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Abstract  

In the paper a novel real-time capable ship detection methodology for range-compressed (RC) airborne radar data is 
proposed. Ships are detected in the range-Doppler domain. The primary advantage of using range-Doppler domain is that 
ships moving with certain line-of-sight velocity are shifted to the exo-clutter region, thus improving their detection capa-
bility. Detection threshold is computed using constant false alarm rate (CFAR) based sea clutter models. Robust estima-
tion of the detection threshold requires an accurate description of the background ocean training data. In the paper, a novel 
approach to extract reliable ocean training samples is discussed. In addition, different sea clutter models are investigated 
and compared to choose suitable models for the data. Real linearly and circularly acquired single-channel RC data from 
DLR’s F-SAR system are used to verify the proposed methodology.  
 

1. Introduction 

Real-time capable ship detection methods are crucial for 
monitoring several maritime threats like illegal fishing, mi-
grant and terrorist boats. Currently state-of-the art methods 
based on automatic identification systems (AIS) and 
ground radars are used for this task. However,  many small 
ships aren’t equipped with AIS transponders and the 
ground radars suffer from limited visibility [1]. To over-
come these limitations, space and airborne radars are desir-
able choices. One distinguishing feature of airborne radars 
is their flexibility to collect data with very high resolution 
and with shorter revisit and longer observation times. 
One of the popular ways to address the ship detection prob-
lem using radar sensors is based on CFAR (constant false 
alarm rate). In CFAR, suitable distribution functions are 
used to model the background ocean data to derive the tar-
get detection threshold. However, state-of-the-art CFAR 
algorithms make use of fully focused radar images to com-
pute such thresholds [2]. Generating these images need ex-
tra efforts in terms of processing hardware. Therefore, in 
this paper we investigate the potential of range-compressed 
(RC) airborne radar data for ship detection [3]. Targets are 
detected in the range-Doppler domain of RC data. The pri-
mary advantage of using range-Doppler domain is that 
ships, even with low radar cross section moving with cer-
tain line-of-sight velocity are shifted out of the clutter re-
gion, where then a detection is possible.  
The accuracy of the target detection threshold strongly de-
pends on the proper selection of the ocean training data [4]. 
Therefore, in the paper we propose an automatic training 
data extraction method to accurately model the background 
sea clutter, which then gives a valid detection threshold.  
Undoubtedly, the K-distribution is a popular CFAR based 
distribution function used for target detection. However in 
practice, even with reliable training data, the performance 
of the distribution function strongly degrades [5]. This is 
due to the presence of “discrete sea-spikes”, particularly at 
finer resolutions where the higher backscattered intensity 
from the spikes extend the tail of the distribution. There-
fore, in the paper we compare several alternative models to 

the K-distribution to select the best models for the airborne 
radar data. Real linearly and circularly acquired X- and L-
band from DLR’s F-SAR data [6] are used to verify the 
robustness of the proposed method.  

2. Target detection in range-Doppler 

Ships are detected in the range-Doppler domain. A ship 
moving with certain line-of-sight velocity in time domain 
is shifted to the exo-clutter region in Doppler domain. An 
example is shown in Figure 1. 
 

 

Figure 1 Range-Doppler image of real X-band RC F-SAR 
data containing 128 azimuth and 512 range samples. The 
clutter with a bandwidth of around 800 Hz and a ship ap-
pearing at -500 Hz (out of the clutter band) are clearly vis-
ible (yellow box). 

As shown in Figure 1, when the moving ship is shifted out 
of the clutter bandwidth or if the target signal to clutter and 
noise ratio (SCNR) is high enough, a detection is possible. 
To compute a CFAR based detection threshold in Doppler 
domain, reliable ocean training samples are required. In the 
next section, we show a procedure for extracting ocean 
training data in Doppler domain for CFAR based target de-
tection threshold computation.  



2.1 Training data 
Appropriate training samples are crucial to correctly esti-
mate the ocean statistics. Accurate estimation of ocean-
only statistics computes a bias-free target detection thresh-
old. However, it is often observed that the data within the 
region of interest (ROI) is contaminated by bright targets 
and sea spikes. An example is shown in Figure 2. 

 

Figure 2 Logarithmic plot of the PDFs (probability density 
function) of the ocean only (red) and ocean with a ship sig-
nal and sea spikes (blue) in time domain. 

As shown in the figure, unwanted high target peaks bias 
the original ocean clutter (blue curve in Figure 2). There-
fore, they must be pre-detected and cancelled in order to 
extract target free training data. Several approaches were 
proposed in the past, like order-statistics CFAR and 
trimmed CFAR. However, these approaches fail in highly 
heterogeneous scenarios [7]. Therefore, in the paper we 
propose a novel target pre-detection method in time-do-
main which has real time capability if well implemented.  
Target pre-detection method starts with the extraction of 
RC radar data spanning over certain azimuth samples and 
range bins. An average amplitude profile is then computed 
by incoherently summing the data along the coherent pro-
cessing intervals (CPI). If � is the range and �(�) is the 
average amplitude profile, then the adaptive range-varying 
threshold is computed by 

 ����(�) = ��(�) +  �. ����(�)� (1) 

where ��(�) is the 1-D moving median of �(�), � > 1 is a 
decision criteria to set the uncertainty in the pre-detection 
threshold, and SG is the Savitzky–Golay filter [8]. The SG 
filter performs a moving polynomial fit to the data to fur-
ther reduce the noise level. The standard deviation �(�) in 
(1) is computed using the following 

�(�) = �. ���(�) (2) 

where � ≈ 1.4826 representing the 0.75 quantile of the 
standard Gaussian distribution. The term ���(�) is called 
the median absolute deviation. MAD is a more robust esti-
mator to measure the statistical dispersion and it is found 
more resilient to the outliers 
present in the data. 

Computing a range-varying threshold is important because 
the received radar backscatter is range and incidence angle 
dependent. An example is shown in Figure 3. 
These values are set based on the expected maximum ship 
length in slant range direction (≈ 200 m) and the range 
sample spacing (≈ 0.3 m). However, these values are data-
dependent and should be chosen wisely. 

 

Figure 3 Average amplitude profile �(�) (blue) with range 
dependent pre-detection threshold ����(�)  (red) computed 

for real RC X-band F-SAR radar data. A high target peak 
(= ship) is present at a range of approximately 7500 m. 

With the proposed target pre-detection algorithm running 
in time domain, “target-free” clean training samples are ex-
tracted. These data are transformed to Doppler domain 
where a CFAR threshold can be computed using standard 
sea clutter models. However, in Doppler domain the train-
ing sample amplitude now varies along the Doppler fre-
quency (cf. Figure 4(a)). In order to derive a single CFAR 
threshold, the clutter-plus-noise power is normalized to 0 
dB [9]. An example of clutter normalization for a real F-
SAR airborne radar data is shown in Figure 4(b). 

 

Figure 4 Range-Doppler image (a) before and (b) after 
clutter normalization.  



After normalizing the clutter in Figure 4(a) to noise level, 
the training data is now ready for computing the ocean sta-
tistics and subsequently a single CFAR based target detec-
tion threshold (cf. Figure 4(b)).  
Note here that since the ocean surface is constantly in mo-
tion and the atmospheric disturbances cause variations in 
the aircraft’s Euler angles (roll, pitch and yaw), the training 
data (or the detection threshold) needs to be updated along 
range and azimuth direction. The training data within the 
moving window contains 128 azimuth and 512 range sam-
ples.   

2.2 Sea clutter models 
One of the most widely accepted sea clutter models to es-
timate the ocean statistics is the K-distribution. It is a par-
ametric model described in terms of the Rayleigh speckle 
fluctuations modulated by the gamma distributed texture. 
Although being a popular model, for a higher incidence an-
gle range (e.g., 10°-50°) and finer resolution data, the real 
statistics are not always K-distributed. The presence of a 
non-Bragg scattering component in the ocean surface, bet-
ter known as discrete sea spikes, is the main reason why 
the K-distribution fit fails even when the thermal noise is 
taken into account. Therefore in the paper, we have studied 
and compared several other sea clutter models to choose 
suitable models for the investigated F-SAR data. Table 1 
summarizes various sea clutter models with their unknown 
parameters and methods used to estimate these parameters.  

Table 1 Brief description of different sea clutter models 
used for the airborne radar data. 

Sea clutter model Unknown parameters Methods  

K-distribution [4] Shape (�, also known as 
texture) and scale, num-
ber of looks (L) 

Non-linear least 
square fit 
(NLLSQ), Method 
of moments (MoM) 
(V- and X-statistic)  

Chi-square [5] Standard deviation (�), 
L 

NLLSQ 

Tri-modal dis-
crete texture 
model [11] 

Discrete texture intensity 
levels and their corre-
sponding relative 
weightings, L 

NLLSQ 

K-Rayleigh [10] Shape (��), scale and 
noise 

MoM 

Unknown parameters of the K-distribution are estimated 
using three different methods (cf. Table 1). The Chi-square 
distribution is preferred when the parameters estimated by 
the K-distribution are negative.  The 3MD model is based 
on the idea of the statistical modeling of the sea clutter in 
discrete form. The K-Rayleigh distribution function is pre-
ferred when the sea clutter suffers from discrete sea spikes 
[3], [10], [11]. If �(�) is the distribution function, then the 
probability of false alarm (PFA) can be written as 

��� = � �(�) ��
�

�

. 
(3) 

After setting the PFA to a constant value, the detection 
threshold � can be computed using (3). In experimental 

result section, we provide some comparison results of dif-
ferent sea clutter models and detection results of real mov-
ing ships in the data. The investigated radar data for ship 
detection were acquired linearly and circularly during a 
dedicated experiment carried out with a controlled German 
federal police ship during an F-SAR campaign in the North 
Sea in 2016 [12].  

3. Experimental results 

To better understand the behavior of the ocean clutter, the 
data is partitioned into three regions: (a) near range (15°-
30° incidence angle), (b) mid range (30°-50°) and (c) far 
range (> 50°). This is because the radar-based ocean 
backscatter significantly changes along range (cf. Figure 
3). Different sea clutter statistics are fitted to the linearly 
acquired RC airborne radar data and the results are shown 
in Figure 5. 

 

Figure 5 Logarithmic PDFs in Doppler domain using dif-
ferent distribution functions plotted for (a) near (b) mid and 
(c) far range of linearly acquired X-band F-SAR data. The 
estimated parameters corresponding to different distribu-
tion functions are shown in the legends of the plots, apart 
from the 3MD model since a listing of its parameters needs 
too much space. 

From the results shown in Figure 5(a) and (b) it is obvious 
that the K-Rayleigh outperforms other sea clutter models 
by fitting well with the data in near and mid-range. How-
ever, in far range only the K-distribution parameters esti-
mated using the NLLSQ method, the chi-square and the 



3MD model fit well to the data (cf. Figure 5(c)). This is 
due to the long range and shallow incidence angle of the 
acquired data so that the clutter power in far range is com-
parable to the noise power [10], as shown by the green 
curve in Figure 6. 

 

Figure 6 Average Doppler spectrum of the data estimated 
in near, mid and far range. Azimuth ambiguities cause a 
variation in the average power in the noise region of the 
spectrum. 

From Figure 6 it is observed that in far range the clutter 
power is comparable to the noise power. K-distribution 
based on NLLSQ estimates a very high texture value (cf. 
Figure 5(c) where � ≈ 171) in far range, implying Ray-
leigh distributed statistics. 
Additionally, we have also investigated two important met-
rics to compare the performance of the chosen sea clutter 
models, namely: false alarm rate ratio (FARR) and thresh-
old error. The FARR is estimated as the ratio between the 
estimated and the set false alarm rate. The set false alarm 
rate is 10�� and in an optimum case, FARR should be 1. 
Table 2 shows the FARR computed in near, mid and far 
range for different sea clutter models. 

Table 2 FARR computed for the near, mid and far range 
of the real F-SAR airborne radar data. The set false alarm 
rate is 10��. The values in bold are closest to the optimum 
and desired value of FARR=1.   

Distribution 
functions 

Near range 
FARR 

Mid-range 
FARR 

Far range 
FARR 

K-NLLSQ 80.5 112.1 3.08 

K-Vstat 35.1 57.1 - 

K-Xstat 56.9 86.8 - 

Chi-square 277.4 242.9 2.43 

3MD 149.2 135.9 1.56 

K-Rayleigh 1.31 1.68 - 

From the table it is clear that the K-Rayleigh performs bet-
ter than other models in near and mid range. However, in 
far range, the 3MD model gives the best performance. 
FARR cannot be computed for V-statistic, X-statistic and 
K-Rayleigh in far range. The reason can again be explained 
in terms of low clutter-to-noise ratio (CNR) and the Ray-
leigh distributed characteristics (cf. Figure 6).  

The threshold error is calculated as the absolute difference 
between the thresholds estimated from the data CCDF 
(complementary cumulative distribution function) and the 
model CCDF at a certain CCDF value in the tail region of 
the histogram. The threshold error is computed in the tail 
region because of two reasons: bright ship target signals lie 
mostly in that region and the tail region is the region where 
most of the mismatch between reality and models occurs. 
Threshold error computation is illustrated in Figure 7. 

 

Figure 7 Threshold error computation using logarithmic 
CCDF plots from the real data and the K-Distribution 
NLLSQ method plotted against the threshold. Threshold 
error and the chosen CCDF value are marked in the figure. 

In our case the CCDF value chosen to compute the thresh-
old error is  10�� and the results are shown in Table 3. 

Table 3 Estimated threshold errors in log scale for different 
clutter models at near, mid and far ranges. 

Clutter mo-
dels 

Near range 
CCDF 

Mid range 
CCDF 

Far range 
CCDF 

���� ���� ���� 
K-NLLSQ 6.89 6.02 -5.86 

K-Vstat 5.19 4.60 - 

K-Xstat 6.19 5.49 - 

Chi-square 9.70 7.73 -11.65 

3MD 8.94 6.94 -10.86 

K-Rayleigh -6.68 2.27 - 

From Table 3 it can be inferred that the K-Rayleigh gives 
the minimum errors in near and mid range and the chi-
square model in far range. NLLSQ-based K-distribution 
and the 3MD model also give relatively good results in far 
range.  
Based on these analyses, it can be concluded that for near 
and mid ranges, the K-Rayleigh distribution function is the 
best choice, whereas for the far range, the 3MD model, the 
chi-square or the K-distribution NLLSQ is preferred. This 
recommendation is at least valid for the RC X-band HH 
polarized F-SAR data used for the investigations and the 
current sea state conditions during the data acquisitions. 
The binary ship detection map of the linearly acquired real 
F-SAR RC data is shown in Figure 8(b). The detection 



threshold is estimated based on a constant false alarm rate 
of 10��. 
In Figure 8, the detected ship signal is clearly visible both 
in the data and in the binary detection map. The proposed 
algorithm is also applied onto the real circularly acquired 
L-band HH polarized data. The detection results are shown 
in Figure 9. 

 

Figure 8 (a) Linearly acquired real single-channel HH po-
larized RC X-band radar data. (b) Corresponding binary 
detection map shown in time-domain after applying CFAR 
based ship detection in range–Doppler domain. 

4. Conclusion 

A ship detection methodology based on CFAR for range-
compressed airborne radar data is proposed. Target pre-de-
tection and cancellation in time domain and clutter normal-
ization in Doppler domain extract reliable training data. 
The training data are used to model the sea clutter for com-
puting a reliable target detection threshold. After investi-
gating various sea clutter models, we conclude that the K-
distribution cannot be used at near (15°-30° incidence an-
gle) and mid ranges (30°-50°). The chi-square and the 
3MD model lead to extremely high false alarm rate errors 
and threshold errors in near and mid ranges. On the con-
trary, the K-Rayleigh distribution is the best choice in near 
(15°-30° incidence angle) and mid ranges (30°-50°). In far 
range (> 50° incidence angle) which is mostly dominated 
by the thermal noise, the 3MD model, the chi-square or the 
NLLSQ based K-distribution can be used. We would also 
like to point out that the data acquisition during the F-SAR 
flights lasted only a few hours. Therefore, it can be ex-
pected that the sea state has not changed significantly. 
More radar data at different sea states are recommended for 
more sophisticated investigations.  

 

Figure 9 (a) Real single-channel HH polarized RC L-band 
radar data using circular flight track. (b) Binary detection 
map shown in time-domain after applying CFAR based 
ship detection in range–Doppler domain. The detections 
marked by the red circles are due to the interfering signals 
from a ground surveillance radar located close to the test 
site. 
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