Carbon aerogels (CAs) are highly promising materials as matrices for sulfur to act as cathodes in metal-sulfur batteries. Resulting from organic resorcinol-formaldehyde aerogels, CAs exhibit highly porous structures with porosities up to 97%, high surface areas of about 500-3000 m²/g, large pore volumes of about 0.1-2.5 cm³/g, and significant electrical conductivities of about 80-150 S/m. Additional important advantages of CAs are their tunable porous structures and pore size distributions. Their microstructures are adjustable during the synthesis of organic aerogels and their subsequent carbonization. Moreover, the elastic compressibility of CAs prevents the formation of cracks as a result of changes to the sulfur volume.

INFORMATION

<table>
<thead>
<tr>
<th>Properties</th>
<th>CA(Ar)</th>
<th>CA(N₂/CO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal density [g/cm³]</td>
<td>2.72</td>
<td>2.71</td>
</tr>
<tr>
<td>Bulk density [g/cm³]</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Porosity [%]</td>
<td>98.6</td>
<td>97.3</td>
</tr>
<tr>
<td>Specific surface area [m²/g]</td>
<td>561</td>
<td>1912</td>
</tr>
<tr>
<td>Micropore volume [cm³/g]</td>
<td>0.18</td>
<td>0.60</td>
</tr>
<tr>
<td>Mesopore volume [cm³/g]</td>
<td>0.04</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Two-step infiltration process:

1. **Gas Phase Infiltration**
 - 600°C (8h) under vacuum in a sealed glass ampule
 - evaporated sulfur enters the micropores (~2 mm)

2. **Evaporation of excess sulfur from aerogel surface**
 - 330°C (1.5h) under argon in glass tube with condensation trap
 - increases electrical conductivity of carbon
 - prevents undesired reactions with electrolyte

Thermogravimetric analysis

Cell Parameter:
- **Cell type:** EL-Cell
- **Electrolyte 1:** 1M LiTFSI (lithium bis(trifluoromethylsulfonyl)imide) in DOL/DME (1,3-dioxolane / dimethoxy ethane), 25 °C
- **Electrolyte 2:** 1M LiPF₆ (Lithiumhexafluorophosphat) in EC/DEC (ethylene carbonate / diethylene carbonate), 25 °C
- **Sulfur loading:** 0.7–0.8 mg_S/cm²

Results:
- Suppression of polysulfide shuttle effect using CA:S electrode
- Stable discharge capacity in both carbonate based electrolytes for CA:S
- High specific capacity and coulombic efficiency for CA:S cathode materials
- No irreversible losses in rate-capability test for CA:S cathode materials
- CA(N₂/CO₂):S exhibits lower discharge capacity due to presence of sulfur in mesopores

CONCLUSION

- Synthesis of the CAs with controlled and defined pore sizes and structures
- Increased surface area due to carbonization with N₂/CO₂
- Increased micropore volume in aerogel structure due to carbonization with N₂/CO₂
- Infiltration of short chain sulfur in the micropores through gas phase process
- Higher sulfur loading in CA (N₂/CO₂) due to higher micropore volume
- High cyclability of the Li-S cell via the encapsulation of sulfur in carbonate- and ether-based electrolytes

Marina Schwan, Maryam Nojabaei*, Jessica Schettler, Norbert Wagner*, Andreas K. Friedrich*, and Barbara Milow
Institute of Materials Research, Department of Aerogels and Aerogel Composites
German Aerospace Center (DLR), 51170 Cologne, Germany
*Institute of Engineering Thermodynamics, Department of Electrochemical Energy Technology
German Aerospace Center (DLR), 70569 Stuttgart, Germany
Marina.Schwan@dlr.de