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Abstract Colloidal hard-sphere suspensions are convenient experimental mod-
els to understand soft matter, but also by analogy the structural-relaxation
behavior of atomic or small-molecular fluids. We discuss this analogy for the
flow and deformation behavior close to the glass transition. Based on a map-
ping of temperature to effective hard-sphere packing, the stress—strain curves
of typical bulk metallic glass formers can be quantitatively compared to those
of hard-sphere suspensions. Experiments on colloids give access to the micro-
scopic structure under deformation on a single particle level, providing insight
into the yielding mechanisms that are likely also relevant for metallic glasses.
We discuss the influence of higher-order angular signals in connection with
non-affine particle rearrangements close to yielding. The results are qualita-
tively explained on the basis of the mode-coupling theory. We further illustrate
the analogy of pre-strain dependence of the linear-elastic moduli using data
on PS-PNiPAM suspensions.

Keywords rheology - colloidal suspensions - metallic alloys

1 Introduction

Well-characterized Brownian colloidal dispersions with deliberately tuned in-
teractions serve as invaluable model systems on two accounts: they are models
of more complex suspensions that are of application interest in their own right
and at the foundation of the field of soft-matter physics. On the other hand,
the large size of the colloids (in the range of 10 nm to about 1 pm) implies that
the relevant length and time scales match those accessible in visible-light spec-
troscopy and microscopy as well as those of human observers. Hence colloidal
suspensions serve as model systems of atomic and small-molecular systems,
where the link between microscopic processes and macroscopic material be-
havior is much harder to study experimentally.

This “colloids as big atoms” paradigm [1,2] is rooted in the observation that
for a classical many-particle system, the kinetic degrees of freedom can be in-
tegrated out separately in the calculation of thermodynamic averages. Further
integration over the solvent degrees of freedom provides effective colloid—colloid
interactions, and if these match those of an atomic system, the equilibrium
phase behavior is the same [3,4].

This equivalence needs not hold for the description of time-dependent fea-
tures, or when the systems are driven far from equilibrium. However, the long-
time dynamics close to the glass transition provides a notable exception: here,
although the theoretical description of the microscopic dynamics of the sys-
tems differs (Newtonian for metallic melts, Brownian for colloidal particles),
the near-equilibrium structural relaxation is equivalent due to the dominance
of slow relaxation processes that are driven by local density fluctuations [5,6].
This equivalence is widely accepted and well tested [6-10]; it arises because
the structural relaxation time 7 of the system is well-separated from the much
shorter time scale 79 that characterizes the (vibrational or diffusive) short-
time motion of the particles. The mode-coupling theory of the glass transition



Rheology of Colloidal and Metallic Glass Formers 3

(MCT) makes this observation rigorous [5,11] and predicts a critical tem-
perature T, (or, for colloidal suspensions of hard spheres, a critical packing
fraction .) that separates the high-temperature (low-density) liquid-like re-
laxation behavior from a regime of low-temperature (high-density) solid-like
relaxation. Yet, while MCT implies that the glass-transition point itself is un-
changed by the kinetic parameters of a system, the dynamics in its vicinity
might show different dependence on, for example, mobility ratios in mixtures
depending on whether one is on the liquid side or the glass side of the MCT
transition [12]. It is worth stressing here that, since the glass transition is a
kinetic phenomenon, the equivalence of dynamical features is not trivial. As
a counter-example, consider the Lorentz model of a single tracer moving in a
random heterogeneous medium. Based on the different mechanism by which
Newtonian and Brownian particles probe the narrow channels between obsta-
cles, different dynamical critical exponents are predicted, in agreement with
recent simulations [13].

An analogy between yielding in colloidal glasses and metallic glasses has
often been invoked, but remained rather qualitative. The unique mechanical
properties of bulk metallic glasses (BMG) make this a technologically promis-
ing route to study, even though the deformation-behavior map of such glasses
has different regimes where different analogies may be fruitful [14]. A key point
to note here is that metallic, as most small-molecular glasses, are usually stud-
ied close to the empirical calorimetric glass-transition temperature 7}, signifi-
cantly below the mode-coupling transition temperature Tr.. At T, the viscosity
of the system is usually some ten orders of magnitude more separated from
the high-temperature one, when compared to the viscosity around 7,.. Even
though some aspects of the non-equilibrium nonlinear rheology appear similar
[15,16], and both in metallic glasses and in deeply quenched colloidal glasses,
similar local shear-transformation zones (STZ) could be identified as micro-
scopic signatures of yielding [17-19], there are important differences. Colloidal
dispersions typically deform plastically over a broad range of strains; metallic
alloys deform plastically on the atomic scale, which determines their casting
properties, but they typically fail as brittle solids by shear banding [20].

Here we discuss aspects of the rheology of both some exemplary metallic al-
loys and of prototypical colloidal hard-sphere-like dispersions, to demonstrate
regimes of macroscopic linear and nonlinear response where the behavior of
the two system classes can be mapped qualitatively and quantitatively. The
mapping is based on the notion that the typical scale for stresses in a material
is set by the thermal energy-density scale kgT/R?, where R is the typical
size of a constituent particle. The change from R ~ 1nm typical of metallic
alloys to R ~ 1 um typical of colloidal matter includes a change of nine orders
of magnitude in the stresses. Although this observation is the well-recognized
core of distinguishing “hard” from “soft” matter [1], it has remained rather
qualitative so far. In our contribution, we aim to demonstrate how far into the
quantitative this analogy can be pushed.

We combine experimental data on colloidal suspensions and on metallic
melts with molecular dynamics (MD) and Brownian dynamics (BD) simu-
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lations, in order to demonstrate the qualitative and quantitative aspects of
mapping hard- and soft-matter rheology also for those cases (focusing on mi-
croscopically resolved quantities) where metallic-alloy data is not readily avail-
able. The qualitative features of the data are rationalized by MCT and simple
models based on it.

We combine colloidal data on different approximations to the hard-sphere
model system: one is based on core-shell microgels where a thermosensitive
crosslinked network of poly(N-isopropylacrylamide) (PNiPAM) is affixed onto
a poly(styrene) (PS) core. These PS-PNiPAM particles were established as ex-
cellent hard-sphere model systems for the study of relaxation phenomena close
to the colloidal glass transition in particular by Matthias Ballauff and cowork-
ers [21-25]. Their thermosensitive shell makes it possible to fine-tune the hard-
sphere packing fraction by changes in sample temperature. The other system
is one of PMMA particles representing a well estalished colloidal hard-sphere
model. Experiments on this system allow to resolve the microstructure under
flow, by combining developments in standard rheometry with microscopy [18,
19,26-28], and with algorithms to determine with high accuracy the positions
of particles from confocal-microscopy images [29].

2 Linear Rheology

We begin by reviewing the most basic information on the linear rheology of
glass-forming fluids, i.e., the change in shear viscosity as the glass transition
is approached by either lowering the temperature or increasing the packing
fraction.

For a mixture of hard spheres, the total packing fraction ¢ is defined by
o = (7/6)ny,, xad> where n is the number density of the particles and d,
are the diameters of the particles of the species labeled by «, whose number
concentration is x,. An effective packing fraction ¢ is often used as a proxy
to estimate the slowing down of structural relaxation in metallic melts [30],
assuming that in the liquid regime, a dominant contribution to the slow re-
laxation comes from excluded volume between the atomic constitutents. One
typically obtains in sluggish metallic melts an effective packing fraction of
© ~ 0.55. This compares to the reference value . ~ 0.58 obtained for hard-
sphere colloidal suspensions [31] at their MCT transition (and hence corre-
sponding to T¢). Since the density of the melt typically increases with decreas-
ing temperature, one indeed finds that higher packing fractions give rise to
higher viscosities. However, on this level, the hard-sphere analogy of metallic
melts is rather qualitative (and needs to be — it is well known that different
melts display different chemical interaction effects, different “fragilities” close
to the glass transition, etc.)

For the calculation of ¢ one needs accurate density data, and a set of em-
pirical atomic radii. The choice of the latter is crucial, because ¢ depends cubi-
cally on the d,,. One choice was proposed by Miracle [32], but these radii con-
sistently give values of ¢ =~ 0.64, close to the accepted random-close-packing
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Fig. 1 Viscosity of selected metallic melts (filled symbols as labeled; ZrgsNisg from
experiment [35]; Zr7s—zNissAl, from molecular dynamics simulations [36]; Vit106a,
Zrsg.5Cu15.6Ni12.8Al10.3Nb2 g from experiment [37]) as a function of empirical packing
fraction ¢, compared with the viscosity obtained from various hard-sphere like colloidal
suspensions (collected in and taken from Ref. [38]; assuming a solvent viscosity of 1 mPas).
Main panel: using empirical diameters deg,o = da(T/To) ™", with n = 0.2 and Tp = 950K
and dq from Pauling [34]; inset: using do without temperature correction.

limit of (monodisperse) hard spheres. In other words, this choice of radii reit-
erates the observation that dates back to Bernal [33], that the liquid structure
bears resemblance to the disordered close-packed arrangement of spheres. An-
other common choice for the effective atomic sizes is due to Pauling [34]. These
values are related to the positions of the first maximum in the radial distri-
bution function and hence already absorb some chemical-environment effects
mediated through electronic degrees of freedom. We will adopt this choice in
the following.

Metallic melts where both accurate viscosity data (spanning a large viscos-
ity range) and density data are available, are not abundant in the literature.
We focus here on Zr-based melts; experimental data is available for the bi-
nary Zrg4Nize [35] and the five-component bulk-metallic glass former Vitreloy
Vit106a (Zrss.5Cuis.6Nije.gsAligsNba g [37]), measured using electrostatic and
electromagnetic levitation techniques. We complement these data by those
from molecular-dynamics simulations of Zr-Ni-Al melts whose MD interaction
potentials have been carefully matched with structural and dynamical exper-
imental data [36].
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The data span just above one to three decades in slowing down in vis-
cosity for experiment and simulation. They concur with a similar increase in
the structural relaxation time 7. In this range, the effective packing fractions
obtained using Pauling’s empirical radii range between ¢ ~ 0.53 and ¢ ~ 0.57
(inset of Fig. 1); the packing-fraction-dependent viscosity data of three of the
systems almost collapse, while the system with the highest Al content deviates
significantly. It has been discussed in the literature that the addition of Al to
metallic melts causes strong chemical interaction effects that become particu-
larly pronounced above a certain Al concentration (see e.g. Refs. [39-42]), so
that this deviation can be rationalized.

On the other hand, the quantitative agreement with the hard-sphere model
is not convincing. To see this, we include in the analysis data collected from
various colloidal hard-sphere models (collected by Russel, Wagner, and Mewis
[38], see there for original references). This data shows that at a nominal
packing fraction above ¢ = 0.5, the viscosity is already at least two orders of
magnitude slower than the low-density reference, and that it increases by three
orders of magnitude in a window of packing fractions of width Ap ~ 0.15. On
the contrary, the effective mapping of metallic-alloy data suggests the same
increase in viscosity to occur in the much more narrow window of Ay = 0.02.

One ad-hoc way to account for this difference is provided by admitting the
effective diameter of the spheres to vary as a power law in temperature, defr o =
do(T/Tp) ™, as would be expected for effectively-soft-sphere interactions. Such
softness in the interatomic repulsion has a strong impact on the fragility of
supercooled metallic melts and through the shear modulus also on the viscosity
[43]. Empirically, the exponent n quantifies the softness of interactions and Tj
is a reference temperature for the choice of d,. One thus obtains a corrected
effective packing fraction (main panel of Fig. 1). Without wanting to emphasize
the “correct” choice of Ty and n, the comparison of this rescaled data with the
colloidal reference shows much better agreement.

Already in the hard-sphere model, one expects the value of ¢ where a sharp
increase in viscosity is observed (attributed as being due to a close-by glass
transition) to vary with composition and size ratio of a mixture. In colloidal
suspensions and soft-matter systems, most studies focus on the regime of very
size-disparate mixtures (see, e.g., Refs. [44-54] for studies of glassy dynamics
and Refs. [55-57] for the linear and nonlinear rheology). The size polydispersity
inherent in colloidal suspensions also shifts ¢., but less dramatically so. For
typical metallic-alloy atoms, the relevant size ratios are in the range of 0.8
to 1.0, and for binary mixtures of such size ratios, MCT calculations predict
that the glass-transition point shifts to slightly lower packing fraction [52].
This effect has been found in molecular-dynamics simulations [58] and is not
in disagreement with the trend observed in Fig. 1 for the metallic-alloy data.

Note that to emphasize the analogy between atomistic and colloidal rhe-
ology one should further express the viscosity in scaled units. The typical
time scale that is needed in order to non-dimensionalize a viscosity can be
expressed in terms of the short-time Brownian diffusion scale for a colloidal
system, 79 = R?/Dy = 67n,R3/kpT with the solvent viscosity 7s, or the
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thermal-velocity time scale for an atomistic system, 7o = R/+/kpT/m. Hence
a typical viscosity scale is set by the solvent viscosity for a colloidal system, and
by vkgTm/R? for a molecular system. We have not included this conversion
in Fig. 1 because the choice of 7y for the metallic mixtures is not evident; also
the conversion would need to account for hydrodynamic-interaction effects
in the colloidal system. Note that for Zr atoms, which make up the major-
ity of atoms in the metallic alloys in our comparison, using myz, = 91.224u
where u &~ 1.66 x 10727 kg is the atomic mass unit, and Ry, ~ 1.45A, one
gets VkpTm/R? = O(10~3Pas), so that mPas is indeed the natural viscosity
scale for both system types.

3 Startup Flow

An important rheological characterization of materials are the stress—strain
relations. In the corresponding “start-up” experiment, one applies, starting
at time ¢ = 0, a deformation at a fixed rate 4, and records the resulting
macroscopic stress o as a function of accumulated strain v = 4t.

Startup curves for glasses typically display three regimes as a function of
strain 7 (see Fig. 2): a linear increase o ~ Gog7y indicating the initially nearly-
elastic response of the material at low strains with an effective shear modulus
Geff, and a strain-independent plateau of the stress at large + (corresponding
to large times), where o is a function of 4 rather than + and signals that the
material responds as a viscous fluid. At intermediate strains, the o-versus-y
curves obtained for large enough strain rate display a characteristic maximum,
termed the stress overshoot. This stress overshoot usually occurs at strains
around v &~ 0.1, which can be termed a yield strain. Its numerical value is
often attributed to the Lindemann criterion of melting [61], and it provides a
unified view on temperature-induced and strain-driven transitions in metallic
glasses [62]. One can interpret the stress overshoot as the breaking of cages
due to deformation forces. This process sets in when the yield stress of the
material is reached, but the initial breaking of cages requires a stress that is
somewhat larger than that sustained once the microscopic structure of the
materials adjusts to flow. Cages hence can be said to store some amount of
elastic energy [63,64].

Based on the hard-sphere analogy, it is suggestive to compare the stress—
strain curves of colloidal hard-sphere dispersions, and of bulk metallic glasses.
Some caveats are in order when doing so: first, colloidal particles are embed-
ded in a solvent, and thus the typical deformation works at constant volume,
while it is performed at constant pressure in metallic systems. Further, while
for colloidal suspensions it is convenient to apply simple shear stress, experi-
ments on metallic glasses usually work in tension or compression. In principle,
the deformation and in particular the yielding behavior will depend on the ge-
ometry of the stresses and strains. The question of which deformation modes
are most effective in yielding an amorphous material leads to various empir-
ical yield criteria. Calculations within the mode-coupling theory of colloidal
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Fig. 2 Stress o versus strain v for different deformation rates given as Péclet numbers Peg.
Left: for a bulk metallic glass (Vitreloy 1, Zrqj 2Bea2 5Ti13.8Cu12.5Nijg, 7' = 613K, from
Ref. [59]; strain rate rescaled by V3 to account for the deformation geometry, see text).
Right: for colloidal hard spheres (PS-PNiPAM, ¢ =~ 0.60, from Ref. [60]). Lines are fits
using a sheared-hard-sphere model of MCT in isotropic approximation (see text for details),
rescaled by 0.75 and 0.32 for the BMG and the colloidal sample, respectively, and using
strain-scale parameters of 7. = 0.3 and ~., = 0.12 (BMG; left), and 7. = 0.3,0.2,0.2,0.2,0.1
and v, = 0.18,0.16,0.14,0.14,0.14 (colloid for increasing Peg; right), see Appendix A for
details.

rheology [65] recover, up to small deviations that are understood as arising
from normal-stress differences, the so-called von Mises’ criterion which asserts
that yielding is predominantly driven by the total elastic energy deposited
in the material (in either deformation geometry). Under this assumption it is
plausible to compare stress—strain curves obtained under different deformation
geometries, once one relates the effective strain rates by a geometrical factor.

In particular, an arbitrary homogeneous deformation is characterized by
the strain-rate tensor &, defined as x;; = 0;v; where 7, j are the Cartesian
components and ¥ is the homogeneous velocity field of the deformation map.
Then, a scalar local strain rate can be defined as the second invariant of the
symmetrized strain-rate tensor, D = k + k', via§ = IIp = 1/(1/2)trD - D
for a deformation that is incompressible, i.e., where trD = 0. For simple
shear, Kz, = y is the only non-zero element of the strain-rate tensor. Uniaxial
deformation corresponds to Kgzz = Yuniax, a0d Kyy = K2z = —Yuniax/2, S0 that
IIp = V/3Yuniax (cf. also Ref. [66]).
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In Figure 2 we compare the stress—strain curves of a bulk metallic glass
(Vitreloy 1, ZI‘41_2B€22_5Ti13.8CU1245N110) obtained under uniaxial extension
(left panel, from Ref. [59]) with those of a typical PS-PNiPAM hard-sphere
suspension under simple shear [60] (right panel). Data are shown for various
deformation rates %, converted into dimensionless Péclet numbers Pey = 47y
using the time-scale of short-time motion 7y5. The strain rates for the BMG
were related to that of simple shear by a geometric factor, ¥ = v3Vuniax, as
discussed above.

An important conclusion from the comparison is that in both systems,
thermal energy sets the natural stress scale: after rescaling the stresses with
kpT/R?, where R is a typical atomic or colloidal radius (using R = 1.58 A in
Fig. 2 based on the Pauling radius for Zr as the majority species and corrected
for temperature as above), both the startup stresses for the metallic and the
colloidal glass are of order unity for typical flow rates, and comparable to
each other provided that the deformation rates (as expressed in dimensionless
Péclet numbers) are also comparable. The quantitative comparability holds,
even though the BMG data is obtained at T' = 613 K, close to and in fact below
the calorimetric glass transition temperature, T, ~ 623 K, while the colloidal
data is obtained at a packing fraction ¢ = 0.60, close to the location of the
MCT transition point in this experimental system. In essence, the comparison
thus emphasizes that for the macroscopic stress—strain curves not too deep
in the glassy state and at sufficiently low shear rates, the Péclet number is
the only relevant dimensionless parameter that determines the shear-induced
structural relaxation. Note that for deformation deep in the glassy state (which
is particularly relevant for BMG at room temperature, but also for colloids
closer to jamming), other deformation modes might become relevant; to ad-
dress the spatially heterogeneous plastic deformations (shear bands etc.) of
the amorphous solid is beyond the scope of this paper.

The initial, nearly linear increase of the o-versus-y curves allows to estimate
the Maxwell plateau modulus of the system. Again, for both systems, the
values are comparable once expressed in appropriate thermal-energy units:
from the BMG data, Go, ~ 14 GPa ~ 14 kgT/R?, while for the colloid data,
Goo ~ 42Pa ~ 7.7kpT/R? (where R = 90nm is the average radius of the
colloids). Similar results are also obtained using startup rheology of PMMA
hard-sphere-like colloidal suspensions of sizes R = 150nm and R = 780 nm,
where after rescaling data for comparable Péclet numbers by kgT/R?, the
stationary stresses [67] and the stress—strain curves [68] coincide.

Lines in Fig. 2 demonstrate results from MCT obtained for the hard-sphere
system (using the Percus-Yevick approximation for the static structure fac-
tor, and an isotropic approximation for the MCT vertices in the integration-
through transient, ITT, formalism). Details of the calculation can be found in
Appendix A. In the calculation, state points close to the MCT glass transi-
tion were chosen, such that the structural relaxation times 7 match the ones
estimated for the experiments in dimensionless units.

ITT-MCT captures well the overall trend of the stress—strain curves and
their dependence on Pey. However, the stress overshoots are systematically
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under-estimated in the isotropic ITT-MCT approximation. This is likely a
combination of several factors: beyond the effect of approximations inherent
in the isotropically-averaged I'TT-MCT model, the theory also refers to startup
flow from a well-equilibrated sample. In experiment it is known that the mag-
nitude of the stress overshoot depends sensitively on the sample preparation
and its age (with older samples typically displaying larger stress overshoots)
[60,69,70]. Also, shape and strength of the stress overshoot depend sensitively
on the microscopic details of the interaction, and here, deviations from ideal-
ized hard-sphere behavior are most likely to be prominent [71]. In this regard,
PMMA suspensions were argued to be closer to ideal hard-sphere behavior
than the PS-PNiPAM particles; indeed the former display weaker overshoots
[72]. For a comparison between PMMA startup curves and MCT, see also
Ref. [73].

Note that although the common terminology implies a single maximum
in the stress—strain curve, there is no inherent reason that excludes a more
general damped-oscillatory crossover from the linear-elastic to the plastic-flow
regime. Indeed, such oscillations are seen in both the theory and the BMG
data; they have also been observed at high Pe in colloidal suspensions [74].
BMG tend to break after applying strains much larger than the yield strain, so
that this regime is difficult to access there. Within ITT-MCT, the oscillations
arise because of a slight mismatch in the relaxation times of the relevant
density fluctuations and the affine decorrelation of the coupling between these
density fluctuations and the overall stresses. As detailed in Appendix A, in the
theory this is tuned by strain-scale factors v, and 7/, whose empirical values
are given in the caption of Fig. 2; they were chosen such that the ITT-MCT
results roughly match the position and strength of the experimentally observed
stress overshoots (as far as possible within the simplified MCT model). In
principle, the stress overshoot is thus rationalized as a competition between
reversible affine deformation (as expressed through shear advection) and the
irreversible relaxation dynamics, i.e., the competition between elastic storage
and dissipative loss of strain energy.

There is a direct link between the anisotropy of the microscopic structure
and the macroscopic stresses in a sheared system. We note in passing that also
for the quiescent systems, the statistical information on the microstructure,
as expressed through the static structure factor S(g) and the related radial
distribution function g(r), emphasizes the qualitative similarities between the
metallic and the colloidal system. This becomes clearer if one focuses on bi-
nary metallic alloys where isotope-substitution scattering experiments allow
the determination of the partial static structure factors that can then be com-
pared to predictions of the hard-sphere model. For the example of Zr-Ni melts
[75,76] this also demonstrates the extent of chemical short-range order effects
on the dynamics.

A direct way to quantify the microstructural changes under deformation is
through the change of the radial distribution function dg(7) = g(7;%) — geq(7),
where g(7; ) is the (anisotropic) stationary distribution function under shear,
and geq(r) the (isotropic) one of the quiescent system. Simulations readily give
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Fig. 3 Distortion of the radial distribution function, dg(¥) = g(7; ) — geq(r), under shear
flow of rate 7, displayed in the shear—shear-gradient plane (z: direction of flow, y: direction of
gradient). a) from molecular-dynamics (MD) simulations of a model of Ni; b) from Brownian
dynamics (BD) simulations of a binary hard-sphere system with size ratio 6 = 0.8. Dashed
and solid white circles are guides to the eye to emphasize cuts of constant r where | = 2
and | = 4 deformations can be seen (two minima interspersed by two maxima, respectively
four separated minima).

access to this quantity. To demonstrate the qualitative features, we have ex-
tracted this quantity from molecular-dynamics (MD) simulations of a model
of liquid Ni and from Brownian dynamics (BD) simulations of a 2D hard-disk
system (see Appendix C for details of the simulations). In both systems, qual-
itatively similar distortion patterns are seen (Fig. 3), despite the difference
in interaction potential (soft versus hard) and dimensionality. One notes in
particular a quadrupolar distortion that is expected on grounds of the rota-
tional symmetry imposed under simple shear: along a compression axis (at
0 =~ 135° w.r.t. the flow direction), particles are pushed on average closer to-
gether than in the quiescent state, and along an extension axis (0 ~ 45°), they
move further apart. For the Ni system this implies that dg(7) is enhanced close
to the nearest-neighbor peak of geq(r) along the compression axis, and sup-
pressed along the extension axis. For increasing radial distance r, this pattern
of enhancement and suppression alternates and indicates that the dominant
effect indeed is a quadrupolar distortion of the local atomic distances. The
same effect is seen in the hard-sphere simulation, although here, the signal in
dg(7) is much sharper. This is due to the fact, that hard spheres can, other
than the soft Ni atoms, not be pushed closer together than their hard-sphere
interaction diameter, where geq(r) already has a very pronounced maximum.
(Also, in the hard-sphere simulation, a binary mixture was considered in order
to avoid crystallization, which leads to additional rings in the appearance of
Fig. 3b compared to the monodisperse Ni system.)

While the quadrupolar distortion agrees with the expectation from contin-
uum mechanics (where one would argue that a symmetric second-rank tensor
such as the stress tensor can be decomposed into multipole terms including
the monopole and a quadrupole), a closer inspection of §g(7) reveals a growing
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Fig. 4 Spherical-harmonics projections of the distorted radial distribution function,
dg1m (), as a function of radial distance in units of a typical particle size. Dotted line (ma-
genta): isotroptic change dgoo(r); solid line (blue): quadrupolar distortion §go2(r); dashed
line (green): hexadecupolar distortion dg44(r). The quiescent radial distribution function is
shown as geq(r)/5 (red dashed line) for comparison. a) From MD simulations of liquid Ni.
b) From confocal microscopy data of a PMMA hard-sphere colloidal suspension.

amount of higher-order distortion [77]. We discuss this point in the following,
for the spherical-harmonic projections of dg(7) and cuts along constant radial
distance r.

The leading non-trivial spherical-harmonic projections of dg(7) confirm
that on distances corresponding to nearest-neighbor shells around particles,
different local deformation modes prevail (Fig. 4), both in the MD simulation
representative of the metallic system, and in experiment on the colloidal hard-
sphere like suspension. To obtain the latter data, we have developed a high-
precision setup that allows confocal-microscopy imaging of a flowing colloidal
suspension combined with accurate localization of the particles through image
analysis. Details of the technique as well as our convention of the projections
dgim (1) are presented in Appendix D.

The quadrupolar term dga2(r) (solid lines) indicates the shift of particles
inward along the compression axis, and outward along the extension axis;
there results an oscillatory signal in dgoq(r) with a zero around the equilib-
rium nearest-neighbor distance r ~ 2R. In fact, the inward shift of particles is
stronger than the outward push, as is revealed by an overall isotropic contribu-
tion dgoo(r) that has a maximum slightly inward of » = 2R, and a minimum at
distances somewhat larger than the quiescent nearest-neighbor distance (dot-
ted lines in Fig. 4). The isotropic contribution indicates that under shear, there
is a flow-induced enhancement of the pressure. Such an increase in pressure
has been linked to shear banding [78,79] which in turn is sometimes linked to
the appearance of stress overshoots [80,81]. Note on the contrary that in the
simulations it has been verified that the flow remains homogeneous for all the
states that are considered here.
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Fig. 5 Angular dependence of g(7) at fixed radial distance r & 2R, as a function of the
angle to the shear-flow direction, 0, for two strains « after startup flow before (y = 0.01:
top curves) and after (y > 0.1: bottom curves) the yield strain. Dash-dotted lines are fits
using a quadrupole signal sin260 (top) and a hexadecupolar signal (sin26)2 (bottom). a)
From MD simulation of liquid Ni. b) From confocal microscopy of a PMMA hard-sphere
colloidal suspension (r = 2.1R). Inset: Results from mode-coupling theory (ITT-MCT) for
a 2D hard-disk system.

At the distance of the quiescent nearest-neighbor shell, both the isotropic
and the quadrupolar distortions nearly vanish. There remains however a hex-
adecupolar term, dg44(r) (dashed lines), as pointed out previously in the con-
text of MCT [77]. It has been attributed to specific non-affine rearrangements
of particles under the constant breaking of cages due to shear. It is remarkable
that this signal, unexpected from continuum symmetry, can indeed also be
identified in the confocal-microscopy data of a colloidal suspension, as demon-
strated in Fig. 4b.

The interpretation that the hexadecupolar distortion signals constant non-
affine local rearrangements that are indicative of the fully yielded system [77]
is consistent with the expectation that for small strains, only a quadrupo-
lar distortion should prevail [63,82,64]. This is indeed the case, as seen by a
comparison of the different angular dependence of g(7) = ¢(r, ) in the flow—
flow-gradient plane, at constant r ~ 2R (Fig. 5). For small strains that are
still in the linear-elastic regime, dg(r, ) is well described by a quadrupolar
angle dependence o sin 26, which is also linear in the strain as expected for
reversible deformations. Both in the MD simulations of liquid Ni and in the
colloidal experiment we observe that for strains larger than the yield strain,
~v 2 0.1, the same angular dependence is best described by the [ = 4 form
o (sin20)? (bottom set of curves in Fig. 5) that is quadratic in the strain, as
indicative of irreversible deformations.

The cross-over from quadrupolar to hexadecupolar symmetry in dg(2R, 0)
is qualitatively explained by numerical solutions of the full ITT-MCT equa-
tions combined with an expression for the distorted structure factor [83]. We
compare (inset of Fig. 5) with the ITT-MCT prediction of a two-dimensional
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hard-disk system; this choice allows to significantly reduce the numerical com-
plexity of the MCT calculation and also serves to demonstrate the generality
of the result: The same evolution of dg(f) is seen as in the simulations and
experiments performed on 3D, slightly soft and polydisperse particles. As a
result of the strict hard-sphere approximation, the distortion of g(#) directly
at contact, r = 2R, is however much more pronounced, as anticipated from
the discussion of Fig. 3. The ITT-MCT curve highlights that the local min-
imal in dg(f) are at angles slightly different from 45° an 135° and closer to
35.3° and 144.7° respectively. To understand this, recall that after a rotation
of the coordinate system by m/2, these locations correspond to the “magic
angle” 6. = 54.7° given by the zero of the second-order Legendre polynomial.
Coincidentally, in continuum elasticity these are the directions expected for
shear bands forming in the locations where normal stresses vanish, e.g., in the
deformation of rubber [84,85].

It is interesting to note that the appearance of [ = 4 distortions, which
by continuum symmetry cannot directly enter the stress tensor but do so
indirectly through the effect of the associated particle motion also on the [ = 2
mode, might be the signal of local particle rearrangements such as the ones
triggering STZ, ultimately causing yielding as seen from a microscopic point
of view. In similar vein, they could be linked to the T1 events in emulsions
and foams [86,87] (systems where also stress overshoots are seen [88]): such
individual plastic events release stress locally and hence are thought ultimately
responsible for yielding, yet they are not easily linked to the macroscopic stress
[89,90].

4 Shear-History Effects

A major effect of slow structural relaxation on the rheology of viscoelastic
fluids and amorphous solids is the appearance of flow-history effects. Changes
in the flow conditions at previous times ¢’ < ¢ influence the response at time
t for the large time interval up to t — ¢’ ~ 7. In principle, in the ideal glassy
state, this interval extends arbitrarily far back in time. This causes for example
frozen-in stresses in a sample that has been flowing at ¢ < 0 and whose flow is
stopped at ¢t = 0. In the glass, in principle, a stress o, # 0 is observed even as
t — 00, and this stress depends on the infinitely past flow conditions. Again,
colloidal model suspensions provide clean model systems in which to study
these effects [67]. With their help, also the response in amorphous metallic
materials can be understood, based on the hard-sphere analogy.

A related effect was first described by Bauschinger [91] in the case of steel
samples: in general, the elastic response of a material depends on the way it
has been pre-strained. In crystalline materials, pre-strain can induce obvious
micro-structural changes such as the healing or creation of lattice defects and
grain boundaries. But also in amorphous materials, there are (more subtle)
strain-dependent changes in the microstructure that will affect the subsequent
stresses. A slightly formalized version of the measurement was proposed in the
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Fig. 6 Symbols: Stress—strain curves of a colloidal hard-sphere-like suspension (PS-
PNiPAM particles, R ~ 90nm) after different amounts of pre-strain 7, in the opposite

direction, at a shear rate of ¥ = 5 x 10~%s~1. Lines: Results from a generalized Maxwell
model (see text).

context of glasses, aiming to address the so-called Bauschinger effect [92,93]:
the initial sample is first sheared as in startup flow for a certain time, until
a pre-strain -, has been reached. After the corresponding “waiting time”
tw = Yw/?, the shear is reversed, keeping the rate constant, i.e., y(t > t,,) =
—4(t < ty). After the stress has reached zero for some ty 2 t,,, a reversed
stress—strain curve is recorded.

The Bauschinger effect manifests itself by an altered response: the typical
stress-overshoot whose maximum indicates a certain static yield strength of
the material, is strongly reduced after large pre-strains -,,. Experiments on
PS-PNiPAM suspensions demonstrate this (Fig. 6): for v, < 14.4%, some
remnant overshoot is still seen, but upon flow reversal after a pre-strain of
order unity, a stress—strain curve essentially without overshoot is observed.
This finding agrees with MD simulations of a molecular glass former [93].
Within ITT-MCT, this is explained [93] as a balance of two contributions to
the generalized Green-Kubo integral that determines o(¢) from all ¢/ < ¢: a
positive overshoot arising from ¢ ~ (t, — v./|¥]) < tw and a negative one
arising from ¢’ ~ (¢, +7./|¥|) that cancel each other if both contributions are
well within the stationary regime of the flow. Indeed, as ~,, is increased from
zero the stress overshoot starts to vanish as soon as v, 2 Ye.
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Fig. 7 Filled symbols: Effective shear modulus Geg = Ao /Ay obtained from the colloidal
stress—strain curves shown in Fig. 6. Open symbols: from MD simulations of a typical molec-
ular glass former (data from Ref. [93]). Line: Prediction from a generalized Maxwell model
(see text; scaled by 11/15 to match the experimental shear modulus at 7, = 0).

ITT-MCT describes the reduction of the stress overshoot qualitatively, and
to emphasize the cancellation mechanism in the Green-Kubo integral, a fur-
ther simplified generalized Maxwell model has been devised [93]. In this model,
the shear-induced structural relaxation is approximated by an exponential re-
laxation decaying on the shear-induced time scale 7, and the affine advection
effect acting on the MCT vertices is modeled by an empirical function. Details
of the model are collected in Appendix B. Within the limits of such crude
approximations, the generalized Maxwell model predicts the qualitatively cor-
rect trend of a reduction in stress overshoot due to pre-strain once v, 2 7
(lines in Fig. 6).

From the stress—strain curves at different ~,,, it is suggestive to conclude
that also the initial elastic response of the material changes with pre-strain.
While a rigorous analysis of the corresponding derivative do(y)/dy within
ITT-MCT is demanding, the generalized Maxwell model offers at least a qual-
itative description of the effect. From the experimental data, the effective shear
modulus as obtained from a finite-difference evaluation, Geg = Ao /Ay with
Ay <« 0.1. One observes (symbols in Fig. 7) that the initial shear modulus
Gegr =~ 11kgT/R3? for 7, — 0, decreases by almost 40% due to pre-strain,
and reaches Gog ~ TkpT/R3 as v, > .; i.e., the pre-strained material ex-
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hibits weaker linear-elastic response. A similar amount of reduction in Geg
was found in MD simulations of a typical molecular glass former modeled
by a binary truncated-Lennard-Jones mixture (open symbols in Fig. 7, taken
from Ref. [93]). The typical strain required to break cages, 7., again sets the
strain scale over which this reduction in effective shear modulus takes place.
The analytical evaluation from the generalized Maxwell model (lines in Fig. 7)
confirms this.

5 Conclusions

We have juxtaposed data on the linear and nonlinear rheology of metallic
melts and colloidal suspensions, to shed light on the question to what ex-
tent the often quoted “hard-sphere analogy” for the slow relaxation dynamics
of disordered hard and soft matter can be made quantitative in the context
of linear and nonlinear rheology. To this end, we have also presented new
measurements performed on colloidal model suspensions: confocal microscopy
data for PMMA suspensions under startup flow to determine a subtle hexade-
cupolar deformation mode at the onset of yielding, and time-dependent non-
stationary bulk rheology of PS-PNiPAM particles to address specific questions
of the history-dependent nonlinear rheology typical of the materials science of
metallic glasses.

Our data analysis confirms quantitatively the common qualitative notion
that “colloids are big atoms” [1]: The difference in the typical values for the
elastic coefficients, GPa in hard matter such as metallic glasses, versus Pa in
soft matter, is explained by the different number- and hence energy-density
scales due to the different size of the relevant constitutents.

The base of drawing colloid-vs-atomic analogies is of course a purely di-
mensional argument for the relevant length- and energy-scales. We assume
that for the stresses, local arrangements are responsible that express predomi-
nantly entropic balances caused by the fact that in all the systems we consider,
strongly non-overlapping particles are redistributed by thermal fluctuations.
Hence the hard-sphere system is a good model system for dense liquids [33,
94], and energy scales from the direct interactions between particles cause sec-
ondary effects. In fact, in metallic melts, chemical short-range order effects
may become interesting, and ultra-soft penetrable particles for example will
represent a different system class [95-97].

A key for addressing the mechanisms of yielding and flow of amorphous
materials close to the (MCT) glass transition, and to address, e.g., the fate
of low-temperature STZ as thermal fluctuations become dominant, is to es-
tablish a direct link between microstructural observations and macroscopic
rheology. Scattering experiments employing light scattering [98-104] and dif-
ferential dynamic microscopy [105], X-ray diffraction [77,106] and small-angle
neutron scattering [107] under flow are in principle available. Direct imaging
in confocal microscopy under flow [108,109] — which can also be combined di-
rectly with rheometry measurements [110-113] — offers a unique way to extract
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individual particle positions, also in the flow—gradient plane of shear that is
difficult to access in scattering.

Using such tools it remains a fascinating question to establish the merits
and limitations of a unified view on colloidal and bulk-metallic rheology, possi-
bly fixing the boundaries in the deformation—temperature map where different
views apply.
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A Integration Through Transients and Mode-Coupling Theory of
the Glass Transition (ITT-MCT)

We briefly summarize the main ingredients of the mode-coupling theory of the glass tran-
sition (MCT) for the nonlinear rheology of colloidal systems, obtained in the framework of
the integration-through transients (ITT) method of calculating non-equilibrium statistical
averages. The ITT-MCT was first developed by Fuchs and Cates [114-116], and for a more
thorough summary we refer to previous literature [117-119].

ITT starts from an exact reformulation of the Smoluchowski (Fokker-Planck) equation
that governs the time-evolution of the non-equilibrium probability distribution function of
the system. This allows to derive a generalization of the Green-Kubo formula for the stress,
relating the non-equilibrium stress o to the shear-rate tensor k and the microscopic stress
fluctuations & = —(1/V) Zi\;l 7 F), (for an N-particle system with volume V, particle

positions 7 and interaction forces Fj). One obtains

o(t) = /; ' BV <H(t/) 6 exp_ Utt 2 (s) ds} a>eq : 1)

where angular brackets indicate equilibrium statistical averaging, 8 = 1/kgT is the Boltz-
mann factor, and it was assumed that the system was in unstrained quiescent equilibrium
in the infinite past. The differential operator 2% is the adjoint Smoluchowski operator and
includes the non-linear effects of the deformation history on the dynamics.

The microscopic correlation function that appears under the integral of Eq. (1) is in
principle exact, but can only be evaluated after further approximations. In ITT-MCT one
assumes that the dominant stress contributions during structural relaxation arise from mi-
croscopic density fluctuations éng to wave vector E. One defines the transient dynamical

. . . B no_ . t ot B
density correlation function dﬁkt/(t)(t,t ) = <5n13t/(t) exp_ [ft, 027(s) ds] 6nk>, where the
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affine deformation imposed by the homogeneous deformation of the system is taken into
account: a density fluctuation dni at time ¢ originates from an earlier one 6n,;0<t) at time

0, where Et/ =k- F. Fyyois the deformation gradient tensor that is known from the
finite-strain theory of continuum mechanics. It is related to the velocity-gradient tensor by
0tFyyr = K(t) - Fypr. After approximations of four-point correlation functions, ITT-MCT
arrives at

t dBk‘ N _
o/(nkpT) = —n/_wdt’/% [k~8t/Btt/ k] (RN (ke ()P, ) (1) (2)

k
kky (t)

The quantity c(k) is the quiescent-equilibrium direct correlation function that is related
to the static structure factor by S(k) = 1/[1 — nc(k)]. The Finger tensor (also called left
Cauchy-Green tensor) By = Fyy - Fg;, is the rotation-invariant measure of deformation.
In simple shear flow, —@;/(t) - Oy By - gy (t) = ¢+ k(t') - ¢ reduces to the usual shear rate.

For the evaluation of the transient correlation functions, ITT-MCT provides an evolution
equation that takes the form of a nonlinear integro-differential equation. In principle, the
full ITT-MCT, including all spatial anisotropies, can be solved [77,120], but the numerical
complexity is rather high. For the results shown in Fig. 5, 2D calculations were thus used,
following Refs. [121,122]. Here we denote for simplicty only the expressions obtained under
an additional isotropic approximation for the wave-vector integrals that has been used to
obtain the results shown in Fig. 2. It leads to, under the assumption of constant simple shear
of rate 4 applied instantaneously at ¢ > 0, such that the correlation functions also become
functions of ¢ — t’ only,

4
0y (1)) 0k T) = 3 [ 5 W) (k)P (02, )
and
(1/¢2D0)0: Py (t) + S(q) 184 (t) + /Ot dt' My(t —t)0udq(t') =0 (4)
with the memory kernel
Myt = [ LRy Py (t)D 5
q(t) = 2/ @3 akp Vak)pt) P () Pp (1) (5)

where p = |7 — k| and q(t) = ¢y/T + (¥t/7e) accounts for the shear advection. The vertices
Vakp = (7 E)e(k)/q® + (T- 7)/q%c(p) are given entirely in terms of the equilibrium static
structure of the system.

The ITT-MCT model tends to underestimate the decorrelation of fluctuations due to
shear, hence a correction factor 7. is introduced. The latter is typically taken to be 7. = 0.1
in order to match the Lindemann criterion. For the data in Fig. 2, in order to better match
the stress overshoots seen in experiment, we adusted v. separately for Eq. (3) (called v.)
and for Eq. (5).

From the full solutions of the ITT-MCT equations, non-equilibrium averages over mi-
croscopic quantities can in principle be calculated, following the derivation of appropriate
generalized Green-Kubo relations similar in spirit to Eq. (1) and closures in the spirit of the
MCT approximation of the memory kernel. This way, one obtains expressions for the dis-
torted microstructure and hence §g(7). For details on these formulas and also the numerical
procedure to solve the ITT-MCT equations, we refer to Ref. [121]. The calculations require
as physical input the direct correlation functions of the quiescent equilibrium system; we
use the standard Percus-Yevick approximation for this to describe a hard-sphere like system
within the theory.
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B Generalized Maxwell Model

Based on a schematically simplified version of the generalized ITT-MCT Green-Kubo-like
formula for the stress, Eq. (3), under simple shear geometry,

t
vy = [ ARG LD, (©)

a generalized Maxwell model was proposed [22,123] to provide a model that captures a
number of qualitative predictions of the full ITT-MCT and at the same time lends itself to
a more rigorous analytical analysis. Based on Maxwell’s model of viscoelasticity [124], and
approximating the shear-induced structural relaxation rate 1/7 ~ 1/7eq + |¥|/7c, one as-
sumes the dynamical shear modulus to decay exponentially at long times. Assuming further
the quiescent system to be effectively frozen in, one sets

G(t,t', [3]) ~ Gooexp [=(t = t)[41/7c] - (M

For our analysis of the Bauschinger effect, this relaxation behavior is obtained for all times,
because due to symmetry constraints, only the magnitude of the applied shear rate can
enter the dynamical shear modulus. The vertex function is further approximated by an ad-
hoc functional form that captures the decay to zero with increasing strain and exhibits an
undershoot that gives rise to a stress overshoot under startup flow:

v (7) = (1 = (7/7+)?) exp [—(7/72x)?] - )

Here, 7. and 7« are tunable parameters that play the role of v, but differ in their numer-
ical values in order to capture the effect that in determining the stress overshoot, density
fluctuations of slightly different wave length decorrelate on slightly different strain scales;
an effect that is necessarily missing in a simplified model that ignores the spatial resolution
of density fluctuations. A modified variant of v, (y) employing fourth powers of v was used
to rationalize startup flow in schematic ITT-MCT models [60]; here we use a simpler ver-
sion that includes a strictly quadratic strain dependence in vs (7y). It allows to integrate the
expressions for the Bauschinger effect analytically, at the cost of giving quantitatively less
accurate fits of the experimental data.

For the results of the generalized Maxwell model shown in Fig. 6, we used Geg = 15,
Ye = 0.14, v« = 0.1, and 7«+ = 0.125 at a shear rate given by the bare Péclet number
470 = 5 x 10~%. This gives reasonable fits of the experimental data, but it overestimates
Goo; in Fig. 7 this effect was scaled out.

C Simulation Details

Molecular-dynamics (MD) simulations were performed for a system of liquid Ni. These
simulations employ an embedded-atom method (EAM) potential proposed by Foiles [125]
that was gauged against experimental data for the liquid state of Ni. The same model
has been used previously to study crystal growth in metallic melts [126-128]; we refer the
reader to these references for further details on the interaction potential. Simulations with
N = 8788 particles in the NVT ensemble using Lees-Edwards boundary conditions to
impose simple shear, and a DPD thermostat to maintain a temperature of 7' = 1400 K were
employed. This represents a strongly undercooled state; the melting temperature of the MD
system is Tp, = 1748 K. Shear was applied to match a dressed Péclet (Weissenberg) number
Pe =791~ 1.

For simulations of a sheared hard-sphere system undergoing Brownian motion, we em-
ployed an event-driven algorithm [129]. In these BD simulations, a binary equimolar mixture
of N = 1000 particles with size ratio 1.4 is used as a system whose glass-transition dynam-
ics has been extensively studied. Simulations are performed at ¢ = 0.81, slightly above
the MCT transition point of the system, . =~ 0.795. The shear rate of ¥ = 2 x 1073 /79
is applied via Lees-Edwards boundary condition; the corresponding dressed Péclet number
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Pe > 10. For the evaluation of stress and pair-distribution values, see Ref. [130]. For dg(r),
the correlations between big particles was evaluated; it is not qualitatively different from
the other partial g(r) in this mixture.

D Confocal Microscopy under Shear

For colloidal microscopy, dispersions of poly-methylmethacrylate (PMMA) colloids stabilized
with polyhydroxystearic acid and flourescently labeled with nitrobenzoxadiazole in a solvent
mixture of cycloheptyl bromide and cis-decalin (to provide both density and refractive-index
matching) with addition of 4 mM tetrabutylammoniumchloride were prepared. The dispersed
particles display hard-sphere behavior to a good extent [71] and have an average radius
R ~ 780nm (6% polydispersity). A volume fraction of ¢ & 0.565 was used, just below the
expected glass transition at ¢4 ~ 0.58. Shear is applied corresponding to a dressed Péclet
number Pe & 144, by means of a home-built shear cell employing two parallel plates covered
with PMMA particles to avoid wall slip [26,27,99,73].

Prior to the measurements, the samples are exposed to oscillatory shear (exceeding 100%
strain for 10 cycles at a frequency below 0.1 Hz) following a rest period of 600s.

Confocal microscopy is performed with a VT-Eye confocal microscope (Visitech Inter-
national) mounted on a Nikon Ti-U inverted microscope. Image stacks are acquired at a
depth of 15 um into the sample, using a Nikon Plan Apo VC 100X oil immersion objective.
An image stack of 512 x 512 x 50 pixels corresponds to a volume of 51 x 51 x 10 pm?, and
contains around 8500 particles. Coordinates are extracts using standard routines [131] and
refined [29]. The data for g(¥) are averaged over ten experiments, counting particles within
a slice of thickness 2.8 R in the velocity-gradient plane around each reference particle.

Projections onto spherical harmonics in 3D are defined by

¢S] l
g(’FJ = Z Z glm(r)yvlm(ev(i)) ) (9)

1=0m=—1

and the relevant | = 2 and [ = 4 terms in the 2D plane have coefficients
1 /15 . . 2
go2(r) = 5V on df2 g(7) sin 0 cos 6 (sin @)~ , (10)
T

gaa(r) = %Hg/dﬂg(f‘) cos 46 (sin ¢)* . (11)

This follows the convention of Ref. [132] but differs slightly from the one used elsewhere
[133].
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