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We introduce a supercooled liquid model and obtain parameter-free quantitative predictions that are in
excellent agreement with numerical simulations, notably in the hard low-temperature region characterized
by strong deviations from mode-coupling-theory behavior. The model is the Fredrickson-Andersen
kinetically constrained model on the three-dimensional M-layer lattice. The agreement has implications
beyond the specific model considered because the theory is potentially valid for many more systems,
including realistic models and actual supercooled liquids.
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The ubiquity of glass in nature and technology has driven
research in this area for decades but there is still no
agreement on the basic mechanism by which a supercooled
liquid forms a glass [1–3]. An essential difficulty for
deciding over competing theories is the fact that often they
make only qualitative statements. For instance, the classic
thermodynamics vs dynamics controversy resolves around
the putative divergences of susceptibilities and correlation
lengths but, while the debate has producedmany conceptual
developments [1,2], there are no precise quantitative pre-
dictions to be matched with experiments and numerical
simulations. In other words, models of supercooled liquids
in three dimensions, either realistic or on lattice, have been
studied previously only by means of numerical simulations.
In the following, we present a model in three dimensions
in which the gap between theory and experiments can
instead be filled. Furthermore, the agreement has implica-
tions beyond the specific model considered because the
theory is potentially valid for many more physical systems,
including the most realistic models and actual supercooled
liquids.
Mode-coupling theory (MCT) [3] is widely popular in

the experimental literature because it captures many quali-
tative features of the physics of liquids upon supercooling,
notably two-step relaxation and stretched exponential
decay. Furthermore, it agrees quantitatively with numerical
simulations, although one has to replace the values of some
MCT parameters with values extracted from data fits [4–7].
The essential problem is that it predicts a dynamical arrest
transition at a temperature where actual systems are still in
the liquid phase. In spite of this serious drawback, many
believe that the MCT transition is still relevant and
determines a crossover from power law to exponential

increase of the relaxation time that is widely observed.
Further support to this scenario comes from the fact that
simple liquid models in the limit of infinite physical
dimension d display a sharp transition qualitatively similar
to the one of MCT, although MCT itself is quantitatively
wrong in this limit [8]. In that case, the sharp transition is
clearly a mean-field artifact due to the d → ∞ limit and it
should become a crossover as soon as the dimension is
finite. Similarly, the success of kinetically constrained
models (KCMs) in reproducing the physics of supercooled
liquids is often attributed to the presence of an avoided
MCT-like transition that becomes sharp when one switches
from lattices in finite dimensions to the Bethe lattice where
mean-field theory is correct [9–16].
Building on the analogy between MCT and spin-glass

models with one step of Parisi’s replica-symmetry breaking
(1RSB) discovered more that 30 years ago [17], it has been
recently proposed that to fix MCTone has to replace it with
a set of stochastic dynamical equations called stochastic-
beta relaxation (SBR) [18,19]. SBR describes the β regime,
i.e., the timescale when dynamic correlations stay close to a
plateau value, and it has a simple and intuitive interpre-
tation: it is basically MCT supplemented with random
spatial fluctuations of the temperature that are effectively
quenched on the β timescale. SBR is promising, as it seems
to cure the drawbacks of MCT, displaying, in particular, the
crossover and also dynamical heterogeneities, without
spoiling its successes, in particular, two-step relaxation
and stretched exponential decay [20,21]. SBR is a universal
theory potentially valid for many different microscopic
models, the specific model determining the values of its few
(five) quantitative parameters. In the following, we show
that SBR holds for the models we study. To do so, we have
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first computed the five SBR parameters, then solved
numerically the dynamical stochastic equations, and finally
performed Monte Carlo simulations to be compared with
the theoretical predictions. It turned out that SBR provides
an accurate quantitative parameter-free description of the
dynamics, i.e., the models are solvable beyond mean-field
theory.
The model considered is a particular realization of the

classic Fredrickson-Andersen (FA) KCM [9,10]. The FA
model is made by Ising spins on the sites of a lattice that are
independent, the Hamiltonian being H ¼ P

i si, but obey a
kinetically constrained dynamics: a spin can flip only if it
has at least m of its c nearest neighbors in the excited (up)
state. An equilibrium configuration is thus easily generated
numerically at time zero and one typically measures the
persistence. More precisely, we define the local persistence
ϕiðtÞ as equal to one if siðt0Þ ¼ −1 for all 0 ≤ t0 ≤ t and
zero otherwise, thus the averaged persistence is the number
of negative sites that have never flipped at time t divided by
the total number of spins [22]. The FA model on the Bethe
lattice is known to exhibit a dynamical arrest transition of
the MCT type [11–16]: at the critical temperature Tc the
persistence remains blocked to a plateau value ϕplat that is
approached in a power-law fashion. The FA dynamical
transition is intimately related to bootstrap percolation and
both Tc and ϕplat can be computed from its solution on the
Bethe lattice, as discussed in the Supplemental Material
[23]. In particular, for connectivity c ¼ 4 and m ¼ 2 the
average persistence ϕðtÞ obeys at Tc ¼ 0.480 898

ϕðtÞ − ϕplat ≈
1

ðt=t0Þa
; t ≫ 1; ð1Þ

where ϕplat ¼ 21=32. At present, analytic expressions of t0
and a are not available, but they can be estimated from
numerical simulations as a ≈ 0.352 and t0 ≈ 2.30. It is well
known that the sharp transition is instead avoided when the
FA model is studied on regular lattices in two and three
dimensions, but no first-principle theoretical description of
the dynamics can be obtained in those cases. As we will
show in the following, such a description can instead be
obtained on the finite-dimensional lattice we consider here.
We studied the FA model (with m ¼ 2) on the (random)

lattice in three dimensions yielded by the application of
M-layer construction of [28] to the diamond cubic lattice
(that has connectivity c ¼ 4, see Fig. 1). The M-layer
construction can be applied to any lattice: to obtain a
random instance, one considers M copies of the original
lattice, say the square lattice in d ¼ 2 as in the figure,
rewires through a random permutation the M links corre-
sponding to a given link on the original (M ¼ 1) lattice, and
finally repeats the procedure for each link of the original
lattice, as shown in Fig. (1). It can be easily seen that short
loops in the lattice are rare for large values of M and the
lattice is locally treelike. Loops are nevertheless present at

large distances, thus at any finite M the lattice is finite-
dimensional, although it looks like a Bethe lattice at short
distances. Given that for each site i ¼ 1;…; N of the
original lattice (M ¼ 1) there are M spins sαi , α ¼
1;…;M, the total number of sites is Ntot ¼ M × N and
the natural local order parameter is the average over the
layers of the local persistence minus the plateau value

gðx; tÞ≡
�
1

M

XM
α¼1

ϕα
i ðtÞ

�
− ϕplat; ð2Þ

where x is the spatial coordinate of site i. For M large but
finite it is natural to expect that any observable takes the
same value it has on the Bethe lattice with small Oð1=MÞ
corrections: the model should be solvable by the Bethe
approximation. This is indeed true, except at the Bethe
lattice critical temperature: while the Bethe approximation
predicts that the averaged order parameter gðtÞ never
reaches zero, the three-dimensional nature of the M-layer
lattice implies that this cannot be true and leads to a
dramatic deviation from mean-field behavior. This is
indeed confirmed by numerical data. In Fig. 2 we plot
the time decay of the shifted persistence hgðx; tÞi where

FIG. 1. (Left to right, top to bottom) The M-layer procedure:
(1) M-independent copies of a lattice (a regular 2D lattice in the
figure) are stacked on top of each other (view from the top);
(2) the edges corresponding to a given link in the original lattice
are rewired between the M copies; (3) the procedure is repeated
for every link of the original lattice. For large M, the graph is
locally a Bethe lattice, but at large distances it has the properties
of finite-dimensional lattice. (4) The three-dimensional diamond
cubic lattice.
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here and in the following the angle brackets mean average
with respect to (i) different instances of the random lattice
generated by the M-layer construction, (ii) different initial
equilibrium configurations, and (iii) different thermal
histories. Monte Carlo simulations were carried out at
the critical temperature of the Bethe lattice Tc ¼ 0.480 898
for systems with M ¼ 3000 (with size of the original
diamond cubic lattice L ¼ 8), M ¼ 50 000, M ¼ 100 000,
and M ¼ 200 000 (L ¼ 4). At initial times, the data follow
the mean-field (MF) curve corresponding to M ¼ ∞
(obtained from numerical simulations on the Bethe lattice
(see the Supplemental Material [23]) and deviate from it at
larger times (increasing withM) reaching the plateau value
(g ¼ 0) in finite time.
The difficult problem is to obtain theoretical predictions

in the region where the data deviate from the mean-field
curve and to proceed it is useful to examine the role of
fluctuations. Within the M-layer, a mean-field approxima-
tion to fluctuations can be obtained as a sum over non-
backtracking walks of Bethe lattice fluctuations [28]. At the
critical temperature, this yields [23]

hgðx; tÞgðy; tÞi − hgðx; tÞihgðy; tÞi ≈MF tað2−d=2Þ

M
f

�
x − y
ξðtÞ

�
;

ð3Þ
where fðxÞ is a scaling function, the correlation length
diverges with time as ξðtÞ ∝ ta=2, and d is the space
dimension. We can now invoke the Ginzburg criterion

and argue that the MF approximation hgðx; tÞi≈MF
1=ðt=t0Þa

is accurate as long as fluctuations around the mean are
small. Generically, they are small due to the 1=M prefactor,
but we see that there is a timescale tG when, due to the
tað2−d=2Þ prefactor, they become comparable with the

(squared) order parameter hgðx; tÞi≈MF
1=ðt=t0Þa,

tað2−d=2ÞG

M
≈

1

t2aG
→ tG ≈M

1
að4−d=2Þ: ð4Þ

Thus, on this timescale MF theory must fail and, most
notably, the spurious transition will be avoided, for in-
stance, the dressed propagator on the lhs of (3) will deviate
from the bare expression on the rhs and the actual
correlation length will cease to grow. We note that the
Ginzburg time grows with M and thus deviations from the
MF occur at later time for increasing values of M in
agreement with the data of Fig. 2. Most importantly, since
tG ≈Mf1=½að4−d=2Þ�g is large for largeM, the order parameter
isOð1=taGÞ small and the correlation length isOðta=2G Þ large:
this grants that deviations from mean-field theory are
described by an effective Landau theory, because one
can retain only the lowest orders in the Taylor expansion
of the order parameter and its space and time derivatives.
Following the arguments and computations of [18,19], we
argue that the effective theory is SBR, meaning that the
generic K-point average obeys for 1 ≪ M < ∞,

hgðx1; t1Þ;…; gðxK; tKÞi ≈ ½ĝðx1; t1Þ;… ˆ; gðxK; tKÞ�; ð5Þ

where ĝðx; tÞ on the rhs is the solution of the SBR equations

σ þ sðxÞ ¼ −α∇2ĝðx; tÞ − λĝ2ðx; tÞ

þ d
dt

Z
t

0

ĝðx; t − sÞĝðx; sÞds: ð6Þ

The separation parameter σ measures the distance from the
critical point and vanishes at T ¼ Tc. The square brackets
mean average with respect to the field sðxÞ that is a
quenched random fluctuation of σ, Gaussian and delta-
correlated in space,

½sðxÞ� ¼ 0; ½sðxÞsðyÞ� ¼ Δσ2δðx − yÞ: ð7Þ

The SBR equations have to be solved with the small-time
condition limt→0ĝðx; tÞðt=t0Þa ¼ 1, where λ anda are related
by the MCT relationship λ ¼ f½Γ2ð1 − aÞ�=½Γð1 − 2aÞ�g. In
practice, for times smaller than tG, the observables on the lhs
of Eq. (5) can be accurately approximated with the values
they have on the Bethe lattice, while on times of order tG they
are described by the rhs. This explains the peculiar initial
conditions of the SBR equations: the short-time behavior
on times OðtGÞ matches long-time behavior for times
1 ≪ t ≪ tG, i.e., the mean-field result given by Eq. (1).

FIG. 2. Persistence vs time in d ¼ 3. Solid lines from bottom to
top: data forM ¼ 3000,M ¼ 50 000,M ¼ 100 000,M ¼ 200 000
and for the Bethe lattice curve (M ¼ ∞). The data follow the Bethe
curve at initial times and deviate from it at later times increasing
with M. The dotted lines represent the corresponding SBR
predictions describing the data when they start to deviate from
the mean-field curve (see text). (Inset) Parametric plot of χ4ðtÞ vs
gðtÞ ind ¼ 3 for the abovevalues ofM. The SBRpredictions (solid
lines) are in excellent agreement with the numerical data (points) in
the large-time regime where gðtÞ deviates from MF. At small
intermediate times [large gðtÞ] both SBR and the numerical data
approach the MF asymptote (dashed straight line), numerical data
deviate on smaller (microscopic) times.
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Equation (5) embodies the power of the effective theory
approach: on the lhs, we have a model with a complex
microscopic dynamics for which no analytic treatment of
dynamics is available (not even on the Bethe lattice); on the
rhs, we have a (numerically) solvable set of equations that
were derived in [18,19] starting from symmetry consid-
erations (essentially the detailed balance property of the
dynamics) but without reference to any specific micro-
scopic model. The microscopic details determine the actual
values of the five SBR parameters a, t0, α, Δσ, and σ that
are needed to get quantitative predictions. Using recent
developments on bootstrap percolation on the Bethe lattice
[29] and some lattice-dependent geometrical constants, we
obtain (details in the Supplemental Material [23]):

Δσ2¼ 0.285
M

; α¼ 0.411; σ¼ 0.222× ðTc−TÞ: ð8Þ

Within SBR, mean-field theory is recovered setting
Δσ2 ¼ 0, in this case ĝðx; tÞ is constant in space, the gradient
term plays no role, and one recovers the critical MCT
equation [3], in particular, for σ ≥ 0 (T < Tc) ϕðtÞ never
goes below the plateau value. The M-layer construction
allows one to have a finite but small Δσ so that the MCT
transition is avoided and ϕðtÞ crosses the plateau at a finite
time for all values of σ. The SBR predictions corresponding
to the data shown in Fig. 2 were obtained solving numeri-
cally (by space-time discretization) Eq. (6) for many
instances of the sðxÞ in a box of size L. From the figure,
we note that the quality of the SBR predictions increases
with M and is excellent for M ¼ 200 000, especially
considering that there is no single fitting parameter.
SBR is a powerful theory that provides not only the

average dynamical order parameter but, according toEq. (5),
also all possible fluctuations. To demonstrate this, in the
inset of Fig. 2, we plot parametrically the χ4ðtÞ function that
yields the fluctuations of the persistence density

gðtÞ≡ 1

Ntot

X
i;α

gαi ðtÞ; χ4ðtÞ≡Ntotðhg2ðtÞi−hgðtÞi2Þ: ð9Þ

According to the MF expression (3), χ4ðtÞ should diverge
with time as t2a [leading to a MF asymptote χ4ðgÞ ∝ g−2],
instead on the Ginzburg timescale tG, over which gðtÞ
deviates from MF and reaches zero, χ4ðgÞ deviates from
the MF law and remains finite. Note that the agreement
between numerical data and the numerical solution of the
SBRequations is even better in the parametric representation.
SBR can be applied in other dimensions as well, we have

considered (see Supplemental Material [23]) the d ¼ 0 case
that corresponds to finite-size effects in mean-field models
on fully connected or sparse random graphs with 1RSB at
the so-called dynamical temperature Td [30]. The interplay
between the parametersM and L can be also be clarified in
terms of the SBR equations [23].

To discuss the results in a broader context, we note that
the M-layer construction can be applied virtually to all
supercooled liquid lattice models, including different
KCMs [31] and plaquette models [32,33], leading to
analogous solvable non-MF models described by SBR.
Furthermore, SBR can provide quantitative theoretical
predictions for generic tunable models [34–40] that in
earlier studies could only be studied by means of numerical
simulations. On the other hand, the lattice for M ≫ 1 is
rather different from the original M ¼ 1 lattice one is
ideally interested in: the latter has many short loops, while
the former has very few. Thus, the condition M ≫ 1 alters
artificially the three-dimensional geometry at the micro-
scopic scale and one may ask if this hampers the appli-
cability of SBR to realistic models and actual supercooled
liquids. To clarify this point, we stress that M ≫ 1 is a
sufficient but not necessary condition. A necessary con-
dition in a generic system is that the dynamical correlation
length is large enough to justify the use of a coarse-grained
description: numerical simulations do indeed report corre-
lation lengths significantly larger than the microscopic
scale in supercooled liquids [41–44], while unfortunately
they cannot be measured in current experimental settings.
The natural framework to discuss coarse-grained observ-
ables is Wilson’s renormalization-group (RG) theory,
where each system corresponds to a particular point in
the space of RG Hamiltonians that display all possible
powers of the order parameter and its spatial and time
derivatives and thus depends on a infinite number of
coupling constants. In practice, these additional terms lead
to higher powers of ĝðx; tÞ and higher order spatial and time
derivatives in Eqs. (6). SBR assumes that these additional
terms can be neglected and this can be motivated by the
following RG argument. The absence of a sharp dynamical
transition in finite dimension implies the absence of a stable
fixed point (FP), as a consequence, all Hamiltonians flow
under RG toward the high-temperature FP, however, if the
correlation length is large it will take many RG steps for it
to decrease to one. Since standard dimensional analysis
implies that the coupling constants of the additional terms
decrease close to the Gaussian fixed point (they are
irrelevant operators in RG jargon), it is possible that on
the scale of the correlation length the coarse-grained theory
is driven near SBR by the RG flow. This explains why
many different systems, including experimental ones, are
potentially described by SBR and thus share the same
qualitative features that do not depend on the actual values
of the SBR parameters: notably, power law to exponential
increase of the β time and dynamical heterogeneities below
the avoided transition.
SBR is thus potentially valid forM ¼ 1 as well, because

long-range correlations may develop also in the presence of
short-range interactions. The deviations at smallerM in the
plots are indeed expected because the SBR parameters,
being model dependent, change with M. The values we
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computed in Eqs. (8) have actually 1=M corrections that
can be also computed systematically through a feasible but
tedious power expansion. The only special feature of the
large-M regime is that the SBR parameters can be com-
puted exactly from the Bethe lattice, while the computation
in the M ¼ 1 case is less straightforward (one should take
into account the presence of small loops), but it is still
feasible in principle.
While it is satisfying to compute the SBR parameter

independently as we have done here, one could also extract
some or all of them from fits. This means that SBR can be a
useful tool to rationalize experimental data in the region
where the widely used ideal MCT scalings fail. The
outcome would still be highly nontrivial because the
SBR [Eqs. (6)] yields predictions for many more quantities
than those needed to determine the SBR parameters
through fits. In particular, here we considered only one
temperature, but one may consider a whole range of
temperatures [20] [corresponding to different values of σ
in Eqs. (6)] and also study spatial correlations [20] and
finite-size effects.

We acknowledge the financial support of the Simons
Foundation (Grant No. 454949, Giorgio Parisi).
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