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Mapping Plastic Greenhouses Using Spectral Metrics
Derived From GaoFen-2 Satellite Data

Lifeng Shi ¥, Xianjin Huang

Abstract—Plastic greenhouses are an important hallmark of
agricultural progress. To meet the growing demand for vegetable
and food, the amount of plastic greenhouses has increased signif-
icantly over the past few decades. Remote sensing is considered
as a promising data source for taking inventory and monitor-
ing plastic greenhouses for managing modern agriculture. How-
ever, a systematic catalog of number and spatial distribution of
plastic greenhouses is mostly inexistent. This is primarily due to
the complex land surface characteristics and seasonal changes,
which make automated classification based on EO data challenging.
Current approaches generally suffer from the susceptibility of
approaches toward thresholds and changes in the phenological
stage. Besides, they often require an extensive training of models,
however, often the necessary amount of training data is inexistent.
To address these issues, we suggest an adaptable and universal
plastic greenhouse mapping method based on very high spatial
resolution optical satellite data (GaoFen-2 image) with a three-
step procedure. A plastic greenhouse gathering area (100 km?)
is selected for the development of the initial method. We receive
a very competitive mapping accuracy 97.34% and the likelihood
of plastic greenhouses being mapped correctly reaches to 95.20%.
Subsequently, we transfer it to a much larger area (2025 km?)
featuring a different phenological stage and different surrounding
patterns. The stable mapping accuracy proves the validity of our
approach.

Index Terms—Greenhouses,
analysis.

image classification, spectral

I. INTRODUCTION

S GLOBAL population is increasing, the demand for
A vegetables and food is growing accordingly [1]. Paradox-
ically, cultivated land on which vegetable and food production
depends gets more and more occupied by ever more dynamic
settlement expansion during the past few decades [2]-[4]. This
phenomenon is particularly happening in developing countries
[5]-[7]. The growing demand for food, however, expedites
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Fig. 1. (a) Arch and single plastic greenhouse. (b) Roof and multispan plastic
greenhouse.

scientific and technological progress and innovation. As one
consequence, the plastic greenhouse was invented. It revolu-
tionized the traditional farming to industrial farming all over the
world [8], [9]. It has been estimated that more than 1.1 million
acres of plastic greenhouses for commercial use existed in 2016
in 130 countries [10]. Primarily, these plastic greenhouses are
distributed in Europe, Africa, and China [11]. Among them,
more than 80% are located in China [12].

The semifinished material for plastic greenhouse production
does have negative effects on environment and human health
[13]: it contains more than 60% of phthalates by weight [14],
which lead to secondary salinization in soil [15]. Moreover,
excessive fertilization can cause acidification and nutrient im-
balances in soil [16]. However, the plastic greenhouse increases
the productivity of vegetable. Therefore, the necessity of this
agricultural technique demands for reasonable planning and
strict monitoring. The knowledge of locations and quantities
of plastic greenhouses is a prerequisite for this task. Remote
sensing is one data source allowing the mapping of plastic
greenhouses in a consistent manner independent from other data
sources.

A plastic greenhouse is usually structured by skeletons of
steel, bamboo, and other materials, and the roof is covered
by transparent plastic membrane [17]. According to the ceil-
ing shape, plastic greenhouses can be classified into an arch
type and a roof type, or they can be classified into a sin-
gle type and a multispan type according to its connection
mode (see Fig. 1). Therefore, plastic greenhouses usually dis-
play in a regular geometric way in space [18], [19]. Besides,
the plastic ceiling of greenhouses increases the reflectivity
of visible light [20], [21]. The evident spectral and geomet-
ric characteristics of plastic greenhouses are the linchpin of
greenhouse mapping based on multiresolution remote sensing
images.
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The plastic greenhouse is a kind of “high-precision land use
type.” Naturally, very high spatial resolution (VHR) satellite
images are more suitable for plastic greenhouse mapping consid-
ering the monitoring accuracy [22], and a considerable amount
of existing studies are based on these data. For instance, Agiiera
et al. [23] proposed a pixel-based mapping method for detecting
new plastic greenhouses based on QuickBird (0.61 m) imagery;
subsequently, they [24] improved the pixel-based mapping
method by integrating texture features based on VHR images
reaching 96.89% accuracy; besides, Koc-San [25] compared the
performances of different supervised classification techniques
for greenhouse detection on WorldView-2 (0.5 m) imagery.
However, VHR images contain scarce multispectral bands, usu-
ally four, namely, blue, green, red, and near-infrared [26]. Due
to the relative limitation of spectral resolution, metameric sub-
stance of the same spectrum is challenging when classifying land
use/cover by these VHR images [27]. Therefore, object-based
mapping approaches are gradually considered and developed
when monitoring plastic greenhouses. For instance, Aguilar
et al. [28] proposed an object-based mapping method by using
GeoEye-1 (0.5 m) and WorldView-2 imageries reaching 90%
accuracy; lately, an optimizing multiresolution segmentation
(MRS) was additionally proposed by them based on World View-
3 (0.31 m) imagery for improving the accuracy [19]. The first
and pivotal procedure for object-based mapping is to carry out
a segmentation of images [6], [29]. However, the setting of
segmentation parameters based on more or less systematic trial-
and-error approaches is challenging, and accuracies measured
by visual interpretation are instable [30], [31]. For improving
the segmentation accuracy, few studies have used manual digi-
tization for image segmentation [28], [32], the workload of this
process, however, is extensive.

The high costs, the limited spatial extents, and the short
availability of historical data of VHR images prevent studies
to date that map plastic greenhouses on a large scale over a
long-time sequence [33], [34]. Consequently, medium resolution
(30 m) data, free of charge and available for long historical
periods such as the Landsat series, are preferred [35], [36].
Methods of spectral unmixing in combination with textural
features are shown to be a prerequisite for high mapping ac-
curacies of plastic greenhouses on medium resolution images
of 91.2% [21]. However, for assessing the performances of
different classification products based on medium resolution
images [37], VHR images are always needed to verify and
correct the mapping accuracies [38], [39]. Although medium
resolution images seem more economical, reported accuracies
are significantly lower. At these resolutions, as example, pixels
with small plastic greenhouse fractions are undetectable; in other
words, medium resolution images are mainly suitable for plastic
greenhouse mapping in areas of large, concentrated structures
of plastic greenhouses. Besides, the mapping accuracy is highly
affected by the phenological changes and the complexity of the
surrounding surfaces.

In the present study, we propose a new method for mapping
plastic greenhouses using VHR satellite images; in our case,
we use data from the GaoFen-2 (GF-2) satellite. We propose a
three-step hierarchical procedure: first, we develop a new metric
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Fig. 2. (a) Location of study area and testing area in Dezhou. (b) Standard
false color composite of GF-2 satellite image of study area. (c) Representation
of plastic greenhouses in the satellite data.

titled “Double Coefficient Vegetation Sieving Index” (DCVSI)
to explicitly distinguish plastic greenhouses and vegetation from
other land surfaces by enhancing vegetation information; sec-
ond, we develop a new metric titled “High-Density Vegetation
Inhibition Index” (HDVII) to explicitly eliminate high-density
vegetation by inhibiting its spectral signature; and third, the com-
monly used Normalized Difference Vegetation Index (NDVI) is
adopted to distinguish plastic greenhouses ultimately.

II. STUDY AREA AND DATASET
A. Study Area

The study area for the development of the proposed method is
located very close to the urban area of Yucheng, Dezhou, Shan-
dong Province, China [red square in Fig. 2(a)] (116°39'55"E,
36°55'53"N). It is depicted by a standard false color composite
of a GF-2 satellite image and covers an area of 100 km? [see
Fig. 2(b)]. Some representative areas of plastic greenhouses
are selected and exhibited [see Fig. 2(c)]. The study area has
a warm temperate continental monsoon climate with long and
dry winters. The exhibited plastic greenhouses belong to both
arch and single plastic greenhouses, which are the main types in
China for planting various vegetables and typically feature a size
of 400—1200 m? [40]. In other areas, such as in Spain even larger
cover areas are characteristic (around 10 000 m2) [37]. Tomato,
pimento, tabasco, cucumber, muskmelon, and watermelon are
the most representative crops under the plastic greenhouses in
this area. For testing the stability and universality of our mapping
method across space, we transfer it on a large area with different
conditions. The area under test for transferability is located
further to the north with a coverage area of 2025 km? (a whole
scene of GF-2 image) [yellow square in Fig. 2(a)]. Contrary
to the original study area, the plastic greenhouses in this area
exhibit a dispersed distribution and a different composition of
the surrounding land cover.

B. GF-2 Data and Preprocessing

GF-2 is the first civil, optical, VHR Chinese satellite. It
was launched in August 2014. It carries two panchromatic and
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TABLE I
PARAMETERS OF SENSORS AND INFORMATION OF SPECTRAL BANDS

Spectral ~ Ground ..
Image Revisit
Sensor Spectral Band range sample width eriod
(nm) distance p
Panchromatic Pan 450~900  0.81m
sensor
B1: Blue 450~520
Multispectral B2: Green 520~590 324m 45km 5 days
sensor B3: Red 630~690 ’
B4: Near-infrared ~ 770~890

multispectral charge-coupled device camera sensors. Parame-
ters of sensors and information of spectral bands are listed in
Table I [41].

Remote sensing images from mid or late April are considered
suitable for the plastic greenhouse mapping in China [40]. In
this period, the crops under the plastic greenhouse are mainly
fruit-vegetable (e.g., tomato, cucumber, and luffa) with large
plants and leaf areas with typical reflective properties of vegeta-
tion; plastic membrane on the roof of greenhouses increases the
spectral reflectance significantly; as a consequence, the spectral
signature of plastic greenhouses differs from other land surface
types. However, temporal availability of satellite data is limited.
Thus, in this study, we rely on GF-2 images from June 10,
2015 for mapping plastic greenhouses in our study area. It is
the beginning for winter wheat harvest in North China, with
parts of the winter wheat already been harvested at that time.
It results in a very high complexity of surrounding land surface
types around the plastic greenhouses, which contains vegetation,
soil, water, and man-made surfaces. This complex spatial and
spectral pattern is one major challenge for mapping plastic
greenhouses. The crops under the plastic greenhouse are still
mainly fruit-vegetable in June.

For testing the transferability of the developed method, we
rely on another GF-2 image from a different season (January
13, 2016) with a different phenological stage and different
surrounding patterns. At that time, the crops under the plastic
greenhouse are mainly leaf-vegetable (e.g., spinach, coriander,
and garland chrysanthemum) with small plants and leaf areas.
The typical reflective properties of vegetation are much less
pronounced than for the fruit-vegetable period in June.

The following three preprocessing steps are carried out for
the GF-2 images: first, we convert the GF-2 image to top-
of-atmosphere radiance by using radiometric calibration co-
efficients; second, we process calibrated radiance with the
FLAASH module for resulting in atmospherically corrected
surface reflectance; and third, we perform geometric correction
eliminating the spatial mismatch between multispectral bands
and the panchromatic band. We use the FLAASH module for
atmospheric correction in terrestrial applications [42], as the cor-
rected reflectance is generally within +15% of the ground-based
measurements [43], [44]. The accuracy of geometric correction
for the same feature point is required not to exceed two pixels
in high precision classification [45].

(a)

Fig. 3. (a) Vegetation with different moisture contents and densities. (b)
Soil with different moisture contents and reflectance. (c) Man-made surface
with different materials. (d) Water with different impurity contents. (e) Plastic
greenhouse with different homogeneities and vegetation densities.

III. METHODS
A. Spectral Characteristic Analysis of Different Land Covers

The literature documented matters of “same spectral from
different materials” and “same material with different spectral”
are faced due to the spectral limitation of GF-2 images [46]. We
select 25 representative samples to investigate spectral charac-
teristics of different land surface types; all samples are evenly
selected for different land surface types (i.e., vegetation, soil, wa-
ter, man-made surfaces, and plastic greenhouses) and displayed
on the composite image of GF-2 multispectral bands (see Fig. 3).
Afterward, ten pixels for each sample (250 pixels in total) are
selected manually from the corresponding enclosed irregular
region for the quantitative analysis of spectral reflectance. By
the manually sampled pixels, we aim to ensure that all the 250
pixels are pure. The spectral reflectance curve for each sample is
drawn by the mean reflectance of the ten pixels as support points
(see Fig. 4). When we compare the average spectral reflectance
curves of these land cover types, we find the following:

1) differences of spectral reflectance within the same land

cover type;

2) differences of spectral reflectance across different land
cover types are indistinctive;

3) the spectral reflectance interval between all land cover
types on the near-infrared band is the largest, followed
by red, green, and blue.

For understanding spectral characteristics in a quantitative
way, a statistical interpretation of reflectance of all land cover
types on the four multispectral bands is derived based on all
manually sampled pixels (see Table II). According to Fig. 4(f),
we find that the spectral reflectance curves of plastic greenhouses
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Fig. 4. Spectral characteristics of vegetation, soil, man-made surface, water,
and plastic greenhouses.

TABLE II
SPECTRAL REFLECTANCE OF DIFFERENT LAND COVER TYPES ON THE FOUR
BANDS (LC: LAND COVER; V: VEGETATION; S: SOIL; MS: MAN-MADE
SURFACE; W: WATER; PG: PLASTIC GREENHOUSE)

LC Blue Green

Max Min Ave Std Max Min Ave Std
A" 0.162 0.119 0.138 0.016 0.182 0.132 0.158 0.019
S 0.189 0.146 0.167 0.016 0218 0.177 0.196 0.015
MS 0231 0.154 0.195 0.026 0241 0.162 0202 0.028
w 0.169 0.146 0.159 0.009 0.165 0.140 0.153 0.009
PG 0.163 0.159 0.160 0.002 0.188 0.178 0.183  0.003
LC Red Near-infrared

Max Min Max Min Max Min Max Min
A" 0.184 0.112 0.184 0.112 0.184 0.112 0.184 0.112
S 0.239 0.195 0239 0.195 0239 0.195 0.239 0.195
MS 0278 0.142 0278 0.142 0278 0.142 0278 0.142
w 0.140 0.119 0.140 0.119 0.140 0.119 0.140 0.119
PG 0.186 0.165 0.186 0.165 0.186 0.165 0.186 0.165

are nearly parallel to that of vegetation. However, the reflectance
of plastic greenhouses is measured higher. It indicates that the
plastic membrane on the roof of greenhouses enhances the
surface reflectance on the four multispectral bands equably. It
seems that the gap of spectral reflectance between vegetation
and plastic greenhouses is significant; thus, discriminating plas-
tic greenhouses from vegetation is viable. However, when the
density of vegetation decreases, the spectral reflectance on blue,
green, and red bands increases [see Fig. 4(a)]. Correspondingly,
the spectral reflectance intervals of vegetation on the blue, green,
and red bands feature also a wide range; it is measured slightly
lower than man-made surfaces, and so is the standard deviation.
Besides, the changes in moisture content of vegetation make
great effects on the spectral reflectance in the near-infrared
band. Spectral reflectance curves of subclasses of vegetation
and plastic greenhouse are superposed. In addition to this,
“same spectrum from different materials” makes the situation

more complicated. For instance, the spectral characteristics of
Caigang watts (a kind of man-made surface) [sample c4 in
Fig. 3(c) and Fig. 4(c)] in the red and near-infrared bands are
similar to vegetation and plastic greenhouses. However, c4 is
not vegetation but a kind of man-made surface (color steel).

With so many interlocking spectral characteristics, discrimi-
nating plastic greenhouses from the “background” (understood
as the complex pattern of land cover types around plastic green-
houses) by a single, straightforward classification procedure is
challenging. The basic methodological idea in our study is to
successively eliminate the background gradually until only the
plastic greenhouses are left. The whole procedure is realized
by relying on enhancing the spectral characteristics of the four
multispectral bands of GF-2 images. The aim is to narrow
the differences of spectral reflectance within the same land
cover type and to enlarge the differences of spectral reflectance
across different land cover types. In consequence, we develop
a consecutive three-step procedure to overcome these spectral
challenges.

B. Methodology Development and Theoretical Basis

1) Preclassification Using the DCVSI: The first step in our
three-step procedure aims at discriminating vegetation and plas-
tic greenhouses from other land cover types. To do so, we
develop the DCVSI. The equation is as follows:

(Rg — Rb) (Rg — Rr)

DCVSI =
|R9_Rb| ‘RQ_RT‘
Rnir |Rnir - RT‘ 4

where Iy, Ry, IR, and R,,;, are the reflectance values of the blue,
green, red, and near-infrared response (NIR) band, respectively.

The DCVSI is designed for the following three reasons.

1) For soil and man-made surfaces, reflectance characteris-
tics generally reveal that R, < Ry < R,; for water, re-
flectance characteristics generally reveal that R, > R, >
R,; for vegetation and plastic greenhouses, there exists a
moderate reflection peak on the green band; it indicates
that R, > Ry and R, > R,.

2) That there exists a reflection peak of vegetation and plastic
greenhouses in the near-infrared band and a moderate
reflection valley in the red band; it indicates that R,
and (Ry;, — R,) of vegetation and plastic greenhouse are
significantly higher than other land cover types.

3) The standard deviations of I, between different land cover
types or within a land cover type are both relatively low
comparing to other spectral bands; it indicates that the
interval of R}, is narrow and convergent.

According to the first reason, two directivity coefficients
((Rg — Rp)/|Rg + Ry| and (R, — R,)/|Ry + R;|) are devel-
oped for restraining the spectral information of soil, man-made
surface, and water. The products of the two directivity coeffi-
cients of soil, man-made surface, and water are controlled to
—1, but the products of vegetation and plastic greenhouse are
1. Although spectral characteristics of sample c4 of Fig. 5(c)
are spectrally differing from other samples, the products of it
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Fig. 5. (a) Gray-level histogram image of DCVSI. (b) Binary image of the
result of DCVSI. (c) False color image of the result of DCVSI.

are also controlled to —1. According to the second and the
third reasons, the numerator (R, | Rniy — R,-|) aims to enhance
the spectral information of vegetation and plastic greenhouse,
the denominator (1 — Ry) aims to maintain the stability of the
operation process and the result. As a result, all pixels covered
by vegetation and plastic greenhouses will be highlighted. Sub-
sequently, a threshold will be defined by relying on histogram
statistics of DCVSI values of all pixels. This allows to extract
vegetation and plastic greenhouses.

2) Classification Refinement by the HDVII: In a second step,
we aim to restrain the spectral information of vegetation, with
the aim of enlarging the difference of spectral characteristics
between plastic greenhouses and open vegetation. To do so, we
develop the HDVII. The equation is as follows:

x 10% )

where R,;, and R, are the reflectance of the NIR and green,
respectively.

After the first step of classification using the DCVSI, pixels
covered by vegetation and plastic greenhouses are obtained,
and pixels covered by other land cover types are eliminated.
The essential difference of spectral characteristics between open
vegetation and plastic greenhouses is that the transparent plastic
membrane on the roof of plastic greenhouses increases the
reflectivity in all four visible bands. If we can restrain the
spectral information of vegetation, the difference of spectral
characteristics between plastic greenhouses and open vegetation
would be enlarged.

The green and NIR bands are selected for restraining the
spectral information of vegetation; the reasons are as follows: on
the one side, there are two reflection peaks of vegetation in the
green and NIR spectrums, the former is gentle, and the latter is
fierce. Accordingly, obvious differences between the two reflec-
tion peaks are existing; on the other side, the R,,;; of high-density
vegetation (such as pictured in al and a2 of Fig. 4) is obviously
higher than that of low-density vegetation (such as pictured in
a4 and a5 of Fig. 4), but the R, of high-density vegetation is
obviously lower than that of low-density vegetation. It may

lead to similar values of (R + Rg) for different vegetation
densities. If the value of (Rnir + R,) maintains its stability, the
difference between the two reflection peaks will primarily affect
the final outcome of HDVII. The low-density vegetation with
high HDVII values and the high-density vegetation with low
HDVII values can be anticipated. Meanwhile, the differences
between high-density vegetation and low-density vegetation are
enlarged.

To authenticate it, we calculate (Rpi + R,) for all samples
of “open vegetation.” Results show that their values range from
0.45 to 0.51, the mean value is 0.47, and the standard deviation
is 0.02. In addition, R,;, and R, of plastic greenhouses are
general high and even. The values of (Rn;, + Ry) of all plastic
greenhouse samples range from 0.50 to 0.58, the mean value
is 0.54, and the standard deviation is 0.02. Accordingly, the
HDVII value of plastic greenhouses is, as expected, relatively
high. Subsequently, a threshold can be defined using histogram
statistics of the HDVII values of all open vegetation and plastic
greenhouse pixels. From it, high-density vegetation with low
HDVII values will be eliminated. Pixels covered by low-density
vegetation and plastic greenhouse are retained.

3) Final Classification Using the NDVI: In a third step, we
apply the widely used NDVI to finally distinguish plastic green-
houses from low-density vegetation. The equation is as follows:

Rnir - R'r‘

NDVI B Rnir + R’r (3)
where R.;, and R, are the reflectance of the NIR and red,
respectively.

After the process of the refinement of the classification by the
HDVII, pixels covered by low-density vegetation and plastic
greenhouses are obtained. The acquisition time of the GF-2
image for our first test is June, i.e., the vegetation under the
greenhouse is flourishing. Although the plastic membrane on the
roof of greenhouses enhances the surface reflectance on the four
multispectral bands, the spectral characteristics of vegetation are
preserved. Therefore, we find the NDVI capable to distinguish
greenhouses from low-density vegetation.

C. Thresholds Setting for the Final Classification

The three-step procedure is designed to reduce the spectral
reflectance differences within the same land cover type and to
enlarge the spectral reflectance differences between different
land cover types. And, it is very specifically designed to extract
plastic greenhouses from the complex surrounding patterns of
various land cover types. After each step, a new gray-level image
is generated, reduced by nongreenhouse background and pixels
of high probability for plastic greenhouses. In each case, the aim
is to define appropriate thresholds on the histogram. Thresholds
can be well determined when the histogram of gray-level images
is bimodal or nearly bimodal with a deep valley between two
peaks if the gray-level image contains two categories of objects
[47]. Gray levels of the two objects are concentrated around
the two peaks, and the deep valley would be the best threshold
[48]. Therefore, searching a valley between two peaks is our
first choice for setting the threshold. Regarding the two peaks,
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one is for the target object and the other is for the background.
If there is no clear deep valley, we adapt a fast and effective
threshold setting method named Otsu algorithm. This method
was presented by Nobuyuki Otsu in 1979, and now it is widely
adopted as a classic segmentation method for threshold setting
and image segmentation [49]. The Otsu algorithm classifies the
image into target and background by the rule of minimal error
probability [50]. The threshold value is determined by calcu-
lating the interclass variance of the target and the background.
The threshold value that can make the interclass variance reach
the maximum is the optimal threshold [51]. Based on this pro-
cedure, we have an unambiguous and transparent procedure for
determining the thresholds independent from certain locations
or spectral situations.

D. Greenhouse Extraction Accuracy Assessment

In this study, we focus on mapping plastic greenhouses from
VHR optical satellite data by implementing the introduced
three-step procedure. We exclude nongreenhouse pixels after
each step of processing. All excluded backgrounds contain
various land cover types except the plastic greenhouses. The
pixels will be labeled “plastic greenhouses” or “other” by both
our automated three-step procedure and a manual extraction
by visual inspection. We adopt indexes defined by Mckeown
[52] and recommended by other studies [19], [53] for accuracy
assessment. We use the following four measures:

1) true positive (TP), i.e., pixels are labeled as plastic green-

houses by both automated and manual methods;

2) true negative (TN), i.e., pixels are labeled as “other” by
both methods;

3) false positive (FP), 1i.e., pixels are labeled as plastic green-
house by our automated three-step procedure and labeled
as “other” by the manual method;

4) false negative (FN), i.e., pixels are labeled as plastic
greenhouses by manual image interpretation and labeled
as “other” by the developed automated classification.

We calculate the following four metrics:

1) branching factor (BF) for measuring the incorrect rate of
greenhouse labeling, with BF = FP/TP;

2) miss factor (MF) for measuring the omission rate of green-
house labeling, with MF = FN/TP;

3) greenhouse detection percentage (DP) for measuring the
correct rate of greenhouse labeling by the automated ap-
proach, with DP = 100TP/(TP+FP);

4) quality percentage (QP) for measuring the likelihood
of greenhouses being correctly labeled, with QP =
100TP/(TP4-FP+-FN).

The plastic greenhouse pixels extracted by the developed
automated method are obtained after the introduced three-step
procedure. In total, 500 pixels of them are selected in a spatially
even distribution for the accuracy assessment. The panchro-
matic image with a 0.81-m geometric resolution is adopted
for generating the manual interpretation. Google Earth VHR
data and field investigations are additionally used to verify and
ensure the accuracy of the manual interpretation. The area of
one pixel on the spectral image covers the area of 16 pixels

(4 x 4 matrix) on the panchromatic image due to the different
geometric resolutions between them. Therefore, we select 500
pixel sets (4 x 4 matrix) spatially evenly distributed from the
manual interpretation on the panchromatic image; and, they are
labeled as plastic greenhouses by manual interpretation. The
selected 500 pixels on the spectral image are cross-checked on
the panchromatic image, and the selected 500 pixel sets on the
panchromatic image are cross-checked with the spectral image.
Ultimately, all four metrics (BF, MF, DP, and QP) are calculated
for those selected pixels or pixel sets.

IV. RESULTS
A. Result of the Preclassification Using DCVSI

After the preclassification using DCVSI, we receive a gray-
level image. A multimodal histogram of the gray-level image
is illustrated in Fig. 5(a). The horizontal axis shows the values
of DCVSI, and they range from —2276 to 1778; the vertical
axis shows the quantities of pixels, and they range from 1 to
2.67 x 10°. There are three evident peaks and two deep valleys
on the current histogram. According to the threshold setting
method for bimodal histograms, we assume that the values of the
two valleys are best thresholds for the current distribution. The
Otsu algorithm is also adopted to acquire the exact values of the
two valleys, as this algorithm was designed for threshold setting
for only two objects (target and background). Besides the two
thresholds, we also define another value for the first valley. The
three defined thresholds (in our specific case, they are —797,
—18, and 188) are applied to classify the histogram into four
intervals.

We extract the pixels per interval and interpret them themat-
ically. We find that pixels in interval I are totally covered by
mirror reflection of plastic greenhouses; the quantity of these
kinds of reflectance values is small. The pixels in interval II
are covered by soil and man-made surfaces. They are classified
as one category due to the high similarity of the reflectance
characteristics. Pixels in interval 11l are covered by water. Our
target is in interval IV, as it contains the total vegetation as
well as plastic greenhouses. Therefore, we consider that pixels
in interval IV contain our target and pixels in intervals I-III
contain background. Subsequently, we binarize the gray-level
image [see Fig. 5(b)] and continue with pixels in interval IV
[see Fig. 5(c)].

B. Result of the Classification Refinement Using HDVII

In a second step, we refine the classification based on the
HDVIL. It is carried out on the extracted image by the DCVSI,
and a gray-level image for HDVII is additionally generated
[see Fig. 6(a)]. The horizontal axis shows the values of HDVII,
and they range from 722 to 1643; the vertical axis shows the
quantities of pixel, and they range from 1 to 7.56 x 10*. There
are two peaks within the histogram: the first one is steep and
evident and the second one is small and low. The size of the
peak is determined by the quantity of corresponding objects.
Although the valley between the two peaks is not very deep, it
is clear enough. We also assume that the value of the valley is
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Fig. 6. (a) Gray-level histogram image of HDVII. (b) Binary image of the
result of HDVIL. (c) False color image of the result of HDVIL.
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Fig.7. (a)Gray-level histogram image of NDVI. (b) Binary image of the result

of NDVI. (c) False color image of the result of NDVI.

the best threshold for the current histogram. Besides this, we
also define another threshold by the Otsu algorithm. The two
thresholds (in our sample case, they are 1148 and 1436) classify
the histogram into three intervals.

After thematic interpretation of the pixels for each interval,
we find pixels in interval I are totally covered by vegetation;
furthermore, pixels covered by vigorous vegetation are cen-
tralized around the top of the first peak. Pixels in interval II
are mostly covered by plastic greenhouses; however, very low-
density vegetation remains existent to a small degree. Pixels in
interval Il are covered by man-made surfaces with very tiny
amounts. Therefore, the pixels in interval II contain our target.
A binary image is generated for extracting pixels in interval II
[see Fig. 6(b)], corresponding pixels on those four bands are
extracted subsequently [see Fig. 6(c)].

C. Result of the Final Classification Using the NDVI

In the third and last step, the final classification is produced
using the NDVL. It is carried out on the extracted image by
the HDVII, and a gray-level image for NDVI [see Fig. 7(a)].
The horizontal axis shows the values of the NDVI, and they
range from —0.09 to 0.54; the vertical axis shows the quantities
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Fig. 8. (a) Spectral reflectance of normal greenhouse and mirror reflection

greenhouse. (b) Spectral characterize of mirror reflection greenhouse. (c) Spatial
distribution of plastic greenhouse in research area.

of pixels, and they range from 1 to 8276. There is only one
peak on the current histogram this time. All remaining pixels
are consisting predominantly of plastic greenhouses and few
contain low-density vegetation and other land cover types. We
divide the histogram into two intervals by a threshold, which
we identify by the Otsu algorithm. The threshold is set in our
particular case to 0.26 and it is located at the bottom of the peak.
After thematic interpretation, we find that pixels in interval Il are
completely covered by plastic greenhouses. A binary image is
generated for extracting plastic greenhouses based on interval II
[see Fig. 7(b)], and corresponding pixels on those four bands are
extracted subsequently [see Fig. 7(c)].

D. Greenhouse Mapping in the Study Area

The great majority of pixels covered by plastic greenhouses
are extracted by the three-step procedure, which was designed
by the idea of hierarchical decision-making. However, there are
tiny amounts of pixels covered by plastic greenhouses, which
are missed by the classification approach. We find the plastic
membrane on the roof of greenhouse with very smooth surfaces
at a particular orientation forms mirror reflection of visible light.
In this circumstance, the reflectance characteristic of plastic
greenhouses is spectrally concordant with other land cover types.

We calculate the average reflectance of all sampled pixels fea-
turing plastic greenhouses (50 pixels) and derive the reflectance
curves. All those sampled pixels were covered by normal plastic
greenhouses. For comparison, ten pixels covered by the mirror
reflection plastic greenhouses are selected; then, the average
reflectance was calculated and the reflectance curve is derived
[see Fig. 8(a)]. We find that the mirror reflection of plastic green-
houses is higher than that of normal plastic greenhouses, but
the significant difference of reflectance on red and near-infrared
is maintained. Besides, the reflectance of mirror reflections of
plastic greenhouses on the four bands increases progressively
(Ruir > Ry > R, > R,), the small reflection peak on green
of vegetation is lost. Therefore, the DCVSI values of mirror
reflection greenhouses are very small because of the negative
coefficient and the high value of Ry;,| R — R.|. They are
centralized in interval I of Fig 5(a). We extracted all mirror
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TABLE III
ASSESSMENT OF PLASTIC GREENHOUSE MAPPING

Pixels for Number of pixels Values of four metrics (%)
accuracy TP TN FP FN BF MF DP QP
assessment
Pixels in Fig.9a 474 - 26 -
273 231 9734 9520
Pixels in Fig. 9b 478 - - 22 4 7

reflection greenhouse covered pixels [detailed information is
illustrated in Fig. 8(b)] and supplemented them to the result
of the third step. Ultimately, the final plastic greenhouse map is
achieved, the normal plastic greenhouses are mapped in green
and the mirror reflection greenhouses are mapped in red [see
Fig. 8(c)]. The total area of plastic greenhouses in the research
areais 425.97 ha, and among them, 31.17 ha (7.32%) are covered
by mirror reflection greenhouse.

E. Mapping Accuracy of Plastic Greenhouses

Accuracy assessment of the final result is carried by four
metrics (BF, MF, DP, and QP) based on manual interpretation
of 500 pixel sets (4 x 4 matrix) and 500 pixels classified by
our three-step procedure. The number of selected pixels or pixel
sets accounts for 0.2% of all mapped plastic greenhouses. The
500 automated extraction pixels are selected from the presented
plastic greenhouse classification result. We convert all adjacent
pixels into patches that feature different sizes. The number of se-
lected pixels in each patch is determined by its area proportion of
all patches. The 500 manually interpreted pixel sets are selected
by a different way: For a balanced spatial distribution, we divide
the study site into 100 grids and classify plastic greenhouses
manually per grid. If there is no plastic greenhouse in a certain
grid, no pixel sets will be selected. Otherwise, the number
of selected pixel sets in each grid is determined by the area
proportion of manually drawn greenhouses in this grid. All the
500 automated pixels extracted are displayed in Fig. 9(a) and the
500 manual interpretation pixel sets are displayed in Fig. 9(b).
TP, FP, and FN pixels are distinguished with supplementary data
(i.e., Google Earth VHR data and a topographic map), TN pixels
are not taken into consideration. Ultimately, the four metrics
for accuracy assessment of plastic greenhouses are calculated
(see Table III). The correct rate of our mapping method reaches
97.34%, the likelihood of greenhouses being correctly labeled
is 95.20%, and both the proportions of FP pixels and FN pixels
are less than 3%.

FE. Transfer of the Plastic Greenhouse Mapping Method

For testing the robustness of our suggested plastic greenhouse
mapping method, we transfer it to a larger area (2025 km?)
with a different, i.e., dispersed spatial distribution pattern of
plastic greenhouses and high vegetation fraction. In addition to
this, the current GF-2 image acquisition time is winter, i.e., in
a different phenological stage. All these features are considered
a challenge for transferring the approach. The mapping product
of plastic greenhouses by the transferred three-step procedure is
displayed by yellow patches in Fig. 10. The total area of plastic

© False positive (FP) pixels
< False negative (FN) pixel sets

A True positive (TP) pixels
= True positive (TP) pixel sets

Fig. 9. (a) 500 pixels derived from the plastic greenhouse mapping result.
(b) 500 manually interpreted pixel sets of plastic greenhouses.

Fig. 10.

Plastic greenhouse mapping on testing area.

greenhouses is 65.68 ha. The proportion of mirror reflection
greenhouses measured at 6.36%. The lower rate in this image
might be caused by the different solar elevations. With so many
challenges, the classification success for plastic greenhouse
mapping on the testing area only reveals a slight decrease in
accuracy. The likelihood of plastic greenhouses being correctly
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labeled reaches 96%, and the misclassification rate maintains
less than 3%. The satisfactory result demonstrates the capability
of transferability of this approach.

V. DISCUSSION

With the rapid development of modern agriculture, plastic
greenhouses have increased remarkably during the past few
decades as well as the various mapping methods based on
VHR satellite images. The pixel-based mapping methods by
using maximum likelihood, random forest (RF), and support
vector machines (SVM) are able to obtain accuracies up to 93%
[25]; with the integration of texture, the mapping accuracy even
reached 97% [20], [24]. On the other side, object-oriented map-
ping methods were reported to obtain an accuracy over 90% [28];
with the extensive amount of training data, the mapping accuracy
was reported to reach 98% [38]. By comparison, our suggested
plastic greenhouse mapping method shows very competitive
accuracies without texture feature integration or the necessity
of having a large amount of prior knowledge for training of
models.

On the other hand, we also carried out the most widely used
method of object-oriented mapping for comparing the achieved
mapping accuracy to our pixel-based results. The three metrics
(i.e., scale, shape, and compactness) for MRS suggested by the
existing influential studies are implemented [54], [S5]. After a
tedious trial-and-error process [39], even the optimal segmenta-
tion still presents poor performances on the two GF-2 images,
particularly on the image acquired in winter, because the amount
of plastic greenhouses is little and the spectral difference across
plastic greenhouses is large. Subsequently, the well-behaved
classification methods (RF and SVM) [56] are unable to obtain
accuracies that exceed 90%, which we find mainly due to the
poor segmentation. It proves that the phenological stage has
great impacts on plastic greenhouse mapping accuracies. Thus,
remote sensing images at a particular phase (mid or later April)
of the year are typically required [40]. Our mapping method,
however, presents good performances at two completely differ-
ent phenological stages (summer and winter).

However, challenges remain for mapping plastic greenhouses.
Although the proportion of mirror reflection for greenhouses
is not high, it greatly influences the classification accuracy on
VHR images. The accuracy drops from the current 97.34%
(value of DP) to 92.68%, if the mirror reflection greenhouse is
not taken into consideration. Therefore, taking mirror reflection
greenhouses by the suggested DCVSI and threshold setting into
account is a necessity.

In this study, 2.73% pixels were labeled as plastic greenhouses
by our classification, but labeled as other land cover types by
visual interpretation. We found that all those misclassified pixels
were covered by the same land cover type: water plants [see
Fig. 11(a)]. The spectral characteristic of the water plant is very
similar to the plastic greenhouses in the false color composite
image [see Fig. 11(b)]. Fig. 11(c) pictures the low spectral
reflectance differences between water plants and greenhouses.

On the other side, 2.31% pixels were labeled as plastic
greenhouses by manual interpretation, but labeled as other land
cover types by the developed method. We find that all the
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Fig. 11.  (a) Spectral characterize of water plant. (b) Spectral characterize of

normal greenhouse. (c) Spectral reflectance of water plant and normal green-
house.
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Fig. 12.  (a) Spectral characterize of plastic greenhouse with low-density veg-

etation inside. (b) Spectral characterize of plastic greenhouse with no vegetation
inside. (c) Spectral reflectance of soil, normal greenhouse, and nonvegetation
greenhouse.

missed pixels in our classification are covered by greenhouses
without or with very rare vegetation inside. Our plastic green-
house mapping method relies on the characteristics of both
vegetation and plastic membrane, and the vegetation attributes
of plastic greenhouses is the prerequisite. By enhancing the
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spectral features of vegetation, we find greenhouses can also
be detected with low-density vegetation inside [see Fig. 12(a)].
Greenhouses, however, without vegetation inside or a very low
density of vegetation [see Fig. 12(b)] are not detectable with our
approach focusing on spectral features. We find that the spectral
reflectance of nonvegetation greenhouse is very similar to that
of soil [see Fig. 12(c)].

VI. CONCLUSION

Intensive agricultural practices are developing across the
globe to meet growing demands of increasing populations.
Plastic greenhouse agriculture is one practice for improving the
production of vegetables and food. However, their development
has great effects on our environment. Plastic greenhouses are
considered as cultivated land in traditional land use classifica-
tions. With the fast growth of plastic greenhouse agriculture,
inventories of amount and distribution of plastic greenhouses
are widely absent.

This study presents a new plastic greenhouse mapping method
by a three-step produce based on GF-2 satellite images. The pro-
posed method achieves competitive mapping accuracies under
adverse operational conditions. The transfer to another GF-2
image, to another seasonality and phenological stage, and to
different land use pattern configurations in the surroundings
of plastic greenhouses proves stability and universality of this
method. Therefore, the successful applicability of our method
on images with higher spatial resolutions and for areas where
plastic greenhouses are even larger is very likely. The ap-
proach proves its feasibility on GF-2 satellite image. Although
these data lack historical availability, the larger swath width
(45 x 45 km), the lower costs compared to highest resolution
satellite data, and the high achieved accuracies by the presented
method make it possible to take spatial inventories of plastic
greenhouses for large areas.
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