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Abstract

The present work aims at showing the application of Sentinel-1 Short-Time-Series for the constant monitoring of forests
at large scale. In particular, here we present how the interferometric capabilities of the Sentinel-1 satellite constellation
can be exploited for the monthly mapping of the Amazon rainforest. We model the interferometric coherence temporal
trend as an exponential decay and retrieve interferometric parameters that are eventually exploited as input features to a
Random Forests classifier.

1 Introduction

The Amazon is the world’s largest tropical rainforest.
Many are the reasons for its global importance: for exam-
ple it contains the largest collection of animals and plants
in the planet, it supports the life of millions of indige-
nous people, and it provides about 20% of the Earth’s oxy-
gen. Due to an increase in human population, in the last
decades the Amazon region has been integrated into the
global economy as one of the first sources of human feed
and the pace of change at the edges of the forest has sig-
nificantly accelerated. In order to monitor this precarious
tendency, an up-to-date assessment of forest resources is of
paramount importance and spaceborne Synthetic Aperture
Radar (SAR) systems play a crucial role in providing con-
sistent data, thanks to their unique property to provide a
day-night global coverage in all weather conditions. Since
2014, global forest/non-forest classification maps derived
from SAR data have been proposed, exploiting, for exam-
ple, the sole backscatter of L-band sensor ALOS PALSAR
in HV polarization [11] or the single-pass volume decor-
relation coefficient of X-band bistatic TanDEM-X acqui-
sitions [12]. In this paper we present the advances of an
already assessed forest/non-forest classification algorithm
[14] based on the use of repeat-pass interferometric ac-
quisitions from the C-band Sentinel-1 constellation. The
Sentinel-1 mission is designed to provide an operational
interferometry capability through stringent requirements as
the tight orbit control (orbital tube of 50m radius (rms)) and
the short revisit time (6 days repeat-pass) [8] and opera-
tionally acquires data using the Interferometric Wide swath
(IW) mode, with swath width of 260 km at a moderate res-
olution (5 m×20 m). The paper is organized as follows:
Sec. 2 introduces the proposed methodology for the gen-
eration of a forest/non-forest map, by applying a Random
Forests classification algorithm [3]. Sec. 3 presents the ma-
terials used for the development of this work: the Sentinel-
1 interferometric stacks and the external reference map
over the selected site. In Sec. 4 the experimental results
of the developed classification algorithm are described. Fi-
nally, Sec. 5 draws the conclusions and outlook.

2 Methodology

In this section the developed processing chain [15] is pre-
sented and it can be summarized by looking at the block
diagram in Fig. 1.

Figure 1 Sentinel-1 multi-temporal processing chain.

We consider a set of five repeat-pass acquisitions in VV
polarization, which correspond to 30 days observation in-
terval. According to Fig. 1, we coregister the images with
respect to the master image, selected as the one at the cen-
ter of the temporal stack. From the coregistered SAR im-
ages, we then retrieve parameters related to both backscat-
ter and interferometric coherence. Indeed, the SAR / Tex-
ture processing branch of Fig. 1 depicts the procedure for
the retrieval of the backscatter information. It consists of
averaging along time all the backscatter projections, γ0,
each one associated to the relative acquisition in the stack.



The result is a multi-temporal backscatter parameter with
a lower residual speckle, on which we can retrieve fur-
ther textural information, by applying the Sum And Dif-
ference Histograms (SADH) method [1]. In particular,
we can identify two set of textures, considering the spa-
tial dependency among neighbouring pixels along azimuth
and slant-range [15], reported in Figure 1 as SADH(1,0)

and SADH(0,1), respectively. At the same time, the In-
SAR processing branch is dedicated to the estimation of
temporal interferometric parameters, such as the temporal
decorrelation constant and the long-term coherence [14].
We simultaneously exploit the whole interferometric stack
to compute the coherence matrix and isolate the term that
only depends from temporal decorrelation phenomena, by
factorizing the coherence as presented in [14].
Assuming the local stationarity of the interferometric sig-
nal, the temporal decorrelation coefficient ρtemp can be
isolated from the interferometric coherence through a com-
pensation for all other sources of decorrelation. Since the
temporal decorrelation coefficients extracted from all the
possible SLCs combinations describe the evolution in time
of the coherence of a certain scatterer [5] and different scat-
terers decorrelate with different velocities, the evolution in
time can be approximated as an exponential decay [5], [7]
and in this paper we will show the results given by the fol-
lowing bi-parametric model, according to [14]:

ρtemp (t) = (1− ρLT) e
−( tτ )

2

+ ρLT, (1)

where ρLT is the long term coherence and represents the
residual temporal coherence of the target after a time much
greater then the satellite revisit time T , while τ is the tem-
poral decorrelation constant, a parameter that regulates the
exponential decay. For the estimation of both parameters,
a least square fitting is performed, considering as input
points all the temporal decorrelation combinations. Thus,
the last part of the processing chain in Fig. 1 is dedicated
to the classification stage. The retrieved parameters es-
timated in the sub-chains, γ̂0, SADH(1,0), SADH(0,1),
τ̂ , and ˆρLT, are then used as input features to a Random
Forests machine learning classifier. Additionally, the local
incidence angle θinc is also considered, since it merges the
topography information (i.e. the Digital Elevation Model)
and the acquisition geometry.

3 Materials

In order to assess the effectiveness of the proposed ap-
proach, a collection of 12 Short-Time-Series, covering the
majority of the Rondonia state, Brazil, has been processed.
In Fig. 2 we depict the reference map over the area of in-
terest taken from the FROM-GLC-2017 dataset [13]. The
observation interval chosen for this analysis is 30 days, the
stack comprises 5 images at 6 days revisit time and is ac-
quired between the end of April 2019 and the end of May
2019 (see Fig. 3). The description of the exploited dataset
as well as the generated interferometric pairs is summa-
rized in Tab. 1.
The classification results are compared with an external
reference map, the FROM-GLC map [13]. This product

Figure 2 Finer Resolution Observation and Monitoring
of Global Land Cover (FROM-GLC, 2017) reference cho-
sen for the training and validation stages. Black: invalids
(INV), Blue: artificial surfaces (ART), Green: forests
(FOR), Red: non-forested areas (NFR).

is the result of a Random Forests classifier using as input
parameters, several features extracted from Landsat The-
matic Mapper (TM) and Enhanced Thematic Mapper Plus
(ETM+) data, updated at 10 meters using an additional
dataset of Sentinel-2 images acquired in 2017. Since this
global land cover map comprises an inventory of 10 land
cover classes, we grouped them into four macro-classes,
according to [14]: artificial surfaces (ART), forests (FOR),
non-forested areas (NFR), and water bodies and unclassi-
fied or no data as invalids (INV), as shown in Tab. 2.

4 Experimental Results

In the following, we show the experimental results ob-
tained by applying the proposed methodology to the se-
lected test site in the Amazon rainforest.
After generating the feature mentioned in Sec. 2, we se-
lect 5 million pixels for each of the considered classes for
training the Random Forests algorithm. These samples are
randomly selected from all the available dataset of Tab. 1,
with the exception of the time series number 7, chosen for
the validation step.
We present the results over four regions (here also indi-
cated as patches), which are characterized by the presence
of each of the considered classes. Indeed, as seen in Fig.
4, patches (a) and (b) are dominated by urban areas, Porto
Velho and Ariquemes cities respectively, while patches (c)
and (d) correspond to forest with clear-cuts areas.
Fig. 4 shows the classification maps obtained with our al-
gorithm for the patches (a) to (d). Numerical results about
the overall accuracy (OA) and the average accuracy (AA)
are shown in Tab. 3. We notice from both visual inspection
and numerical results that the algorithm is able to preserve
the resolution of the data by retaining most of the details.
In all patches we notice that the algorithm can distinguish
very well between the forest (FOR) and non-forest (NFR)



Figure 3 Sentinel-1 acquisitions time description. A dot represents the master image, while the arrows represent the
date of the slave images.

Corner Coordinates [deg]
Stack Orbit Name Lat. min Lat. max Lon. min Lon. max

1 010 TS0 9◦40′58.34”S 7◦42′53.99”S 59◦52′18.71”W 61◦44′43.20”W
2 010 TS1 11◦16′36.74”S 9◦15′31.41”S 60◦12′59.94”W 62◦5′1.52”W
3 010 TS2 12◦45′21.09”S 10◦43′21.81”S 60◦33′23.20”W 62◦26′23.22”W
4 010 TS3 14◦10′32.67”S 12◦12′43.74”S 60◦53′48.14”W 62◦46′54.92”W
5 054 TS0 10◦12′15.96”S 8◦4′40.60”S 66◦8′34.73”W 67◦59′40.25”W
6 083 TS0 8◦51′9.51”S 6◦50′56.20”S 61◦42′32.10”W 63◦36′0.35”W
7 083 TS1 10◦22′8.36”S 8◦32′54.94”S 62◦4′44.36”W 63◦37′30.02”W
8 083 TS2 11◦51′16.77”S 10◦2′26.15”S 62◦25′15.09”W 64◦19′5.05”W
9 083 TS3 13◦24′3.87”S 11◦32′42.18”S 62◦44′38.52”W 64◦40′34.71”W
10 156 TS0 9◦24′34.67”S 8◦4′15.76”S 63◦53′30.37”W 65◦56′1.88”W
11 156 TS1 10◦15′7.76”S 8◦48′35.78”S 64◦5′7.05”W 66◦8′22.17”W
12 156 TS2 10◦36′21.14”S 9◦46′22.31”S 64◦9′39.68”W 66◦19′6.56”W

Table 1 Sentinel-1 stacks geographical position: relative orbit number, name of the time series associated to the orbit
number, corner coordinates in latitude (lat.) and longitude (lon.).

Table 2 FROM-GLC classes aggregation strategy: arti-
ficial surfaces (ART), forests (FOR), non-forested areas
(NFR), and water bodies and unclassified or no data as
invalids (INV).

FROM-GLC Higher-level classes
Unclassified INV

Cropland NFR
Forest FOR

Grassland NFR
Shrubland NFR
Wetland NFR
Water INV
Tundra NFR

Impervious surface ART
Bareland NFR
Snow/Ice INV

classes, while the artifical surfaces (ART) are often mis-
classified as non-forest (patches (a) and (b)). The reason
may be ascribed to the lower availability of ART samples
in the training dataset. Indeed this class has hundred times
less samples, that are recouped by replicating the available
samples. This inconvenient can be avoided by consider-

ing larger datasets. On the other hand, the main goal of
this work is forest mapping and a misclassification of ART
classes is not of primary importance. Patches (c) and (d)
show a higher agreement with the reference as also con-
firmed by the accuracy values. These two results are indeed
a very good example of how we can distinguish between
forested areas and clear-cuts. By repeating the classifica-
tion on a monthly schedule, effectively monitoring the for-
est evolution in time.

Table 3 Overall accuracy (OA) and Average accuracy
(AA) for the four patches in Fig. 4: (a) and (b) are char-
acterized by urban areas, while (c) and (d) contain clear-
cuts.

metric patch (a) patch (b) patch (c) patch (d)
OA 73.60% 82.49% 95.75% 87.98%
AA 78.15% 85.98% 94.28% 87.88%

5 Conclusions

In the present work we assess the performance of Sentinel-
1 repeat-pass interferometry for forest classification over
the Amazon rainforest. Experimental results confirm the



Figure 4 RF Classification map for four patches (a), (b),
(c), (d) selected from the classification results over Stack
number 7 in Tab. 1. REF is the Finer Resolution Observa-
tion and Monitoring of Global Land Cover (FROM-GLC,
2017) reference.

efficacy of this approach. Furthermore, the possibility of
a monthly mapping allows for a constant monitoring over
time of the Amazon rainforest. Future investigation will
regard the analysis of the possible causes of misclassifi-
cation and the implementation of further classification ap-
proaches.
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