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ARTICLE INFO ABSTRACT

In this study, we test the use of Land Use and Coverage Area frame Survey (LUCAS) in-situ reference data for
classifying high-resolution Sentinel-2 imagery at a large scale. We compare several pre-processing schemes (PS)
for LUCAS data and propose a new PS for a fully automated classification of satellite imagery on the national
level. The image data utilizes a high-dimensional Sentinel-2-based image feature space. Key elements of LUCAS
data pre-processing include two positioning approaches and three semantic selection approaches. The latter
approaches differ in the applied quality measures for identifying valid reference points and by the number of LU/
LC classes (7-12). In an iterative training process, the impact of the chosen PS on a Random Forest image
classifier is evaluated. The results are compared to LUCAS reference points that are not pre-processed, which act
as a benchmark, and the classification quality is evaluated by independent sets of validation points. The clas-
sification results show that the positional correction of LUCAS points has an especially positive effect on the
overall classification accuracy. On average, this improves the accuracy by 3.7%. This improvement is lowest for
the most rigid sample selection approach, PS,, and highest for the benchmark data set, PS,. The highest overall
accuracy is 93.1% which is achieved by using the newly developed PSs; all PS achieve overall accuracies of 80%
and higher on average. While the difference in overall accuracy between the PS is likely to be influenced by the
respective number of LU/LC classes, we conclude that, overall, LUCAS in-situ data is a suitable source for re-
ference information for large scale high resolution LC mapping using Sentinel-2 imagery. Existing sample se-
lection approaches developed for Landsat imagery can be transferred to Sentinel-2 imagery, achieving com-
parable semantic accuracies while increasing the spatial resolution. The resulting LC classification product that
uses the newly developed PS is available for Germany via DOI: https://doi.org/10.15489/1ccmlap3mn39.
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1. Introduction

Satellite-based mapping of land use/land cover (LU/LC) provides
objective, up-to-date information on both the current state of and
changes occurring on the Earth's surface. Recent advances in satellite
technology, image classification techniques, and processing infra-
structure allow for large-area data analyses, e.g., on a regional
(Leinenkugel et al., 2019), national (Mack et al., 2017), continental
(Pflugmacher et al., 2019), or even global level (Chen et al., 2014). In
multi-temporal analyses, land cover change is monitored to detect land
surface dynamics such as alterations in the global forest stand (Hansen
et al., 2013) and urban growth (Taubenbdck et al., 2012). While low to
medium-resolution satellite imagery (MODIS, Landsat) was deployed
for large-scale analyses in the past, recent studies have also utilized
Sentinel-2 data at a geometric resolution of 10m X 10m for LU/LC

mapping (e.g., Close et al., 2018). With its high temporal and spatial
coverage and high spatial resolution, the freely accessible European
Sentinel-2 satellite images are viable contenders for LU/LC mapping
(Sanchez-Espinosa and Schroder, 2019).

One state-of-the-art method for LU/LC mapping utilizes modern
machine learning techniques. The basic concept of image classification
can be broken down into two steps: first, learning the classification
model from labeled reference data and second, its prediction to all
pixels of the satellite imagery. The quality of the classified image de-
pends on the employed machine learning algorithm (Maxwell et al.,
2018). Moreover, the accuracy is significantly influenced by the quality,
quantity, spatial and semantic distribution, and positional correctness
of the reference data. The latter has played a minor role for low to
medium-resolution satellite images; however, it is considered to be a
significant source of classification errors for imagery with increased
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resolutions. As an example, for an image with a geometric resolution of
10 m, a positional error of ~5m for the ground truth reference point
may lead to incorrect learning by the model and thus to poorer results
in thematic map accuracy. For this reason, high-quality reference data
are crucial for the creation of reliable LU/LC maps.

In recent years, vast LU/LC reference databases have been created.
For example, the Geo-Wiki project (Fritz et al., 2017, https://geo-wiki.
org) a global LU/LC reference data set, provides ~150,000 reference
points gathered using crowd-sourcing and visual image interpretation.
The number of samples available in some regions, however, is relatively
low despite the enormous effort undertaken to provide a consistent
reference data set of LU/LC information, e.g., as of December 2019,
there are reference points for 374 distinct locations in Germany. Other
approaches use volunteered geographic information (VGI) from the
OpenStreetMap-project (OSM, https://openstreetmap.org) as reference
data for remote sensing image classification (Schultz et al., 2017; Wan
et al., 2017; Maggiori et al., 2017). The data, however, vary in spatial
and semantic consistency. One alternative to these reference data sets
for Europe is the Land Use and Coverage Area frame Survey (LUCAS).
This pan-European survey, coordinated by the statistical office of the
European Union (EU) (EUROSTAT), offers highly detailed in-situ LU/LC
information of 270,000 ground truth points across all 28 EU member
states. In contrast to the aforementioned crowd-sourced approaches,
trained experts also collect information in the field, following strict
guidelines to ensure high levels of consistency. At every point, LU/LC
information and environmental characteristics, and information on
spatial accuracy are collected. LU/LC are registered using a hierarchical
classification scheme (EUROSTAT, 2015b), which differentiates be-
tween the following major land cover classes: artificial land (A), crop-
land (B), woodland (C), shrub land (D), grassland (E), bare soil, moss, and
lichens (F), water (G), and wetlands (H). At a higher thematic level, the
LUCAS database comprises 84 sub-classes.

In recent studies, this database has been utilized as training and
validation data in combination with remote sensing data. Some related
studies focused on vegetative land cover to derive green cover maps
(Zillmann et al., 2014; Tassopoulou et al., 2019), agricultural in-
ventories (Conrad et al., 2010; Esch et al., 2014; Kussul et al., 2018) or
vegetation monitoring (Khaliq et al., 2018). Others used the broad
spectrum of land cover types for more semantically holistic approaches
(Mack et al., 2017; Close et al., 2018; Pflugmacher et al., 2019;
Leinenkugel et al., 2019). Most commonly, especially for large-scale
approaches, Landsat imagery at a resolution of 30 m pixels is utilized
for such applications. In contrast, LUCAS combined with Sentinel-2,
with a 10 m geometric resolution, has only been used for local or re-
gional scales (Khaliq et al., 2018; Close et al., 2018). A large-scale na-
tional LU/LC classification using Sentinel-2 is therefore still lacking.

Compared to Landsat, Sentinel-2 offers a spatial resolution that is
nine times higher for multi-spectral images. Therefore, positional errors
in the ground truth data can significantly decrease the classification
quality. During the LUCAS survey, the position from which a sample
point is surveyed is captured via GPS devices. This method is prone to
positional GPS errors, which are a source of uncertainty discussed in
previous remote sensing applications research (e.g. Pflugmacher et al.,
2019). Moreover, the LU/LC information recorded for each LUCAS
point always refers to the originally intended location, which is also
referred to as the theoretical location (EUROSTAT, 2015b). This theo-
retical point cannot always be reached at the time of the survey as it
may be located on a water body or private property (EUROSTAT,
2015a). This can lead to a spatial offset between the GPS point and the
observed theoretical location. When the GPS position is used to extract
spectral information for a subsequent machine learning process, it can
lead to a decrease in classification accuracy.

In addition to the position of the LUCAS points, the semantic and
qualitative information collected for each LUCAS point can be used to
select suitable reference data. In related studies, we identified different
approaches of handling this selection process. These approaches vary in
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terms of semantic detail and quality criteria which are applied to select
valid samples. While Pflugmacher et al. (2019), for example, use a total
of 12 LU/LC classes, Close et al. (2018) only use five target classes.
These differences in the number of distinct classes can impact the
performance of the classification model (Ma et al., 2017), and yet, a
joint evaluation of these approaches of pre-processing LUCAS input
data for their use in remote sensing classification is still missing.

This study therefore aims to provide a comprehensive evaluation of
the spatial and semantic effects of LUCAS samples on large-scale LU/LC
classifications. We apply three approaches for selecting LUCAS sample
data for their use in large-scale high-resolution land cover mapping,
which is hereafter called pre-processing schemes (PS). Two recently
proposed extensive remote sensing image classification approaches
based on LUCAS in-situ samples by Mack et al. (2017) and Pflugmacher
et al. (2019) are reviewed; they were originally designed for national or
international LU/LC classification using Landsat imagery. We transfer
these approaches to 10 m spatial resolution to test their applicability to
Sentinel-2 imagery. Furthermore, we propose a third PS for high-re-
solution LU/LC analyses. This new PS is designed to contain seven land
cover classes: artificial land, four vegetative land cover types that differ
in height and seasonality of growth, bare land, and water. Because
positioning is crucial in applications with high-resolution imagery, one
focus of this study is on the positioning of the LUCAS samples. Even-
tually, one large-area land cover map is created using the newly pro-
posed PS.

In Section 2, we introduce the data and methods used in this study
and the experimental setup. Section 3 provides a detailed description of
the results. The findings are discussed in Section 4 and summarized in
Section 5.

2. Material and methods

In this study, we compare different PSs for Sentinel-2 image clas-
sification. Therefore, we review existing approaches and their specific
methods for selecting LUCAS in-situ samples for classification. To test
their spatial and semantic effects we apply the following methodolo-
gical workflow (see Fig. 1). First, the nationwide LUCAS reference data
and Sentinel-2 imagery are collected and pre-processed. Second, in an
iterative modeling process, we assess the impact of different spatial and
semantic PSs on the classification accuracy. Third, one model is de-
ployed for large-scale classification using the input image data. The
individual steps and parameters are described in detail in the following
subsections.

2.1. LUCAS reference data

The pan-European LUCAS is a comprehensive acquisition frame-
work of in-situ information launched by the EU in 2001. Every three
years observers collect detailed in-field information that is system-
atically distributed in a 2km X 2km grid throughout Europe. This
spatially stratified distribution reduces the risk of spatial auto-correla-
tion, which is an important property of reference data (Stehman, 2009;
Aune-Lundberg and Strand, 2014; Geil3 et al., 2017). In the field,
photographs of the individual points are taken, and ecological para-
meters are documented (Orgiazzi et al., 2018). The collected in-situ
information is published and is accompanied by detailed metadata
concerning the quality of the observation itself, such as the acquisition
date or GPS location of the observer in the field.

2.1.1. LUCAS positioning

By design, each LUCAS sample point is located at the intersection of
a regular 2km x 2km INSPIRE grid (https://inspire.ec.europa.eu/)
where the LU/LC information is surveyed. In the 2015 survey, however,
the observers were unable to reach 88.3% of the sample points at their
exact location because they were located on private properties, in in-
accessible (wet-)lands, or in dense urban built-up structures. These
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Fig. 1. Flowchart of the materials [] and methods ¢ of the experimental setup in this study. The dashed box highlights the iterative modeling process.

points can generally be observed from a distance. In such cases, the GPS
location from which the theoretical point is observed and the distance
to it is recorded (Karydas et al., 2015). This means that the recorded
GPS position, at which the observer collects the information of the
sample point, does not necessarily spatially correspond to the theore-
tical point location. For example, a LUCAS point located in the sea can
be assessed from the shore. Up until the 2015 LUCAS survey, the data
only included these GPS locations as the geographic coordinates. That
is, the observation distance was used as a quality criterion for selecting
LUCAS samples (e.g. Pflugmacher et al., 2019), which suggests that the
GPS locations were used for locating the LUCAS samples in geographic
space. However, especially for high-resolution imagery, very small
spatial inaccuracies can introduce errors to the LC classification pro-
cess. For example, a sample point located on water that is assessed from
the shore would, as a consequence of the shifted position, provide an
incorrect spectral signature for any subsequent machine learning pro-
cesses. In contrast, applying strict rules for excluding samples that are
evaluated from a distance leads to the loss of many sample points. The
theoretical location of the sample points (for readability hereafter re-
ferred to as GRID), that is the location for which the LC information is
recorded, is encoded inside the point ID. It can either be reconstructed,

e.g., LUCAS-ID = 12345678, northing = 1.234.000, and
easting = 5.678.000 with EPSG:3035, or it can be acquired separately.
For the 2015 survey, the average distance between the GRID and GPS
locations is 24.22 m (median = 5m, 1st quartile = 2m, and 3rd quar-
tile = 16 m). This issue has not yet been addressed in the literature. In
this study we therefore systematically assess the error introduced to a
classification result when using the GPS coordinate pair.

2.1.2. LUCAS sample pre-processing

In addition to positional information, the main information pro-
vided by the LUCAS data base are the LU/LC samples. The physical
appearance of the land cover in remote sensing imagery is used in
classification and therefore its physical representation decisive for the
classifier. Land use types, in contrast, are semantic and therefore im-
plicitly used in this data approach. Hence, it is common in related
studies to reclassify the original LUCAS LU/LC hierarchy. One example
of this is tree plantation land cover, such as cherry tree cultures. In the
original LUCAS hierarchy, these are considered to be cropland (B), al-
though their physical appearance (e.g., vegetative height) differs from
most other low vegetation agricultural land covers included in class B.
In an image classification workflow, this inevitably introduces class
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Table 1

The number of LUCAS samples in Germany for the PS tested in this study. The
positioning approach is indicated by GRID and GPS; the differences are due to
invalid GPS points and the observation distances exceeding a certain value.

PS, PS; PS, PS5
GRID GPS GRID GPS GRID GPS GRID GPS
26,745 24,883 20,879 19,381 14,568 14,567 19,291 17,967

heterogeneity which then leads to lower classification performance.
Furthermore, LUCAS samples contain a multitude of qualitative and
quantitative metadata. Existing studies using LUCAS as reference data
utilize these metrics to select suitable points of high quality for training
and validating a remote sensing image classification (e.g., Conrad et al.,
2010; Mack et al., 2017; Pflugmacher et al., 2019). Thereby, each PS is
motivated by the land cover classes under investigation and satellite
spatial resolutions.

To evaluate the effects of reclassifying and select the LUCAS sam-
ples, we introduce four different schemes: PS, as a benchmark, PS; and
PS, which are adapted from recent studies, and PS5 as a newly devel-
oped PS for LUCAS data. Table 1 summarizes the number of samples
after pre-processing.

PSy: As a reference pre-processing scheme, we do not filter any
LUCAS points based on attribute information but merely reduce the LC
classes to the original eight main classes (A-H). Invalid GPS points are
excluded from the sample.

PS;: The scheme developed by Mack et al. (2017) preserves all seven
non-woodland land cover classes of the original LUCAS hierarchy and
distinguishes the two woodland sub-classes: broadleaved woodlands (C1)
and coniferous woodlands (C2). Consequently, there are nine land cover
classes in total. Furthermore, striving for pure Landsat pixels, the au-
thors exclude samples located within a homogeneous patch smaller
than 1 ha if they are not classified as artificial land (A). This exception
was important for the classification process, as almost no built-up
samples would have remained otherwise (Mack et al., 2017). Manual
spatial corrections, as performed in the original work by Mack et al.
(2017), were not performed in this study.

PS,: For a pan-European application, Pflugmacher et al. (2019)
differentiate both woodlands and croplands based on their seasonality.
This sampling scheme also differentiates mixed woodlands (C3) and
separates permanent snow/glaciers (G50) from other water areas,
creating 12 land cover classes in total. Furthermore, the authors utilize
detailed LUCAS attributes to exclude specific classes such as non-built-up
linear features (A22), which are not detectable with coarse resolution
imagery, and temporary grasslands (B55). With respect to the spatial
resolution of Landsat-8, several qualitative filters are applied. They
include a minimum patch size of 0.5 ha, a land cover proportion larger
than 50%, and, most importantly, a maximum observation distance of
30 m. For both artificial land and perennial cropland, more relaxed
filtering criteria were chosen by the authors. For more details, refer to
Pflugmacher et al. (2019).

PS3: Building on previous approaches, we propose the following

Int J Appl Earth Obs Geoinformation 88 (2020) 102065

new LUCAS PS for high-resolution land cover mapping using Sentinel-2.
With respect to the high spatial resolution of Sentinel-2, all samples that
are not artificial land must be located in a homogeneous patch larger
than 0.5 ha. Furthermore, only regular “on the point” observations were
kept, excluding samples which are located on a boundary between two
LU/LC types, whether on an edge or small linear feature (cf. EUROS-
TAT, 2015a, p. 18). As several different land cover types can co-exist,
e.g., agroforestry (cf. EUROSTAT, 2015a, p. 26), all samples with
multiple land cover registrations or samples that are located within
small vegetative patches less than 20 m X 20 m in size (cf. EUROSTAT,
2015a, p. 25) are excluded. Water areas and wetlands that are tem-
porarily dry/flooded at the time of the visit (e.g., a riverbed cf. EUR-
OSTAT, 2015a, p. 99) are also excluded, as they represent very tem-
porally heterogeneous land cover. This PS discriminates between
artificial land and natural surfaces. The latter include vegetative sur-
faces, bare soil, and water. Due to their environmental and micro-cli-
matic implications, vegetative surfaces are differentiated into four ca-
tegories by height and seasonality of growth: high perennial vegetation
subsumes coniferous tree covers, whereas high seasonal vegetation
consists of deciduous trees. Similarly, low seasonal vegetation cover is
characterized by strong seasonal variations throughout the year, such as
croplands. Low perennial vegetation is more persistent, e.g., meadows
or shrubs. We therefore introduce a new nomenclature of classes. This
new class hierarchy is summarized in Table 2. While some classes are
separable on the ground for a human observer, we anticipate no or poor
separability from space (Conrad et al., 2010), such as a narrow road
overgrown with trees. Therefore, these classes were excluded from this
remote sensing classification workflow (cf. Table 2). From the original
eight LUCAS classes, seven new LC classes were formed during pre-
processing which are proposed here for remote sensing image classifi-
cation with Sentinel-2.

2.2. Image data

To describe the spectral, temporal, and spatial variability of the LU/
LC types, we compose a high dimensional feature space combining
Earth observation with auxiliary geo-information.

With their 10m x 10 m spatial resolution and 13 spectral bands,
the European Sentinel-2 satellites provide data while being free of
charge. This makes them a valuable data source for large-scale appli-
cations. Consequently, we use all Sentinel-2 (Level 1C) scenes with a
cloud cover below 60% which were acquired over Germany. Additional
cloud masking is performed, utilizing the QA60 band provided in the
Sentinel-2 imagery. We only use data from June 2015 to April 2017
(N = 389 scenes). From these we conflate three kinds of image data (cf.
Table 3): a) a composite of median mosaics of the spectral bands 2, 3, 4,
and 8 with 10 m spatial resolution; (b) the Normalized Difference Vege-
tation Index (NDVI, Rouse et al., 1974), Normalized Difference Water
Index (NDWI, McFeeters, 1996), and Normalized Difference Built-Up
Index (NDBI, Zha et al., 2003), which have already been successfully
applied in related LU/LC classifications (Griffiths et al., 2013; Pelletier
et al., 2016; Leinenkugel et al., 2019; Tassopoulou et al., 2019) and are
calculated for all scenes and reduced to the 25th, 50th, and 75th

Table 2
New proposed class hierarchy of LUCAS samples for high-resolution land cover mapping using Sentinel-2. The right column contains all LUCAS classes excluded in
PSs.
Class Description Included LUCAS classes Generally excluded classes
A Artificial land A A13; A22 with land uses other than
S Open soil F10-F30 U21, U22, U31, U34, U36 or U37; A30;
T1 High, seasonal veg. C10, B71-B74 B55; B71-B75; B83; Bx1; Bx2; C3;
T2 High perennial veg. C21-C23 D10; E10; E30; F40; G50; H21-H23
V1 Low, seasonal veg. B, except B84
V2 Low, perennial veg. B84, D20, E20, H11, H12

w Water areas G
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Table 3
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Overview of the image layers calculated from Sentinel-2 mosaics and auxiliary data. Focal statistics and Gray Level Co-occurrence Matrix (GLCM) were derived in

three kernel sizes.

Mosaics Focal statistics GLCM texture Total
3x3 5X5 9x9 3x3 5%x5 9x9
(a) Spectral bands 4 12 12 12 32 32 32 136
(b) Spectral indices 9 27 27 27 90
(c) Imperviousness layers 3 3
X = 229

percentiles, resulting in three mosaics for each index; and (c) auxiliary
imperviousness information are included from external sources. While
the input imagery for creating the spectral median mosaics (a) are
limited by their acquisition date during the observation period of
LUCAS (May through September), the index percentiles (b) are derived
from the imagery throughout all seasons. Thus, the latter allows for the
depiction of seasonality of vegetated areas throughout the year and
provides useful information for discriminating vegetative LC types
(Griffiths et al., 2014, 2019; Mack et al., 2017).

To increase the predictive power of the machine learning algorithm,
additional features are derived from these initial image layers. It has
been shown that textural features significantly increase land cover
classification accuracy (Khatami et al., 2016; Li et al., 2014). We argue
that with a spatial resolution of 10 m X 10 m, many of the LC classes
such as urban environments are defined by their adjacent neighborhood
of pixels, especially since several LUCAS samples describe the local land
cover within a circular range of up to 20 m (Karydas et al., 2015). We
therefore derive first-order focal textures (median, mean, and standard
deviation) for three kernels (window sizes of 3 pixels, 5 pixels, and 9
pixels) for all 13 image layers. Furthermore, second-order GLCM tex-
tures (Haralick et al., 1973) are calculated for the four spectral mosaics.
Overall, a total of 226 image layers are derived from the Sentinel-2
imagery.

Additional information, especially for differentiating highly het-
erogeneous LC patches of artificial land, is provided through (c) na-
tionwide imperviousness layers that are generated for rails and roads
using data from the OpenStreetMap project and building footprints from
level-of-detail 1 (LoD-1) building models provided by the German
Federal Agency for Cartography and Geodesy. Each 10 m X 10 m pixel
is assigned to the relative mutual overlap with each of the respective
polygon layers. Including the imperviousness images, a total of 229
layers are used as a database for image classification (see Table 3).

2.3. Modeling

Preparing for classification and evaluation, the LUCAS samples are
split into independent, stratified sets of samples by a ratio of 80% for
training and 20% for validation. To classify the image, a random forest
classifier (Breiman, 2001) is applied since it has previously proven to
provide sufficient results even in highly dimensional feature spaces
(GeiR et al., 2015; Khatami et al., 2016; Pelletier et al., 2016; Wurm
et al., 2017).

Since both sample splitting (training versus validation) and the
generation of random forests rely on random samples, the implications
of the random selection cannot be ruled out. Taking this into account,
100 random models are created for each experiment.

The performance of all models is evaluated against the overall ac-
curacy (OA) (Congalton, 1991). The variation in OA values across the
100 iterations per experiment is summarized using the standard de-
viation as a measure of robustness.

2.4. Image classification

Out of the 800 conducted experiments, the highest performing

model is selected based on OA. This model is eventually deployed for
classifying the image data, resulting in a large-scale land cover classi-
fication product for Germany. As the final step, the results of the map
are evaluated using marginal proportional map accuracy estimation
(Card, 1982; Olofsson et al., 2014; Stehman and Foody, 2019). The
error matrix of the stratified random samples is therefore weighted by
the occurrence of each the class in the final map. This weighted error
matrix is then used to calculate estimates of OA (6 ), user accuracy (ff\),
and producer accuracy (’P\), and their respective standard errors.

3. Results
3.1. Overall evaluation

The results of the overall model performance provide insights into
the effects of the different pre-processing schemes (PSy-PS3) applied to
the LUCAS samples and sample positioning of points (GPS and GRID).
All results are summarized in Fig. 2. The bar plot represents the average
OA for the experiment grouped by PS and positioning approach. The
error margins introduced by the set of random numbers are indicated
by the error bars.

We find a notable difference between the presented PSs of the
LUCAS sample data. The OAs for all the experiments range from 78.1%
to 93.6%. On average, the standard deviation for all experiments is
0.57% (max. 0.76%).

When comparing the positioning approaches GPS and GRID, it can
be seen that the latter leads to a consistently higher overall accuracy for
all experiments. The increases in OA vary depending on the PS, from
2.0% for PS, to 4.7% for PSy. An ANOVA and a subsequent Tukey-
Duckworth test quantify the difference between the positioning ap-
proaches at 3.7% for the OA.

Overall Accuracy

100% 4
90% = GPS
X
80% 1 mE L
GRID
70% -
60%

T T T T
PSq PS, PS, PS;
Fig. 2. Overall classification accuracy for all experiments. The colors indicate
the different positioning approaches. The individual sample pre-processing
techniques, PS,, are aligned along the x-axis. The error bars indicate the stan-
dard deviation from the mean value of the 100 experiments using different
random number seeds. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Overview of the land cover map produced using Sentinel-2 imagery and LUCAS samples that was pre-processed according to PS3. Zoom windows show the
level of detail ranging from the landscape view, urban structure, and fine grain land cover patterns.

3.2. Application of the newly developed PS: large-area land cover
classification

After assessing the overall model performances, we predict the
model created PS; and GRID locations onto the image data for the
federal territory of Germany. Fig. 3 depicts the complete classification
result and Table 4 presents a detailed estimated error matrix. The map
illustrates the heterogeneity of landscapes in Germany at different
scales. On the national level, a trend of low vegetation in the north and
higher vegetation in the south of the country is outlined. Landmarks
like the Central German Uplands landscape are clearly discriminated by
dense tree vegetation. Detailed views on the metropolitan area of Berlin
in Fig. 3 expose a complex web of interconnected urban patches, towns,
and villages with intermediary croplands and meadows. Furthermore,

Table 4

the detailed magnification shows a pattern of fine structures like in-
dividual roads and different vegetative covers (e.g., arrangements of
broadleaved and coniferous forest) being discriminated. Even in den-
sely built areas, small patches of urban green are recognized by the
classifier in the high-resolution imagery. Overall, the classification
reaches an estimated accuracy (6) of 93.07% (SE = 0.43, see Table 4).

In terms of class-based accuracy, most classes achieve a fairly suf-
ficient agreement in estimated user accuracy (fJ\>84%). The estimated
producer accuracy, in turn, achieves high values for most classes
(f’\>90%). Open soil and water, however, achieve a significantly lower
estimated producer accuracy of 39.78% (SE = 10.18%) and 68.94%
(SE = 4.91%), respectively, indicating that there are higher omission
errors for these LC types. While the inter-class scattering is mostly

Estimated error matrix for the final classification with estimates for overall accuracy (6), user accuracy (ﬁ), and producer accuracy (f’\) (see Stehman and Foody

(2019) for details).

pred. - ref. A S T1 T2 V1 V2 w s [%] (SE)
Artificial land A 6.90 0.15 0.15 0.05 0 0.20 0.15 90.73 (2.37)
Open soil S 0 0.16 0 0 0 0.03 0 84.62 (10.42)
High, seasonal veg. T1 0.13 0 14.86 0.89 0.06 0.64 0.29 88.11 (1.41)
High, perennial veg. T2 0.03 0 0.42 15.84 0.06 0.22 0 95.59 (0.85)
Low, seasonal veg. V1 0.02 0.02 0.06 0 33.69 1.11 0 96.52 (0.45)
Low, perennial veg. V2 0.08 0.05 0.74 0.19 0.93 20.18 0.21 90.17 (1.03)
Water areas W 0 0.02 0 0 0 0.03 1.44 96.84 (1.8)

7 [%] 96.42 39.78 91.51 93.36 96.98 90.05 68.94 0 = 93.07 (0.43)

(SE) (1.16) (10.18) (1.13) (1.02) (0.46) (0.98) (4.91)
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between vegetated classes, artificial land shows a slight overlap with all
other classes.

4. Discussion
4.1. LUCAS sample pre-processing

The experiments in this study reveal that the semantic pre-proces-
sing of LUCAS reference data has a strong impact on the accuracy of the
classification results. That being said, a direct comparison between the
PSs is not justified. All PSs are developed to fit a specific purpose of pan-
European or national LC mapping. They differ in sample selection and
semantic class hierarchy. Their accuracy depends on the number of
classes and validation samples used to assess the classification model.
This results in different conditions between the PSs, rendering a direct
comparison impossible. In general, a PS with fewer target classes
achieves a higher accuracy, a trend that has also been observed in other
studies (Ma et al., 2017). This effect is likely because fewer classes
exhibit more distinct spectral signatures, and thus, classification
schemes with more target classes are more prone to misclassification.

Of the three pre-processing schemes, the results of PS, show the
highest rate of misclassification. It is likely that this is due to the large
number of LC classes (12) and relatively few remaining samples
(=14,600, cf. Table 1). This PS was originally developed by
Pflugmacher et al. (2019) for pan-European classification purposes. In a
smaller region, in this case Germany, substantially fewer reference
points are available for training the machine learning model. Hence,
one restrictive issue for using LUCAS samples as training data for
classifying remote sensing imagery is that it can only be successfully
applied at the regional or national scale. The smaller the area of in-
terest, the more unlikely the LUCAS samples are to be suitable for
creating a stable model (cf. Leinenkugel et al., 2019). Therefore, in
some studies LUCAS was used in combination with other data (e.g.
Griffiths et al., 2019), while others collected samples using crowd-
sourcing (Bayas et al., 2016).

Overall, all applied PSs yield LU/LC classifications with high se-
mantic accuracy. The application of PS; and PS,, which were originally
developed for lower resolution Landsat imagery, demonstrate similar
accuracies in comparison to the respective original works. This high-
lights the transferability of the existing approaches for the classification
of Sentinel-2 imagery. With PS3;, we introduce a restructured class
hierarchy which describes LU/LC classes that can be classified with
high semantic accuracy.

4.2. LUCAS sample positioning

The results in this study stress the fact that locating LUCAS samples
for remote sensing analyses is neither intuitive nor trivial. While GRID
locations must be acquired separately or reconstructed from the LUCAS-
ID, GPS locations are provided alongside the data and therefore appear
more accessible to the user. However, the chosen positioning method
has a major impact on the classification accuracy for all experiments
(see Fig. 2). It is evident that choosing the theoretical location of the
points (GRID) over the provided GPS location improves the classifica-
tion accuracy regardless of the PS. The distance between the two po-
sitioning approaches, GPS and GRID, measures only a few meters in
most cases. However, this undirected shift induces measurable classi-
fication errors especially in high resolution imagery. The strength of
this effect is dependent on the chosen pre-processing scheme even after
applying a maximal observation distance for GPS locations. For ex-
ample, the effect between GPS and GRID experiments is the smallest in
PS, because there are already strict rules in place concerning the dis-
tance between the observer and the observed point. The positioning
pitfall is most prominent with samples of the class water areas (G),
which are typically located on the waterfront but not in the water. With
the original GPS location, the spectral feature space is distorted.
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Excluding information about these areas based on the observation
distance (i.e., the distance between the GPS point and the original GRID
point) ignores the fact that the information can be confidentially re-
gistered from the shore, even though the distance may be particularly
large. As the positioning approach has a major impact on the classifi-
cation accuracy in high-resolution remote sensing applications, we
suggest using the GRID locations. Thus, no selection of samples based
on a maximum observation distance must be applied, and more LUCAS
samples are available for the classification process.

4.3. Image classification

Combining in-situ data from the LUCAS database with satellite
imagery can lead to several common errors. For example, effects like
shadowed areas represented in the image are not anticipated in the
LUCAS class hierarchy. Additionally, especially with increasing spatial
image resolution, urban environments featuring many high buildings
and street canyons can be falsely assigned as water areas due to their
spectral similarities. Furthermore, narrow roads overgrown by trees
that are clearly recognizable by a human observer on ground are not
identifiable as such from a bird's eye view; hence, they are likely to be
misclassified.

Classes with few samples in their stratum, for instance open soil, are
prone to a greater number of classification errors. The error matrix
shows that this specific class was misclassified at a higher rate than that
of the other classes. This may originate from a smaller sample size and a
spectral similarity to the other classes such as urban fabric.

In this study, 229 spectral, textural, and auxiliary image layers were
used for image classification; the images had a compressed data volume
of 2.5 terabytes. Although providing promising results, these results
come at a high computational cost and require expertise in big geo-
graphical data analysis. Therefore, feature selection techniques can be
applied to identify the most discriminatory image layers, thereby re-
ducing the computing effort.

Applying the pre-processing scheme proposed in this study to the
image data for national land cover classification shows that the LUCAS
samples do in fact represent a suitable database for high-resolution land
cover mapping with Sentinel-2 data. Landscape characteristics can be
identified at the local to national scale with high accuracy. The final LC
map provides an unprecedented foundation for future applications
which profit from the high spatial resolution, such as interdisciplinary
analyses of human habitats for environmental justice (cf. Weigand
et al., 2019).

5. Conclusion

In this study, in-situ sample data from the pan-European LUCAS
were used as ground truth data for high-resolution remote sensing LC
mapping. In the literature, no standard or generally accepted pre-pro-
cessing scheme for LUCAS samples currently exists. We therefore in-
vestigated LUCAS sample pre-processing in the context of remote sen-
sing image classification. We found possible obstacles in its application
and proposed a new scheme dedicated to high-resolution land cover
mapping using Sentinel-2 data. Both the proposed and existing pre-
processing approaches were applied to high spatial resolution multi-
spectral imagery. Furthermore, we distinguished the location of the
LUCAS samples using the originally intended GRID position and the
GPS location recorded by the observer. For classification, high-resolu-
tion Sentinel-2 spectral values and their derived indices (NDVI, NDBI,
and NDWI) were utilized. We also included focal textures and im-
perviousness data.

The results show that for all experiments, the positioning approach
had a significant impact on the accuracy of the final classification re-
sults. Choosing GRID locations accounted for a 3.7% gain in accuracy
on average. We therefore recommend that any image classification
approach relying on LUCAS samples pre-processing retrieves both the
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originally intended and actually observed locations of the LUCAS
sample instead of utilizing only the recorded GPS location. All pre-
processing schemes using GRID locations showed overall accuracies of
greater than 80%. The results of this study demonstrated that LUCAS in-
situ data is well-suited for large-scale LU/LC classifications based on
Sentinel-2 data that use spectral and textural features. Moreover, pre-
processing schemes that were originally developed for the classification
of Landsat imagery also provided highly accurate results in higher re-
solution Sentinel-2 imagery. The proposed pre-processing approach of
the LUCAS samples, PS5, in combination with positioning the samples
in the original INSPIRE locations resulted in a classification with an
estimated overall accuracy (6) of 93.07%. This product can be ac-
quired via DOI: https://doi.org/10.15489/1ccmlap3mn39 for further
research.

This study focused on the classification of imagery at the national
scale. In future studies, Sentinel-2 imagery can be deployed at larger
scales to derive high spatial resolution LU/LC information for Europe,
similar to what was accomplished with Landsat imagery by
Pflugmacher et al. (2019). Making use of the longitudinal character of
the LUCAS program, updates to the area-wide classification can be
obtained using LUCAS and Sentinel-2 data from 2018, allowing for the
analysis of LU/LC changes. Big data processing infrastructures (e.g.
Gorelick et al., 2017) can be utilized to automate the workflow. Fur-
thermore, large reference data archives (Fritz et al., 2017) suggest the
potential for high-resolution mapping at the global scale.
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