Aeolus Calibration, Validation and Science Campaigns

Thorsten Fehr1, Vassilis Amiridis2, Sebastian Bley3, Philippe Cocquerez4, Christian Lemmerz5, Griša Močnik6, Gail Skofronick-Jackson7, and Anne Grete Straume1

1ESA, Noordwijk, Netherlands
2NOA, Penteli, Greece
3ESA, Frascati, Italy
4CNES, Toulouse, France
5DLR, Oberpfaffenhofen, Germany
6University of Nova Gorica, Ajdovščina, Slovenia
7NASA, Washington, USA

European Space Agency

Paper EGU2020-19778, Session AS1.35 - Aeolus data and its application
For a comprehensive overview of the Aeolus Mission and its status see:

T. Parrinello et al., ESA’s Wind Mission Paper EGU2020-4091. Session AS1.35 – Aeolus data and its application
Main Aeolus Product – Line-of-Sight Wind

Level 2B

Rayleigh Wind Profiles
02 January 2020
Aeolus Products – Optical Products

Level 2A

Particle Ext. Coef. Profiles
02 January 2020
Aeolus Airborne Campaigns since Launch

- **Aeolus Launch**
 - 22 August 2018

- **AVATAR-E**
 - May 2019
 - Central Europe Aircraft

- **AVATAR-I**
 - September 2019
 - Iceland/Arctic Aircraft

- **TAPAPA/pre Strateole-2**
 - Nov. 2019-Feb. 2020
 - Tropics Stratospheric Balloons

- **Windual-III**
 - Nov./Dec. 2018
 - Central Europe Aircraft

- **Aeolus Tropical Campaign**
 - June/July 2021
 - Cape Verde/Tropics Aircraft/Ground Based
Aircraft Campaigns before Launch (DLR/NASA/CNES)

Aircraft Campaigns since Launch (DLR)
DLR Falcon with ALADIN Airborne Demonstrator A2D and 2-µm wind lidar

<table>
<thead>
<tr>
<th></th>
<th>ALADIN airborne demonstrator</th>
<th>2-µm Doppler wind lidar DWL ("Reference System")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>354.9 nm (UV)</td>
<td>2.022 µm (IR)</td>
</tr>
<tr>
<td>Backscatter</td>
<td>molecules, aerosol, clouds</td>
<td>aerosol, clouds</td>
</tr>
<tr>
<td>Wind</td>
<td>line-of-sight LOS, 20°</td>
<td>LOS, hor. wind vector, vertical wind w</td>
</tr>
<tr>
<td>Vertical res.</td>
<td>250 m – 2 km</td>
<td>100 m / 500 m (for Aeolus)</td>
</tr>
<tr>
<td>Time res.</td>
<td>14 s (+4 s)</td>
<td>1 s LOS, 30 – 40 s vector</td>
</tr>
<tr>
<td>Horizontal res. @ 200 m/s</td>
<td>3.6 km</td>
<td>200 m LOS, 6 – 8 km vector, 42 km (for Aeolus)</td>
</tr>
<tr>
<td>Precision</td>
<td>2 m/s (mol.) 1.5 m/s (aer.)</td>
<td>< 1 m/s vector 0.3 m/s vertical</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.5 – 1 m/s</td>
<td>< 0.1 m/s</td>
</tr>
</tbody>
</table>

Campaigns – Central Europe and Arctic (DLR)

3 campaigns, 34 research flights, 120 flight hours in 12 months!

Lux et al., AMT, 2020
Witschas et al., AMT, 2020
Validation throughout the mission

Windval-III AVATAR-E AVATAR-I

Source: DLR

Lux et al., Optics Lett., 2020
First results available already during campaign!

Preliminary Data
Only flight legs with ascending orbit
Key results from WindVal-III, AVATAR-E/-I (DLR)

- Rayleigh random error scales with the range bin size ➔ Poisson noise limited
- Mie random error does not scale with resolution ➔ SNR driven
- Rayleigh random error AVATAR-E and -I similar, despite factor 1.5 in reported UV energy ➔ higher solar background in September (Iceland, 66°N) compared to May (Central Europe)
- Campaigns during mission implementation phase fundamental to the early Aeolus success
Objectives:

- Few direct stratospheric wind observations exist, but are fundamental to understand the global circulation, in particular in the Tropics.
- Support to Aeolus Cal/Val activities using wind observations from CNES stratospheric balloons during the LMD/CNES pre Stratéole-2 Campaign 2019/20.

Campaign Details:

- Circum-terrestrial, 3-month stratospheric balloon flights in the Tropics.
- Pressure, temperature and GPS location every 30 s at flight level.
 - 3D winds deduced from successive GPS positions.
- Data analysis ongoing.

Source: CNES
TAPAPA / pre-Strateole-2 (CNES/LMD)

Balloon trajectories
677 Flight Days
231 Collocations (100km/2h)

Collocations with Aeolus

Source: ESA/LMD/CNES
Aeolus Tropical Campaign

- Largest impact of the Aeolus observations expected in the Tropics and in particular over the Tropical oceans

- Airborne Campaign in Cape Verde/Tropics:
 - Correlative observation between Aeolus and the airborne and ground-based remote sensing and in-situ reference systems
 - Tropical wind systems, e.g., Easterly Waves, ITCZ
 - Aerosols, i.e., Saharan dust
 - Tropical clouds and convection
 - Providing proxy data for EarthCARE E2E
 - Planning prepared for July 2020
Aeolus Tropical Campaign

- Largest impact of the Aeolus observations expected in the Tropics and in particular over the Tropical oceans

- Airborne Campaign in Cape Verde/Tropics
 - Correlative observation between Aeolus and the airborne and ground-based remote sensing and in-situ reference systems
 - Tropical wind systems: Easterly Waves, ITCZ
 - Aerosols: Saharan dust
 - Tropical clouds and convection
 - Providing proxy data for EarthCARE E2E
 - Planning prepared for July 2020

COVID-19
Campaign moved to July 2021
Wind Systems, dust and clouds

- African Easterly Waves
- Cape Verde
- African Easterly Jet
- Trade Winds
- ITCZ
Wind Systems, dust and clouds
Tropical Campaign 2021 – Projects and Participants

Light Aircraft
- Uni. Novo Goriza
- IJS
- The Cyprus Institute
- HAZE Instruments
- Aerovizja

Askos
- NOA
- TROPOS
- The Cyprus Institute
- CNR-IMAA
- ECMWF

OSCM São Vincente

Sal

AVATAR-T
- DLR

CADDIWA
- LATMOS
- Météo France
- SAFIRE

CPEX-AW
- NASA

ESA UNCLASSIFIED - For Official Use
Tropical Campaign 2021– Airborne Fleet

- **Askos**
- **Light Aircraft**
- **OSCM São Vincente**
- **Sal**
- **AVATAR-T**
- **CADDIWA**
- **CPEX-AW**

[Image of various aircraft and a globe]
Tropical Campaign 2021 – Instruments (prelim.)

Unique set of instruments for Aeolus Validation and Science

- Askos
 - WALL-E
 - ESA-EVE
 - ACTRIS Aerosol
 - ACTRIS Cloud
 - Doppler wind lidar

- Light Aircraft
 - Nephelometers
 - Filter light abs. photom.
 - Optical particle counters

- AVATAR-T
 - A2D
 - 2μm-DWL
 - CADDIWA
 - LNG
 - RASTA
 - CLIMAT
 - Dropsondes
 - UHSAS/FSSP
 - CPEX-AW
 - DAWN
 - HALO
 - APR-3
 - Dropsondes

- OSCM São Vincente
- Sal

European Space Agency

ESA UNCLASSIFIED - For Official Use
Conclusion & Outlook

Campaigns are an important tool supporting the Aeolus mission

- Supporting the processor and instrument developments during mission development
- Providing perfectly collocated observations for the in-orbit calibration and validation
- Establishing reference data for future mission developments and science communities
- Responding to recommendations from the instrument experts and Science Advisory Group

Future Perspectives

- Successful implementation of the Tropical Campaign 2021
- Identification of campaign needs for further product improvement (e.g., L2A products)
- Evolution of airborne instruments and campaign to support Aeolus-FO activities