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Abstract.

Myocontrol, that is, control of a prosthesis via muscle signals, is still a surprisingly

hard problem. Recent research indicates that surface electromyography (sEMG), the

traditional technique used to detect a subject’s intent, could proficiently be replaced,

or conjoined with, other techniques (multi-modal myocontrol), with the aim to improve

both on dexterity and reliability. In this paper we present an online assessment of multi-

modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol.

Twenty sEMG and FMG sensors in total were used to enforce simultaneous and

proportional control of hand opening/closing, wrist pronation/supination and wrist

flexion/extension of 12 intact subjects. We found that FMG yields in general a better

performance than sEMG, and that the main drawback of the sEMG array we used

is not the inability to perform a desired action, but rather action interference, that

is, the undesired concurrent activation of another action. FMG, on the other hand,

causes less interference.

Keywords: myocontrol, surface electromyography, force myography, prosthetics, target

achievement control, action interference

Submitted to: J. Neural Eng.

1. Introduction

Smooth, natural control of upper-limb prostheses (an instance of myocontrol) is the

typical problem which looks simple from an abstract point of view and turns out to

be extremely hard in practice. Back in the Fifties surface electromyography (sEMG),
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Online combination of FMG and sEMG 2

formerly a musculoskeletal condition diagnostic technique, began to be used in a

two-sensors configuration to open and close a one-degree-of-freedom (DOF) motorized

gripper — actually, the first self-powered hand prosthesis in history. Surprisingly, this

rudimentary form of control is, still today, unsurpassed in practice, although (multi-

sensor) sEMG was targeted by control theorists and mathematicians soon after the

pioneers’ era (an early example can be found in [11]).

Yet, dexterous myocontrol, e.g., control of multi-DOF self-powered prosthetic hands

and wrists, is still by and large unsolved, the main problem being unreliability in

daily-life activities. On top of this, upper-limb prosthetic hardware is still expensive,

heavy and clumsy: these are the main reasons why self-powered prostheses are so

often rejected [12, 23], although better functionality and control are highly desired

characteristics in the population of patients [6, 8]. Only two commercially available

solutions employing machine learning are known, namely Complete control by COAPT

Engineerings and the Myo Plus by Ottobock. Proper myocontrol is a surprisingly hard

problem and fifty years of research have not yet produced a reliable, dexterous, natural

and clinically accepted system, enabling upper-limb amputees to smoothly control their

prostheses [2].

Specifically, if we consider the human-machine interface devoted to enforcing

myocontrol, multi-modal sensing is one of the solutions the community is attempting

[9, 12, 15]. The idea is to gather more information from the surface of the amputee’s

missing limb than sEMG currently can, by using different kinds of sensors as a substitute

of, or as a companion to, sEMG. Novel sensor modalities are being explored, which could

yield information less prone to the well-known problems of sEMG (sweat, muscle fatigue,

variability of the signal during isometric contractions due to motor unit recruitment); as

well, they should be targeted at gathering information which sEMG cannot in principle

provide such as, e.g., the status of deep muscles [3].

In this paper we focus upon one such alternative technique, force myography

(FMG). As opposed to sEMG, which directly detects the electrical fields generated

by muscle contractions, FMG uses pressure sensors placed on a body part of interest

to interpret the deformations induced on the stump by said contractions. While

contracting, muscles bulge and change the shape of, for instance, the forearm, in ways

that can be quite reliably be associated to the actions enforced by the human wrist

and hand [24]. FMG has potential to detect different information with respect to

sEMG [26], provides similar accuracy and better-conditioned signals than sEMG [5,32]

and has already been tested offline and online even on amputees [4]; but as far as we

know, studies on the combination of FMG and sEMG while in action are still scarce (a

remarkable example being, e.g., [1]).

Building on our own previous work, in this paper we report about an experiment

in which several intact subjects were fitted with twenty sEMG and FMG sensors on the

forearm; they were then engaged in a repetitive online goal-reaching task involving the

opening/closing of the hand, flexion/extension and pronation/supination of the wrist —

an instance of the Target Achievement Control (TAC) test [28]. It is worthwhile to stress
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Online combination of FMG and sEMG 3

that the task was online, although still in controlled conditions (i.e., not in a daily-living-

activity setup), since offline performance can only offer limited information of online

performance in myocontrol [14, 21, 30]. The results of our experiment indicate that

for proportional control, particularly for fine movements, requiring low forces, sEMG

does not suffice and is outperformed by FMG. The shortcoming can be traced back to

the unintended activation of an action, when trying to perform a different action, a

phenomenon we call action interference.

1.1. Related work

Surface EMG [16,17] detects a superposition of many Motor Unit Activation Potentials,

filtered by the tissue the signal travels through. These signals are, electrical fields

generated by motor units during muscle contraction. FMG [24, 31], on the other side,

detects the pressure exerted by the muscles towards the surface of the skin by volumetric

changes induced during muscle activity. Due to the very different nature of the signals

gathered by these two techniques, it seems reasonable that they could be proficiently

fused in order to better detect a subject’s intent.

In particular, FMG alone has already been tested by and large, and has proved to

yield a signal which is more resilient to motion artefacts and fatigue than sEMG [32],

and has been directly applied to amputees: in [4] four amputated subjects were able

to enforce six primary grips through classification, with an accuracy of above 70%. On

the other hand, FMG and sEMG have been comparatively examined but in parallel,

i.e., without combining them, in [5, 26]. The results shown therein indicate that FMG

provides a signal which is less oscillatory during isometric contractions than sEMG,

thereby providing a significantly better performance during intent detection, performed

using a regression approach, i.e., without classification of patterns but rather enforcing

simultaneous and proportional control.

To the best of our knowledge, this study represents the first attempt to mix sEMG

and FMG in an online task, with the aim of determining how to best combine the two

techniques. In our own previous work [20], an offline analysis was performed of data

obtained in conditions similar to the ones we report about here. The results therein

showed that (a) it is not important how the sensors are laid out on the forearm, but

(b) it can make a significant difference how the signals are combined. In particular,

four ML approaches were tested, and it was determined that sEMG alone performed

significantly worse than any other approach (i.e., FMG alone or combined with sEMG in

two different ways). Moreover, quite surprisingly, it was determined that the best way of

combining the two techniques consisted of just feeding to the ML system the sEMG and

FMG signals juxtaposed. This approach led to smaller normalised root-mean-squared

error in the offline analysis, as well as to better success ratio and shorter task completion

times in a preliminary online test, performed on one subject only. This very work can

be therefore viewed as the natural companion and completion of the above-mentioned

paper.
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2. Materials and Methods

As an extension of [20], where the comparison was performed mostly offline (only a

single user online test), this study involved 12 able-bodied subjects in a completely

online goal-reaching scenario — an instance of the Target Achievement Control test [28].

Furthermore, the design of this study allows an in-depth comparison of the approaches

for different types of goals that the subjects had to reach. These goals differ as far as the

action (the hand gesture) that had to be performed is concerned, as well as regarding

the level of activation, the intensity / force to which the action had to be performed.

An example would be wrist flexion at level 0.33. Here the subjects would need to flex

their wrist to 33% of full flexion to reach the goal.‡ Notice that, in this work, we have

intentionally left out the problem of predicting combined actions (e.g., grasping while

pronating the wrist) since it would have led to too complex an experimental protocol,

and it would probably have failed due to the small number of sensors.

2.1. Participants

We engaged 12 able-bodied subjects in our study (three women, nine men; age between

22 and 45; all but one right handed). Prior to the experiment all participants

received written and oral descriptions of the experiment. After all questions about the

experiments and associated risks were answered, all participants signed an informed

consent form. This study was formally approved by the host institution’s internal

committee for data protection and it followed the guidelines of the World Medical

Association’s declaration of Helsinki.

2.2. Experimental Setup

The participant was comfortably seated in front of a computer screen and asked to

wear a sEMG and FMG acquisition device that consists of two separate bracelets. A

depiction of the full setup and the bracelet can be found in Figure 1.

The ten sEMG and ten FMG sensors were arranged in alternating order on

the bracelets to cover the full circumference of the forearm by both the sEMG and

FMG sensors. The influence of different sensors arrangements has already been

investigated in [20] and no significant influence of the different sensor selections has

been found. Therefore, we were not required to change the bracelet placement and

sensor organisation for each of the four configurations we intended to compare.

On the screen the participants were shown two hand models, see the left image of

Figure 1. Each of these hands serves a particular purpose. The left/grey hand serves as

a stimulus to the participant. During the data acquisition or ML training, it indicates to

the user which hand action to perform. During the goal-reaching part of the experiment,

it indicates the target hand position the participant has to reach. The right/beige hand

‡ The percentage is related to a level set by the subject. The experimenter asked the subject to perform

a tense, but comfortable level of force.
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wireless
sensor board

battery pack

sEMG sensor

FMG sensor
upper arm

fixation

Figure 1: (left) the forearm of a participant wearing the sensors, the wireless data

acquisition device, and the computer screen showing a target hand configuration (grey

hand) and the current prediction of the ML algorithm (beige hand). (right) The wireless

data acquisition device, consisting of a battery powered analog-digital converted and two

bracelets with sEMG and FMG sensors.

is controlled by the user. It displays the prediction of the ML configuration that is

currently in use. It is only active in the goal-reaching part of the experiment. With this

setup the goal reaching becomes a matching task of left and right hand.

2.3. Hardware and Signal Processing

The sEMG electrodes are of type Ottobock 13E200=50 Myobock with internal filtering

electronics, supplying an amplified, rectified and band-pass filtered sEMG signal. This

sensor type has been designed for clinical applications. Explicit details about internal

electronics and filters are not publicly available. The FMG sensors and its electronics are

custom made and described in more detail in [5]. Basically, voltage over a force-sensing

resistor (FSR) is amplified and then digitized. The FSR is embedded in a flexible 3D-

printed housing. The sampling rate of both sEMG and FMG sensors is 100 Hz. Signals

of both types have been filtered on the software side, using a 1st-order Butterworth

low-pass filter with a cut-off frequency of 1 Hz. The output after the filtering stage is

directly used for training and prediction.

2.4. Experimental Protocol

The experiment consists of two major parts. First, labelled muscle activation data is

gathered from the participant, which is used to train a ML algorithm in four different

signal mixing configurations. The underlying ML method is always the same. The

difference lies in the sensors selection as well as in the modality of mixing the two sensor

types. Furthermore, depending on what sensor type is used a hyperparameter is varied.
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Online combination of FMG and sEMG 6

The four ML configurations are the same as in the offline analysis performed in [20],

therefore the hyperparameters have been taken from that analysis.

The ML algorithm that we used is the well established Ridge Regression with

Random Fourier Features (RRRFF), first introduced in prosthetic control in [13] and

successfully used by this group numerous times [18,19,22,29]. This algorithm can be seen

as a finite dimensional approximation of a Support Vector Machine (SVM) using a Radial

Basis Function Kernel. This algorithm has certain in our opinion highly important

characteristics, e.g. bounded in space and therefore fast computation, incrementality,

and proportionality.

The central point of this work is an in-depth comparison between sEMG, FMG and

the mixture of both. For this purpose we compared four configurations of training our

ML algorithm, based on i.e. sEMG only, FMG only, a stacked mixture of both (STA)

and a hierarchical mixture of both (ENS). The hierarchical configuration will be referred

to as ensemble learning [7].

For the RRRFF algorithm, there is a target signal for each of the actions to be

trained. These target values represent the hand/wrist configuration for the specific

action. For the ENS model, a set of target signals is obtained from each, sEMG and

FMG models. These target values correspond to the target values from the sEMG and

FMG models, which are the predicted finger/hand configurations. Then a third model

is trained with the stacked output of the first two models. From that third model, the

final target values are obtained.

A visualisation of all four mixing configurations can be found in Figure 2.

RRRFF

xsEMG

ŷsEMG

RRRFF

xFMG

ŷFMG

RRRFF

xFMG

ŷSTA

RRRFF

ŷENS

xsEMG

RRRFF

RRRFF

xFMGxsEMG

ŷsEMG ŷFMG

Figure 2: Visual representation of the four different ML configurations investigated

in this work. From left to right: sEMG only, FMG only, stacked mixing (STA) and

ensemble learning (ENS). This is a supplement to the description in Section 2.4.

To guarantee a fair comparison between these four configurations we always used

a subset of ten sensors to test each configuration. This means we used all ten of the

respective sensors, when we trained the ML algorithm for one specific sensor type only,

but reduced the number of each sensor type to five, when training a mixing approach.

Following this chain of thought, we were able to acquire training data once from all 20

sensors and train all four ML configurations with a subset of this data. This effectively

reduced the duration of the experiment, easing the participants’ task. Following the

stimulus (grey hand model) the participant had to perform six different hand and wrist

actions, namely rest or relaxed (no action), power grasp, wrist flexion, wrist extension,
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Online combination of FMG and sEMG 7

wrist pronation and wrist supination. A depiction of these actions can be found in

Figure 3.

Figure 3: Depiction of the six actions the participants had to perform during the ML

training phase.

These six actions were repeated 5 times. After the data acquisition and the

subsequent ML training the participant was allowed to quickly test the quality of the

online prediction performing free movements and comparing them to the predicted

actions. In case the participants verbally stated that they are not satisfied the

training session was repeated until the participants were satisfied with the performance.

Thereafter the participants were presented with 120 goal reaching tasks. This segment

of the experiment lasted on average 29′50′′±3′20′′. The distinctive feature of these tasks

is the fact that we train only on ”on/off”-data, i.e. full activation of a particular action,

but the goals can be intermediate values for these actions (a realistic training method

already defined in [27]). Figure 4 depicts different levels for the actions wrist flexion and

wrist extension. No updates or retraining were allowed once the first goal was presented

to the participants.

Figure 4: Range of targets using the example of wrist flexion, rest and wrist extension.

The levels from left to right refer to full (1.0) wrist flexion, 0.67 wrist flexion, 0.33 wrist

flexion, rest, 0.33 wrist extension, 0.67 wrist extension, full (1.0) wrist extension. For

clarification: For ML training we only used the beige actions, while the participant were

asked to match all of the target configurations depicted here.

In the training phase the user only performed the first (full wrist flexion), the middle

(rest) and the last (full wrist extension) action. While in the goal reaching phase the

user was asked not only to reach those full activations, but intermediate levels of these

activations as well , i.e. at a level of 0.33 and 0.67. For each of the four ML configurations

we asked the user to perform two repetitions of these five actions at three different levels
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Online combination of FMG and sEMG 8

(excluding relaxed/no action). Hence, we end up with 120 tasks. To assure that time

dependent effects, e.g. a learning effect or fatigue, have a limited influence on our results

we presented each subject with a different order of the three factors we were varying,

i.e. the ML configuration, the action and the level.

The measure to evaluate the performance of each ML configuration is the success

or failure in reaching each individual goal. For each task the participant had 15s to

finish the task. Successfully finish means reaching the target area (approx. 1.2% of the

work space) and staying in that area for 1.5s. Once the target area is left the timer

resets. The design of the study allows us to compare the different mixing configurations

at different action levels and for different actions.

3. Experimental Results

Since successfully reaching a goal or not is a binary outcome measure, we used a log-

linear analysis [10] to investigate the outcome of our study. A visualisation of the fitted

model using a mosaic plot can be found in Figure 5.

The Figure is split into four major columns and three major rows, representing the

four ML configurations and the three levels of activation. Furthermore, in each major

column there are five minor ones, which represent the five different actions, and in

each major row there are two minor ones, which represent the relative relation between

successful and failed tasks for each task type§.
Two more characteristics are highlighted in this plot. First, the borders of each

block are either solid or dashed. A solid line represents a positive deviation from the

expected value, while a dashed line represents a negative deviation from the expected

value. Second, while the majority of blocks are grey some are coloured in teal or purple.

A teal block represents a positive deviation from the expected value as well , but in this

case the deviation is significant. Purple blocks represent a significant negative deviation.

The colour is based on the Pearson residuals, which is a version of a standardised

residual. Values > 2 or < −2 imply that the deviation from the expected value is

significant.

Remarkably, the number of cases with a significant deviation increases as the level

of activation decreases: in three cases the number of failures is significantly higher than

expected whereas in six cases the number of failures is significantly lower than expected.

The three cases with significantly more failures all occur when the ML algorithm is

trained only on sEMG data and at lower levels of activation of the degree of freedom

(DOF) of wrist flexion/extension. For these three cases we have plotted the absolute

error per DOF for the failed tasks in Figure 6. Additionally, for each case we performed a

one-way ANOVA to compare the error of the three DOFs. The results are the following:

• F (2, 57) = 7.027, p = 0.002 for wrist extension at level 0.33

§ A task type is determined by the action performed, the ML configuration used and the level of

activation.
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Figure 5: Mosaic plot of the full results of the experiment. Major columns represent the

different ML configurations, minor columns represent the different actions (pwr: power

grasp, w.ex: wrist extension, w.fl: wrist extension, w.pr: wrist pronation, w.sp: wrist

supination), major rows represent different level of activation and minor rows show the

relative relation between successful and failed tasks. Dashed outlines imply a negative

deviation from the expected value, while solid outlines imply a positive deviation. Grey

blocks mean that a deviation is not significant, while teal stands for a significant positive

deviation and purple stands for significant negative deviation.

• F (2, 63) = 4.002, p = 0.02 for wrist flexion at level 0.33

• F (2, 60) = 4.070, p = 0.02 for wrist extension at level 0.67

Since significant difference was found we followed up the one-way ANOVA with a Tukey

Test. The results can be found in Table 1.

For Figure 5 we investigate the saturated model of the log-linear regression. We

chose this test, since the result of each task (success or failure) is binominal and we

only preformed two repetitions of each task per subject to reduce the duration of the

experiment. Therefore, we are not able to analyse the success rate in a sensible way

without reducing the data along one of the factors. However, this information would

provide a broader understanding of the results of the experiment. Hence, we preformed

said reduction along each of the three factors, which we depict in three boxplots in

Figure 7.

Furthermore, we highlight the difference between the four ML configurations with

three additional plots at each activation level. For this purpose we have collapsed the

two factors “action” and “configuration” into one factor and compared this new factor
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Figure 6: Boxplot of absolute error per DOF for failed tasks for the three cases, where

the number of failures is significantly higher than expected. Brackets with an asterisk

imply significant difference. A group with an asterisk implies significant difference from

all other groups.

DOFs p-value

w.fl/ex-pwr 0.998

w.sp/pr-pwr 0.005

w.sp/pr-w.fl/ex 0.006

(a) for wrist extension at level 0.33

DOFs p-value

w.fl/ex-pwr 0.521

w.sp/pr-pwr 0.018

w.sp/pr-w.fl/ex 0.209

(b) for wrist flexion at level 0.33

DOFs p-value

w.fl/ex-pwr 0.955

w.sp/pr-pwr 0.031

w.sp/pr-w.fl/ex 0.061

(c) for wrist extension at level 0.67

Table 1: Results of post-hoc Tukey-Test for the cases plotted in Figure 6.
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Figure 7: Boxplot of reduction by each of the three factors. The success rate is calculated

or each subject and the boxplots visualise the success rate across all 12 subjects.

by the number of successful tasks (Figure 8). To some extent this is a rearrangement of

Figure 5 by success rate over all subjects and repetitions.

4. Discussion and conclusions

Can FMG be proficiently coupled with sEMG for simultaneous and proportional

myocontrol, and if so, how? The experimental results we obtained let us draw two

major conclusions. Firstly, there are statistically significant differences in performance,

according to the different sensor type set and mixing approach; secondly, the difference

becomes larger at lower levels of activation.

Regarding the first issue, in general, the configurations involving FMG perform

better than those involving sEMG, and by simply “stacking” FMG and sEMG sensors

together we get better results than by using the more complicated ensemble mixing.

When FMG alone or the stacked approach are used, we get significantly better

performance for the lower activation levels of the wrist — especially for wrist pronation.

The ensemble learning seems to somehow “mix” the signals in such a way to cancel out

the poor performance of sEMG, but the stacked approach additionally preserves the

good performances of FMG. So FMG seems, all in all, to perform better than sEMG,

both alone and when combined with it.

As far as the second issue is concerned, this fact is not surprising: during low-

activation tasks the magnitude of both sEMG and FMG signals is accordingly low,
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Figure 8: Number of successful tasks for each action and method combination sorted in

descending order for activation level 0.33 (top), 0.67 (middle) and 1.0 (bottom). Colours

highlight the ML configuration that was used.
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therefore the related signal-to-noise ratio decreases, quite obviously leading to worse

performances. Furthermore, at full activation level (1.00) all ML configurations perform

comparably well, whereas at the lower levels differences become more evident. It is here

worthwhile to stress that all ML configurations were trained only on data provided at

level 1.00, hence we claim that FMG generalises better than sEMG across activation

levels. Actually, the sEMG-alone approach performs significantly worse than expected

— these cases occur for wrist flexion and extension at the lower levels of activation.

4.1. Action interference: a major reason of failure

It is interesting to have a deeper look at the reason behind these failures. We therefore

compared the absolute error obtained for each DOF while performing an action — that

is, not restraining the analysis to the error obtained for the DOF required for that specific

action, see Figure 6. This was done to determine whether, in general, the goals could

not be reached because the desired DOF could not be activated to the desired level, or

because another DOF was being simultaneously unintentionally activated. All subplots

of Figure 6 indicate that the source of failure was an inadvertently high wrist pronation

or supination, never the inability to flex or extend the wrist. This phenomenon, which

we call action interference, has already been observed [25] and seems to be related to

the sEMG signal while it is basically absent in the FMG signal.

Figure 9 visualises this phenomenon. Using linear discriminant analysis (LDA) as a

dimensionality reduction technique we created a 3D representation of the training data

of one single subject. We selected the subject with the overall success rate closest to

the overall median. We can clearly see that for sEMG data some actions, i.e. wrist

flexion (light teal) and wrist pronation (purple), are clustered close to the rest action.

Assuming an approximately linear increase in sEMG activation, one would need to ”pass

through” an action that is close to the rest action, when trying to reach an action that

is far from the rest action. Therefore, activating an action far from the rest cluster at

a low level inevitably leads to a coactivation of the action close to the rest action. This

behaviour is what we call action interference. On the other hand, in case of FMG the

action clusters seem to be evenly spread around the rest action, which would explain

why action interference appears to be absent in this case. Here we would like to refer

to the supplementary material, where the interested reader can find a rotating version

of these 3D plots.

Although we cannot yet exactly say why this is the case, we speculate that it could

be due to the location of the muscles involved in the actions we tested. As a matter

of fact, while the muscles used to flex / extend the wrist are superficial, the muscles

involved in pronation and supination are deep, inducing a relatively smaller magnitude

of the sEMG signal due to the connective and fat tissue it has to travel through. As

opposed to that, FMG records the superficial deformation of the forearm occurring when

pronating / supinating, which has in principle nothing to do with the location of the

muscles, but rather with the global bulging induced by the muscle activation.

Page 13 of 17 AUTHOR SUBMITTED MANUSCRIPT - JNE-103232.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Online combination of FMG and sEMG 14

sEMG

-0.5
0

0.5
1

-1
-0.5

0

-0.8

-0.6

-0.4

-0.2

0

power

wr. pro

wr. sup

wr. ext

wr. flex

rest

FMG

0
0.1

0.2
0.3 -0.4

-0.9

-0.8

-0.7

Figure 9: 3D plot of the training data of the median subject (left sEMG, right FMG).

LDA was used to reduce the dimensionality to 3. (Rotating version in supplementary

material)

The three graphs in Figure 8 further emphasise this behaviour. While at level 1.00

we can see an almost even distribution of different ML configurations, for the lower levels

it becomes more and more clustered. We can see that for level 0.33 configurations FMG

and stacked are located more to the left at high numbers of successfully accomplished

tasks, while the only sEMG configuration can be found on the very right at lower

number of successful tasks. The ensemble learning is situated more in the middle. The

behaviour at level 0.67 appears to be in between the one at level 0.33 and level 1.00.

We speculate that action interference, present whenever sEMG is part of the input

space, can ”deceive” both mixed approaches, therefore lowering the potentially better

perforance obtained by FMG.

4.2. Conclusions and future work

FMG achieved a more robust myocontrol than sEMG in our experiment, and could

better generalise to activation levels which were not present in the training set. FMG

qualifies than once more as a viable and interesting replacement to sEMG in myocontrol,

although more experiments are required, particularly as far as the embedding of FMG

sensors in a socket is concerned [4]. The main conclusion we draw from this study is

that to achieve a robust myocontrol that is capable to generalise to untrained data we

need more than just sEMG sensors. Here, we have shown that the addition of FMG

sensors leads to significant improvements, particularly for fine and precise manipulation.

We can see, particularly in Figure 5, that to truly achieve proportionality, that means

reliable control along the full spectrum of activations, we can not only rely on sEMG

sensor, but need additional information.

We were able to identify the action interference of two DOF of the wrist to be

the source of failure at low levels of activation, when using sEMG sensors. This is

not the first time we encountered this issue and we already launched investigation to
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find a solution [25]. However, for FMG this interference does not seem to be present.

The separability is preserved across the full range of activation and therefore allows

fine and precise manipulation. As a general way of eliminating action interference from

myocontrol, we envision that one or more quality indexes could be devised, leading to

the possibility of ruling out interference even before it would actually happen [25], by

increasing or changing the sensor array and/or by extracting different features from the

signals.

As a further remark, our comparison shows no advantage of mixing sEMG

information with FMG over only using FMG information. This is a very interesting

finding. As a last remark, note that this investigation was performed in a seated position

without large scale motion of the arm and/or subject and without external load on the

hand/prosthesis. These conditions could influence the performance, and lifting this

assumption is subject to future investigations.
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