(0), AS is defined as

(1-9)*

SO Tezey

+TAS. (52)
Then, the §-expansion of AS truncated at order 7 is called AS,,. The
evolution of different AS,’s is represented in Fig. 11.

On this example, the first order truncation is quite faithful, and
it only underestimates a bit the exact result. The second order trun-
cation, on the other hand, is getting qualitatively wrong as in a whole
region the correction is positive, contrary to the exact result. Going
to order three, only the low-packing fraction sector is getting better
than the first order. At moderate packing fractions, AS; is not closer
to AS than AS;. The order four truncation is seriously wrong except
in the low-¢ regime. What this example illustrates is that one must
be cautious when expanding in powers of §. Truncating the series at
higher order does not automatically make the approximation better
in the whole range of ¢.

It is nevertheless possible to perform the integral numerically,
and build in that manner an equivalent to the expression (29).
The so-obtained numerical high-temperature equation of state is

FIG. 11. Evolution of AS with the packing fraction ¢, as well as some of its -
series truncations, for A = 1.25. The full line is the exact first order correction AS.
The dotted line is the first order of the 5-expansion AS;. The loosely dashed line
is the series truncated at order two AS,, the tightly dashed one is the third order
truncation AS3, and the dashed-dotted line is the fourth order truncation AS,.
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compared to the more precise Rogers-Young data and displayed in
Figs. 2 and 3. For really small values of T, the agreement is quite sat-
isfactory, although it quickly deteriorates. Already for I' = 0.5 (which
strictly speaking lies a bit away from the region I' < 1), significant
deviations are present. Another remarkable feature is the fact that
when T is further increased, the expansion becomes so bad that the
pressure becomes negative. Hence, the thermodynamical quantities
derived from the equation of state should be expected to be much
more sensitive to higher orders in the I expansion.

2. Low ¢ behavior

Since the integral in Eq. (27) runs on a finite range, it can
be swapped with a small ¢ expansion. Hence, the low-¢ sector of
the high-temperature compressibility equation can be worked out
without further approximation (in particular, no §-expansion is
required). In the following, we shall combine it with the results of
the previously established pressure equation of state, with the same
coefficients as in Eq. (29). In that way, we get the most precise equa-
tion of state that can be obtained from our solution. Its expansion
reads

PP _ A1+ -DT]p+ (”—2[180 +T(15(407 - a1 - 1)t
P 18

+81° - 2521* + 4801° + 1441” - 365) | + O(¢”), (53)
whose difference to the virial equation of state is given by
Py pPY 32
PPir PP _ —?F5(p2+0((p3,62,1"2). (54)
P p

All in all, despite our approximations, and the involved val-
ues of coefficients in the high-temperature expansion, a Carnahan—
Starling equivalent to the equation of state can still be built in the
low density regime. It matches exactly the first non-trivial virial
coefficient of the square-shoulder potential, which is definitely a sat-
isfactory test of our approximation scheme. The typical error is of
second order in T, second order in §, and third order in ¢, which is
comparable to the low-temperature solution.

3. Thermoelastic coefficients

Although the compressibility equation of state does not have
an explicit expression at high temperatures, it can still be used
to derive some of the thermodynamic properties of the square-
shoulder fluid. Indeed, many of them involve derivatives so that
only the integrand in Eq. (27) is involved. Hence, the effect of the
appearance of a repulsive outer-core in a hard-sphere system can be
discussed. All the following results are derived from the combination
2P /3 + PYyr/3 = PG, which is the most precise equation of state
that can be built from our high-temperature solution. As in the low-
temperature case, we will be mostly concerned by the dimensionless
counterparts of thermodynamical quantities.

We first compute the dimensionless isothermal compressibil-
ity yr. Its analytical expression is fully explicit (no integral term
remains) and has the following structure:

1
)_(T =——)]+ AXT~ (55)

The polynomial P; has been defined in Eq. (36); the first term in
the equation is therefore the expected Carnahan-Starling result."’
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FIG. 12. Evolution of the dimensionless correction to the isothermal compressibility
with the inner-core packing fraction for A = 1.2. The full line corresponds to I' = 0.2,
and the dotted one corresponds to T' = 0.6.

The renaming term Ayr vanishes as I' goes to 0. Its quite lengthy
expression is given in Appendix B. Its evolution with ¢ is also dis-
played in Fig. 12 for different values of I'. It appears that the isother-
mal compressibility is always reduced by the high-temperature
correction: adding a soft outer-core to the particles reduces their
compressibility.

The thermal expansion coefficient can also be computed explic-
itly. It has the expected structure,

+Aa, (56)

where, once again, it should be understood that A& vanishes with
[. The first term is the Carnahan-Starling result.”” The polynomial
P, is defined in Eq. (39). The full expression of A& can be found in
Appendix B. Its evolution with ¢ is represented in Fig. 13. Interest-
ingly, this correction is negative, as in the low temperature case: from
the point of view of the thermal expansion, the qualitative effect of
adding a soft core or softening a hard core is the same. It is also worth
noting that in the high-temperature regime, no change of sign is
observed at low-densities, even when the temperature is significantly
decreased. Indeed, the temperature expansion is now organized in
powers of I o< 1/T so that no sub-leading logarithmic corrections are
present in that case. The A& dependence on T is thus much simpler
than in the low-temperature regime.
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FIG. 13. Evolution of the dimensionless correction to the thermal expansion coef-
ficient with the inner-core packing fraction for A = 1.2. The full line corresponds to
T = 0.2, the dashed one corresponds to T' = 0.4, and the dotted one corresponds
toI'=0.6.
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FIG. 14. Evolution of the dimensionless thermal expansion coefficient with the
inner-core packing fraction for A = 2. The full line corresponds to I' = 0.2, the
dashed one corresponds to T = 0.6, and the dotted one corresponds to T = 0.8.

The full thermal expansion coefficient can show signs of abnor-
mality (see Figs. 14 and 15). As the other extreme temperature
regime, it cannot stay negative up to arbitrarily high temperatures
because of the hard-sphere limit, and it requires high enough values
of A to be present. A second regime of negative & can be observed
in Fig. 13, but one must be careful since as ¢ gets close to 0.6, it is
expected that the liquid freezes into a glass so that our description
could be a bit too sketchy in this regime.

The isochoric compression coefficient still has the expected
form

BV = —+ Aﬁv, (57)

where the full expression of ABV is given in Appendix B. However,
it now depends on the first correction to the integral in Eq. (27),
which is denoted V(¢,1) in Appendix B. This integral can still be
evaluated numerically, which yields the curves in Fig. 16. As in the
low-temperature case, the first correction to By is always negative.

Thermodynamical consistency can also be checked, and the
relation

o= PﬁVXT (58)

holds, independent of the form of V(¢, 1).
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FIG. 15. Evolution of the dimensionless thermal expansion coefficient with the
inner-core packing fraction for A = 1.2. The full line corresponds to I = 0.2, the
dashed one corresponds to T = 0.6, and the dotted one corresponds to T = 0.8.
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FIG. 16. Evolution of the dimensionless correction to the isochoric compression
coefficient with the inner-core packing fraction for A = 1.2. The full line corresponds
to I' = 0.2, and the dotted one corresponds to T = 0.6.

Finally, Mayer’s relation can be applied to derive the heat
capacity difference,

_2
Cr-Cy= ("L
p—Cv=( )XT

_ Py’
(1-9)*Pi(9)

This is consistent with the hard-sphere result.” The evolution
of ACpy is always negative, as shown in Fig. 17 [but when the
Carnahan-Starling contribution is added, as is Eq. (59), the total
result is positive]. Its full expression is given in Appendix B.

Allin all, even in the high-temperature regime where the com-
pressibility equation of state is not explicit, it is remarkably possible
to derive the analytical expressions of most of the thermodynamic
quantities in a way that naturally interpolates the Carnahan-Starling
results for the hard-sphere fluid.

+ Aépv. (59)

4. The fully incompressible regime

As in the low-temperature case, one can look for a possible
spinodal line separating a low-density fluid and a high-density one.
However, since the first correction to 1/8(0) is always positive, as
can be seen in Fig. 11, the equation 1/S(0) = 0 has no solution.
Hence, at this order, there is no spinodal line emerging from the
high-temperature regime. Let us stress once again that this result is
very much dependent on the order of truncation. Here, the spinodal

ACpy

06 0.2 0.3 0.4 0.5 0.6

-0.5

FIG. 17. Evolution of the dimensionless correction to the heat capacity difference
with the inner-core packing fraction for A = 1.2. The full line corresponds to I' = 0.2,
and the dotted one corresponds to I = 0.6.

J. Chem. Phys. 152, 124113 (2020); doi: 10.1063/1.5142662
Published under license by AIP Publishing

152, 124113-12


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

0.0 0.2 0.4 0.6 0.8

FIG. 18. Evolution of the solution Iy to the incompressibility equation S(0) = 0
with the inner-core packing fraction. The full line corresponds to A = 1.2, and the
dashed one corresponds to A = 1.6.

equation of type xo + x1 I = 0 could be too simplistic to allow for
physical solutions to exist.

On the other hand, and for the same reason, the equation
S(0) = 0 always has one solution, which we shall call I'y. Such solu-
tions are displayed in Fig. 18 for different values of A. They corre-
spond to cases where the isothermal compressibility y vanishes,
namely, the fluid becomes completely incompressible.

Contrary to the low-temperature case where additional condi-
tions in p had to be met, the only physical constraint on T is that it be
positive, which from what we showed above is always met. However,
as can be seen in Fig. 18, for a fixed value of A, Ty cannot take arbi-
trarily small values. Namely, the fully incompressible regime does
not extend to arbitrarily high temperatures. In particular, at small
packing fractions, Ty takes higher and higher values. More precisely,
the asymptotic behavior of I'y is given by

1

Lo~ 5T (60)

Solutions thus only involve moderate temperatures, what
requires to extrapolate our solution outside of the regime in which
it is the most precise. Therefore, quantitative results must be taken
with caution.

_ 4(69(p+1) A (9% ~29+10))
202-79+5

A(g1) - ¢
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IV. CONCLUSION

All in all, our investigation allowed us to give a picture of the
thermodynamic properties of the square-shoulder fluid. It gave a
qualitative picture of the effect of the addition of a soft core or
softening of the hard core of a hard-sphere system. Further proper-
ties, such as the prospective transition between a high-density and
low-density fluid, the anomalies of the thermal expansion coeffi-
cient, or the transition to a fully incompressible regime, have also
been investigated. They reveal that subtle phenomena are at play in
square-shoulder fluids at moderate temperatures and density. This
is a strong hint that part of the exotic physics of the square-shoulder
fluid is already present at the lowest order correction to the hard-
sphere physics. Unfortunately, our simple model is not expected to
be very accurate in such regions of moderate temperatures. Further
work is thus required to be able to describe more accurately these
regions. If such results were to be known analytically, they could be
compared to the results of the present study that must be reliable in
both temperature limits.
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APPENDIX A: LARGE q BEHAVIOR—HIGH
TEMPERATURE

We recall the basic definitions,

4m R 4R
& = A(T,9,1) £ + Bi(T,9,1) Z cos(qR)

q—+
and _
+ By(T,9,4) ;t—z cos(qd) +O(|g|”).
The coefficients are defined such that A(T, ¢, 1) =T AW (p, A)

+0(1%), Bi(T, 9,A) = By(9) + T B (9, 1) + O(T?), and By(T, 9, 1)
= ngl) (¢,A) + O(T?). They are given by
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~580764580)¢"" — (769 5001° + 87 526 401" + 348 498 828)° — 482795 6221” + 17215929181
~4844351393)9'® +3(53242201° + 196 156 8001" + 710292 0721° — 871 412 394)° + 3 388 796 1301
~9932500151)¢"" — 6(226557001° + 523413 3421" + 1691 146 5361" — 1916285 6071° + 8 029 146 9991
~22970685019)¢"° +6(1303223041° + 2250878 9581" + 6402258 5761 — 7151091 6271” + 31 351 127 0401
~80478901804)¢" — 3(1125200448)° + 15773269 5721" + 38 810417 7121° — 45760 025 112)°
+202797530 7301 — 429432044 573)9'* +3(37767643201° + 45175721 5801" + 94679 143 6201
~1244465108281” + 538 795 811 808) — 874763497805 )¢'” — (30031456 3201° + 315862 563 9601"
+5614872539041" — 838042 037 2981” + 3455249200 0861 — 4062 109 868 821 )"
+ (62201606 4001° + 593 632 671 4801" + 916740799 5601° — 1494 677 901 4741> + 5754 577 240 896)
~4668350180471)¢"" — 5(19580356 800A° + 176 536 113 1201" + 260 955497 808)° — 410059 014 3001°
+1425250272948) — 738352287 991)¢'* + (109 657 800 0001° + 1 008 438 606 0001" + 1736 574 508 8001’
~2093 664647 5201” + 6044 598 866 3401 — 1451240592 997)¢” — 30(2 406 600 000A° + 28 367 730 000A*
+703384176001° — 45328 948 6801 + 89 583 315 096) + 22706 537 389) " + 300(25 920 0001
+16084350001" + 6720213 0001° + 246911 220A” — 2375573 988\ + 4961 375 143)¢” + 3000(7 560 0001
~401130001" - 421821 0001" — 425184 1501> + 607 314 348 — 322995 619)¢° — 7500( 1 440 0001
+57960001" — 546396001° — 153 034 5001” + 99 662 5801 — 21 029 827) 9" + 600 000(49 5001"

~174001° - 5538151% — 2947951 + 131 716)¢" — 250 000( 104 400A° + 32 5801° — 418 2361 — 83 899)¢°
+10000000(1170A% + 14821 — 1517)¢” — 12500 000(276) + 227) ¢ + 500 000 000 ) ¢”, (B8)
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F5 (1) = 91(61 — 1)¢"" — 3(3641” + 55180 — 9227)¢'" + (495 0601° + 392 5141 — 93009) ¢’
—3(6375281% + 57 808) — 31441)¢" + 12(1987311° + 285321 — 7164)¢’
— 12(643481” + 859301 — 19077)¢® — 3(980921° — 1524741 + 82699)¢” + 3(23324A° + 870081 + 10911)¢*
+3(17601> — 5386) + 15399)¢° + (~1200A* — 169201 + 127)¢” + 120(151 — 26)¢ + 300, (B9)
F5 (9, ) = 50(32401° — 12961° — 882901" + 381 9601° — 652 950A° + 727 205)¢™*
—20(1474201° — 449281° — 4204 170)\* + 18602 2801° — 33120 1501” + 38 129261)¢™
+6(52612201° — 1254 5281° — 152957 5201* + 681347 2801° — 1235032 800A° + 1429039 213)¢™
—4(594896401° — 10101 024A° — 1753218 2701" + 7831194 8401° — 14395203 0901 + 16 633 125349)¢°'
+10(137458 9441° — 13513392)° — 4058 563 9681 + 17982345 816" — 33 108 357 720A” + 37 141 486 681) ¢
~108(587330401° — 1173 1681° — 1717020 4801* + 7435001 5601° — 13412523 5901 + 13716 168 573) ¢’
+3(7927 494 8401° + 566 984 448)° — 226 440 651 6001 + 942 045 890 4001° — 1623 609 048 2401°
+1377919510577)¢"® — 120(609 357 7621° + 110306 232A° — 16705018 9891" + 65225 560 75217
~104174444.0551” + 63849080257 )9'” + 36(5089 341 4201° + 1643 165 5681° — 131 051 5450651
+464821 578 8401" — 660 083 367 7951” + 219178925692 )'® — 10(36793 942 848)° + 19084 009 536)°
~8599017150361" +26208902167201° — 3090 418 8350401” ~ 23109700363 )¢"" + 4(142 030 013 7601°
+117441007 4881° — 2837610484 4701" + 6479819264 5201° — 5177 085066 4201” — 3342422 380003 )'*
- 48(12619876 6801° + 18316440 5761° — 182 340 360 4501" + 114920 829 8401° + 196 010 948 6851°
~363835575266)¢"" + (294722 5824001° + 1177249 946 112)° + 847 017 479 5201" — 26 649 573 192 0001’
+36 203253733 8001” — 4562867298487 )¢'? + 10(30754 598 4001° — 95322396 6721° — 1085731483 1041"
+3937302440 6401” — 2986696 4720161° — 1205877126071 )" — 90(7 157 880 000A° + 405 319 6801°
~ 115067 1945601" + 153423041 8561” + 40 325 100 2881° — 148 742 987 459 )"° + 2160( 162 150 0001°
+4574160001° — 120261 6001" — 9008 824 1601’ + 10 384 187 828)° — 470 544233 )¢’
+120(2 384 100 000A° — 8406 720 000> — 55729 485 000A" + 172695967 200A° — 74 595 745 7401
~60960277757)¢° — 2880(76 500 0001° + 77 220 000A° — 410 343 7501" — 2276 760 0001
+3 6423883501 — 1645337107 )¢’ — 1600(60 750 0001° — 304 560 0001° — 784 788 7501*
+27225900001° — 90205 8751% — 502947 169)¢° + 16 000(7 560 000A° — 12420 000A"
~648180001° + 82405 8751” +27272024) ¢’ — 300 000(234 000A" — 153 6001 — 11110201° — 438251)¢"
+1000000(288001° — 2160A> — 27 067) ¢’ — 1000 000(6600A* + 14 123)¢> — 720 000 000¢ + 300 000 000. (B10)

e Isochoric compressibility By = B3 + ABy. Its expression depends on a remaining integral term that is not known explicitly, defined
as follows:

1+2y)*
V(g.)) = 7f0¢%Ade, (B11)

where AS has been defined in Eq. (52),

. 9720(9 — 1)°¢’ (359" — 1419 + 60¢ + 100) (¢* — 29 + 10)*V(¢, 1)

ABy =
Py 14580(T%)2(10 — 79) ¢* (=592 + 139 + 10) (9> — 20 + 10)*(—¢> + 9> + ¢ + 1)
2(39(29-5)+A(69% +139+20))
e (1-9) (29-5)
+
14580(T*)2(10 - 7(p)(p4(—5(p2 +13¢ + 10)((/)2 -2¢0+ 10)4(—(/)3 +9?+ o+ 1)
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8(1+2) g% +(341—38) 940

x[10935e #s (5 29)°(25¢° - 125¢* + 151¢° + 12897 — 4150 — 250)¢’

2(g%—2¢+A(11%+10)+10)

-90e s (5-20)°(¢" - 29 +10)* (139" - 5875¢° + 14376¢° - 7853¢" — 2026¢

2(79% —179+51 (9 +39+2)+10)

+609¢” +37¢ — 10)¢” + 90 ¢ 277975 (109° - 51¢% + 45¢ + 50) F5 (9, 1)

41(69% —p+10)

+10e @G (9 —1)°((6A - 1)g+1)(p” - 29 + 10)*(65¢” — 29 544¢° + 1481259 — 167 403¢°
~51801¢" +107913¢" + 12528¢” — 6621¢” — 2409 + 100)

2(39(29—5)+A(69% +139+20))

ve wows (797 179+ 10)F(p 1) ] (B12)

Fh(p.) = (2(7561" +2772)° - 54181 + 142861 — 36499)"*
+ (157681 — 70 164A° + 851581 — 338 7304 + 995995)¢"
+2(556471* + 2372401 — 298 9981% + 12273031 — 3067 243)¢"*
~2(2600911* + 11013301 — 1548 8191 + 58224091 — 10810537)¢""
+ (18075961 +72322201" — 11541 3661° + 38476 6081 — 46772 437)¢"°
~2(23332861" + 875453417 — 15276 033\” + 43989 534\ — 29969 155) ¢’
+3(28598401* + 103145761 — 165532321 + 419924281 — 10702 087)¢°
—6(18009001" + 63172801 — 4445091)° + 12407 964\ + 5158 313 )¢
+ (63180001 + 33771 6001" + 58 639 1401” — 68 619 8521 + 77 996 247 ) ¢°
+4(4725001* — 53955001 — 27422 325\% + 25824 630\ — 11532 547)¢°
~10(2700001* — 504 0001 — 6 258 6001° + 37 740\ + 887 557 ) ¢*
+100(18000A° — 124 2001% — 178 0201 + 11459)¢° — 1000(900A* — 2401 — 3007 )¢’
+10000(30 + 1) — 50000)¢’, (B13)
F(9,1) = 10(32401° — 12961° — 88 2901* + 381 9601 — 652 9501% + 727 205) '
— 12(29970A° — 49681° — 910 1701* + 4 144 6801° — 7745 2501° + 9247363 ) 9"’
+12(236520A° — 14256)° — 6905 9251* + 30342 0601° — 55886 7151° + 61 704296 ) ¢'°
—30(4951801° + 59 184A° — 14231 1601 + 59329 1281° — 103 502 4541 + 91484027 )"
+12(49815001° + 1453 0321° — 134414 7751* + 515280 0601° — 821 818 9501” + 475 049 483 ) ¢™*
—12(152604001° +8075376)° — 380042 9551* + 1280936 1601° — 1778 104 5301° + 385117 384)¢"
+9(466387201° + 41 0434561° — 1034475 8401" + 2839937 1201 — 3144996 7001° — 767 414 941)¢"
— 12(602834401° + 83 1150721 — 10757059201" + 1843 1658001 — 1068 1683151 — 1846059 662)¢""
+3(2371680001° + 690 571 0081° — 2712 547 4401* — 3780691 2001° + 8 800 066 2601 — 6471 065 803)¢"°
~5(60912000A° + 523376 6401° + 1102206 5281* — 10121178 816" + 9189 1462321 + 1353711 563) ¢’
~120(64800001° — 18230 400A° — 141 056 1001 + 390936 1681° — 127 383 837A” — 231030331)¢°
+60(81000001° + 16 848 0001° — 24 408 0001* — 393 811 2001" + 545 066 7841 — 376 608 625) ¢
+120(27000001° — 14040 000> — 38 340 0001* + 136 884 0001° — 8 082 6001° + 31 390 829)¢°
— 480(5400001° — 1856 2501* — 37350001° + 9 1402501° + 1949411)¢°
+12000(135001* — 270001° — 84 6001* — 58 433)¢* — 360 000(2001° — 1751* — 354)¢’
+1200000(151% + 52)¢” — 1500 0009 — 100 0000. (B14)

o Heat capacities Cp — Cy = (Cp - EV)CS +ACpy,
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_ 4Ge(p+2) ¥A(79? +119+30)) 3 N N
e (-1 (29-5) (7('0 o +o+ 1)

ACpy = -
PV T 4860T* (10 - 79)2(9 — 1)3¢* (29 — 5) (=5¢ + 139 + 10)2(¢? — 2 + 10)5(¢* — 4¢® + 42 + 4¢ + 1)2

4(49% +49+1(69% +139+20)+10)

x [3645 e @0 (29 -5)°(=5¢” + 139 +10)*(4209'" +12(351 - 426)¢"°
+(17521 +38015)¢° — 3(7756) + 68 063)¢° + 3(41876) +223849)¢” — 3(123 280 + 442861)¢°
+3(191480A + 501 403)¢” — 15(13 760A + 56 677)¢* — 1500(416A + 15)¢° + 750(800A + 911) ¢’

2(9? +259+1(199% +99+50)+10)

- 5550009 -~ 50000)¢° —90e~ @G> (29 -5)(¢” 29 +10)° (18209

~2(1365) +283453)¢" + (12720481 + 6107021)¢'* — (20482 320\ + 20431 967)¢""
+(114528546) + 11016 989)¢'" + (60057 067 — 286961 1481)¢° + 516(600 4291 — 178 658)¢°
~6(59459011 — 1736875)¢” — 3(57 687 456) + 1047899)¢° + (785442601 + 82163 557)¢°
+5(3859926) — 8380229)¢" — 25(224 6281 + 677 189)¢” — 1000(339) — 2600) ¢

2(7¢%+109+A (1397 +249+50)+10)

+2500(36) + 307)¢ — 100000)¢” + 90 e 297715 (=5¢° + 139 + 10)°F§ (9, 1)

549+21(209% +79+60)

+10e  27ws (20 -5)(¢" =29+ 10)°(5¢° — 18¢” + 3¢ + 10)*F{ (9, 1)

4(39(+2)+A (79 +119+30))

re woeen  (10-79) (297 - 79+ 5)F5 (p.1)], (B15)
Ty (9.1) = (56(7561* +27720° — 541817 + 14286) — 36499 )"

+4(52921° ~ 2048761" — 9179101” + 1577 394)° — 4683 909A + 11923 444) ™

+(—816481° +99355681" + 42669 6841° — 66 547 7641° + 219 373 890A — 580 764 580)¢"

— (769500° + 87 526 4401* + 348 498 828" — 482795 6221° + 1721592918\ — 4844351 393)¢'®

+3(53242201° + 196 156 8001 + 710292 0721° — 871412 394A” + 3388796 1301 — 9932500 151)¢"”

- 6(226557001° + 523413 342" + 1691 1465361 — 1916285 607A° + 8 029 146 9991 — 22 970 685019)¢'°

+6(1303223041° + 2250878 958)1" + 6402258 5761 — 7 151 091 627A° + 31 351 127 0401 — 80478901 804)¢'

-3(1125200448)° +157732695721" + 38810417 712A° — 45760 025 1121” + 202797 530 7301

-429432044573)9"" +3(37767643201° + 45175721 5801" + 94679 143 6201° — 124446 5108281

+538795811 8081 — 874763497 805)¢"” — (30031456 3201° + 315862563 9601" + 561 487 253 9041’

~8380420372981% + 3455249200 0861 — 4062109 868821 )¢'” + (62201 606 4001° + 593 632 671 4801"

+916 740799 5601° — 1494 677 901 4741” + 5754 577 240 8961 — 4668 350 180471 )¢'" — 5(19 580 356 8001°

+176 536 113 1201" + 260955497 808)° — 410059 014 3001 + 1425250 272 948) — 738 352287 991)¢'°

+ (109657 800 0001° + 1008 438 606 0001" + 1736 574 508 800A” — 2093 664 647 520A° + 6 044 598 866 3401

~1451240592997)¢° - 30(2406 600 000A° + 28 367 730 000A" + 70338 417 600A” — 45 328 948 6801

+89.583 3150961 + 22706 537 389) " + 300(25 920 0001 + 1 608 4350001" + 6720213 000A°

+2469112201” — 2375573 988) + 4961375143 )¢’ +3000(7 560 000A° — 40 113 0001"

- 42182100017 — 425184 1501” + 607 314 348) — 322995619)¢° — 7500( 1 440 000A°

+5796 0001 — 54639 600A° — 153034 5001° + 99 662 5801 — 21 029 827 )¢ + 600 000(49 5001 — 17 4001°

~5538151% 2947951 + 131716)¢" — 250 000(104 4001° + 32 5801” — 418 2361 — 83899) ¢’

+10000000(1170A% + 14821 — 1517)¢” — 12500 000(276) + 227) ¢ + 500 000 000 )¢’ (B16)

J. Chem. Phys. 152, 124113 (2020); doi: 10.1063/1.5142662 152, 124113-21
Published under license by AIP Publishing


https://scitation.org/journal/jcp

The Journal

of Chemical Physics ARTICLE scitation.org/journalljcp

FL (@A) =91(61 - 1)¢" — 3(364A% + 55 180A — 9227) 9" + (4950601” + 392 514\ — 93 009) ¢’
—3(637528\% + 578081 — 31441)¢° + 12(198 7311" + 285321 — 7164)¢’ — 12(643481° + 85930 — 19077)¢°
—3(98092\% — 152474\ + 82699)¢° + 3(23 3241 + 87008) + 10911)¢” + 3(1760A° — 5386) + 15399) ¢’
+(=12001% — 169201 + 127)¢” + 120(15) — 26)¢ + 300, (B17)
Fs (9,1) = 50(32401° — 12961° — 882901* + 381 9601° — 652 9501° + 727 205) ¢**
—20(1474201° — 44928)° — 4204 1701* + 18602 2801° — 33120 1501° + 38 129261)¢™
+6(52612201° — 1254528)° — 152957 5201* + 681347 2801° — 1235032 800A° + 1429039 213)¢™
— 4(594896401° — 10101 024A° — 17532182701" + 7831194 8401° — 14395203 090A° + 16633 125349)¢”'
+10(1374589441° — 13513 392)° — 4058 563 9681* + 17982345 8161° — 33 108 357 720\* + 37 141 486 681 )¢’
~108(58733040A° — 1173 1681° — 1717020 4801* + 7435001 5601° — 13412523 590A* + 13716 168 573)¢"
+3(7927 494 8401° + 566 984 448)° — 226 440 651 6001" + 942 045890 4001° — 1623 609 048 2401’
+1377919510577)¢"® — 120(609 357 762A° + 110306 2321° — 16705018 9891" + 65225 560 75217
~1041744440551” + 63849080257 )¢'” +36(5089 341 4201° + 1643 1655681° — 131051 545 0651"
+464821 578 8401° — 660 083 367 7951” + 219178 925692)'® — 10(36793 942 8481° + 19084 009 536)°
~8599017150361" +26208902167201" ~ 3090 418 835 0401” — 23109700363 )¢'° + 4(142 030 013 7601°
+117441007 4881° — 2837610 4844701" + 6479819264 5201° — 5177 085066 420A” — 3342422380003 )'*
- 48(12619876 6801° + 18316 440 5761° — 182 340 360 4501" + 114920 829 8401° + 196 010 948 6851°
~363835575266)¢"" + (294722 5824001° + 1177249 946 112)° + 847 017 479 5201" — 26 649 573 192 0001’
+36 203253733 8001% — 4562867298 487)¢'* + 10(30 754 598 4001° — 95322396 6721° — 1085731483 1041"
+3937 302440 6401° — 2986 696472 0161" — 1205877 126071 )" — 90(7 157 880 0001° + 405 319 6801’
~ 115067 194 5601" + 153423 041 8561” + 40 325 100 2881° — 148 742 987 459 )" + 2160( 162 150 0001°
+4574160001° — 120261 6001" — 9008 824 1601° + 10 384 187 828)° — 470 544233 )¢’
+120(2 384 100 000A° — 8406 720 000A° — 55729 4850001" + 172 695967 2001° — 74 595 745 740A*
~60960277757)¢" — 2880(76 500 000A° + 77220 000A° — 410343 7501" — 2276 760 0001
+3642388 3501 — 1645337107)¢’ — 1600(60 750 0001° — 304560 0001° — 784788 7501*
+27225900001° — 90205 8751% — 502947 169) ¢° + 16 000(7 560 000 — 12 420 0001" — 64 818 000A*
+82405875)° +27272024)¢° — 300 000(234 000A" — 153 600A° — 1111 020> — 438251)¢"
+1000000(288001° — 21601> — 27067)¢> — 1000 000(6600A* + 14 123)¢” — 72000 0000¢ + 300 000 000. (B18)
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