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ABSTRACT

We investigate the spatial structure of dense square-shoulder fluids. To this end, we derive analytical perturbative solutions of the Ornstein—
Zernike equation in the low- and high-temperature limits as expansions around the known hard sphere solutions. We then discuss the
suitability of perturbative approaches in relation to the Ornstein-Zernike equation. Our analytical expressions are shown to reproduce

reasonably well numerical data in the appropriate regimes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142661

I. INTRODUCTION

The static structure factor is a function that characterizes the
internal structure of a fluid. It is also directly accessible to exper-
iments, notably via scattering methods. It carries quite a lot of
information on the thermodynamic properties of the fluid' —it can
be used to derive the equation of state—and at least part of the
dynamics of arrest in the supercooled regime.”

However, from a theoretical point of view, computing a struc-
ture factor reveals to be particularly difficult and few analytical
results have been established so far. One of the first systems where a
structure factor was computed analytically is the hard-sphere sys-
tem, where a first pathway has been designed by Wertheim and
Thiele, * then followed by Baxter’ who proposed an alternative
method where the full complexity of the structure factor is captured
by a remarkably simple function. These works have then triggered
a series of studies to refine our understanding of the hard-sphere
fluid’s structure.'’*’

One of the simplest generalizations of the hard-sphere poten-
tial is the square-shoulder potential, which consists of adding a
finite region of constant positive potential outside of the hard-
core. It shares most properties with the hard sphere potential: it
is finite-range, fully repulsive, and prevents particles from getting
too close to each other. Moreover, this potential has two natural

hard-sphere limits: when the shoulder potential is very strong—or
equivalently the temperature is very low, the outer-core becomes
hard, and on the other hand, when it becomes very soft, or equiva-
lently when the temperature is very high, only the hard inner-core
plays a significant role. Despite these properties and a significant
effort toward the theoretical understanding of this potential by the
use of various methods, such as improved mean-spherical approxi-
mation,”’ thermodynamic perturbation theories,”” >’ and Rational
Fraction Approximation (RFA),”*’ no explicit analytical expres-
sion of the associated structure factor has been proposed yet, to
the best of our knowledge. The closest result to such a solution
has been gotten by the use of the Rational Fraction Approxima-
tion (RFA),ZS‘“N which, in the spirit of the first works on the hard-
sphere system,’ ” is based on truncations of functions in Laplace
space. More precisely, one function related to the Laplace trans-
form of the pair-correlation function g(r) is expressed as a Padé
approximant, the coefficients of which are then fixed by phys-
ical constraints. However, in the square-shoulder case, one of
these constraint equations is transcendental and has to be solved
numerically.

Our goal in this study is to get an understanding of how com-
plexity emerges in this seemingly simple system by an investigation
of the behavior of the structure factor of the square-shoulder fluid in
the vicinity of its hard-sphere limits where its expression is known.
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Starting from Baxter’s solution,” which is the hard-sphere solution
with the simplest formulation, we build the lowest order corrections
to the hard-sphere behavior in a perturbative fashion, both in the low
temperature limit where, compared to the particle’s typical energy,
the shoulder appears quasi-hard and in the high-temperature regime
where the soft core potential barrier is small compared to their
typical kinetic energy. This allows us to highlight how the struc-
ture of the Ornstein-Zernike equation prevents the construc-
tion of a simple solution in this latter regime, already at lowest
order.

This paper is organized as follows: in Sec. II, we recall the
method of Baxter. In Secs. III and I'V, we build the low- and high-
temperature expansions around that solution, respectively, and dis-
cuss the properties of the perturbative series. Finally, we compare
our results to various sets of numerical data. The thermodynamic
properties described by those structure factors are described in
Paper IL."

Il. REMINDER: THE HARD-SPHERE SYSTEM

First, we recall Baxter’s derivation of the structure factor of the
hard-sphere fluid.” The diameter of the hard spheres is called R.
Remembering that in a fluid the structure factor, S(q) has no sin-
gularity, the Wiener-Hopf factorization can be used to write it as
follows:

S(q) = (Q(g9)Q(-9))™". (1)

Additionally, Q is a real function.” In an isotropic fluid, S does not
depend on the direction of the wave vector g, and the Wiener-Hopf
function Q is related to its direct space counterpart by the following
relation:

Qg =1-2mp [ dré (), @)

where p = N/V is the fluid’s density, N is the number of particles,
and V is the volume of the system.

Finally, the Ornstein-Zernike equations can be rewritten in
terms of the Wiener-Hopf function Q(r),”

re(r) = fQ'(r) +2mp frm ds Q'(S)Q(s -r),
(3)
rh(r) = 7Q'(r)+2ﬂpf0 ds (r = s)h(|r - s))Q(s),

where c(r) is the fluid’s direct correlation function, and £ is related
to the pair correlation function g by h(r) = g(r) - L.

If the Ornstein-Zernike equation are closed by the use of the
Percus—Yevick equation,

o(r) = (1= " g(r), )

where U(r) is the particle pair potential, we also get c(r) = 0 as long
as r > R. Then, Eq. (3) naturally leads to choose Q(r) = 0 in this
region as well. As a result, all integrals in Eq. (3) evaluate on a finite
domain.

Because hard particles cannot overlap, h(r) = —1 for r < R. We
therefore need to compute Q(r) only in a region, where h(r) is known
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exactly, what greatly simplifies the search for a solution. Two suc-
cessive derivatives can, indeed, be applied to the second equation in
Eq. (3) to yield

Q¥ (r) =0, (5)

that is, Q is a polynomial of degree 2 in r.
Finally, plugging this condition back into Eq. (3), with the addi-
tional requirement that Q is continuous at r = R, gives the final result

Q(r) = % P +byr+cp (6)

where the three coefficients can be written in terms of R and the
packing fraction ¢ = 7pR’/6,

_ 1+2¢
YT e
___ 3Ry
T )
RZ

The structure factor is then easily deduced from Egs. (2) and
(1). The greatest strength of this formalism is that a function S(gq)
with an a priori very involved expression is completely expressed
in terms of a simple polynomial of degree two with only two inde-
pendent coefficients. Therefore, such a method appears to be a
promising candidate to investigate small deviations from the hard-
sphere potential. A similar study has been conducted previously on
the square-well potential,”’ which is similar to the square-shoulder
potential from this perspective.

lll. LOW-TEMPERATURE EXPANSION

The square-shoulder potential is defined by the addition of a
region of constant, positive potential Uy to the hard-sphere case,

+o00, 0<r<R
U(r): Uy, R<r<d (8)
0, d<r,

where d = AR is the outer-core diameter. The packing fraction
of the outer core ¢ = 7pd®/6 can also be defined. The square-
shoulder potential is one of the simplest generalizations of the hard-
sphere potential with one additional characteristic length scale. In
particular, it shares the properties of being entirely repulsive and
short-range.

In order to solve the Ornstein-Zernike equation (3) with the
Percus-Yevick closure, Eq. (4), we need simplifications in the three
regions of Eq. (8). By analogy with the hard-sphere case, we know
that inside the hard-core g(r) = 0 and in the outside region where
U(r) = 0, the direct correlation function ¢(r) is also equal to zero.
We will, thus, assume Q(r) = 0 for r > d [it is a trivial solution of
Eq. (3)]. However, inside the soft core, additional assumptions are
needed.

J. Chem. Phys. 152, 124112 (2020); doi: 10.1063/1.5142661
Published under license by AIP Publishing

152, 124112-2


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

In the low-temperature limit Uy > kgT, the contact value
g(R") is higher than in the corresponding hard-sphere system.
Indeed, the hard-sphere contact value in the Percus-Yevick approx-
imation is

2+
R) = , 9
g(R") = 20=)? )

which gets bigger and bigger as ¢ approaches 1. As the temperature is
decreased, the potential in Eq. (8) resembles the one for hard-spheres
of diameter d, whose packing fraction is not ¢, but ¢ = 1> > ¢. Thus,
this contact value can grow quite big but is always finite if we do not
allow ¢ to grow bigger than 1.

Then, for larger values of r inside the shoulder, after a very
sharp decrease, g(r) saturates to a value that is all the more small
that the temperature is small. This can be explained in the follow-
ing way: if Uy > kgT, very few particles have the possibility to
interpenetrate in the shoulder region. The expected form of g(r) is
then that of a low density gas, which saturates to the value of the
average fraction p of particles that are able to cross the potential
barrier.

Since the decrease in g(r) is very sharp, the contact value con-
tributes little to the integrals in the Ornstein-Zernike equations. For
our purpose, we will, thus, approximate g in the following way:

g(r)=p, R<r<d. (10)
There can be various ways to define the constant p, but its precise
form has little impact on the quantitative results. For the moment,
we will, therefore, leave it unspecified. Since p is all the more
small as T is small, we will use it as a small parameter for our
expansion.4 \

Plugging Eq. (10) back into the Ornstein-Zernike
equation (3), it is convenient to split the Wiener-Hopf function into
four parts,

Qi(r), 0<r<d-R
| Qu(r), d-R<r<R
Qr) = Qui(r), R<r<d (an
0, r>d.

Then, Eq. (3) can be rewritten as

d
(p=Dr =~Qiu(r) +2mp [ Q(s)(s=r)ds
r—R
+ 271pp[0 Qi(s)(r —s)ds,
d
—sz(r)+2ﬂpf0 Q(s)(s—r)ds, (12)
, d
-Qi(r) +27Tpf0 Q(s)(s—r)ds
d
+2mpp /HR Qui(s)(r —s)ds.

Note that due to the additional integral terms in the first and
last equations, the condition (5) only holds in the region II (for
r € [d — R; R]). Acting with two derivatives on these equations leads
to the following set of coupled differential equations:
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Qui(r) = 2mpp(Qu(r +R) + RQi(r +R)),
Q"(r) = =27pp(Qur(r - R) + RQu(r - R)).

(13)

As the left-hand side of these equations is proportional to the small
parameter p, we can already anticipate that Q; and Qqy can be written
as a polynomial of degree two plus a small correction. Equations (13)
can be solved exactly (the details are given in Appendix A).

The main results are as follows: both functions can be expressed
as a function of six roots {Xi},[,¢), and generic coefficients

{Yi[}iél[l;6]l and {Y,«M}ie[m]I to be determined by the boundary
conditions, in the following way:

Qui(r) = Z Y i , Qi) = ZYI Xir (14)

Equation (13) imposes the following relation:

IH

+1Y Y, =0, j<3

(15)

111

~iy}-Y"=0, j>4

so that we can restrict ourselves to {YiIH } that we will simply
ie[1;6]
denote {Yi}ie[l 15]- Moreover, the Wiener-Hopf function Q must be
real; therefore, for i < 3,
Yi=Yis, (16)
which ensures that the number of constraints from the boundary

conditions is sufficient to solve completely Eq. (13).
The roots X; have the following behavior when p is small:

X; ~ 0(p'?) (17)
p—0

so that the general solution [Eq. (14)] expanded at order O(p) is a
polynomial of degree 3 in .

Finally, the Ornstein-Zernike equation (12) can be solved using
the following ansatz:

r r’
Q,-(r):eig +aiz+bir+ci> (18)

where i € {I, II, III} and ey = 0. For the sake of simplicity, let us
decompose each coefficient according to its p expansion: e; = ei(l) p
+0(p?), ai = a<°> +aPp+0(p?), bi = b® + b p + 0(p?), and
ci=c® 4 c p + O(p?). For each of these coefficients, the leading

order term is independent of the considered region and is consistent
with Baxter’s solution for hard-spheres of diameter d = A R,

) _ 1+2¢
SN CI=rEk
o) _ 3d¢
T 9)
o_ &
2(1-¢)

The other coefficients are as follows:
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ORI
od(-¢)
o - g N0 10) - 270+ 11+ 89))
(20)
5y 3R(A-1
bz() 2)‘3((1 (Z)qz[1+/\+3A2+3A3+2(l—5)¢]»
by R(A-1
0 2}Lz((l ¢))[ 3¢+ AL+ A2+ )],
ayy’ = /14(1¢ G270+ A (4+59) -1 (1+89)]
3R 4 4
b S ¢¢)2[ 142" +2(5- 61+ A")¢], (1)
R*(A* -1

i’ = w((l ¢;[ 3¢+ 1 (1+29)],
6
Jiig d(l—gb))
Ly _ (276" ~40p(1+89) +1'(1+ 26 + 6¢) ]
s M4(1 - ¢)? ’

2 4 3 22
L) 3RP[-1+212 +2* +2¢(5+A(A* -1 -6))]
i 203(1 - ¢)? ’
o__ R

o= D) V' +o(3+20(A-2)(A+1)%)].

These terms are the first correction to the Wiener-Hopf function of
hard-spheres, once a fraction of their hard-core becomes soft. Since
the solution of the Ornstein-Zernike equation is exactly known, it is
to be noted that such a computation is easily generalized to higher
orders in p in which case the limiting assumption should be the
form of g(r), which is taken to be constant inside the integrals. It
then appears that going to higher and higher orders in powers of
p amounts to take as an ansatz for Q(r) a piecewise polynomial of
increasing degree.

IV. HIGH-TEMPERATURE EXPANSION
A. The full Percus-Yevick solution

We now turn to the high-temperature regime of the square-
shoulder potential [Eq. (8)], Uy <« kgT. Thanks to the Percus-
Yevick closure [Eq. (4)], we already have sufficient knowledge inside
the hard-core, and outside the potential range: as in the low-
temperature case, we only need further an approximation inside
the soft core r € [R; d]. Since we are still dealing with a poten-
tial with only one additional length scale, it is convenient to use
the splitting [Eq. (11)], so that the Ornstein-Zernike equation
now reads

ARTICLE scitation.org/journalljcp

rh(r) = ~Qin(r) + 219 [ Q) (s )
vamp [ Q- 9gllr - s,
Q)+ 2m [ Q) s (23)
Qi)+ 27 [ Q) r)ds

+ 27p ‘/Hi Qui(s)(r = s)g(|r - s|)ds.

In region II, the ansatz (6) still holds; for the two other regions,
however, we need knowledge about the pair correlation function
inside the shoulder. However, contrary to the low-temperature
case, where the pair correlation function approaches a small con-
stant, in the high-temperature regime, g(r) approaches its hard
sphere value outside the hard core—further corrections are of next
order in an expansion in powers of I' = Ug/kpT—whose full exact
analytical expression is not known, to the best of our knowl-
edge. The problem of finding an expression of the hard-sphere
pair-correlation function g(r) within Percus-Yevick’s approxima-
tion has nonetheless been solved explicitly by Wertheim in the
region r € [R; 2R]® and then used in a number of subsequent
studies.>' "

For the sake of simplicity, we use here a different but equivalent
approach: instead of giving an explicit expression to g(r), the Percus-
Yevick equation (4) combined with Eq. (3) can be used to re-express
g as a function of Q alone. Equation (23) becomes non-linear in Q,
but a careful splitting of each part of the Wiener-Hopf function in
the T expansion, combined with the knowledge of the order O(T 0,
which is nothing but Baxter’s solution [Eq. (6)], is sufficient to solve
the equations. The details are given in Appendix B.

The main result is that Qg can still be expressed in the follow-
ing form:

6
Qur =Y. Yie"", (24)
i=1
where the X;’s are the roots of some specific polynomial. However,
their high-temperature expansion has the following form:

X =X +1xM +0o(1?) (25)

so that Q does not take a polynomial form anymore,

6 0
Qu=Y, Yiex"r[l + (XZ'IY)F] +0(T). (26)
i=1

Given the involved expressions of Xi(o)’s, which are the roots of
a polynomial of degree three, such an expression does not yield
very useful analytical results when the boundary condition equa-
tions are solved. In the following, we design further approximation
schemes so as to get a better analytical framework to deal with the
high-temperature regime.

This form of Q’s expansion should not come as a surprise in as
much as the Ornstein-Zernike equations on the Wiener-Hopf func-
tion Q [Eq. (23)], depend explicitly on the pair correlation function
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in a regime where its analytical expression is already quite heavy.’
The fact that the I' expansion of Q is not a polynomial, even at
the lowest order is a hint that Baxter’s solution does not yield a
convenient starting point for an expansion at high temperature.

B. Approximations of the pair correlation function

In order to get a simpler approximation of Q(r), the first
ingredient we need is an analytical approximant of g(r) inside
the shoulder. As already stated, to the lowest order in T, we
can restrict ourselves to an approximate expression of the hard-
sphere g(r) in the region near the hard-core in the Percus-Yevick
approximation.

The Ornstein-Zernike equation (3) relates directly the pair cor-
relation function to the Wiener-Hopf function. In the hard-sphere
case, it is, thus, possible to use Baxter’s solution [Eq. (6)] to get a
polynomial approximant of g(r) in the vicinity of the hard core. As a
matter of fact, defining F(r) = rh(r), Eq. (3) can be written as

F(R+6r)=0+2mp /O.R Qp(s)F(R + Or —s)ds. (27)

Calling F,(r) the polynomial obtained by truncating the Taylor
expansion of F at order O(r"), we get an expression whose precision
is typically of order O(8"), where § = A — 1.

Such polynomial approximants are, however, ill-behaved and
lead to unstable solutions except for very low values of §. Indeed,
even if they reproduce well the behavior of F near the core, high
order terms lead very rapidly to excessive, positive or negative, values
of F (and thus g) at odds with the expected physical tendency (see
Fig. 1).

To overcome this difficulty, we chose to use the simplest expo-
nential ansatz compatible with the two first orders of the § expan-
sion, namely,

Fexp(7) :;bexp(fl(r__R)), (28)
Fo
with

p, - _Re(=5+29) 1:_sv(10—2<p+</>2)_ (29)
2(1-9)? (1-9)

20¢t ; @(r) ——

1.8} ; eap(T)

16 R ' g3(r) e

1418

12 % .

0.8}

0.6}

1.0 15 2.0 25 3.0 /R

FIG. 1. Comparison between Baxter's pair correlation function g (solid line) and
different truncations, for a hard-sphere system of packing fraction ¢ = 0.2. The
dotted line corresponds to a truncation of Eq. (27) at order O(6°) and leads to
very unphysical behavior. The dashed line corresponds to the exponential ansatz
[Eq. (28)] used in the following.
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The corresponding pair correlation function g, is displayed
in Fig. 1. It approximates well Baxter’s solution in the immediate
vicinity of r = R and far away from it. However, it misses the typical
oscillatory behavior. Clearly, the quality of such an ansatz is dimin-
ished by going to higher values of 6, especially if ¢ is also quite high,
but its precision cannot be captured by a simple power of 6, it is not
anymore a small-shell expansion.

Obviously, better approximations of g can be designed—recall
that its exact expression within the Percus-Yevick approximation
is known for § < 2°—but we want here only to work out the sim-
plest, yet physical, solution for the square-shoulder structure fac-
tor in a high-temperature expansion around Baxter’s solution. As
we show in the following, even this simplified solution is quite
involved.

C. The truncated Percus-Yevick solution

As a consequence of the truncations of g(r), we cannot work
with the first equation of (23), since the terms of order O(FO) do not
cancel anymore and Qs is of order O(T'). Instead, the Percus-Yevick
equation should be used to determine Qyy;. In the appropriate region,
it reads

(1 - (F(r) +1) = re(r)

14 d / 2
= =Qu(r) +2mp fr Qui(s)Qy(s —r)ds + O(T7),
(30)

where we have used the fact that since Qpr should go to zero as
I' —» 0—this is the hard-sphere high-temperature limit—the second
factor in the integral can be replaced by its hard-sphere value Q.

The natural way to proceed is then to take derivatives to get a
linear differential equation,

TF" = Qjjr + 2mp(( ¢y Qitr + by Qinr + Qi )- (31)

Note that such an expression is possible, thanks to the polynomial
characteristic of Q. A simple solution ansatz can be found, with the
form of F,

Q(r) = qo(eq‘(r_d) - 1), (32)

but it can be shown not to fulfill the boundary conditions of Eq. (30)
before derivation. Therefore, a solution of the homogeneous equa-
tion of the following form:

Qu(r) =qo+q1e" + g2 + qze™’, (33)
where {x;} are the roots of
X+ 2np(cbX2 + b X + a;,) (34)

must be added.

We recover the same problem as in the full Percus-Yevick case:
the general solution is expressed in terms of exponential terms, not
reducible into polynomials by a simple I' expansion. This impedes
the expression of the coefficients in Q as simple functions of the
boundary conditions. Therefore, we must push our approximation
even further.

In order to do so, note that if § is not too big, the hard-sphere
term in the convolution integral in Eq. (30) is not too different from
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its constant term. We can, thus, safely replace Q, by ¢,. We then do
not need to take derivatives to find a linear differential equation. The
general solution for Qy has the following form:

Qui(r) = qoe™ + g2 ™ + bur + i, (35)

where g3 = 612(%@ comes from the homogeneous solution and
q1 = F1/Fy comes from the left-hand side term. The full expres-
sions of the remaining coefficients can be found in Appendix C. As
expected, Qqr is of order O(T).

The remaining parts of the Wiener-Hopf function are then
derived by plugging back into Eq. (23) the truncated expression
of g(r) and expression (35). As discussed before, Qy still has a
polynomial expression,

Qu(r) = %7’2 + by + e, (36)

but Qr and Qqrr are not polynomial anymore,
A 3 2

r ;
Qi(r) =gy teg tars +brr+cr+quoe +qie

—qr +q30 e%r_

(37)

The quite lengthy expression of the coefficients is given in
Appendix C. They illustrate the complexity of the solution, even at
this level of approximation. As expected, both Q; and Qn can be
written as Q, + O(T).

D. Discussion

The evolution of the Wiener-Hopf function Q with r is repre-
sented in Fig. 2. In particular, this graph displays how we get from
the first hard-sphere limit to the high-temperature Q(r), then to the
low-temperature one, and finally to the second hard-sphere limit as
the temperature is decreased. The shape of the square-shoulder Q(r)
appears to be quite similar to the hard-sphere one, except for a cusp
located at = R, which is associated with g(r) developing a second

I II ITI

Qr) 02 | 04 06 08 10 12

- 0.5}

N .
_’].5,
- 2.0F,
S25f
-3.0f . .
- 3.5} Tl

FIG. 2. Evolution of the Wiener—Hopf function Q(r) for ¢ = 0.3 and R = 1. The dot-
ted lines correspond to the two hard-sphere limits. The dashed line corresponds
to the low-temperature expansion of Q for A = 1.25 and p = 0.8. The solid line
corresponds to the high-temperature expansion of Q for A =1.25and T = 1.2.
The values of the temperature parameters are chosen a bit outside of the range
of applicability of our formulas to emphasize the deformations induced by temper-
ature. In particular, due to the exponential behavior of p with T, quite large values
must be taken to separate the low-temperature curve from its hard-sphere limit.
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discontinuity, as is well-known from previous data (see Refs. 25 and
28, for example).

Note that, to the contrary, the transition for Q; to Qi remains
smooth. Indeed, in Eq. (23), as ¥ - d — R in region I, the last integral
term in the Ornstein-Zernike equation smoothly goes to zero. Thus,
the values of Q; and Qj; become equal in that region.

All in all, we have investigated the possible constructions of
high-temperature expansions around Baxter’s hard-sphere solution,
valid for square-shoulder systems with very weak shoulder poten-
tials. It has been shown that the design of such an expansion turns
out to be much more involved than in the low-temperature case.
Even at the lowest level of approximation, the main asset of Baxter’s
solution, simplicity, is lost, along with the polynomial characteris-
tic of the Wiener-Hopf function. The source of these difficulties has
been identified: in the high-temperature case, the knowledge of the
form of the hard-sphere pair correlation function outside of the core
plays a crucial role but cannot be accurately captured by simple func-
tions of the packing fraction ¢. This will have further implications,
as discussed in Paper IL.”

V. NUMERICAL ACCURACY

In Sec. V, the results of our expansions are compared to various
sets of numerical data.

A. The Wiener-Hopf function

The Wiener-Hopf function Q is mostly used in a theoretical
context; hence, it is generally not computed in numerical investiga-
tions of structure problems. However, in Ref. 37, the author used
a square-shoulder structure factor that was determined by numeri-
cally solving the Q(r) version of the Ornstein-Zernike equation (3)
within the Percus—Yevick approximation. The results are presented
in Fig. 3. The numerical and analytical curves are almost on top
of each other for each value of the parameters. This validates the
numerical accuracy of our ansatz.

It is also instructive to look at the behavior of the analyt-
ical ansatz out of their range of applicability. For example, in
Fig. 4, we represented the low-temperature ansatz for a dimen-
sionless temperature T = 2. A striking feature is that the cusp
at r = R is barely visible, as we already discussed in Fig. 2. This
can be related to the fact that in this framework, we supposed
that g(r) = p inside the shoulder, which is not a good approxi-
mation anymore when the temperature rises. As a result, the con-
tact value g(R"), which is related to the slope difference on both
sides of the cusp, is very much underestimated so that the cusp is
less pronounced than on the numerical result without temperature
expansions.

To the contrary, in the case of the high-temperature expansion,
the cusp is overestimated at high values of ' (see Fig. 5). As a mat-
ter of fact, the contact value g(R") is now a linear function of T,
which can, thus, become really wrong when T is large [see Ref. 30
for the full expression of g(R") at high temperature]. Interestingly,
as shown in Fig. 5, the form of the cusp gets better when the packing
fraction increases: the I' — 0 limit of the contact value g(R") is given
by its hard sphere expression (9), which increases with ¢. Therefore,
for higher packing fractions, the overestimation of the I' correction
to the contact value at lower temperatures is comparatively weaker,
hence a better numerical agreement.
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FIG. 3. Comparison of our expansions with the numerical solution of Eq. (3) used in Ref. 37 for A = 1.15. The solid line corresponds to the analytical result; the dashed one
corresponds to the numerical data. The top panels display the low-temperature ansatz for T = 7.5, and the bottom panels display the high-temperature ansatz for I' = 0.5. In

the left column, ¢ = 0.27; in the right column, ¢ = 0.48.

B. Structure factor

As a next step, we compare the structure factors built from
our expansions to more realistic data. Indeed, it is known that
the Percus—Yevick closure, despite its analytical simplicity, leads to
thermodynamical inconsistencies, for example. A much better clo-
sure, from the point of view of numerical accuracy, is the Rogers-
Young closure,” which is built explicitly to be thermodynamically

Q(r)

FIG. 4. Evolution of Q(r) for A = 1.08, T = 0.5, and ¢ = 0.27. The solid line corre-
sponds to the low-temperature result; the dashed line corresponds to the numerical
solution.

consistent. It also compares very well to numerical simulations.
Thus, we can expect that results from the Rogers-Young closure
are more accurate than ours and use them to get an estimation
of how good the Percus-Yevick approximation is in such a sys-
tem in typical ranges of parameters. The comparison is displayed
in Fig. 6.

For low enough packing fractions, the agreement between the
results from the two closures is good, but it deteriorates when the
fluid gets denser. More precisely, as can be seen in the case of the
high-temperature expansion, it is the first peak of the structure factor
that carries the biggest error, which means that our structure factors
tend to overestimate the enforcement of localization of the particles
in the fluid. Let us stress, though, that on this dataset, I = 0.5, which
is already quite large for aI' << 1 expansion.

The case of the low-temperature expansion requires a closer
look. Indeed, the agreement with the Rogers-Young data for ¢ = 0.48
is quite poor, what could come as a surprise since the low-
temperature expansion is, as we saw before, much better behaved
than its high-temperature counterpart. In order to understand a bit
better this result, it is necessary to recall that in the low-temperature
case, the reference point for the expansion is a hard-sphere system
with packing fraction ¢ = ¢ 1°. Therefore, not only ¢ but also A is a
crucial quantity. In particular, for ¢ = 0.48 and A = 1.15, as shown
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FIG. 5. Evolution of Q(r) for A = 1.15, T = 7.5, and ¢ = 0.27 (left) or ¢ = 0.48 (right). The solid line corresponds to the high-temperature result; the dashed line corresponds to

the numerical solution.

on this example, the outer-core packing fraction is ¢ ~ 0.73 so that
the reference system can hardly be considered as being in its fluid
state. It is to be expected that even in the hard-sphere case, the
structure factor determination is not very precise at such high
packing fractions. Extra caution is therefore needed in the

S(q)

2.0f
1.5F
1.0F

0.5F

0.0

1.0F

0.5}

0.0 . . . . .
5 10 15 20 25 30 4

low-temperature case to ensure that the reference state used in the
expansion is a well-defined one. As a final illustration, it is shown
in Fig. 7 that even when A is only lowered to 1.12—in which case
¢ ~ 0.67—the agreement between our Percus-Yevick results and the
Rogers-Young structure factor is much better.

S(q

30}

25}

5 10 15 20 25 30q

0.0 f L L L L ) q
5 10 15 20 25 30

FIG. 6. Comparison of our expansions with the numerical solution of the Ornstein-Zernike equation with the Rogers—Young closure for A = 1.15. The solid line corresponds
to the analytical result; the dashed one corresponds to the numerical data. The top panels display the low-temperature ansatz for I = 7.5, and the bottom panels display the
high-temperature ansatz for I = 0.5. In the left column, ¢ = 0.27; in the right column, ¢ = 0.48.
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S(q) the closest to a fully analytical solution without expansions.
1k However, in their work, they represented the pair correlation
function—which was shown to compare well to numerical data
from various simulations””*"—which in our setup requires an
additional Fourier transform. This causes some numerical arti-

8f facts in the vicinity of the discontinuities of g where very
of large wave number data are required. The comparison is shown
in Fig. 8.

Let us first stress that the data presented in Refs. 28 and 29 are

2t J LJ\J\/\—A mostly in the range where the temperature is neither small nor large
0 i s w - so that our expansions are not expected to be very precise. Second,

q
° s * 20 % * following the same line of argument as the one used in Sec. V B,
FIG. 7. Evolution of §(q) for A =1.12, T = 7.5, and ¢ = 0.48. The solid line corre- we chose not to represent the results for low-temperature expan-
sponds to the low-temperature result; the dashed line corresponds to the numerical sion since for so big values of A, the outer-core packing fraction is

solution. too large for the hard-sphere T — 0 limit to be properly defined.

With that in mind, the agreement between the high-temperature
Percus-Yevick solution and the rational fraction approximation and
simulation data appears to be surprisingly satisfactory. This can be
used to validate the additional set of approximations we used in

Finally, we compare our results to those obtained by the order to derive fully analytical expressions in the high-temperature
rational fraction approximation by Yuste et al,”””’ which are limit.

C. Pair correlation function

0.5f
L . , T 1 L L e
1.0 1.5 20 25 1.0 1.5 2.0 2.5 3.0
FIG. 8. Pair correlation functions. The dashed line corresponds to the rational fraction approximation ansatz from Refs. 28 and 29, dots correspond to results from various
simulations,”>*“? and the solid line corresponds to the high-temperature expansion. The top-left graph is for A = 1.2, T = 1, and ¢ = 0.4; the top-right graph is for 1 = 1.5,

T=0.5, and ¢ = 0.2094; the bottom-left graph is for A = 1.5, T = 2, and ¢ = 0.4189; and the bottom-right graph is for A = 1.5, T = 2, and ¢ = 0.2094.
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VI. CONCLUSION

All in all, we have shown how Baxter’s solution to hard-
sphere’s structure factor can be extended to treat the high- and
low-temperature sectors of the square-shoulder structure factor. In
the low-temperature regime, our computation can be generalized
to higher orders to improve precision. Moreover, the typical expo-
nential dependence of p with respect to I' generally ensures that
already at moderate temperature, the low-temperature predictions
should be quite good. However, at high temperatures, the lack of
simple approximant of the hard-sphere pair correlation function
outside of the core makes Baxter’s solution a not so judicious starting
point for a temperature expansion. This result has two main origins:
first, the Percus-Yevick closure is particularly adapted to the hard-
sphere potential—it reduces the problem to the computation of Q(r)
in a region where g(r) is known exactly—but this cannot be easily
generalized to any other potential. Second, the Ornstein-Zernike
equation involves a convolution integral that appears to be poorly
adapted to the design of perturbative expansions other than the virial
one (indeed, the convolution integral is proportional to the den-
sity). Finally, comparison with numerical data showed reasonable
agreement.
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APPENDIX A: LOW TEMPERATURE
EQUATIONS—EXACT SOLUTION

Let us first rewrite the Ornstein-Zernike equation (13) in the
following form:

¥ (r) = AW, (r) + BYS(r)
(A1)
¥ (r) = ~A W (r) - BY(r),

where ¥1(r) = Qm(r), ¥Ya(r) = Qi(r + R), A = 12p(p/R3, and
B =12pg/R. Both ¥| and ¥, are solutions of the following equation:

¥ 4 By +24By + A%y =0, (A2)
whose characteristic polynomial is

X +B’X* +2ABX + A” = (X* +i(BX + A)) (X° - i(BX + 4)),

(A3)

and its roots are, thus, known. The general solution is a combination
of exponentials of the six roots, which can be divided into three sets
of complex conjugates {Xli,Xzi,Xf}, with the additional condition
that it is a real function (what imposes conditions on the relative
coefficients of the exponentials of two conjugate roots). Explicitly,
these roots are given by

ARTICLE scitation.org/journalljcp

+ 1 12(1"/’) 3203 313 ¢ \2/3
Xy = 3(f )1/3[ R2 +37°(f) :|
X;: |:(i\/_1+1)12(p(p) 1/6\/_
L
+31/3(ii+\/§)(f;)2/3:| (A4)
6(f)
-3 (-1= iﬂ)(f;f”],

where
R
R i Yy
185 X fo = £3ip +/+ip?(£9i + 16pg)
4
JSob? [ lf(pq)) 273(17@ ] o). (a9

The polynomial in Eq. (A3) can only be canceled if one if its factors
is zero. The only difference between those factors is the change of a
“+” sign into a “~” in the second factor. In the equations Eq. (A4)
and Eq. (A5) above, the “+” signs are attributed to the roots of the
first and second factor accordingly.

It must not be forgotten that although this solution is exact,
the equation we used in the beginning [Eq. (A1)] is only meaningful
in the low-temperature regime where the approximation that g(r) is
constant in the outer-core is justified; it should not be understood in
any way as an exact solution to the Wiener-Hopf function problem
in the presence of a full square shoulder potential.

We shall now derive the form of the general solution to Eq. (A1)
at order O(p). The low-temperature expansion of Eq. (A4) yields

1/3 1/3
XE o= 49 2(py) ( )
p—0 R 2

() ot
X; - (ﬁi) 2<P<P>”3(§)”3
2

p—0 2 R

(L) 20 (2) ", oy

2 R

Xi = (‘\/_3;‘)2(17@1/3(;)1/3

p—0 2 R

: 2/3 1/3
. (_1 xﬁl) 2(pe) (g) RN
2 R 3
As can be anticipated from the form of the characteristic polynomial
Eq. (A3), it is expressed in terms of the sixth root of (—1) and (+1).
We now go back to the Wiener-Hopf function. Let us define
X4 =X;, X5 =X;, X6 = X3, and the following coefficients:

Qui(r) = Z Y i , Qi) = ZYI Xir (A7)
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The Ornstein-Zernike equation (13) imposes

(A8)

+iy] - Y =0, j<3
—IY YIH

iz4,

In the following, we will, thus, only work with the set {Y]-IH} that we
will simply denote {Y}.
Moreover, the Wiener-Hopf function must be real; therefore,

Yi = Y. (A9)
Then, we introduce some more adapted notations,
o =Y+ Y],y =i(Y; - ¥),

(A10)

2(p)*? (%)”3
R 3)

as a function of which the general solution of Eq. (1
expanded in powers of p,

(A11)
3) can be
o3
Ql(r) pio ()’1 +y2+ y3) - T(El (20{1 +ap + (X3)
+fl\/§(y3 - y2) +p1/352\/§(062 +a3)
+pP60n -y v )
Pz
+ Tfl(fl()/z +y3=2y1) + \/551(063 -a)
+4Ezp1/3((x1 -+ 0¢3))7’2

+ (6 (0 - - )P +0(p"),
6 (A12)
1/3

Quu(r) o (o1 +a2+as) + ‘07(51(2)/1 +y2+73)

+51\/§(062 —-a3) +P1/352\/§(YZ + V3)
+p1/352(0cz —a3 — thl))r
2/3

+ PT&(El(txz +az —201) +V3E(y2 - p3)

46 (= y2 ) )P

(@ L0a ey -p)r +0(").

All in all, even if the general solution to the Ornstein-Zernike
equation within our set of approximations is a sum of exponen-
tial functions, polynomial expressions for the Wiener-Hopf func-
tion are recovered in the frame of the p-expansion. Interestingly, Q;
and Qq, when developed at order O(p), see their degree simply be
augmented by 1.

Finally, the general solution to the equation at the first order in
p can be expressed as a degree three polynomial, what justifies the
ansatz Eq. (18). Moreover, Eq. (A12) specifies the p dependence of
such coefficients when retrieved in an expansion of the exponential
solution. Plugging it back into the Ornstein-Zernike equation (12),
we see that in the boundary condition equation, only the constant

ARTICLE scitation.org/journalljcp

term should be taken into account in the integral terms with a p pref-
actor (the coefficients of higher order terms all vanish in the p - 0
limit and are, thus, subdominant at this order). Only then should we
plug back the ansatz Eq. (18) and express the boundary conditions
in powers of p.

APPENDIX B: HIGH TEMPERATURE—-THE FULL
PERCUS-YEVICK SOLUTION

A first way to tackle the problem is to use the Percus-Yevick
equation inside the soft core,

c(r) = (1-¢")g(r), (B1)

combined with the Ornstein-Zernike equation for the direct corre-
lation function,

’ 124) 4 _,
re(r) =-Q'(r) + e / Q (s)Q(s—r)ds. (B2)
Plugging this back into Eq. (23) to replace every occurrence of g(r)
yields the following three equations:

e re[R;d]:

12(p

( 4 )Qm(r) £ 22 Qs - s

_Wir)/o 7 Qi(5)Qu(r - s)ds

+(%)2 1 _ler fO’—R Qi(s)

x[_iduaflf(u)e,(u—r+s)ds. (B3)
e re[d-R;R]:
Q)+ 2 [T @
e re[0;d-R]:
= Q)+ 22 [ ryds

R3(1 ef)f Qui(s) Qi (r = s)ds

12
(2 e [l
X f_ du Qu(u)Qr(u - r +5)ds. (B5)

Equation (B4) still has the usual solution,

2
.
QII(T) = anz +byr+c. (B6)

For the two remaining equations, we must explicitly use the T
expansion. In the limit ' — 0, the solutions are
Qmi(r) o QI(T’)

o(T), =, Q(r) +O(D). (B7)
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A main difference between Eqs. (B5) and (B3), on the one hand, and
the low-temperature equation (13), on the other hand, is the highly
non-linear characteristic of the former. As a consequence, in order
to get linear differential equations on the Wiener-Hopf function, we
must not take two, but five additional derivatives. With the following

ARTICLE scitation.org/journalljcp

where we defined
Py(X) = A(cy X* + by X +ap). (B13)

Defining v = vg/v1, its roots can be found. Indeed, for arbitrary 6, the
roots of

notations:

— X2+ 0X+ 6 (B14)
1 are
wo(T) = — >0, v(T) = >0, (B8)
1-e7T el -1 Xi:%[li\/1+4v]:9(i (B15)
A= 1;73? >0, (B9) so that, finally,

~0X° + Py(X) X* + Pp(X)? = —0(X® = {4 Py(X) ) (X° - L Py(X)).

d d
wy = —A/ sQ(s)ds>0, w;= —A/ Q(s)ds, (B10) (B16)
0 0
The remaining roots of polynomials of order three can then be found
Eq. (B3) becomes exactly. They all have the following form:
X=X +TX} +0(1%), B17
=~Vo Qm +Av (Cb QIII +by Qm +ap Qm ) () (B17)
,, with X,p +0and X} # 0. The Qqr function, thus, expands as
+ A, [Ch QIH +b;, Qi +a; Qm
6 6 .
+2apby, Qy + 2apc, Qppp + 2bycy Q},?] +0(T%). (BI11) Qui(r) =Y Yie" = > v;e" (1+ (Xir)I) + O(I*).  (B18)
i=1 i=1

Finally, the structure of the I' expansion is not compatible with
a polynomial Wiener-Hopf function. This is due to the fact that
X? # 0, which is in strong contrast to what happened in the
low-temperature expansion.

It is a linear differential equation, whose characteristic polyno-
mial is

— 00 X% + 01 Py(X) X* + 01 Pp(X)?, (B12)

APPENDIX C: HIGH TEMPERATURE COEFFICIENTS

e Qq coefficients:
Let us recall the general form of Qur,

r r
Qui(r) = qoe™ + g2 €™ + byyr + e

The exponents in the exponential terms are

2(¢* = 2¢ +10) 69
= . C1
TR -79+5) TTRA-9) v
The coefficients qo and ¢, vanish, as expected, in the infinite temperature limit (I' — 0),
2(c _ 2 2(92=2¢+10)
=T R (5-29)7¢ s el (C2)
4(5¢> - 189 + 3¢ + 10)
B[ (9= 1) (50> - 139 — 10)((61 = 1) + 1)e T ~9(5 - 2¢)> e
— — — e 207-7p+5 — 202 =79+5
r ¢ g ¢ 2k o _ M(=109 +26¢ + 20) + 49 (©3)
= 3692 (5¢° — 189 + 3¢ + 10) P 20> —79+5 '
Finally, the polynomial part of Qqr is parameterized by
R-9¢) <p) R(1-9¢) <P)
b = C4
jiig 69 cnr = 3647 (Cq)

and also vanish at high temperatures.
e Qy coefficients:
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They are written as ay = a, + al(ll) T, by = by + bl(ll) Iand ¢y = ¢, + cg) I, where ay, by, and ¢, are Baxter’s values for the
corresponding hard sphere system given by Eq. (7). The first order coefficients are given below,

_ 4(p(3p+2) +A(9? ~29+10))
1) e 202 —-79+5

hr = 3240(1 - ¢)3¢*(7¢ — 10) (9% — 29 + 10)*(5¢* — 13¢ — 10)

897 +5) 6 5 4 3 2 8
x [ 3645 e (5 — 29)°(40¢° - 224¢" +397¢° — 139¢” — 4609 — 100)¢

2(p*+179+10+1(79% ~17¢+10))

—90e oD (5-2¢)°(¢" —29+10)*(13¢° - 1404¢° + 3693¢" — 2576¢° — 153¢” + 2049 — 20)¢’

2(79%+29+10+A (9> —29+10))

+90e e (5-20)°(5¢° - 139 - 10)((3781" +12601° - 31501 + 6726) — 20245) 9"

~3(10621" + 44641 — 71700% + 209121 — 80567)¢"" + 6(36541" + 13428)1° — 269191 + 72236 — 222189)¢"
—2(450901" + 168 3181° — 376 5961* + 928 9801 — 2125733 )¢’

+9(332161" + 106 0081° — 2952061 + 643 1481 — 964 925)¢°

~18(378601" + 1119841° — 360 063)° + 671 9541 — 641292)¢’

+3(3852001" + 938 8801° — 33736681 + 53370481 — 3319589)¢°

~36(345001* + 723001 — 206 6551* + 226 2021 — 102 809) ¢’

+72(75001* + 2550017 — 29251* — 44 980) + 10191)¢* — 160(45001° + 96751 — 98701 — 4231) ¢’
+1200(300A” + 5301 — 281)¢”° — 6000(20 + 21)¢ + 20000 )¢’

389+21(89% —199+20

)
+10e w5 (1-¢)°((6A-1)p+1)(¢" - 2¢ +10)*
x (65¢° — 7189¢” + 36 587¢° — 46 849¢° — 4207¢" + 28769¢° — 1222¢° — 1780¢ + 200)

4(p(3¢+2)+A(9* —29+10))
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~4(20460601° — 1031 6161° — 59803 110A* + 267 733 8001° — 475849 6651” + 584842 171)¢"*
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_ 40p(pr1)+A(97 ~29+10))
Re 202 -79+5

b(l) _
T 7 19440(¢ - 1)3¢%(7¢ - 10) (92 — 29 + 10)*(5¢% — 139 — 10)

p 5 4 3 ) 5 4(49% +9+10)
x [ 10935(5 = 2¢)°(55¢° — 323¢" + 6439~ — 406¢" — 505¢ + 50)¢@ e 2¢*~7¢s

2(p*+199+10+1 (7% ~179+10))

-90(5 - 2¢9)*(¢” - 29 +10)%e GG
x (65¢" —4817¢° +13290¢° — 10843¢" + 1108¢° + 615¢” — 157¢ + 10)¢°

2(79% +49+10+1 (> —29+10))

+90e 277915 (5-2¢)°(5¢° - 139 - 10)¢’

x ((15121" + 47881° — 13 482)° + 260701 — 84971) "

—2(65611"* +26 1000° — 49 8241° + 121 3831 — 521728)¢"
+6(151471* + 527581° — 123279)% + 2845531 — 991 406)¢"'
+(—382644)" —13356361" +35117821% — 7558 2961 + 19824 179)¢"°
+2(6429781" + 190938617 — 6261 489)\° + 12232 674\ — 21 465637) ¢’
~9(3360961* + 9004321 — 34952881° + 60270121 — 6914 119)¢°
+6(8839801" + 19006561° — 8714673)% + 13149 672) — 10213439)¢”
—3(20412001" +34682401° — 156297241 + 18 185940\ — 11287 201)¢°
+36(945001* + 198 9001" — 405 1651* + 175861 — 151 624) ¢’
+(~5400001" — 31680001 — 23292001 + 7987 080\ + 2474 414) 9"
+20(180001° + 88 2001* + 142201 — 77 689) ¢’

—~600(3001° + 10801 +259)¢” +2000(301 + 59)¢ — 10000)

429+21(89% ~199+20)

+10e =5 (1-¢)’((6A-1)@+1)(¢” —2¢ +10)*
x (325¢° - 249309° + 128421¢" — 178 815¢° + 13599¢° + 97 101¢" — 19860¢° — 4059¢" + 14409 — 100)

4(3p(p+1)+A (9> —2¢+10))

+e 27 =7¢+5 (7¢* - 17¢ + 10)

x (50(1296)° — 12961° — 358021" + 1642321 — 2855341” + 387005)¢'®

~120(63991° — 5724)° — 196 1281* + 951 8581° — 17973061 +2718097)¢"’

+60(104004A° — 881281° —31026511* + 14761 7281° — 27668 5831" + 41 544 184)¢'°

~18(1902780A° — 1474 1281° — 56018 880A* + 257 529 5201° — 461 962 1301” + 627 546 223 )¢"°

+12(12009 060A° — 8498 0881° — 336 540 2851* + 1464 498 3601° — 2445 166 2001” + 2770 845353 )™
~12(39016080A° — 24311 6641° — 10251337051 + 41217350401 — 6207 1959601” + 5444 576 974)¢"
+3(3883852801° — 198402 0481° — 9367 176 9601" + 33 886 716 9601° — 44 403 756 9001 + 28 162 466 203 ) ¢'*
~12(186 604 5601° — 69304 8961° — 3915970 9201* + 12058 641 7201° — 12981156 135\* + 5646 777 676 )"
+3(968112000A° — 747118081 — 16900935 1201* + 38 689 626 2401° — 29617 889 220A” + 10 006 489 853 )¢
—5(483 408 000A° + 198236 1601° — 4881731 3281* + 1378324 8001° + 5145650 1361 + 2052733 129) ¢’
~120(1620000A° — 24537 6001° — 1596159001" + 7354750321° — 614923 1671 — 107477 161)¢°

+60(24 300 000A° — 16 848 0001° — 320 652 000A* + 488 347 2001" — 96413 1841° — 224247 415)¢’

~360(900 0001° + 3960 000> — 7380 0001* — 28 8320001° + 13 139 800A” + 340 719)¢°

+480(540 0001° +21937501* — 4185 0001° — 64522501 — 1956 989) ¢’

~12000(13 5001 + 4 50001° — 306001° + 8477)¢* + 120 000(600A° + 12751* + 1703 )¢’

10

~1200000(151* +2)¢° — 10500 0009 + 1000 ooo)), (Cé6)
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1 R2  4Ge(pt1) tA(9? ~29+10))
c = — e 202 -79+5
u 19440(1 — ¢)2¢5(7¢ — 10) (9% — 2¢ + 10)%(5¢* — 13¢ — 10)

6 4 3 5 5 1(ag? +9+10)
x[32805(5-2¢) (59" —28¢” +54¢" —35¢ — 50)¢ e 2>~

2(g%+199+10+1(79*—17¢+10))

-90(5 - 29)°(¢° - 29+ 10)*(269° - 957¢" + 2550¢" — 2023¢" + 849" + 87¢ — 10)¢’e DGy

2(7¢% +49+104A (92 —29+10))

+90e- 0D (5-29)(5¢° - 139 — 10)¢” (2(1891" +5041° — 2016)° + 29461 - 12118) 9"

~3(10621* + 36721" — 103621” + 162221 — 98039)¢"" +3(73081* + 212761 — 746821 + 1194681 — 551 639) ¢
—4(22545)0* + 654751° — 257 0400” + 406 5031 — 1353716) ¢’

+9(332161" +77184\° — 391 584)° + 608 2601 — 1273 715)¢"

—18(37860)* + 756721 — 4716631 + 693 514\ — 896 326)¢’

+3(3852001" + 530 6401° — 44783641 + 6127 1161 — 5090 155) ¢°

—18(690001* + 558001° — 618 630A° + 652 5921 — 415987)¢°

+18(300001* + 36 000A° — 156 600A” — 77 660\ — 9553)¢p*

~20(180001° +252001% ~ 92 580) — 13579)¢° + 600(3001° + 3801 — 451)¢” — 12000(51 +4)¢ + 10000)

10

129+21(892 —199+20

)
+10e 25 (1-9)2((6A—-1)g+1)(¢> - 29 +10)*
x (1309° - 5123¢” +24931¢° - 33695¢° + 1219¢* + 19573¢° — 2021¢” — 740¢ + 100)

4(3p(+1)+A(9*—29+10))

+e W (797 —17¢+10)(20(8101° — 12961° — 226801" + 1098001° — 193 6801 + 301 955)¢"”
~2(939601° — 143 8561° — 2926 5301* + 14999 400> — 28 746 6301 + 50793 151)¢'°

+2(756 54010° — 1135296)° — 228954601 + 115094 1601° — 218621 970A” + 387418 181) 9"’

—20(4092121° — 594216)° — 122455801 + 59626 8721 — 108393 921\° + 175186 735)p"*

+20(16990561° — 2391 1201° — 483920731 + 223 6840201 — 378 610 254\* + 514451 747) 9"
~20(54276481° — 73249921° — 1451351521" + 622230 8401° — 950 117 1751" + 1007 708 074) 9>

+ (264150 720A° — 335798 7841° — 6492 921 120A* + 25178 139 3601" — 33 450 806 700A” + 25 867 546 039) "'
+(—4937760001° + 578 721 0241° + 10 548 668 880" — 34996 605 1201° + 38027 120 2201 — 20070 008 909) "°
+5(120528000A° — 113 840 6401° — 2146782 5281" + 5287018 1761° — 3919962 6001" + 1401 192947)¢’
—20(226800001° — 121824001 — 211296 6001* — 48 778 9921° + 474 553 6381 — 39 460 333 )¢°
~20(8100000A° — 311040001 — 266 976 000A* + 1143 273 6001° — 988 064 3521” + 8993 921)¢’
+40(8100000A° — 9720 0001° — 88695 000A* + 1118520001 + 12922 200A” — 51 988 453 )¢°
~160(16200001° — 506 2501 — 18 180 0001° + 8 520 7501” + 561 733)¢°

+8000(202501" + 45001° — 89775)% — 41162)¢" — 40000(1800A° + 6751” + 1414) ¢’

+100000(180A° + 359)¢” + 3 500 000¢ — )). (C7)

e (Qy coefficients:
Q contains both a polynomial and an exponential part. We recall its form

4 3 2

r r r _
Ql(r) =glﬁ+€I€+6l15+b17+€1+q10€q1,+6hle qlr+q3oeqﬂ.

The coefficients g1 and g3 are inherited from Qqr and given above. Only the three coefficients present in the hard sphere solutions have a

non-vanishing I' - 0 limit. They are written as a; = a;, + afl) T,br=b,+ b;l) Iand ¢y = ¢, + cfl) T, where ay, by, and ¢, are Baxter’s values for
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the corresponding hard sphere system given by Eq. (7). The values of the first order corrections are as follows:

_ 4(p(3p+2) +A(9° ~29+10))
1) e 2027945
a =
I 3240(1 - 9)39*(7¢ — 10) (¢* — 2¢ + 10)*(5¢2 — 13¢ — 10)

3Gy +5) 6 5 4 3 2 8
x [ 3645 27705 (5 - 29)°(40¢° - 224¢" +397¢° - 139" — 4609 — 100)¢

2(9? +179+10+A (79> ~179+10) )

-90e  Ghem  (5-2¢)°(¢° —2¢+10)*(13¢° — 1404¢° + 3693¢" — 2576¢° — 153¢" + 2049 — 20)¢’

2(792 +29+10+A (9> —29+10))

+90e  wGrn  (5-2¢)°(5¢° - 139 - 10)((3781" +12601° — 31501% + 67261 - 20119)¢"

~3(10621" + 44641 — 71700% + 209121 — 80129) 9" + 6(36541"* + 13428)° — 269191 + 72 236) — 220596)¢"°
—4(225451* + 841591 — 1882981 + 4644901 — 1051432)¢’

+9(332161* + 106 0081° — 295 206)” + 643 1481 — 946 361)¢°

—18(37860A" + 111 9841° — 360 063\” + 6719541 — 615930) ¢’

+3(3852001" +9388801° — 33736681 + 53370481 — 3 006 533)¢°

~36(345001* +723001° — 206 6551* + 226 2021 — 63 599) ¢’

+72(75001* + 25 5001° — 29251 — 44980\ + 29 541)¢*

—80(90001° + 193501” — 197401 + 1213)¢° + 1200(3001" + 5301 — 131)¢” — 6000(20 +21)¢ +20000) ¢’

38¢+21(89> —199+20)

+10e @5  (1-¢)*((6A-1)p+1)(¢* —2¢+10)*
x (65¢° — 718997 +36587¢" — 46 849¢° — 4207¢" +28769¢° — 1222¢° — 1780¢ + 200)

4(p(39+2) +A (9% ~29+10))

+e @ (7¢° —17¢+10)(10(16201° — 12961° — 445501" + 200 5201° — 345 1501° + 448 475)¢"”
~2(939601° — 622081° — 28714501" + 13671 360A° — 25608 150A” + 36 781 223)¢"°

+4(3782701° — 227 4481° — 11209 5901* + 52126 3801° — 96 638 5351* + 136214 483) 9"’
~4(2046060A° — 10316161° — 59803 110A* + 267 733 800A° — 473 000 0851* + 593797 486)¢"*
+4(8495280A° — 35225281° — 235477 5301" + 992313 5401° — 1620526 9051° + 1661028 218)¢"
—4(271382401° — 8118 1441° — 702588 3301* + 2711876 9401" — 3 946 475 3851* + 3041 213389) '
+10(26415072A° — 3763 5841° — 623530 224)" +21345798241° — 2640413 574A° + 1421349 431)¢""
—4(1234440001° + 6905 0881° — 2495 838 4201* + 7044 079 6801° — 6742004 6251 + 2510757 187) ¢
+5(120528 000A° + 615859201° — 1961348 256)* + 3642478 8481" — 1710913 7521 + 999963 877) ¢’
—10(45 360 000A° + 60 134 4001° — 314960 4001* — 618929 568" + 1409 831 9641° + 520834 991)¢°
—80(2025000A° — 10692 0001° — 75 168 000A* + 268 399 800A° — 2024247511 — 78917 885)¢”
+400(8100001° — 8626 5001* + 1634 4001° + 11702 340A* — 8366 171)¢°

—320(1620000A° +10125001* — 12442 5001° + 5500 125> + 4354 708) ¢’

+8000(40 5001* + 360001° — 1154251 — 30289)¢"

~20000(72001° + 54001% — 59)¢° + 100 000(3601° + 373 )¢” + 10 000 000¢ — 2 000 000)), (C8)

_ 40Gp(pr1)+A(92 ~29+10))
Re 292 -79+5

19440(¢p — 1)395(7¢ — 10)(9* — 29 + 10)*(5¢% — 13¢ — 10)

b =

40g219110) 6 5 4 3 2 9
x[10935¢e 275 (5 —2¢)°(55¢° —323¢" + 643¢" — 406¢" — 505¢ + 50)¢

2(9*+199+10+1(7g% ~179+10))

—90e DG (5-2¢)°(¢" - 2¢ +10)*
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x (65¢ —4817¢° +13290¢° — 10843¢" + 1108¢° + 615¢° — 157¢ + 10) ¢’

2(7¢% +49+104A (9? —29+10))

+90e e (5-29)*(5¢” — 139 — 10)((15121" + 47881" — 134821” + 268261 — 84089)¢"
—2(65611* +26 1001° — 498241 + 1253251 — 516499)¢"

+6(151471% +527581° — 1232791% + 294 1111 — 979 388) "’

+(—382644)" —13356361° +3511782\% — 78327241 + 19486 679)¢"°

+2(6429781* + 19093861 — 6261 489)\% + 12733 9021 — 20894 452) ¢’

~9(3360961" +9004321° — 34952881 + 63313561 — 6594 541 )¢°

+6(8839801* + 19006561° — 8714673)% + 14088 840) — 9326291)¢’

~3(20412001* + 3468 2401° — 15629 7241 + 21 009 0601 — 8 950 585)¢°

+36(945001" + 198 9001° — 405 16517 + 249 786 + 23 486)¢°

~2(270000A* + 15840001 + 1164 600A° — 1671 540\ + 588893)¢"

+20(180001" + 882001 + 682201 — 16489) ¢’ — 600(3001” + 1080) + 559)¢” +2000(301 + 59)¢ — 10000) ¢’

129+21(892 —199+20)

+10e w5 (1-¢)°((6A-1)p+1)(¢° - 29 +10)*
x (325¢° - 24930¢° + 128 421¢” — 178 815¢° + 13599¢° + 97 101¢" — 19860¢° — 4059¢" + 14409 — 100)

4(3p(p+1)+A (9 —29+10))

+e 277915 (79" = 179 + 10)

x (50(1296° - 12961° - 358021" + 1655281° — 2852101 + 378 887)¢"*

~60(127981° — 114481° — 3922561 + 19184041° — 35906701 + 5328215)¢"’

+60(1040041° — 881281° — 31026511* + 148887361° — 27633 1591 + 40 626 490) ¢

~18(1902780A° — 1474 1281° — 56018 8801* + 260 062 4801° — 4612230501 + 610036 803 )"

+12(12009 060A° — 8498 0881° — 336540 285" + 1481785 9201° — 2439894 4501° + 2661 335948)¢™*
~12(39016080A° — 24311 6641° — 10251337051* + 4183301 5201° — 6187 4824501 + 5101090 309)¢"
+3(3883852801° — 198402 0481° — 9367 176 9601" + 34573 700 6401° — 44 170 444 5001 + 24913 174 483)¢"*
~12(186 604 5601° — 69304 8961° — 3915970 9201 + 12435518 5201° — 12844000 455)° + 4232 182486)¢"’
+3(968 1120001° — 74711 8081° — 16900935 1201* + 41 162 083 2001° — 28 622 898 180)” + 3 256 488 773) 9"
—5(4834080001° + 198236 1601° — 4881731 3281* + 3100449 6001° + 5947 049 880A° — 647 233 895) ¢’
~120(1620000A° — 24537 6001 — 159 615 900A* + 690 547 0321° — 644 093 9671> — 110042 995)¢°
+60(24300000A° — 16848 0001° — 320 652 000A* + 501 307 2001° — 115637 1841” — 349863 331)¢’

—360(900 000A° + 3960 000A° — 7380 000A* — 19832 0001° + 15929 800A> — 10078 081)¢°

+480(540 0001 +21937501* — 1485 0001” — 4089 7501 — 1680 989)¢’

~12000(13 5001 + 450001° — 36001” + 18 827)¢"

+120000(600A° + 12751% + 878) ¢ — 1200 000(151* — 13)¢° — 10500 000¢ + 1000 000)), (C9)

, - 4(3p(p+1)+A(9% —29+10))
1) Re 202 -79+5
=

19440(1 - 9)2¢%(7¢ — 10) (92 — 29 + 10)*(5¢* — 139 — 10)

1(49%+9+10) 6 4 5 ) 5
x|32805e 275 (5-2¢)°(5¢" —28¢” +54¢" — 35¢ — 50)¢
2(9% +199+10+1 (792 —179+10) ) 2, 2 4 6 5 4 3 2 3
-90e (=1 (2=5) (5-2¢) (9" —2¢+10)" (269" —957¢” + 25509  —2023¢" + 84¢" +87¢ — 10)¢

2(7¢% +49+104A (92 —29+10))

+90e WG (5-2¢)°(5¢° - 139 - 10)((3781" + 1008)° — 3654\* + 6774) — 24467) 9"
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—6(5311* + 18361° — 4587)% + 9707\ — 49197)¢'" + 3(73081* + 2127617 — 663121 + 140 3121 — 555391 )¢
+(-901801* — 261 9001” + 916 056A” — 1900 9801 + 5486 081) ¢’

+18(166081* +385921° — 174 174)° + 3523191 — 654915)¢°

—9(75720\" + 151 3441° — 8343901 + 16102281 — 1903 537) ¢’

+12(963001* + 132 6601° — 966 501A” + 1807 953\ — 1438 966)¢°

—18(690001* + 558001° — 485 4301* + 857 9121 — 540 831) ¢’

+72(75001* + 90001° — 14 400A* + 16 8101 — 16 577)¢* — 20(18 0001° + 52 200A* — 40 380\ — 6769) ¢’
+600(3001” + 6801 — 111)¢” — 6000(10A + 13)¢ + 10000) ¢’

429+21(89% —199+20)

+10e w5 (1-¢)’((6A=1)@+1)(¢" - 29 +10)*
x (130¢° - 5123¢7 +24931¢° - 33695¢° + 1219¢" + 19573¢° — 2021¢° — 740 + 100)

4(3p(p+1)+A (9> —2¢+10))

e wows (79" - 179+ 10)

x (10(16201° - 25921° — 429301" +2206801° — 401 6701” + 648 175) "’

—4(46980A° — 719281 — 1386 7201* + 7536 4201° — 14871 330A” + 27195 773)9'°

+2(7565401° — 1135296)° — 21619 7101* + 115729 2001° — 226 753 0201° + 416431751 )¢

~20(4092121° — 594216)° — 11518 2811* + 60 006 8161° — 112954 0051° + 190 268 218)¢"*

+20(16990561° — 2391 1201° — 45229 6711* + 2254127761 — 397 526 2381* + 569 568 254) ">
~10(108552961° — 14649 9841° — 268 890 192A* + 1256 7749761 — 2020017 5281” + 2305873 787)¢"

+ (264150 720A° — 335798 7841° — 5933 8656001" + 25521 631 2001° — 36 325 062 5401* + 31 313237899) "’
+(—4937760001° + 578 721 0241° + 9411 778 800A* — 35750 358 7201° + 43 1423350201 — 26932888 109)¢"°
+5(120528000A° — 113840 6401° — 1817857 728\* + 5534263 8721° — 5153367 096A” + 2 365312 889) ¢’
—20(226800001° — 12182400A° — 132078 600A* + 22976 2081" + 279 039 2941 — 32038 459)¢°
~160(10125001° — 3888 0001° — 36105 750A* + 137293 200A° — 130040 0191" + 18477 964 )¢
+40(8100000A° — 9720 0001° — 70470 000A* + 1150920001 — 58 708 800A* — 15808 057)¢°
~160(16200001° + 2531 2501* — 14805 000A° + 3492 000A° — 307 817)¢’

+16000(101251* + 157501 — 330751> — 19201)¢* — 20 000(36001° + 40501° + 3863 )¢’

+200000(901° + 97)¢” + 6 500 000¢ — 1000 000)). (C10)

The other coefficients are
2(p-1 -1)?
g =T (-1 ,__rple-D

- , Cl11
Fe 1 Ry (C11)
3R*(5-20) ¢* (69" — 29¢° + 729 — 729 + 50
g0 - 1 2R =29) 97 (69" = 299" + 7297 =729+ 50) (C12)
16(¢? — 29 + 10)3(5¢% — 18¢? + 3¢ + 10)
3R*(5-2¢)%" 2(-21(¢* - 29 + 10) + ¢ — 49 + 10)
qu =T 2 2 3 &Xp P
16(¢ - 1)2(7¢ — 10)(¢? — 2¢ + 10) 202 -7¢9+5
) ) ) 20(g? —29+10) +49 3 ) 2(92+10)
x|2(p-1)"(2A(¢” - 29 +10) +2¢° — 79 +5)e 275 — (29" — 99" + 309 — 50) e 7+ |, (C13)
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r R*(13¢° — 449" + 163¢° — 310¢” + 107¢ — 10)
= €X]

ARTICLE scitation.org/journalljcp

q3o =

648(¢p — 1)2¢*(7¢ — 10)(5¢* — 13¢ — 10)

x ((1 = q))z(S(p2 -13p-10)((6A-1)p +1)e

2(A(5¢% - 139 — 10) + (13 — 6¢)9)
( 20° =79 +5 )

20(9? —2¢+10)+49
2027945

z(zwino)' 2 3
—9ew 75 (5-2¢9) ¢ |. (C14)

They all vanish at high temperature, giving back the well-known Baxter’s form for hard spheres.
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