First Results of the L-band Digital Aeronautical Communications System (LDACS) Flight Trials in the National German Project MICONAV

ICNS Conference

Dr. Thomas Gräupl

German Aerospace Center (DLR)

Institute of Communications and Navigation

How did the LDACS protocol get from an idea to a flying demonstrator?

Previous projects: B-VHF (2004), B-AMC (2007)

Requirements: COCR

Other systems: AeroMACS, P34, 3G, and 4G (2008)

LDACS Design

Rapid prototyping using computer simulations (2011)

Testing in the lab (2018)

LDACS Implementation

Flight Test

LDACS specification update in ICAO and SESAR (since 2016)

Scope of the MICONAV project

The MICONAV flight trials addressed three research questions

Characterization of service, measured in lab and flight trials:

- Achievable data rate
- Communication range

Quality of service, measured in lab and flight trials:

- Priority of access
- Priority of latency

Security of service, demonstrated in flight trials:

- Security for broadcast services: GBAS
- Security for addressed services: ADS-C, CPDLC

Focus of this talk: Data link layer

The LDACS implementation was split into several hardware components Linux laptop running:

Applications UDP/IP

Radio management layer (Python Framework)

UDP interface

3 x

LDACS GS

(PHY and DLL)

LDACS layer 1 and 2 running on Rohde & Schwarz (WFDU-D) and BPS hardware (WFDU-T, Diplexer) with iAd protocol implementation

BPS

LDACS ground station "OP" at DLR premises

In the lab tests the LDACS hardware was embedded into a local IP network

Linux laptop running:

- Radio management software
- Data traffic generators
- Applications
- Logging

In the flight trials LDACS was embedded into an aeronautical IP network

Linux laptop running:

- Radio management software
- Data traffic generators
- Applications
- Logging

Linux computer running:

- Radio management software
- Data traffic generators
- Applications
- Logging

In the flight trials LDACS was embedded into an aeronautical IP network

LDACS was measured at the interface between DLL and IP

LDACS QoS and CoS was measured in these measurement scenarios within MICONAV

Lab Measurement Scenarios	Flight Measurement Scenarios
M1: "Simple QoS" 100 kbit/s, packets of same size (1400B) with high/low priorities	M1: "Simple QoS" 100 kbit/s, packets of same size (1400B) with high/low priorities
M2: "Realistic QoS" 100 kbit/s, packets of different size (175/1400B) with high/low priorities	M2: "Realistic QoS" 100 kbit/s, packets of different size (175/1400B) with high/low priorities
M3: "Preparation of range measurement" 100 kbit/s, packets of different size (175/1400B) with high/low priorities with increasing attenuation	M3: "CoS: Range measurement" 100 kbit/s, packets of different size (175/1400B) with high/low priorities with increasing distance to ground-station
M5: "CoS: Maximum Throughput" increasing load, packets of same size (1400B)	

The measurement scenarios were applied in the demonstration & measurement flights

Flight	Measurement Scenario
Flight 0	Security of service (GBAS, CPDLC, ADS-C)
Flight 1	Realistic quality of service (M2)
Flight 2	Simple quality of service (M1)
Flight 3	Characterization of service: Range (M3)

The flight configuration of the LDACS protocol was as follows

- Reduced transmit power:
 - 40 dBm i.e. reduced by 8 dB due to local safety regulations
- LDACS configured with QPSK coding rate 1/2
- Restricted duty cycle:
 - Maximum RL allocation
 110/160 tiles i.e. RL data rate
 restricted to < 70% duty cycle
- 4 ground-stations:
 - Only 2 with full COM capability

First overview of results

Research question: CoS: Achievable data rate?

M5/lab: The achievable data rate of LDACS is approximately 293/236 kbit/s on the FL/RL

M5: "CoS: Maximum Throughput"

- LDACS configured with QPSK coding rate 1/2
- Lab environment with "no" attenuation
- packets of same size (1400B)
- with exponentially distributed interarrival times
- increasing load up to 300 kbit/s,
- expected data rate: 291/238 kbit/s
- measured data rate: 293/236 kbit/s

150

offered load (kbit/s)

200

250

max 128 tiles

Research question: CoS: Communication range?

M3: The LDACS communication range is approximately 135 km at 40 dBm TX power

M3: "CoS: Range measurement"

- 100 kbit/s,
- packets of different size (175/1400B)
- with high/low priorities
- with increasing distance to groundstations OP and SM at 40 dBm TX power
- link up/down measured according to link state reported by radio and crosschecked with RX
- radio management layer configured to re-connect on connection drop
- approximately 12,000 s measurement time in flight
- expected range at 40 dBM TX power is
 99,27 km

LDACS communication range, power reduced by 8 dB, FL350, 99% percentile of slant range

 measured range at 40 dBM TX power is 133.6/137.2 km for SM/OP groundstation

Research question: QoS: Priority of access/latency?

M1/OP: High priority traffic is scheduled first and is therefore transmitted with lower latency

M1: "Simple QoS"

- 100 kbit/s,
- packets of same size (1400B)
- with exponentially distributed interarrival times
- with high/low priorities

 LDACS scheduling prioritizes high prio traffic over low prio traffic during bursts

approximately 5000 s
 measurement time in flight

- LDACS automatically retransmits corrupted packets
 - Almost no packet loss after retransmission, FL:0.31% and RL:0.82% when link up
 - Retransmission is included in latency measurement

Research question: QoS: Priority of access/latency?

M2/OP: Realistic traffic pattern demonstrates LDACS QoS supports mixed ATS/AOC traffic

M2: "Realistic QoS"

- 100 kbit/s,
- packets of different size (175/1400B)
- with high/low priorities
- demonstrating ATS/AOC data traffic
- LDACS quality of service prioritizes
 ATC traffic over AOC traffic
 - approximately 3000 s measurement time in flight
- Always far better than required 95% percentile of RCTP_{CSP} = 10 s for RCP130/A1 from DO-350A.

	Priority	Avg. Latency (ms)		95% percentile Latency (ms)	
6		FL	RL	FL	RL
U	All	74	166	173	429
	ATC	57	96	81	229
	AOC	114	330	200	537

Research question: QoS: Priority of access/latency?

M2/OP: Realistic traffic pattern demonstrates LDACS supports mixed ATS/AOC traffic

Always far better than required 95% percentile of RCTP_{CSP} = 10 s for RCP130/A1 from DO-350A.

Instead of a conclusion...

- This talk provided an overview of the evaluation of the LDACS data link layer in the MICONAV flight trials
 - The LDACS protocol behaves as predicted or better and truly provides next generation data link capabilities

... next steps:

- Our results will provide the basis for the further development of LDACS:
 - SESAR: Update of specification, and Wave 2/3
 - ICAO: Update of SARPS, development of "manual"

- T. Gräupl, N. Schneckenburger, T. Jost, M. Schnell, A. Filip, M. A. Bellido-Manganell, D. M. Mielke, N. Mäurer, R. Kumar, O. Osechas, G. Battista, T. Bögl, and T. Richter, "L-band Digital Aeronautical Communications System (LDACS) Flight Trials in the National German Project MICONAV," in Proc. Integrated Communications Navigation and Surveillance Conf., Herndon, VA, 2018.
- T. Gräupl, and M. Ehammer, "L-DACS1 Data Link Layer Evolution of ATN/IPS," in Proc. 30th Digital Avionics Systems Conf., Seattle, WA, 2011.