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Abstract

Inspired by the learning walks of the ant Ocymyrmex robustior, the original multi-snapshot model was introduced, which
—in contrast to the classical “single snapshot at the goal” model — collects multiple snapshots in the vicinity of the goal
location that subsequently can be used for homing, i.e. for guiding the return to the goal. In this study we show that
the multi-snapshot model can be generalized to homing in three dimensions. In addition to capturing snapshots at
positions shifted in all three dimensions, we suggest to decouple the home direction from the orientation of snapshots
and to associate a home vector with each snapshot. We then propose a modification of the multi-snapshot model for
three-dimensional route following and evaluate its performance in an accurate reconstruction of a real environment. As
an illumination-invariant alternative to greyscale images we also examine sky-segmented images. We use spherical
harmonics as efficient representation of panoramic images enabling low memory usage and fast similarity estimation
of rotated images. The results show that our approach can steer an agent reliably along a route, making it also suitable

for robotic applications using on-board computers with limited resources.
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1 Introduction

As has been shown in numerous studies, insects combine
multiple strategies as, for example, path integration, odor
tracking, and visual guidance to navigate between feeding
sites and their nests (reviews: Graham 2010; Srinivasan
2011; Wolf 2011; Wystrach and Graham 2012; Zeil 2012). A
seminal model for visual navigation in insects is the classical
snapshot model (Cartwright and Collett 1983) which states
that insects collect snapshots — basically retinotopic images
or “views” — at places of interest, e.g. at the nest or a food
source.

Homing with single snapshot For returning to the place
where the snapshot was taken (“homing”) a number of
approaches have been proposed. An example is the gradient
method proposed by Zeil et al. (2003), which is based on the
finding that image similarity increases quite smoothly with
decreasing distance to goal, i.e. the closer two positions are
in space the higher is the similarity of the corresponding
images. It continuously estimates the goal direction from
the local gradient of the image similarity to the goal view,
which can be approximated by capturing images in two (or
three for homing in 3D) orthogonal directions in addition
to the current view. Instead of collecting additional views,
image warping methods explicitly (Franz et al. 1998b) or
implicitly (Moller 2009; Moller et al. 2010, 2014) compute
or generate ‘“hypothetical views” from the current view
by distorting (=“warping”) it for a number of possible
movements based on simplifying assumptions about the
depth structure of the scene and output the direction for
which the highest similarity to the snapshot could be
achieved. They thus avoid probing translational movements
but have higher computational complexity. In summary,
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single snapshot homing methods estimate the goal direction
by either computing or actively collecting views around
the current position. It should be mentioned that there
are also methods that estimate home vectors (or relative
poses) from corresponding features in current view and the
goal snapshot based on optic flow, local intensity patches
or feature descriptors (Vardy and Moller 2005; Fleer and
Moller 2017). As an in depth-discussion of these methods
is beyond the scope of this paper we just note that they
are computationally more complex than the multi-snapshot
model considered in this study.

Homing with multiple snapshots An alternative to
elaborating the homing procedure is to simplify homing
by investing more resources during learning. An elegant
example is the local homing model by Graham et al. (2010)
that, instead of a single snapshot at the goal position, uses
multiple snapshots around the goal. To navigate back to the
goal location, the agent only has to compare its current view
with all stored snapshots and to choose the home direction
associated with the most similar snapshot.

It is interesting to note the strong relationship between
the multi-snapshot model and the single snapshot homing
methods, as illustrated in Fig. [: If, instead of capturing
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Figure 1. lllustration of the relationship between single-snapshot homing methods and the multi-snapshot model. (a) Single
snapshot methods use additional views (dashed circles) around the current position by either direct sampling, i.e. by moving to
neighboring positions for recording images, or by computing hypothetical views generated using image warping. In the next step the
agent would, as depicted by the red arrow, move to the position of the view (highlighted by blue circle) that had highest similarity to
the snapshot. (b) Alternatively, views around the goal position could be used, e.g. hypothetical views computed from the goal
snapshot with the warping method (basically swapping snapshot and current view in the usual warping approach). In this case the
agent has to move in the direction opposite to the direction of the most similar view with respect to the goal, which is equal to the
direction of the goal as seen from the position of the best-matching view. (c) Instead of computing hypothetical views, the
multi-snapshot model assumes that snapshots are captured around the goal position (but not necessarily at the goal). As in (b) the
agent would move in the direction of the vector pointing from the position of the best-matching snapshot to the goal.

additional images around the current position, an agent
would have supplementary images around the goal, it could
select the one most similar to the current view and move in
the direction opposite to the direction of the most similar
image with respect to the goal. Capturing additional images
around the goal position is of course not possible during
homing but generating hypothetical views from the goal
snapshot would work for the warping model. As the goal
snapshot does not change, the additional images could also
be pre-computed or — as the multi-snapshot model proposes
— simply captured immediately after departure from the
goal resulting in minimal computational load but increased
memory usage.

Route navigation All local homing methods have in
common that they are limited to a certain area around the
goal, called the “catchment area”, as, for instance, due to
occlusions, the current view will not share enough features
with a snapshot for larger distances from the goal. Navigation
over longer distances can be achieved by collecting a
sequence of snapshots along a route that then can be repeated
from start to end. Baddeley et al. (2012) use rotations on the
spot that are motivated by scanning movements observed in
ants (Wystrach et al. 2014; Zeil et al. 2014) to align current
views with the route. However translational deviations may
occur that can increase with time, which could be avoided
by employing one of the local homing methods mentioned
before with the currently most similar route snapshot as goal
snapshot. Taking this into account, an extension to the route
navigation model of (Baddeley et al. 2012) was proposed
in (Gaffin et al. 2015; Gaffin and Brayfield 2016) that, similar
to the gradient method in (Zeil et al. 2003), uses translational
scanning movements, i.e. additional views around the current
position are captured and compared to the stored snapshots
allowing to compensate for drift. In contrast, our approach
proposes, inspired by the multi-snapshot model, to simplify
reliable route following by elaborating and refining the route
learning procedure instead. In addition, it is, to the best of
our knowledge, the only insect-inspired 3D route navigation
method. While this is not important for ants and other
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species that walk on the ground it matters for flying insects.
Recently, (J. Miiller et al. 2018) adapted an insect mushroom
body model (Ardin et al. 2016), which essentially realizes
a biologically plausible version of the view familiarity
classifier proposed by (Baddeley et al. 2012), for honeybee
foraging flights, but did not control height above ground as
altitude remained fixed in the simulation.

In the following we first recapitulate the multi-snapshot
model and then present modifications and generalizations for
homing in 3D (section 2) that form the basis for an efficient
and robust route following method. The approach and its
implementation will be described in detail in sections 3 &
4. We then present in section 5 results of several 3D route
navigation experiments in a simulated environment. Finally,
we discuss our approach and suggest ideas for future work
(section 0).

2 The Multi-Snapshot Model

While the idea of collecting a set of snapshots for homing
has been described earlier, e.g. in (Judd and Collett 1998;
Nicholson et al. 1999) for ants and in (Cartwright and
Collett 1987) for bees, we will focus on the multi-snapshot
model originally presented in (Graham et al. 2010) and
later more extensively discussed in (Narendra et al. 2013;
Dewar et al. 2014). It is based on observations of learning
walks of the ant Ocymyrmex robustior (Miiller and Wehner
2010; for a recent comparison of learning walks in different
ant species see Zeil and Fleischmann 2019). After leaving
the nest, the ant walks around the nest entrance and stops
at various locations and turns towards the nest location as
sketched in the upper drawing of Fig. 2 a. Following the idea
of the snapshot model (Cartwright and Collett 1983), it is
assumed that the ant stores a snapshot, i.e. the view of the
current visual scenery, each time it is looking towards the
nest. By doing so, a set of snapshots from various locations
around the nest is collected. At return, the ant, according to
the multi-snapshot model (Graham et al. 2010), can move
towards the nest by using solely the stored snapshots as
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Figure 2. lllustration (in 2D) of the multi-snapshot model to perform homing (a), the proposed generalizations (b) and our approach
to use it for route following (c). (a) The original multi-snapshot model: In a first step, the agent collects a set of snapshots facing the
goal location (top). The collected snapshots are later used to steer the agent back towards the goal location by always moving in
the direction at which the most similar snapshot was captured (bottom). Since the agent can be oriented arbitrary, the agent needs
to rotate at the spot (depicted by circular arrow) to compare its current view with all captured snapshots. (b) Extension of the
multi-snapshot model: Besides arranging snapshots in 3D, we propose that the vectors associated with snapshots can be
independent of snapshot orientation (top). In addition, also movement direction and snapshot orientation can be decoupled, which
can reduce the range of rotations to be tested (bottom). (c) Route following can be performed by concatenating multiple homing
tasks (top). Our approach decouples the home vector direction and the agent’s orientation, which allows us to propose a simple
trajectory to capture snapshots. For instance, snapshots can be either aligned with the trajectory during learning (middle) or with

the direction of the route (bottom).

shown in lower part of Fig. 2 a: While turning on the spot,
a behavior which has been observed in a number of ant
species (Wystrach et al. 2014; Zeil et al. 2014), the ant
continuously compares the current view with all collected
snapshots. By walking in the direction for which the best
match could be found, the ant gets closer to the nest. The
key idea of the multi-snapshot model is that the collected
snapshots look different depending on the location of the
agent relative to the goal location. In more detail, the stored
snapshots contain implicit information about the orientation
of the agent as well as the relative distance to objects
around the goal location and hence about the movement
direction. By comparing the current view with all snapshots,
one eventually finds a snapshot which was captured in the
vicinity of the current location. In contrast, other homing
methods, e.g. min-warping (Mdller et al. 2010), only use
a single snapshot collected at the goal location such that
the relative orientation and the movement direction of the
agent have to be estimated from the current view and the
snapshot alone. In the multi-snapshot model, however, the
complexity of the problem is reduced due to the movements
of the agent, in particular during the learning phase when
snapshots at different positions are collected, such that the
process of homing collapses to a number of computationally
cheap image comparisons. Also the catchment area, i.e. the
area where the agent can be visually guided towards the goal,
can be easily extended by simply increasing the number of
snapshots.
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2.1

Until now, the multi-snapshot model has only been used for
two-dimensional navigation — maybe with the exception of
the homing model for ground-nesting wasps (Stiirzl et al.
2016), see dicussion. In the following we introduce the multi-
snapshot model for three-dimensional movements, which
makes it particularly interesting for flying agents. Let us
denote the current view — commonly represented by a
panoramic image — by some feature vector CV € R" and
the set of N snapshots by feature vectors SS, eR™, i=
1,2,...,N. Note that we do not explicitly describe the current
view and the snapshots for example by pixel matrices, which
would be a suitable choice to represent panoramic images,
but instead by an arbitrary feature vector. This generalization
has been made to allow alternative representations of
panoramic images, e.g. by Fourier coefficient vectors as used
in our implementation.

Extension to 3D

For arbitrary three-dimensional movement, the orientation
of the agent at its current location can be represented by
a rotation matrix R € SO(3), where SO(3) is the set of
all three-dimensional rotation matrices. In the following
we denote by R o CV and R o SS; a rotation applied to
the current view CV and snapshot SS;, respectively. The
operation *o’ depends on the representation of the panoramic
images. Rotations can either be performed by movement of
the agent, e.g. by an ant rotating on the spot, or by simulating
the rotations internally.

For rotations around the vertical axis, the visual
compass as suggested by Zeil et al. (2003) can be
used to estimate relative orientation between images. For
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arbitrary orientations, as assumed throughout this study,
we use a three-dimensional implementation of the visual
compass (Differt 2017b). Finally, let || - || be some image
distance function. By searching for the rotation which
minimizes the image distance between the current view and
all snapshots,

min

R* =
arg RESO(3)

(minlRoCV-S5) , @
we obtain the unit vector pointing in the home direction as
HV = R* ‘_/; € R3, where ‘_/; defines the current movement
direction. Here, we implicitly assume that the orientation of
a view or snapshot has a fixed relation to the movement or
home direction, e.g. the center of the camera image is aligned
with the translation direction.

2.2 Decoupling of home direction and view
orientation

Snapshot orientation does not necessarily have to be aligned
with home direction. Instead, a direction vector can be
associated to each snapshot, as illustrated in Fig. 2b. The
home direction can then be estimated according to

i* = argmin |R} o CV — SS;]| 3)
R’ =arg min |RoCV—SS| , 4)
RESO(3)

where we assume that each associated direction vector HV}
is given in the coordinate frame of snapshot ¢ and that the
home direction HV is estimated in the frame of the current
view.

As illustrated in the upper drawing of Fig. 2 b, snapshots
may be aligned with movement direction to allow for fast
capturing of snapshots, and the associated direction vectors
point towards the goal, which is in a different direction
for each snapshot. However, snapshot orientation can also
be independent of the movement direction. For instance,
in flying insects there is no fixed relation between head
orientation and flight direction. A nearly constant orientation
of snapshots, as depicted in the lower part of Fig. 2b, can
simplify similarity estimation between the current view and
the stored snapshots during homing.

Note that in addition to the home direction also a distance
as well as an orientation difference could be associated with
each snapshot.

Weighted vector sum Selecting the home direction associ-
ated with the best-matching snapshot (“arg min selection”),
may lead to strong changes in direction, in particular, if only
a few snapshots have been captured. Instead of Eqgs. (2) and
(3), a weighted vector sum over all or a subset of vectors can
be used,

N
HV =) w; Ry HV; | )
i=1
where weights w; should decrease with image distance
between snapshot SS; and current view CV.

A weighted average (of snapshot aligned home directions)
was already proposed in (Graham et al. 2010), but no
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mathematical definition of the weighting function given.
In (Dewar et al. 2014) weights were chosen according to, in
miny, |R;oCV -S54 ||
[R:oCV S5,
to use the soft(arg)min function (Bishop 2006), i.e.

our notation, w; = . Instead, we propose

- N ~
Zk:l Wk

as it provides, depending on the choice of j3; € R>¢, a
smooth transition between the weighted average and the arg
min selection. Note that for 3; = 3 Vi the limit 5 — oo leads
to w; — 04+ (where d;, is the Kronecker delta, i.e. §;, = 1
if i = k, and 0 otherwise) making (5) identical to (2) and (3).
Close to the goal, the length of the estimated home
vector HV should become smaller and ideally vanish at the
goal position. In case of snapshot positions being evenly
distributed around the goal this can be achieved by setting

—BillR;oCV—SS; ||
b

w; ;o wp=e 6)

Bi = a|Ri 0SSo — SS;|| 7!, 7
where S represents an additional snapshot captured at the
goal position and Ry the orientation difference of Séo with
respect to S_Si, and o € R is a parameter (independent of
1). Note that just the {3;} but not SS, have to be stored. If
the current position during return is very close to the goal
position (and therefore 6)% very similar to S_SO) we have

G IRioCV - 88| |RiooSSy—SSi|l _
IRio 0 SSo — SSi| IRio 0 SSo — SSi|

)

and therefore w; ~ N ! Vi resulting in

Examples of 3D home vectors computed using the
direction vector associated with the most similar snapshot,
Egs. (2),(3), or the weighted vector sum, Egs. (5),(6) are
shown in Fig. 3. Two different views of the results for
just four snapshots, the minimum number of snapshots for
homing in 3D, in a tetraeder-like arrangement are provided
in Fig. 3a and Fig. 3b. For Fig. 3¢, six snapshots were
used where pairs of snapshots lie on orthogonal axes. The
weighted sum leads to a smaller angular error between
the estimated and the true home direction. For the four
(six) snapshots, the average angular error is reduced to 26°
(17°) compared to 43° (40°) when selecting the direction
associated with the most similar snapshot. In this example
all snapshots and “current views” were rendered with the
same orientation so that the search for the best orientation
was omitted (see Fig. 3e for an example snapshot at the
goal position). Image distances were calculated as the sum
of squared pixel differences.

3 3D Route Following

In this study we are especially interested in visually
guided 3D route following by means of previously collected
snapshots. Therefore we adapt the multi-snapshot model,
which was discussed in the previous section in the context
of homing towards a goal location, for this task.
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Figure 3. Examples of home vectors computed with the 3D multi-snapshot model with four snapshots (a), (b) or six snapshots (c)
around the same goal position approx. 5m above ground level. (a) and (b) give two different views of the home vectors for the
tetraeder-like arrangement of snapshot positions. The snapshot positions are indicated by circles of different colour. Blue vectors
were calculated using the direction associated with the most similar snapshot, Egs. (2),(3). Red vectors were computed using the
weighted vector sum, Egs. (5) and (6); an additional snapshot at the goal was used for determining the 3; according to Eq. (7) with
parameter « set to 0.1. Home vectors were calculated on a 5 x 5 x 5 grid with step size of 0.5 m and the goal position in the origin.
Axes units are in meters. (d) Rendered overview for the four snapshot configuration (snapshot positions marked by green, blue,
light blue and grey spheres, goal position by red sphere). (e) Panoramic image at the goal rendered with 180 x 90 pixels. The large
tree visible on the right of the rendered overviews in (d) and (f) is in the center of the image. (f) Rendered overview for the six
snapshot configuration with same goal position (red sphere) as in (d).

Route following can be separated into different sub-tasks:
(1) As a first step that interestingly is skipped in many insect-
inspired approaches (see discussion), an agent may localize
itself on the route in order to reduce the search space and
the chance of mismatches. (2) Most importantly, the steering
of the agent needs to be adjusted such that it follows the
direction of the route. (3) Furthermore, due to disturbances
the agent may leave the route and the steering needs to be
adjusted in this case to lead the agent back onto it. Without
compensating offsets from the route the agent might drift
away, especially on long routes.

A straight-forward way is to implement route following
as a sequence of single homing tasks as it is shown in
the upper drawing of Fig. 2c. Snapshots are collected
around subsequent goal locations along a route. Then
route following can be performed as “linked local
navigation” (Smith et al. 2007) by homing towards the first
goal location and, as soon as the agent arrives, homing
towards the next goal location until the agent reaches the
end of the route. However, using the multi-snapshot model as
introduced in the previous section, we would need to collect
snapshots from all directions around each goal location. As
can be inferred from the topmost drawing in Fig. 2 c, there
is no simple trajectory the agent could follow to collect the
required snapshots.

To overcome these problems, we use the following
approach: First, as already introduced in section 2.2, we do
not require the agent to face towards the goal location when
capturing snapshots. Instead, the agent can be arbitrarily
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oriented and a vector is associated to each snapshot, as
shown in the drawings in the middle and bottom row of
Fig. 2 c. Second, we do not capture snapshots from multiple
directions, since this would require the agent to move along a
complex trajectory. Instead, we move the agent along a sine-
wave trajectory as illustrated in the lower parts of Fig. 2 c.

For three-dimensional movement, the sine-wave can be
generalized as a helix. Both the helix trajectory as well as
the snapshot collection is sketched in Fig. 4a. As we will
show by means of simulation in the result section, the helix
trajectory can be used to perform route following in three-
dimensional space. Additionally, we propose a curved zigzag
trajectory which only requires the agent to oscillate around
the route, see Fig. 4 b, as this type of trajectory is likely to
be a better approximation of what can be observed in flying
insects.

A two-dimensional sketch of the vector fields resulting
from our approach can be seen in Fig. 4 ¢ for two helices with
same wavelength, A = 2m, but different radii, » = 0.5m
(top) and » = 1 m (bottom). The vector field is partitioned
into regions around each snapshot that have minimal distance
to the respective snapshot position and point in the direction
of the direction associated with this closest snapshot. Note
that we used the spatial distance here as an approximation
to the image distance, i.e. to the arg min selection of
the snapshot most similar to the view at each position,
Egs. (2),(3). As can be seen, the home vector field steers
the agent inside the helix, however it does not converge
exactly to the route (i.e. the center of the helix) but to a
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Figure 4. lllustration of the types of trajectories for collecting snapshots around the ideal route that are proposed and tested in this
work. Shown are 3D and axial views of a helix (a) and a curved zigzag trajectory (b) with radius r and length X. (c) 2D sketches of
exemplary vector fields for r = i)\ (top) and r = %)\ (bottom) assuming the agent always chooses the vector associated with the
closest snapshot. The approximate area in which the agent is closest to a snapshot is indicated by home vectors of the same
colour. The vector fields do not converge to the route directly but to curves of triangular shape (dashed red lines) with vertical extent

proportional to A/r.

triangular curve of same wavelength and opposite phase. The
amplitude of the deviation scales with the ratio of wavelength
and radius, i.e. the further away the snapshots are along the
route for a given radius the larger the expected deviations are.
A weighted average, Eq. (5), could be employed in order to
reduce such deviations from the ideal route. However, the
effect of the weighted average is pronounced only if vectors
associated to neighboring snapshots differ by large angles, as
for instance in the examples sketched in Fig. 4 c, or in the 3D
homing examples shown in Fig. 3. For the route following
experiments presented in this study, neighboring vectors
differ only by about 20°. For the sake of simplicity we will
therefore use the arg min selection for route following.

4 Methods
4.1 3D Simulation

To render panoramic images, we use a 3D model of an
environment, which was recorded in an urban park in
Canberra, Australia, using a laser-scanner with color camera
attached (Stiirzl et al. 2015). These panoramic images can
be rendered at arbitrary locations and orientations inside
the simulated environment, allowing us to simulate the
visual surrounding of an freely moving agent in a three-
dimensional environment. Rendered panoramic images have
a resolution of 180 x 90 pixels and are converted to floating-
point greyscale images (values ranging between 0 and 1).
As an illumination-robust alternative, we also create sky-
segmented images (Differt and Moller 2016), in which all
pixels of the sky are white and all pixels of ground objects
are black, by applying a simple threshold of 0.9 to greyscale
image. Examples of a rendered greyscale and sky-segmented
image can be found in Fig. 5.

4.2 Image Distance using Spherical
Harmonics

In this section we describe in more detail our proposed

method as we used it for the tests in the results section. Our

implementation is based on the C+ library libShc (Differt
2017a) to represent panoramic images in frequency domain.
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Figure 5. Rendered images are either converted to greyscale
or to sky-segmented images for our proposed route following
method. Images are represented by a Fourier coefficient vector;
the inverse Fourier transformed images for [ = 15 frequencies
are shown in the bottom row.

We Fourier transform the panoramic images by projecting
them into the basis of real spherical harmonics. For this task
we use 10* equally distributed sampling points regarding
the topology of the unit sphere. We only use the first [ =
15 frequencies such that we can represent each panoramic
image by a Fourier coefficient vector with a total of % =
225 real-valued entries. The Fourier coefficient vectors are
then used to represent current views and snapshots. As is
illustrated in the bottom row of Fig. 5 by means of inverse
Fourier transformation, the 225 spherical Fourier coefficients
contain the information of low-pass filtered images. In the
following we will continue to use the terms “greyscale”
and “sky-segmented images” even if the route following
was actually implemented using spherical harmonics. The
reader can always think of low-pass filtered images with
same results but less efficient computation.

To compare two different panoramic images CV and SS
represented by their Fourier coefficient vectors in frequency
domain, we use the integral squared error (ISE). The ISE can
be computed directly in the basis of real spherical harmonics
as

ISE(CV, S8) = ||CV — S§)|? . (8)

Note that the ISE defined in Eq. (8) is (up to a constant
factor) mathematically equivalent to the sum of squared
pixel differences of low-pass filtered images (since we
limit frequencies to ! < 15). However, rotations around
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arbitrary axes can be realized more efficiently using spherical
harmonics.

To rotationally align the current view with the collected
snapshots we use the visual 3D compass described
in (Differt 2017b). The visual 3D compass uses a Tait-Bryan
parameterization (yaw-pitch-roll) for three-dimensional
rotations to systematically search for the rotation which
minimizes the ISE between the current view and each
snapshot. This search is implemented as a coarse-to-fine
search and starts to search in 16° steps around all axes. The
pitch and roll rotations are limited to £32° since we assume
that the tilt of the agent is limited. Afterwards, the search is
refined in 8°, 4°, and 2° steps around the found minima. In
addition, we limited the yaw angle to +48°, since we assume
that the agent moves smoothly.

4.3

Snapshots are collected in steps of 1 m along the route. More
precisely, the spacing between the projections of snapshot
positions onto the route is 1 m, which means that distance
between successive snapshot positions for the helix or the
curved zigzag learning trajectory (with » > 0) is larger than
1m and increases with radius. The wavelength is set to
A =4m. The curved zigzag trajectory is created from the
helix by mirroring points above the route at the horizontal
plane and moving the resulting trajectory upwards by 1/2r
to center it on the route (see also Fig. 4 a and b).

A home vector is associated with each snapshot to steer the
agent during route following. For the helix and curved zigzag
trajectories, the home vectors should point towards the route
to avoid drift as well as along the route to move the agent
forward. Let us denote by @; € R? the orthogonal projection
of the location of snapshot i onto the route and by 7; € R?
the vector tangential to the route (note that these vectors are
orthogonal), then we define the home vector as

Implementation of Route Navigation

H_Vi = aﬁi + 171 5 (9)

with oo < 0. We set & = —1/4 in all experiments but the
exact value is not critical. In cases where the learning
trajectory is identical to the route and therefore u; = 0, the
home vector is tangential to the route, H_Vl = ;.

During route following, the simulated agent moves in
discrete 0.3 m steps. At the start location it is oriented
tangentially to the route. Afterwards, the agent is always
oriented in the direction of the current home vector, i.e. the
home vector associated with the snapshot that according to
the ISE, Eq. (8), is most similar to the current view. For
selecting the best-matching snapshot, only the previous and
upcoming 20 snapshots (i.e. around +20m) relative to the
previous best-matching snapshot are considered, which has
two advantages: (1) the computation time is independent of
the total number of snapshots captured along the route, (2)
by only using snapshots which are relative close to the agents
position, the probability of incorrect matches is decreased.

To simulate disturbances, we add noise to the home
vectors stored at each snapshot locations such that the
angular difference A¢ € R between the correct and noisy
home vectors follows a half-normal distribution p(A¢; o) =

2
%67% with (A¢?) = o2.
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A route following run is considered successful if the agent
arrives within 2 m of the last snapshot location on the route.

5 Experiments

To show the feasibility of our route navigation method,
we performed two different types of experiments in
the simulated outdoor environment. In the first set of
experiments (“Proof of Concept”) we demonstrate the
importance of collecting snapshots not just along but also
around the route. The second set (“Systematic Analysis™)
examines the influence of noise, varying helix radii, and
translational offset from the route.

5.1  Proof of Concept

For the initial experiment a 200 m long route in the central
area of the simulated environment was selected, see Fig. 6 a,
and, as described in section 4.3, snapshots were collected
in steps of 1 m directly on the route, which in this case is
identically to the learning trajectory (helix or curved zigzag
trajectory of radius 7 = O m). As can be seen in Fig. 6 b, with
perfect home vectors (no noise added) no significant errors
occur. Small deviations, that might increase for longer routes,
are mainly due to the discrete step size and sampling of
snapshots. Major errors will only occur in the rare case that
a wrong snapshot is chosen, i.e. the ISE to (the rotationally
aligned) current view for that snapshot is smaller than for the
snapshot of the closest positions on the learning trajectory.
However, with noisy home vectors (¢ = 10°) significant
deviations from the route can occur increasing the chance of
mismatches that can lead to complete failure. Fig. 6 ¢ shows
such a case for route navigation with sky-segmented images.
Small deviations from the learning trajectory in combination
with close objects (trees in this case) can lead to mismatches,
i.e. the wrong snapshot and, hence, the wrong vector is
selected. Mismatches leading to complete failures were less
likely for greyscale images but can be found as well, as
illustrated in the example presented in Fig. 6 d,e.

In contrast, for the proposed route navigation using a helix
or curved zigzag trajectory (with radius » = 1 m) around
the route as learning trajectory for collecting snapshots and
home vectors no complete failure was observed even for
noisy home vectors, Fig. 7. We also examined our approach
on another route (route “high”, Fig. 7b) that was basically
identical to the initial route (route “low”, Fig. 7 a) except that,
after around 50 m instead of bypassing a tree it passes over it.
After around 100 m both routes merge again. As illustrated
in Fig. 7 c, both routes are mainly around 5 m to 10 m above
ground level. However, while passing over the tree, route
“high” reaches a height of about 16 m.

All presented route following tests (with r = 1m)
were successful, indicating that our approach, despite low
requirements on computational power and memory, enables
reliable route following even on longer routes, as well
as in environments with complex depth structures, see
images in figure 7 e. This includes open spaces (A), high
altitudes (B), and narrow passages between trees (C).
However using greyscale images seemed to be more reliable
then using sky-segmented images. Especially close to the
highlighted locations (B) and (C), route following using sky-
segmented images sometimes nearly failed, see green curve
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Figure 6. Route navigation with snapshots solely collected on the route trajectory (r = O0m). (a) Rendered views (from different
perspectives) of the 3D model used for simulation with the 200 m long route trajectory highlighted by light red spheres (distance
between center of spheres is 1 m). (b) Without noise, the route, which is identically to the learning trajectory (red curve) here, can
be successfully repeated using either greyscale images (blue curve) or sky-segmented images (green curve). (c,d,e) Examples of
route following with noisy vectors (¢ = 10°). For each sub-figure different randomly generated error vectors were added during
route learning. (c) In this example, route following with sky-segmented images fails due to significant deviations at a point where the
route passes between two nearby trees. As sky-segmented images contain less texture information than greyscale images
mismatches and therefore failures of route following are more likely. (d) Failure example of route following with greyscale images.
Significant drift occurs after about 175 m caused by a large randomly generated error vector that finally leads to a mismatch.

(e) Example of an early failure of route following with greyscale images due to mismatches caused by small deviations from route in
combination with nearby trees. Note that for better visibility the simulated environment is illustrated in a schematic way in (b)-(e) and
in the following figures, with the ground depicted in green and the objects, mainly trees, approximated by coloured spheres of
different sizes whereby colour encodes elevation, i.e. the height above ground.

in Figs.7ab. By inspecting the sky-segmented images in
figure 7e, it is apparent that the skyline tends to flatten
due to the high altitude of the agent (B) or to disappear
since the agent moves directly between two trees (C). In
both cases the skyline provides little information to align the
agent with the correct snapshots and, in the worst case, the
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current view may be matched with a completely unrelated
snapshot. In contrast, the greyscale images still provide more
visual information such that the agent is able to follow the
route. Accordingly, as shown in figure 7 (e), the average
distance to the route increases from 0.37m to 0.50 m and
from 0.32 m to 0.48 m for the route “low” and route “high”,
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Figure 7. Examples and results of the proposed route navigation method. (a) The helix-like learning trajectory (red curve, helix
radius r = 1 m) is shown for the same route as in Fig. 6. Since snapshots are available on all sides, lateral deviations from the route
can be compensated. (b) Additional route variant (route “high”) that in contrast to the original route passes over a tree (close to the
position labeled 'B’). The height profile of both variants is shown in (c). (d) Average distance to route over 20 trials. All runs were
successful, i.e. agent ended up within 2 m of last snapshot position on route. Deviations from both routes were larger for
sky-segmented images compared to greyscale images and for the curved zigzag trajectory compared to the helix. (e) Examples of
greyscale and sky-segmented images at selected positions, see corresponding labels 'A’, 'B’, 'C’ in (a), (b) and (c).

respectively. Moreover, it can be seen that using the curved
zigzag trajectory to capture snapshots also increases the
average distance to the route slightly. However, we think
that the curved zigzag trajectory provides a very good trade-
off between route following accuracy and complexity of the
agent’s movements during route learning.

5.2 Systematic Analysis

In order to study the impact of noise, varying helix radii,
and translational offset from the route as well as the effect
of nearby objects in the scene we performed systematic
experiments.

Three routes of about 50m length called ‘“close”,
“middle”, and “far” were generated, see figure 8a. These
routes differ by their start locations, which are shifted
horizontally by 2 or 4 meters (routes “middle” and “far” with
respect to route “close”) such that the overall distance to the
central group of trees increases. The elevation throughout
the route is between 2m to 4.5m. In the first experiment
of the systematic analysis, we study, by varying the helix
radius r, how far the agent has to depart from the route to
gather sufficient information from translational movement.
To examine the influence of noise, noise was added to
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home vectors in dependence on standard deviation o that
was systematically increased. For each combination of
r €40,0.2,...,1} and o € {5°,10°,...30°} 20 runs were
simulated and the average failure rate determined. A route
following run was counted as successful if the simulated
agent arrived in a proximity of 2 m around the last location on
the route (target area). The results are shown in figure 8 b for
both greyscale and sky-segmented images. The plots show
the fraction of successful route following attempts for given
combinations of the parameters r and o. For all shown results
there is a tendency that the performance increases with radius
7 of the helix and decreases with standard deviation o. This
can be expected, since snapshots captured using a helix
trajectory with a larger radius contain more information for
detecting and compensating lateral displacement, while for
increased home vector noise the agent is more likely to leave
the route. The results confirm our previous observations (see
section 5.1) that it is not sufficient to capture snapshots
along the route but to use, for example, the helix trajectory
instead. Interestingly, using sky-segmented images seems to
work better than greyscale images for smaller helix radii on
route “close” while the opposite is true for route “middle”. A
possible explanation is that the skyline along route “close” is
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(c) Effect of translational offset (r = 1 m, o = 0°)

Figure 8. Setup and results of the systematic study. (a) lllustration of the three routes that are (in xz-direction) shifted versions of
each other. The white triangle (“camera”) in the left figure indicates the position from which the scene is viewed in the right figure
that visualizes the different starting positions (for route “far” in this example). (b) Failure rate (colour coded) for each route in
dependence on helix radius r and standard deviation of noise o estimated over 20 trials. Results for both greyscale (top row) and
sky-segmented images (bottom row) are presented. (c) Effect of initial offset on route following performance. Green and red dots
indicate whether or not the target zone (sphere with 2m radius around final position of route) could be reached. Helix radius r was
set to 1 m. For each offset and route, only a single run was simulated as no noise was applied.

unique enough and the number of very close features that can  route “close” while greyscale images can exploit additional

lead to mismatches as their position in the image is extremely features below the skyline.

sensitive to translations is reduced in sky-segmented images

compared to greyscale images. For route “middle” larger In the second experiment of the systematic analysis, we

displacements are necessary for sky-segmented images as the examined the magnitude of lateral displacement from the

treetops defining the skyline are further away compared to route that can be tolerated by our approach. For this purpose,
as shown in the right side of figure 8 a, the start location of
the agent is offset orthogonally to the initial route in 1 m
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steps up to a maximum of 10 m in 7 different directions. For
this experiment the radius is set to 7 = 1 and noise is not
applied. Note that the tested offsets (up to 10 m) are large in
comparison to the helix radius. As can be seen in figure 8c,
the overall results indicate that — at least for the tested routes
and parameters — offsets of up to 5m can be compensated
in almost all cases. The best results were achieved on the
route “middle”; they become worse if surrounding objects
are either closer (route “close”) or further (route “far’’) away
from the route. Interestingly, for the routes “close” and
“middle” most failures appear for horizontal offset of the
agent, while for the route “far” most failures appear for
vertical offset. This could be due to the overall larger distance
to objects on the route “far”, reducing the number of salient
features at the skyline.

In summary, the systematic study supports the benefit
of capturing snapshots around a route. In agreement
with the results of the previous section, failure rate was
significantly lower for larger radii as deviations from
the route can be compensated, reducing the chance of
mismatches. If mismatches occurred they were mainly
caused by insufficient visual information or by nearby trees
where textural information changes quickly with position.

6 Discussion

In this study we generalized the multi-snapshot model for
navigation in three dimensions. Based on this generalization,
we presented a novel approach for route following using
panoramic images and verified its functionality in a
simulated environment. The central idea of our approach is
to collect snapshots not just on the route but with lateral
displacements, which does not only allow to compensate of
drift during route following very effectively, as we showed
in section 5. Our approach only requires comparisons of
images that may have different orientations, which we
compute efficiently in the basis of spherical harmonics. As
a consequence, our proposed method has only marginal
requirements regarding computational power and memory.
Motivated by the comparatively low resolution of insect
eyes, see e.g. (Land and Nilsson 2012), we only use the
first [ = 15 frequencies to represent panoramic images in
frequency domain by a vector with [? = 225 entries (section
4.2). By storing these vectors as floats, each snapshot only
requires 900 B memory. Therefore the complete route of
around 200 m as used in our examples, where a snapshot is
stored after each meter, requires less than 200 kB.

lllumination-robust representations We also tested sky-
segmented images as they have been suggested as a robust
visual representation and could be realized in insects by
means UV or UV/color contrast (Mdller 2002; Stone et al.
2014; Differt and Moller 2015). While the performance of
route-following was usually higher with greyscale images
one has to consider that our experiments where done in
a simulated environment and results might be different in
case of varying lighting conditions, which we currently
cannot render in a satisfactory way. Nevertheless, our results
indicate that sky-segmented images can be used as an
alternative to greyscale images since they are — at least
theoretically — completely invariant against illumination
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changes. The reduced amount of information stored in sky-
segmented images increases the probability of mismatches.
Therefore sky-segmented images are likely to benefit from
using a higher number of frequencies [ to represent especially
the skyline in more detail.

Sequence-based matching In contrast to most previous
insect-inspired models of route navigation that represent
the complete route as an unordered set of snapshots,
e.g. (Baddeley et al. 2012; Kodzhabashev and Mangan 2015;
Gaffin and Brayfield 2016) or in a “holistic memory”, i.e.
a neural network or classifier that, after being trained on a
set of snapshots, assesses the familarity of views (Baddeley
et al. 2011, 2012; Wystrach et al. 2013; Ardin et al. 2016;
J. Miiller et al. 2018), we use the sequence information to
confine the search range for the best-matching snapshot (20
snapshots around the previously best-matching snapshot).
Note that in case route following should also be possible
starting at any positions near the route and not just at
the beginning, we could extend our model by an initial
global search for the best match. Furthermore, the search
range could be continuously adapted depending on match
confidence. While the limited search range already reduces
computation time and the chance of mismatches, further
improvements might be possible by enforcing a stricter
sequence-based matching as, for instance, in (Milford and
Wyeth 2012; Pepperell et al. 2014; Grixa et al. 2018). This
could be helpful for sky-segmented images that usually
provide less textural information than greyscale images but
also in situations with ambiguous visual input or significant
change in environment appearance between route learning
and following. By matching sequences, Milford (2013)
could show that robust place recognition can be achieved
even with very low-resolution images.  Even though a
number of experiments suggest that insects do not rely
on sequence information (Collett et al. 1992; Kohler and
Wehner 2005; Mangan and Webb 2012), more experiments
are necessary to clarify this matter as a sequence-based
method would clearly be useful in ambiguous locations
(two visually indistinguishable locations are associated with
different movement directions) or in environments with
strong changes in appearance.

Benefits and limits of spherical harmonics Representing
panoramic images that cover the full viewing sphere (47
solid angle) in spherical harmonics is not only memory
efficient but also ideal for orientation and similarity
estimation. Based on these properties, we proposed a general
and efficient solution for route navigation where relative
camera orientation can be arbitrary, i.e. very large rotation
differences in all DOFs (yaw, pitch, roll) between route
snapshots and views during route repetition can occur.
For instance, it would work even for agents that look in
opposite directions during route learning and following or
continuously rotate around their body center. Note that,
as described in section 4, the orientation search range of
the visual 3D compass was limited in our implementation.
However this was done only for reducing the chance of
mismatches and enhancing efficiency further since smooth
trajectories were used for route learning.

For route reversal, i.e. for following the route from its end
point to the start, one just has to reverse the sequence, flip the
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vector components parallel to the route, i.e. replace v; by —;
in Eq. (9), and, in case search range of the visual compass is
limited, center the yaw angle search range at 180°.
However, for reduced field of view, spherical harmonics
are less suited. While masking out the missing zones is
possible (Differt 2017a), it makes the approach less efficient
and a different approach might be favourable. In case
pitch and roll angles are stabilized as has been found in
flying insects (Boeddeker and Hemmi 2010; Viollet and Zeil
2013; Mureli et al. 2017), orientation estimation is basically
reduced to one-dimensional search (yaw angle), which can
be done efficiently directly on low-resolution images. If, in
addition, the field of view is symmetric around the yaw-axis,
Zernike polynomials might be an interesting option (Stone
et al. 2018).” The search space can be further reduced,
if, as in flying insects (Zeil 1993; Boeddeker et al. 2010;
Philippides et al. 2013), head or camera orientation can
be decoupled at least to some extent from flight direction,
allowing to align snapshots and views along the route during
learning and following, as illustrated in last row of Fig. 2 c.

Relevance for flying insects Our approach is based on the
multi-snapshot model which was motivated by observations
in walking insects (Graham et al. 2010; Narendra et al. 2013;
Dewar et al. 2014). As we extended it to 3D the question
arises about its relevance for modelling learning and return
flights. The visual homing model of Stiirzl et al. (2016) for
ground-nesting wasps assumes that nest tagged views, i.e.
views with the directional information “nest left” or “nest
right”, are captured during learning flights guiding the wasp
when returning to the nest by the directions linked to the
best matching snapshots. This is an example where home
vectors are associated to snapshots that are not aligned with
the nest direction and where snapshots are not just captured
at ground level but at different heights. However, movements
in the vertical dimension are not directly controlled by
snapshot similarity and vectors due to the fact that the nest
is at the ground and, therefore, no snapshots below the goal
(with vectors pointing upwards) are captured. Note that the
situation will be different for learning flights in the vicinity
of a feeder placed on a vertical wall or at the edge of a table
as has been observed in bees (Lehrer 1993).

We then, based on the 3D multi-snapshot model,
developed a route navigation model with a helix trajectory
for route learning. We showed in section 5.1 that a curved
zigzag trajectory, which seems to be more suitable model
for flying insects, can be used without significant loss of
performance. In case the distance to ground is approximately
known or can be controlled by other means only snapshots
to the left and the right of the route have to be collected
and a simple sideways zigzag movement would be sufficient.
While zigzag movements have been observed in a variety
of flying insects, for instance in wasps (Zeil 1993; Voss
and Zeil 1998) or bees (Philippides et al. 2013), and
recently even a “zigzag module” has been identified in
the lateral accessory lobe (Namiki and Kanzaki 2016), it
is unclear whether sideways movements are performed on
routes over larger distances. Although harmonic radar is a
powerful tool for recording flights over hundreds of meters,
see for example (Capaldi et al. 2000), it unfortunately
does not reveal such details. Therefore, we can currently
only hypothesize how route learning as described by our
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model could be realized in flying insects. While spherical
harmonics allow to efficiently compare images that have
large orientation differences, insects might recognize a
snapshot only if it is aligned with the current view, possibly
within a few degrees. However, flight direction is up to a
certain degree independent of head orientation in most flying
insects (Zeil 1993; Boeddeker et al. 2010; Philippides et al.
2013). Therefore, as mentioned before, they could efficiently
collect snapshots on a curved zigzag path by keeping the
head aligned with the route. Nevertheless, for being able
to reverse a route and return to the nest after a longer
exploratory flight, this is not sufficient and, from time to
time, the insect would have to turn on its outbound trip and
acquire snapshots oriented in the opposite direction.

How could insects estimate the vectors associated
with snapshots? For learning walks of ants, it has been
suggested that the direction to the goal is provided by
path integration (Miiller and Wehner 2010). Ground-nesting
wasps might visual track theirs nests during learning
flights (Samet et al. 2014; Schulte et al. 2019). For 3D route
learning, directions could be obtained by means of local path
integration but also, in particular if the helix or curved zigzag
trajectories are quite stereotyped, the vectors could be pre-set
or learned and simply recalled during flight. Our simulation
results show that these vectors do not have to be highly
accurate if an appropriate radius is chosen.

Adapting the learning trajectory In the current imple-
mentation snapshots were taken at constant intervals. While
it is obvious that this could be done more efficiently by
recording only snapshots necessary for robust route naviga-
tion, it is less clear how this objective could be implemented.
Monitoring the similarity to the most recent snapshot (Franz
et al. 1998a; Smith et al. 2007; Zeil et al. 2010), possibly
in relation to the similarity of other snapshots, might be
a good starting point. The distance between neighboring
snapshots will be related to the extent of their catchment vol-
umes (Murray and Zeil 2017) in the respective directions but
will also depend on the “environmental noise”. In addition,
the image resolution could be continuously adapted, which
in our approach can be done by changing the number of
frequencies [.

For recording snapshots with lateral offset from the route
in an efficient way we proposed to use a helix or curved
zigzag trajectory. In section 5.2 the effect of the helix
radius was studied by testing different values that, however,
were fixed during each run. Actively controlling the radius
(and possibly the “wavelength” A, as well) would allow to
smoothly adapt the desired trajectory to the environment.
For instance, the radius could be adjusted according to the
distances to surrounding objects but also in dependence on
the maximum deviation from the route that is to be expected
or can be tolerated. Furthermore, capturing snapshots with
offset from the route might be necessary only at certain
critical locations, which can be achieved by setting the

*Note that Zernike polynomials, similar to image representations using
(non-spherical) Fourier coefficients (Pajdla and Hlavac 1999; Menegatti
et al. 2004; Stiirzl and Mallot 2006) are only recommended in case
of negligible variation in pitch and roll angles (i.e. predominantly yaw
rotations). For general rotations that include significant pitch and roll angles,
spherical harmonics are preferable, at least for fully spherical images.
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radius to a small or even zero value for most of the
time, thereby keeping the learning trajectory close to the
route, and increasing the radius to its maximum size just
before such locations (as well as decreasing it afterwards).
Interestingly, Baddeley et al. (2012) included learning walks
around the nest in their route following model in order
to avoid simulated ants overshooting the goal. Similar to
our approach, these additional views also allow to reduce
deviations from the route, although only near the goal.

The selection of snapshots along a route in space and
time is an exciting topic that has to be addressed in future
work. Most likely a complete and general set of rules
for controlling theses parameters in a way that guarantees
robust and efficient route navigation in all environments
will be impossible to find. Thus, assessing the quality of
the acquired route representation already during learning
while information is available by other means, e.g. from path
integration, might be essential.

It would also be interesting to investigate whether
trajectories similar to the one used for learning could also be
employed for following a route, in particular those defined
by a “straight” learning trajectory as in the first experiment
of section 5.1. Based on the change in similarity of the most
similar snapshots with the views experienced along the path,
one could continuously adjust the center of the trajectory.
However, as this would have to be done in every route
repetition, using these trajectories during learning seems
to be more efficient. Another option is to combine both
strategies using, for instance, a mixture of sporadic larger
displacements during learning by controlling radius r as
discussed before and curved zigzag movements of smaller
amplitudes during route following. The latter will in addition
enhance obstacle detection by means of optic flow.

Ultimately, the proposed approach and possible extensions
for route navigation in 3D have to be tested in diverse
environments. For this purpose, an implementation on a
flying system such as a multicopter (M.G. Miiller et al.
2018), is planed.
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