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A B S T R A C T

Urban land use is often characterized based on the presence of built-up land, while the land use intensity of
different locations is ignored. This narrow focus is at least partially due to a lack of data on the vertical di-
mension of urban land. The potential of Earth observation data to fill this gap has already been shown, but this
has not yet been applied at large spatial scales. This study aims to map urban 3D building structure, i.e. building
footprint, height, and volume, for Europe, the US, and China using random forest models. Our models perform
well, as indicated by R2 values of 0.90 for building footprint, 0.81 for building height, and 0.88 for building
volume, for all three case regions combined. In our multidimensional input variables, we find that built-up
density derived from the Global Urban Footprint (GUF) is the most important variable for estimating building
footprint, while backscatter intensity of Synthetic Aperture Radar (SAR) is the most important variable for
estimating building height. A combination of the two is essential to estimate building volume. Our analysis
further highlights the heterogeneity of 3D building structure across space. Specifically, buildings in China tend to
be taller on average (10.35 m) compared to Europe (7.37 m) and the US (6.69 m). At the same time, the building
volume per capita in China is lowest, with 302.3 m3 per capita, while Europe and the US show estimates of
404.6 m3 and 565.4 m3, respectively. The results of this study (3D building structure data for Europe, the US, and
China) are publicly available, and can be used for further analysis of urban environment, spatial planning, and
land use projections.

1. Introduction

Urban development is manifested differently in different world re-
gions, both horizontally and vertically. For example, Singapore has
built numerous high-rise and compact apartments to accommodate its
growing population (Grace Wong, 2004). A recent study on selected
cities finds that urban development in the United States is dominated by
decentralized-sprawl patterns, while central-compact patterns are ty-
pically found in Europe and China (Dong et al., 2019). Moreover, urban
expansion in the Global South is often characterized by the proliferation
of low-rise slums (Badmos et al., 2018; Kusno, 2019; Wang et al.,
2019a). The structure of urban areas has large impacts on both the
biophysical and socioeconomic conditions of urban areas (Connors
et al., 2012; Engelfriet and Koomen, 2017; Hudeček et al., 2019). For
example, compact urban structure contributes to reducing greenhouse
gas (GHG) emissions on the one hand (e.g. Glaeser (2011)), but it could
also worsen the urban environment through the urban heat island effect
on the other hand (Berger et al., 2017). Other studies have shown the
impacts of urban structure on landscape aesthetics, urban climate,

health aspects, or energy consumption (Güneralp et al., 2017; Lin et al.,
2018; Miles et al., 2012; Stewart and Oke, 2012), among others.

Urban structure involves both the horizontal and vertical config-
urations of urban land and infrastructure (Wentz et al., 2018). Mon-
itoring the horizontal aspect, i.e. urban extent, has been prominent in
earth-observation studies for decades, resulting in various products
available from local to global scales (Carlson and Sanchez-Azofeifa,
1999; Gong et al., 2020; Mertes et al., 2015; Schneider et al., 2009;
Taubenböck et al., 2012). These urban extent products are crucial for
environmental assessments to address sustainability challenges such as
food insecurity, biodiversity loss, and risk exposure (Angel et al., 2011;
Du et al., 2018; van Vliet, 2019). Moreover, urban extent products have
also been used for better characterization of the terrestrial biosphere,
for instance using landscape mosaics, anthromes, and land systems
(Ellis and Ramankutty, 2008; Messerli et al., 2009; van Asselen and
Verburg, 2012). However, because the impacts of different types of
urban development vary, there is a need to characterize urban devel-
opment beyond two-dimensional spatial patterns, in order to compre-
hensively assess urban sustainability. To date, only a few studies have
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analyzed the vertical dimension of urban structure, either at a small
scale (He et al., 2016; Kedron et al., 2019), or for selected (mega)cities
across the globe (e.g. Frolking et al. (2013), Straka and Sodoudi (2019),
and Zhang et al. (2018)).

The significance and urgency of mapping urban structure in the
horizontal as well as in the vertical dimension (hereafter referred to as
the 3D building structure) are further highlighted in a recent review on
urban remote sensing (Zhu et al., 2019). Yet, compared to the identi-
fication of building extent, retrieval of a building's vertical profile based
on remote sensing is a more complex process. There is a growing body
of literature trying to extract building height (Bagheri et al., 2018;
Liasis and Stavrou, 2016; Weissgerber et al., 2017), but most of them
are devoted to local and regional scales. A large number of remote
sensing based data sources are available to retrieve building height,
which can generally be categorized into four categories: conventional
optical images, stereo optical images, Light Detection And Ranging
(LiDAR), and Radar. LiDAR is widely acknowledged as the most robust
source. However, applications of LiDAR-derived data are highly con-
strained by their coverage, as data are scarce, expensive, and scattered.
Recently, hybrid data have been used to characterize 3D building
structure. For example, Geiß et al. (2019) present a multistep approach
to estimate 3D building structure based on TanDEM-X and optical
Sentinel-2 data. Nonetheless, large-scale (or even continental-scale)
estimates of 3D building structure are thus far still lacking. Case studies
of building volume estimates derived from LiDAR and Radar (both
scatterometer and SAR) respectively reveal that these two source da-
tasets are highly consistent (Bagheri et al., 2018; Mathews et al., 2019),
suggesting that current fine-resolution Radar data could contribute to
the estimation of 3D building structure at a larger scale.

From a land use perspective, the combination of horizontal and
vertical urban structure can be considered as an expression of urban
land use intensity. Urban land use intensity can be interpreted as the
equivalent of agricultural land use intensity, as it expresses the density
or intensity of the use of agricultural land in a location. Consistently,
urban land use intensity can be characterized in different ways, and it is
not clear a priori what measure is preferable (see e.g. Kuemmerle et al.
(2013) for a discussion on quantifying agricultural land use intensity,
and Dovey and Pafka (2013) for a discussion on measuring urban
density). Recent studies for example include population density (van
Vliet et al., 2019), or a spatial characterization of urban structure
(Susaki et al., 2014; Xia et al., 2020). This study aims to complement
these data by developing the first continental-scale data on 3D building
structure, i.e. building footprint, height, and volume, where con-
tinental-scale refers to complete continents, like Europe, or areas that
are comparable in size, like the US and China. Based on the reference
data collected from various sources, we train random forest models to
estimate 3D building structure using a large number of explanatory
variables. In the following, Section 2 describes the methodological
approach for mapping 3D building structure in more detail. Section 3
presents the results of these models, as well as an analysis of how
building structure differs between our study regions and an elaborate
analysis of the model accuracy and uncertainty. In Section 4 we further
discuss these results, and reflect on the contribution of these data for
sustainable settlement development.

2. Materials and method

2.1. Overview

In this study we estimate building footprint, building height, and
building volume at a 1 km2 resolution for Europe, the US, and China.
The US and China refer to the conterminous United States and mainland
China (including Hong Kong and Macao), respectively. We choose a
1 km2 resolution because the aim of this study is to characterize urban
areas as a land use type, which can be used for further analysis of land
use, land use changes, as well as their impacts. As a result, we do not

characterize individual buildings, but instead focus on the character-
ization of the general building structure within larger spatial units
(pixels), which can be considered as a characterization of urban land
use intensity. For these analyses individual buildings are of little in-
terest as the related phenomena act at a coarser scale (e.g. van Vliet
et al. (2019), Stewart and Oke (2012), and Wang et al. (2019b)).
Building footprint denotes the share of each 1 km2 pixel that is occupied
by buildings (therefore expressed as m2 per m2). We use the term
building footprint rather than building density, because building density has
also been used to denote the building floor space per unit area thus
including vertical aspects as well, and we want to avoid such confusion.
Building height denotes the average height of all buildings in a pixel,
weighted by the area of each building. Building volume is the total
volume within each pixel taken by buildings. Conceptually, building
volume is the building footprint multiplied by the average building
height in a pixel, although all three properties are predicted in-
dependently in our study.

We train random forest models to estimate building footprint,
height, and volume using reference data for different locations in the
study areas. We subsequently use these trained models to estimate 3D
building structure based on the same variables for all other locations
within our study areas. These study areas are Europe, the US, and
China, which were selected based on the availability of reference data.
Fig. 1 illustrates the overall approach of our study. This approach
consists of four parts: 1) the collection and preprocessing of spatial data
that are used as explanatory variables in our models, using the Google
Earth Engine (GEE). GEE is a cloud-based platform for geospatial ana-
lysis at a planetary scale, which also consists of various ready-to-use
datasets, co-located within a high-performance, intrinsically parallel
computation service (Gorelick et al., 2017); 2) collection and pre-
processing of reference data, including both readily available 3D
building data and manual interpretation of 3D building structure based
on Very High Resolution (VHR) satellite/aerial imagery and street view
imagery; 3) training, optimizing, and validating random forest models to
produce maps of 3D building structure; 4) spatial analysis of building
properties in the three study regions and the differences between these
regions.

2.2. Spatial data for explanatory variables

We estimate 3D building structure using a large number of spatial
data sets as explanatory variables. These variables are selected based on
four criteria: First, they should be expected to provide information on
building height. Second, the data for each variable should be close to the
year 2015, for temporal consistency, as the uncertainty increases when
data is recorded further away from the dates at which the reference
data was collected. Third, data for each variable should be available for
all three regions, thus allowing cross-region comparison. In practice,
this means we used datasets with a global coverage. Fourth, the data for
each variable should be based on direct measurements rather than
being downscaled, to ensure independence. We further group ex-
planatory variables into four classes according to their sources or
imaging modes: optical RS, SAR, RS-derived, and others.

Optical RS data include all available spectral bands representing
surface reflectance from Landsat 8 for the year 2015, covering Europe
and the US under cloud-free conditions. We include optical RS data,
because previous studies have shown that reflectance values reveal
information on the urban environment (Lee and Kim, 2013; Yuan and
Bauer, 2007). For China, the whole territory is not fully covered in 2015
only, thus we include data for the period 2014–2016. As shown in
Fig. 2, for each Landsat band, we first compute the median of all cloud-
free and shadow-free images for each pixel at the original resolution, to
generate the representative values for this period and to exclude ex-
treme values. Consequently, we make a spatial aggregation of corre-
sponding representative values into 1-km cells using a mean function.

We use 10-meter resolution Sentinel-1 SAR images, which ideally
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have a global coverage for every 12 days (Malenovský et al., 2012). SAR
data are responsive to surface roughness and therefore we expect that
these data are especially relevant as explanatory variable for building
height and volume (Brunner et al., 2010; Li et al., 2020; Soergel et al.,
2009). Besides buildings, other objects such as trees are also sensitive to
backscatter coefficients (xbc) of SAR. Therefore, we selected SAR images
during two winter seasons around the year 2015, i.e. 1st December

2014–31st March 2015, and 1st December 2015–31st March 2016.
However, we added information from adjacent years in areas that were
not fully covered by the data from the winters in 2015. We do not
differentiate between orbit directions, i.e. ascending or descending, as
exploratory data analysis reveals that our case study regions are not
fully covered within one single orbit direction. All available SAR images
are processed, calibrated, and geo-rectified with the Sentinel-1 Toolbox

Fig. 1. Methodological flowchart for the estimation of 3D building structure. The abbreviations for spatial data are referred to in Table 1.

Fig. 2. Reduction and aggregation of time-series cloud-free Landsat and Sentinel-1 SAR data. Note: SAR data provided in GEE is log-scaled, we transform the scaled
SAR into backscatter coefficient before further operations are applied. Algorithms used to reduce time-series of Landsat and SAR collections are suggested by GEE
officials (https://developers.google.com/earth-engine/), but in further aggregation operation we additionally mask SAR cell values based on the expanded GUF.
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(ESA, 2019). As illustrated in Fig. 2, for each 10-m pixel we firstly
average all backscatter coefficients (xbc) available in the study period
for VV (vertical transmission and vertical reception) and VH (vertical
transmission and horizontal reception) polarization modes separately,
and then the averaged xbc for each image is aggregated to a 1 × 1 km
resolution using the mean of only the values within the built environ-
ment. For this spatial restriction we use the built environment as
mapped by the Global Urban Footprint (GUF) (Esch et al., 2017). We
use this as a mask to reduce the influence of objects such as trees and
topographic relief outside the built environment. In addition, our ex-
ploratory data analysis shows that a large number of buildings (espe-
cially the higher ones) are displaced due to the side-looking SAR
measurement, thus the GUF mask is buffered with a distance of 2 pixels,
i.e., 20 m.

RS-derived data consist of Enhanced Vegetation Index (EVI), land
surface temperature (LST), relevant built-up indices derived from
Landsat, and nighttime light intensity (VIIRS). We expect that vegeta-
tion indices could be relevant explanatory variables as they correct for
surface roughness recorded in SAR data caused by vegetation, while we
expect that the other indices (VIIRS, LST, and UI) provide information
about building structure themselves, as they have been used to char-
acterize urban land use intensity in previous studies (Ma et al., 2014;
Wellmann et al., 2018; Zhang and Huang, 2015). EVI is available for
every 16-day period from MODIS products. We process all these data
throughout the year 2015 into three variables using maximum, mean,
and minimum functions separately. LST data are provided by the
MOD11A2 V6 product, which is a simple average of all the corre-
sponding MOD11A1 LST cells collected within every 8-day period,
where daytime and nighttime are independently stored (Wan et al.,
2015). We average all LST data throughout the study period for daytime
and nighttime, respectively. Normalized Difference Built-up Index
(NDBI), Normalized Difference Bare Land index (NBLI), Normalized
Difference Vegetation Index (NDVI) and Urban Index (UI) are also used
as the explanatory variables, which are all derived from Landsat
images. To have a systematic understanding of these indices, readers
are referred to Mushore et al. (2017). Nighttime light intensity data are
derived from stray-light corrected VIIRS nighttime light (Butler et al.,
2013), which are provided as monthly composites at 500-m scale. We
combine all these monthly data available in GEE for the year 2015 into
annual nighttime light intensity using a maximum function, and spa-
tially aggregate them into 1-km data using an average function. The
maximum function is used to remove cloud shadow effects in night light
images. Since other light sources such as wildfire and water bodies
reflecting moonlight or anthropogenic light can appear in non-built-up
area, we also apply the GUF mask in order to exclude these areas.

In addition to remote sensing imagery, we use a series of other data,
including urban footprint, accessibility, roads, and topography as ex-
planatory variables (see Table 1). We expect that urban footprint, road
density, and accessibility could indirectly provide information on urban
land use intensity, while we expect that topography could provide a
correction on the signal from SAR backscatter, because also topography
could lead to surface roughness recorded in SAR data (van der Wal
et al., 2005). Urban footprint recorded in the GUF shows impervious
surface which we expect to relate strongly with building footprint.
Built-up density is calculated based on the GUF, which is a global
binary settlement layer created by the German Aerospace Center using
satellite images from TerraSAR-X and TanDEM-X (Esch et al., 2013).
Data from these sensors are not included in our model otherwise, in
order to avoid double-counting or circularity. Based on a comparison of
estimates for Central Europe, GUF comes out as the most reliable map
of urban extent datasets in terms of resolution and accuracy (Klotz
et al., 2016). However, it is generated using images during 2011–2013.
We assume that other explanatory variables for the year 2015 and the
short time interval are sufficient to compensate such defect. Accessi-
bility-to-cities data by Weiss et al. (2018) represent land-based travel
time to the nearest densely-populated area for the nominal year 2015.

Vector road data from Meijer et al. (2018) are used to generate five
hierarchal road density maps including highways, primary roads, sec-
ondary roads, tertiary roads, and local roads. In addition, we also add a
density map for all roads, which embodies unclassified roads. DEM,
slope, and aspect are all derived from Global Multi-resolution Terrain
Elevation Data 2010 (GMTED2010).

2.3. Reference data

Reference data are collected using publicly available datasets from
various sources for the three case study areas. Specifically, for Europe
we use gridded building height data of 25 cities (https://land.
copernicus.eu/), representing the year 2012, complemented by
building footprint layers from OpenStreetMap (OSM, access date: 11
January 2019). To reduce the negative effects caused by null values in
building height data, we only consider areas where the proportion of
buildings with valid height values exceeds 80% of all the building
footprint area. This threshold is set to exclude locations where a large
share of buildings has been built after the gridded building height data
have been produced. For the US, we employ data that are publicly
available from the websites of local governments for the nominal year
2015 (including occasional updates published in the ArcGIS Hub
http://hub.arcgis.com/, see Table S2 for details). These datasets de-
monstrate vector building footprints with vertical properties for 27
urban areas. These datasets include areas ranging from megacities like
New York and Los Angeles to counties that only include small villages
in remote areas. Thus, these datasets include the full variability with
respect to the combination of building footprint and building height.
Building height data for China, expressed as floor number, are available
for 24 selected large cities nominally for the year 2015 (https://www.
amap.com). In this paper, for all building height expressed as floor
numbers, we assume that each floor is 3-m high (Leichtle et al., 2019;
Zhou et al., 2014). It is worth noting that relatively low model per-
formance was observed for China in our preliminary evaluation, which
was ultimately explained by a substantial number of missing buildings
in some areas of Chinese cities when compared with VHR satellite
imagery from Google Maps. Therefore, we removed all the data points
(i.e. 1 km2 pixels) that we suspected contained such omissions.

Available reference data is biased towards large urban regions.
Therefore, we complement these data with empirical data for smaller
settlements, which are classified manually. For this, we use Google
Maps Static API to randomly download VHR satellite images outside
large urban regions (travel time to cities> 10 min, built-up den-
sity > 0). Each image represents a 1 × 1 km landscape at a 0.25 m
resolution, which we assume is sufficiently detailed for building foot-
print detection. During the visual interpretation process, a fishnet layer
with 50 × 50 regular squared grids is used for specifying grid numbers,
as well as Google Street View for the estimation of building height.
These estimations are all based on visual interpretation of VHR satellite
images and streetscapes provided by Google Maps. Together, from all
1 × 1 km grid cells that contain built-up land according to the GUF, we
randomly select 1146 images from the US, 2573 images from Europe,
and 2445 images from China to complement our reference data.
Because of the scarcity of street view maps in mainland China, building
height is not estimated manually there. We exclude images that are
invalid due to high cloud coverage or image inaccessibility. See Fig. S1
for an example of valid imageries. The methodology for estimating
building height is further illustrated in Fig. S2 and Table S1. For other
locations where no street view map exists, we specify building height by
interpreting similar adjacent places where street view maps are avail-
able. In total, our reference data contained data for 55,656, 47,639, and
47,553 pixels of 1 × 1 km for building footprint, height, and volume,
respectively (Table 2).

To examine the reliability of our visual interpretation approach, we
digitize building footprints based on 100 randomly selected VHR
images. Because of the high amount of detail in this VHR imagery
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relative to the information that is coded, and because these data are
collected independently from the RF models, it is found acceptable for
generating reference data. The comparison shows very high reliability
(see Fig. S3). Abandoned buildings and temporary structures are all
included, due to the fact that we are not able to differentiate building
types for specific purposes from Google Earth images. As a con-
sequence, the total building footprint area provided here could exceed
the actual footprint of ‘permanent buildings’ or ‘under roof’ measure-
ments published elsewhere. As shown in studies testing positional ac-
curacy of Google Earth images (Mohammed et al., 2013; Pulighe et al.,
2015), error in the horizontal planimetric accuracy (the correct long-
itudinal and latitudinal placement of a feature on the Earth's surface) is
expected to be less than 1.6 m, which we consider sufficiently accurate
for our 1 km resolution analysis.

We combine the available reference data with the manually classi-
fied data derived from Google maps to obtain the full set of reference
data for training the model. Fig. 3 shows the distribution of reference
data as a function of footprint and height, in which only reference data
where both footprint and height are valid are shown. Reference data

points (i.e. 1 × 1 km cells) are unevenly distributed within one region,
but show complementarity across the three case regions. Specifically,
the US has more reference data in medium-footprint and low-height
compared to Europe and China, while China has more reference data in
medium-footprint and medium-height than the other regions.

2.4. Model development and evaluation

As mentioned, we estimate three parameters for each pixel: 1)
building footprint (m2/m2), 2) building height (m), and 3) building
volume (m3/km2). For classification, we first selected only 1 × 1 km
pixels that have built-up land>0 according to GUF, primarily to im-
prove the computational efficiency. Therefore, valid reference data for
building footprint, building height, and building volume, described in
part 2.3 account for 1.17%, 1.00%, and 1.00%, respectively, of the total
area included in the model (also see Table 2).

The ensemble regression random forest (RF) approach is used for
estimating building footprint, building height, and building volume.
This is an efficient prediction method, especially when observations are

Table 1
Spatial data used as explanatory variables in this study.

Datasets Original resolution Time Source Abbreviation

Optical RS Landsat Band 1 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B01
Landsat Band 2 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B02
Landsat Band 3 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B03
Landsat Band 4 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B04
Landsat Band 5 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B05
Landsat Band 6 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B06
Landsat Band 7 30 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B07
Landsat Band 10 100 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B10
Landsat Band 11 100 m 2015 https://landsat.gsfc.nasa.gov/ Landsat-B11

SAR Sentinel-1 VH 10 m 2015 https://sentinel.esa.int/ Sentinel-SAR VH
Sentinel-1 VV 10 m 2015 https://sentinel.esa.int/ Sentinel-SAR VV

RS-derived EVI maximum 1 km 2015 MODIS/006/MYD13A2 MODIS-EVI MAX
EVI mean 1 km 2015 MODIS/006/MYD13A2 MODIS-EVI MN
EVI minimum 1 km 2015 MODIS/006/MYD13A2 MODIS-EVI MIN
LST day 1 km 2015 MOD11A2 MODIS-LST D
LST night 1 km 2015 MOD11A2 MODIS-LST N
NBLI 30 m 2015 Landsat Landsat-NBLI
NDBI 30 m 2015 Landsat Landsat-NDBI
NDVI 30 m 2015 Landsat Landsat-NDVI
UI 30 m 2015 Landsat Landsat-UI
Night time light 1 km 2015 VIIRS VIIRS-NL

Others Accessibility 1 km 2015 Weiss et al. (2018) ACCESS
Aspect ~250 m 2010 GMTED2010 ASPECT
DEM ~250 m 2010 GMTED2010 DEM
GUF ~12 m ~2012 German Aerospace Center (DLR) GUF
Highways Vector ~2015 Meijer et al. (2018) ROAD-1
Primary roads Vector ~2015 Meijer et al. (2018) ROAD-2
Secondary roads Vector ~2015 Meijer et al. (2018) ROAD-3
Tertiary roads Vector ~2015 Meijer et al. (2018) ROAD-4
Local roads Vector ~2015 Meijer et al. (2018) ROAD-5
All (+ unclassified) Vector ~2015 Meijer et al. (2018) ROAD-ALL
Slope ~250 m 2010 GMTED2010 SLOPE

Table 2
Number of 1 × 1 km cells in the reference data as well as in the predicted data. Collected data refers to data that was collected from multiple sources, while
Interpreted data refers to data that was manually interpreted from Google Maps.

Reference data points

Predicted data points Footprint Height Volume

Collected Interpreted Collected Interpreted Collected Interpreted

Europe 1,681,014 13,728 2469 13,731 2466 13,731 2466
The US 1,447,489 30,350 1091 24,551 1091 24,465 1091
China 1,632,283 5814 2204 5800 0 5800 0
Total 4,760,786 49,892 5764 44,082 3557 43,996 3557

55,656 (1.17%) 47,639 (1.00%) 47,553 (1.00%)
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much scarcer compared to the predictors (Svetnik et al., 2003). The RF
model is trained and applied for each of the three variables and for each
case region separately, as well as for all regions combined. RF combines
several decision trees, built on different combinations of explanatory
variables, and produces the mean prediction of the individual trees.
This strategy is beneficial to alleviate the overfitting problem of simple
decision trees (Pelletier et al., 2016; Tramontana et al., 2015). The
primary property of tree-models is a partitioning of space into smaller
regions to manage phenomena characterized by very complex interac-
tions among variables. In particular, in tree models, partitioning is re-
cursive. The phenomena occur when the subdivisions are divided again
until the partitioning reduces the appropriate cost function. Recursive
partitioning is terminated when the cost function cannot be further
minimized. Hence, a simple model, usable only for the partitioned sub-
region, can be estimated. For each observation, the output of a RF
model is the average of the outputs of the trees. Therefore, RF models
typically yield a reduced bias in the estimations and in general good
accuracies (Tramontana et al., 2015). More technical details on the
applied RF algorithm can be found in Breiman (2001).

We develop the RF models using scikit-learn, a machine learning
package in Python (Pedregosa et al., 2011). To some extent, more trees
yield better results. However, the improvement decreases as the
number of trees increases, and at a certain point the benefit in pre-
diction performance from including more trees will not be worth the
extra computation resources. Therefore, after initial tuning experiments

we maximize the number of trees to 150, whereas the minimum
number of samples required at a leaf node is fixed to 5. The importance
of explanatory variables is measured by the Gini decrease in node im-
purity measure, which is computed by permuting the explanatory
variables with the out-of-bag data in the RF validation approach
(Breiman, 2001).

After training the RF models to estimate building footprint, height,
and volume using the reference data, we apply the trained models to
the entire study regions. For each pixel and for each of the three
characteristics the RF model initially estimates 100 values, corre-
sponding with the 100 trees in the RF-model, and the mean of these
values is used as eventual outcome for that pixel. For each of the three
building properties, the reliability of our model is evaluated by a ten-
fold cross-validation method as well as an uncertainty analysis. The
independent validation dataset is built by a random selection of 10% of
the reference data in these three regions, while the other reference data
(90%) are used as training data. This process is repeated 100 times, and
for each run we calculate the Pearson's correlation coefficients (R2) to
express the agreement between predicted and observed values. In ad-
dition, we quantify uncertainty as the range of values generated by all
trees in the RF model for a specific pixel. A large range indicates that
individual models differ widely, which we interpret as an uncertain
estimate. Conversely, a small range is interpreted as agreement in the
trees of the RF model and thus a relatively certain estimate.
Specifically, for the 100 predicted values in each cell, we calculate its
coefficient of variation (CV) as the indicator for uncertainty, see Eq. (1):

=
µ

CV
(1)

where σ and μ refer to the standard deviation and mean value of a
corresponding cell for these 100 runs, respectively, where μ is also the
final predicted value as defined here.

To further asses model performance, we calculate the Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Systematic
Error (SE). To ensure independency, we calculate RMSE, MAE, and SE

Fig. 3. Distribution of reference data (1 × 1 km cells) for mapping 3D building structure. For China, we removed uncertain data points from the reference data,
which are identified by “footprint < 0.1 m2/m2 and height > 5 m” or “footprint > 0.1 m2/m2 and height < 5 m” because our preliminary evaluation of these
data showed large inaccuracies.

Table 3
Population data collected for the analysis of building occupation per capita in
different case study regions.

Region Time Source

Europe 2015 https://population.un.org/
The US 2015 https://www.census.gov/
China 2015 http://www.stats.gov.cn/
Hong Kong and Macao 2015 https://www.worldbank.org/
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based only on the data points in our reference data that were not used
for training the model, following Eq. (2), Eq. (3), Eq. (4), and Eq. (5).

= = B
t

Bpred j
i
t

pred j i
,

1 , ,

(2)

= = B B
s

RMSE
( )j

s
pred j test j1 , ,

2

(3)

= = B B
s

MAE
| |j

s
pred j test j1 , ,

(4)

= = B B
s

SE
( )j

s
pred j test j1 , ,

(5)

where Bpred, j is the predicted value of endmember j, while Bpred, j, i refers
to the predicted value of endmember j in the ith model, and t refers to
the total number of independent predictions that the endmember j is
included. Btest, j is the reference value of endmember j, and s is the total
number of unique endmembers in all test collections for independent
predictions in the 100 models.

Finally, we examine variable importance of the best-fitted runs as
identified by their R2 values. The core principle of variable importance
is to calculate the degradation of model performance if such variable is
permuted randomly while keeping other input variables constant,

which allows for evaluating the relevance of one variable for model
output (Zhao et al., 2019).

2.5. Analysis of the building structure

We estimate 3D building structure for three case study regions, and
compare the results to analyze structural differences. To do so, we
calculate the average as well as the distribution of all three variables in
all three regions and for each European country, American state, and
Chinese province in these regions, using population data from multiple
sources (Table 3). Subsequently, we create distribution curves to mea-
sure the distribution of building footprint, height, and volume for each
region, based on 100,000 randomly 1 × 1 km grid cells for which re-
sults are estimated. These distributions are subsequently compared
across regions. Moreover, we analyze the correlation coefficients be-
tween the building properties in the case regions as well as the com-
bined region.

3. Results

3.1. Characterization of 3D building structure in Europe, the US, and China

The distribution of building footprint, height, and volume corre-
sponds largely between regions: high values for all three variables are,

Fig. 4. Distribution of building structure in the three study regions. a) building footprint; b) building height; c) building volume. The graphs on the right show the
kernel density estimations, of which the x-axis is scaled using a logarithmic function. The area under the curves is normalized to 1 to facilitate the comparison of
distributions across continents when using the logarithm transformed value of x-axis.
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as expected, concentrated in and around the larger urban areas of the
three regions, such as Paris, New York, and Shanghai (See Fig. 4). Yet,
there are notable differences across the three study regions, which are
visible from the distribution curves of all values per continent in the
right of Fig. 4. For example, China has more pixels with a relatively
large building footprint as well as a high building height, while the US
has more pixels with a low building height, typical for suburban sprawl.
Specifically, China has the highest average building height at 10.35 m.
In Europe, the average building height is 7.37 m, and in the US this is
6.69 m. Consistently, China has more areas that have a very high
building volume, while the opposite is true for the US.

A more detailed inspection of 3D building structure highlights the
different spatial configurations of buildings in different regions (Fig. 5).
For example, building footprints in the Chinese agricultural plain
(Fig. 5c) are rather dense, as compared to rural areas in Europe and the
US. A large urban footprint is often associated with high-rise buildings,
especially for China. Yet, this seems not appropriate for many locations
in the US, as is illustrated in the area encircled in Fig. 5b. Conversely,
we also find some areas with a relatively sparse footprint value and a
large height value (e.g. around the city of Hannover in Europe, en-
circled in Fig. 5a). The detailed results in Fig. 6c also highlight a

particular phenomenon in China, where buildings tend to be taller
along main roads that connect large cities, much more than these in
Europe and the US.

Further quantitive analysis shows that building footprint, height,
and volume are correlated, but this correlation is well below 1 (Fig. 6).
This indicates the need to analyze the three properties independently.
The correlation coefficient between footprint and height ranges from
0.55 in the US to 0.74 in Europe. The correlation coefficients between
volume and height as well as volume and footprint are higher ranging
from 0.69 in the US to 0.93 in Europe. It is not unexpected that the
correlation between footprint and height is lower than the other two
correlation coefficients, as volume is by definition the product of
footprint and height, and thus at least partially related to both of these
properties. Nonetheless, all three properties are estimated in-
dependently in this study, and therefore this correlation is not trivial
from the setup of the study.

The average building footprint per capita is only 29.2 m2 in China,
which is about one third of that in the US (84.5 m2), and about a half of
that in Europe (54.9 m2). Building volume per capita in China is
302.3 m3, while it is 565.4 m3 in the US, and 404.6 m3 in Europe. These
results indicate that settlements in the US have a higher land take per

Fig. 5. Building structure in three densely populated areas located within predominantly agricultural plains. a) around Berlin; b) around Chicago; c) around
Zhengzhou in the province Henan. Encircled areas indicate regions with smaller footprints but higher buildings in 5a (around Hannover), and higher footprint but
lower buildings in 5b (around Chicago). These three areas are selected to show typical settlement patterns that are dominantly shaped by human activities, rather
than natural or biophysical constraints such as topography.
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person as well as a higher space consumption per person, in comparison
to the other regions.

The spatial distribution of 3D building structure also differs between
sub-regions (Fig. 7). For example, the values for building footprint per
capita vary much more across US states than across European countries
and Chinese provinces, and especially high values are observed in
several predominantly rural states such as North Dakota, South Dakota,
Wyoming, Iowa, and Montana (Fig. 7a). At the same time, in Sichuan
and Guizhou, two rural sub-regions of China, building footprint per
capita is lower than most other equally-developed sub-regions (Fig. 7a).
Building height, on the other hand, varies most across Chinese pro-
vinces and much less across EU countries and US states (Fig. 7b).
Buildings tend to be lower in the inland rural states of the US. Con-
versely, buildings are much higher in developed sub-regions of China,
most of which are coastal sub-regions. The distribution of building
volume per person is mostly consistent with the distribution of building
footprint per person, with relatively high variation in the US and re-
latively low variation in Europe and China (Fig. 7c). In the US, sub-
regions of which have a large building volume per capita are mostly
located in rural inland states with high values in building footprint per
capita, despite their moderate height. In China, regions that have large
building volume per capita are mostly located in urbanized coastal sub-
regions such as Jiangsu and Zhejiang, characterized by high buildings
but not necessarily by a large building footprint per capita.

3.2. Model performance and uncertainty

The RF models yield high accuracies for building footprint, height,
and volume, as indicated by R2 values for the three regions combined
all larger than 0.80, either for the separated models or the combined
models (Fig. 8). When models are run for each case region separately,
building footprint is most accurately predicted for the US. As for the
building volume, results for Europe and the US are more accurate than
for China. When models are run for all case regions combined, there is
no significant improvement compared with the separated models.
Among the three properties, building footprint is most accurately pre-
dicted, especially for the US. As for the building volume, results for

Europe and the US are more accurate than for China.
To further characterize the accuracy of our estimates, we assessed

the RMSE, MAE, and SE, based on the independent validation data for
each model. It should be noted that the training data have on average
higher values of building footprint, height, and volume, thus also
leading to higher values for RMSE, MAE, and SE than can be expected
for the complete estimated data set. For the combined models, the
RMSE values of building footprint, height, and volume for the three
regions combined is 0.03 m2/m2, 2.69 m, and 6.03 × 105 m3/km2,
respectively. Correspondingly, MAE values of the three building prop-
erties are only 0.02 m2/m2, 1.36 m, and 2.55 × 105 m3/km2. While SE
values for the three building properties are all close to 0, suggesting
that there is no lateral overestimation or underestimation in general.

The accuracy of separate models and one combined model for all
regions is somehow comparable, but combining reference data for all
case regions into one model yields a decrease in uncertainty, relative to
models trained on one region only (Fig. 9). Therefore, analyses in the
above section are based on the results generated by the “combined”
model. Specifically, when trained with data from all regions together
the model for building footprint shows a large decrease in uncertainty
in areas with a low building footprint (< 0.1 m2/m2), which accounts
for a large proportion of the study area. Uncertainty of predicted
building height shows a decreasing trend over a wider range of values
compared to building footprint, especially for the US and China.
Moreover, uncertainty is distributed unevenly over different combina-
tions of building footprint and building height (Fig. 10). Notably, the
uncertainty in building footprint was found mostly in areas with either
a rather sparse footprint (around 0.04–0.1 m2/m2), or at a rather dense
building footprint (around 0.3 m2/m2). Overall, uncertainty of building
height is largest in areas with small values for building footprint and
high values for building height. In particular, we find some scattered
pixels with large uncertainty in some mountainous areas of southern
China, which can potentially be explained by interference from other
landscape elements, such as trees and rocks. We also find that building
height is prone to large uncertainty in areas that are not covered by SAR
data, for example, a diamond-shaped area in Sichuan province of China,
and a small square area in Milwaukee city of the US. The largest

Fig. 6. Correlation coefficients for building footprint, height, and volume, which are referred to as FP, HT, and VL, respectively, for each of the three case study areas
separately, as well as for all areas combined.
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uncertainty in building volume is found in areas with a low building
footprint and a medium-high building height, as well as in some loca-
tions with a high building footprint. Possibly, this uncertainty is also
explained by disturbance of other objects, especially in places with a
low building footprint.

Zooming in on individual cities further demonstrates the superior
performance of the combined model over the models for separate re-
gions (Fig. 11). For building footprint there is no visible difference
between the separate models and the combined model. However, the
separate models generally overestimate building height for Paris, Los
Angeles, and Shanghai.

The best performing models for each of the three characteristics of
building structure are selected for further analysis of the variable im-
portance. This analysis reveals that built-up density derived from GUF,
in general, is most valuable for estimating building footprint, while
backscatter intensity of SAR has little influence (Fig. 12). The opposite
is true for building height estimation, as backscatter intensity has the
largest importance, while built-up density is of course of little influence.
Compared to other variables, both built-up density and backscatter
intensity are important to predict building volume. In addition, we find
a trend shift of VH/VV variable importance when reference data in
these three regions are combined. A further analysis indicates that VH
and VV are complements when explaining height and volume (Figs. S4
and S5).

4. Discussion

4.1. Mapping 3D building structure at a continental scale

This study shows that the combination of various remote sensing
data sets and other spatial data allows estimating building footprint,
height, and volume at a continental scale with high accuracy. Hence our
models make it possible to map the built landscape in three dimensions,
to analyze the structural specifics for certain regions (e.g. rural vs.
urban) and to analyze differences across geographical characteristics.
The proposed RF models yield high accuracies (R2 values larger than
0.80 for all regions combined), outperforming other models for esti-
mating 3D building structure at large spatial scales, such as the
Bayesian Network-based model developed by Paprotny et al. (2020) in
terms of R2, RMSE, and MAE, which are mutually reported in the two
studies.

We find that buildings in China are the highest on average
(10.35 m), compared with the other regions (7.37 m for Europe, and
6.69 m for the US). Higher values for building height are especially
found on the urbanized east-coast of China, suggesting that the recent
and rapid urban development characterized by multi-story buildings
affects the country average (Mahtta et al., 2019). Conversely, while
Europe is known for relatively compact development, urban expansion
in the US is for a large part manifested as suburban sprawl (Barrington-
Leigh and Millard-Ball, 2015; Dong et al., 2019). This type of

Fig. 7. Analysis of 3D building structure at sub-regional scale. The boxplots on the right are plotted based on all sub-regions for each study area, of which y-axes are
capped to enhance interpretation. The boxes represent the interquartile ranges (25%–75%), and the lines represent the ensemble-median values.
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development is not only characterized by a relatively low density of
buildings, but also by relatively low buildings, as is reflected in the
lower average height for the US. Notably, the large building occupation
per capita in some rural states of the US could be related to the abun-
dance of agricultural buildings such as barns for livestock (Harun and
Ogneva-Himmelberger, 2013). At the same time, both building foot-
print per capita and building volume per capita are the smallest for
China. Some studies have found that urban land per capita is driven by
biophysical and socioeconomic conditions such as terrain character-
istics, wealth, price of gasoline, and planning strictness (Angel et al.,
2011; Taubenböck et al., 2018). These characteristics could at least
partly explain the observed differences. For example, GDP per person is
higher in the US than in Europe, on average, which is again higher than
in China. Conversely, urban planning is rather strict in China, due to
national planning regulations (Liu et al., 2014), while it is weakest in
the US. Yet, existing analyses of urban building structure have mainly
focused on urban footprint only, while the other characteristics of 3D
building structure remain to be explored in more detail. Yet, building
height and volume could have considerable impacts, for which this
dataset provides a continental-scale source for further analysis.

Mapping 3D building structure at large spatial scales could further
benefit from the accelerated developments of Artificial Intelligence
(AI), which increasingly serves as a powerful tool for addressing com-
plex problems (LeCun et al., 2015; Reichstein et al., 2019). However,
one of the most essential and challenging parts of AI is that it needs to
be trained through large amounts of precisely labelled reference data.

Currently, there are several databases available for universal objects
such as the well-known ImageNet (Deng et al., 2009). Increasingly,
there are some urban thematic benchmark databases such as DeepGlobe
(Demir et al., 2018), BigEarthNet (Sumbul et al., 2019), and SEN12MS
(Schmitt et al., 2019). Yet, these datasets focus mostly on the identifi-
cation of objects, whereas they do not provide sufficient information on
building height and volume. Therefore, we additionally developed a
large amount of new reference data for this study specifically. In par-
allel, computer vision research has made great progress in detecting
changes based on digital imagery (Kuehne et al., 2011; Soomro et al.,
2012). These developments could greatly benefit urban scientists in
characterizing changes in building structure based on time-series sa-
tellite data. Yet, as several of the data that feed into our analyses are
only available for recent years, notably Sentinel-1 SAR data, change
analysis of 3D building structure remains challenging.

4.2. Urban land use intensity and other applications of 3D building structure

Urban expansion plays an increasingly important role in the global
competition for land, and impacts of urban expansion have been widely
reported in scientific literature. For example, urban expansion on a
global scale leads to the displacement of cropland and subsequent losses
in natural areas (van Vliet, 2019). Consequently, increasing urban land
use intensity could be a way to reduce urban expansion and thus alle-
viate the global competition for land. Population density has been used
frequently for analyzing urban land use intensity. However, population

Fig. 8. Scatterplots of the observed values and predicted values for building footprint, height, and volume. Predicted values represent the mean of all independently
predicted values for each location in the reference data.
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density maps are mostly produced by using a downscaling approach,
based on a combination of census data and spatial data, such as
nighttime light and built-up area (Florczyk et al., 2019; Wang et al.,
2018). Therefore, while population data is typically rather accurate at
the census level, they remain more uncertain at the local/pixel level.
Moreover, population density reflects residential activities only, while
other urban activities remain unaddressed (Dovey and Pafka, 2013).

Building characteristics as presented in this paper offer an alter-
native to population density data for characterizing urban land use
intensity, as they present the footprint, height, and volume of buildings
in a pixel. The same information is also underlying Local Climate Zones

(LCZs), a standardized classification of urban land use types presented
by Stewart and Oke (2012) for urban climate research. The main dif-
ference is that our results are provided on a continuous scale, while
LCZs include a limited range of discrete classes. Similar to previous
studies of 3D urban structure, large scale analyses based on this fra-
mework are constrained to the scarcity of 3D building information.
Previously, such information has already been presented for selected
global megacities (e.g. Bagan and Yamagata (2012), Mertes et al.
(2015), and Taubenböck et al. (2012)). These data provide only in-
formation of a limited area, while a large proportion of the built-up area
is located outsides these megacities (Li et al., 2019). The approach

Fig. 9. Uncertainty, as expressed in the CV values of three predicted properties as a function of their values for these corresponding building properties. Upper row:
model ran separately in each of the three regions; bottom row: model ran for all three regions combined. All these figures are plotted based on 100,000 randomly
selected points within each region. The shaded areas represent the interquartile ranges (25%–75%) and the lines the ensemble-median values.

Fig. 10. Coefficient of variation (CV) plotted as a function of the combination of building footprint and building height, for the combined reference data set of all
three study regions, based on results in a sample of 300,000 pixels in the three regions combined.
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presented in this paper therefore complements population density as a
measure for urban land use intensity on a continuous scale, and covers
all types of human settlements regardless of their size. Conversely, a
few studies have investigated population distribution based on building
volume at a local scale (e.g. Dong et al. (2010), Tomás et al. (2015), and
Zhao et al. (2017)). Hence the continental-scale building structure data
produced in this study could also move the estimation of population
distribution forward.

The comparison between building footprint and height shows that
they are only partly correlated (0.55 for all three case regions com-
bined). In other words, there is a considerable amount of variation in
building height within locations with a comparable building footprint,
thus justifying the mapping of these properties separately. This also
implies that the analysis of 2D urban density as a proxy for urban in-
tensity hides a significant part of the variation in actual building
structure. Local patterns in the relations between building footprint and
building height also differ across the three regions. The particular
phenomenon in China that buildings along main roads tend to be re-
latively high, suggests that local conditions largely affect building
structure. However, evidence for these differences as well as explana-
tions for their causes is still sparse in the literature. For example, this
particular phenomenon in China could be attributed to the mobility
requirements of population (Wang et al., 2016), which facilitates the
development of retail and service industries, resulting in higher build-
ings for mixed uses along main roads. Yet, this push-pull theory behind
the spatial differences in 3D building structure is rather anecdotal.

The generated datasets on building footprint, height, and volume
provide several opportunities for further analysis of urban structure and
its impacts. First, this data can facilitate the classification of different
settlement types (e.g. suburbs, slums, and business districts) based on a
priori knowledge of these settlement types (Taubenböck et al., 2018), to
further investigate social or environmental impacts of urban areas.
Second, information on the urban vertical dimension is of much value
for the field of disaster risk science as well. When knowing both the
footprint and height of a building, one can much better specify the

potential vulnerability of a building to, for instance, floods, storms, and
earthquakes (e.g. Du et al. (2018), Koks and Haer (2020) and Paprotny
et al. (2020)). At the same time, knowing height of buildings is an es-
sential metric for urban heat stress modelling and its potential socio-
economic consequences as well (Lemonsu et al., 2015). Another ap-
plication area is the impact of urban form on environmental conditions
(Seto and Shepherd, 2009). To what extent urban climate is affected by
building form and their mechanisms remains unclear, as conclusions
vary across cases (Manoli et al., 2019; Yue et al., 2019; Zhou et al.,
2017). However, most of these studies still focus on urban configuration
in 2D dimensions such as city size and urban centricity.

Our study also reveals the potential to guide settlement develop-
ment towards sustainable land use patterns for the benefit of human
well-being. In the sustainability community, consensus has not been
reached on whether urbanization is part of the problem or a solution to
sustainability challenges (McFarlane, 2019; Seto et al., 2010). Either
way, urban densification, both horizontally and vertically, is acknowl-
edged as one of the tangible solutions to satisfy the increased urban
land demand while conserving other land (Wang et al., 2019b). How-
ever, we also notice that local settlement trajectories should be guided
in a large-scale context with broad considerations, including quality of
live for inhabitants of human settlements, while these trade-offs and
synergies remain largely unexplored.

5. Conclusion

This study presents the first continental-scale dataset on 3D building
structure for Europe, the US and China. The presented data was gen-
erated using random forest (RF) models fed with optical remote sensing
imagery, SAR imagery, remote sensing derived indices, and other spa-
tial data. The RF models yield R2 values of 0.90, 0.81, and 0.88 for
building footprint, height, and volume, respectively, for all three con-
tinents combined. Our results show that building height is to a large
extent independent from building footprint, emphasizing the im-
portance of mapping these properties independently. The average

Fig. 11. Comparison of observed and predicted results for building structure in Paris, Los Angeles, and Shanghai. Each map is 30 × 50 km in size.
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building footprint per capita is only 29.2 m2 in China, which is about
one-third of that in the US (84.5 m2), and about a half of that in Europe
(54.9 m2). Building volume per capita in China is 302.3 m3, which is
565.4 m3 for the US, and 404.6 m3 for Europe. The 3D building
structure data produced in this study provide a nuanced representation
of settlement patterns, which can be used for urban environmental
analysis, spatial planning, and land use modelling that aim to guide the
sustainable development of settlements. In itself, these data already
reveal geographic peculiarities across different regions in the globe.
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