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Abstract

Next-generation satellite SAR systems will provide unprecedented high-resolution data products thanks to multi-static
configurations, wider swath widths, and multiple polarizations. As a drawback, a considerable amount of onboard data
is going to be generated, leading to onboard storage and downlink capacity challenges. In this context, the need for an
onboard compression technique featuring low memory requirements and low complexity is of great interest, due to the
strict hardware and cost constraints of satellite platforms. In this paper, an investigation of predictive coding applied
to SAR systems is carried out. Specifically, two types of novel predictive encoders are presented: Dynamic Predictive
BAQ (DP-BAQ) and Non-Causal Predictive BAQ (NC-PBAQ). A theoretical investigation is initially introduced and the
results are finally reported by taking into account the trade-off between data reduction performance and computational
requirements. DP-BAQ gain in terms of data reduction is directly dependent on both the performance requirements and
the system constraints (e.g. the antenna size), and has already been proven to reach 20-25% of data reduction for the case
of DLR’s Tandem-L mission proposal. The non-causality introduced by NC-PBAQ shows promising results with respect
to the performance of DP-BAQ, at least from a theoretical point of view. Moreover, the computational effort required for
DP-BAQ encoding is less demanding, therefore could be implemented in state-of-the-art spaceborne SAR systems.

1 Introduction

The upcoming spaceborne satellite SAR systems will fea-
ture advanced acquisition modes developed in recent years.
In this study, we consider a SAR system operating in the
Staggered SAR mode. A mission proposal composed by
two twin satellites in L band frequency operating in Stag-
gered SAR is Tandem-L. The goal of the mission is to
monitor the Earth surface such as soil, ice, forest and
ocean currents for a wide range of different applications
[1]. Each of the two SAR sensors includes a 15 meter
deployable reflector which, together with a digital beam-
forming phased array, allows the implementation of the so
called SCan-On-REceive (SCORE) mode [2]. This will
provide to the scientific community high resolution (7 m)
wide swath (350 km) SAR products, being able to cover
the entire globe roughly two times per week. According
to the Staggered SAR principle [14], at each range posi-
tion there will be some missing azimuth samples in the
raw SAR data, due to the intrinsic design of the acquisi-
tion. Therefore, this detail must be taken into account in
the design stage of data volume reduction strategies. With
such acquisition capabilities, the handling of the data vol-
ume is challenging for both the onboard storage and the
downlink capabilities. By exploiting state-of-the-art tech-
niques such as the Block Adaptive Quantization [3], the
amount of onboard data to be transmitted to Earth would be
almost twice the available downlink capacity for the mis-
sion, which is 8 Terabytes/day for Tandem-L. A solution to
this problem has been presented in [10], where a best linear
unbiased interpolator has been applied together with an on-

board azimuth filtering, implemented in order to reduce the
data rate by up to 50% for the considered case. Unfortu-
nately, such a technique, although very powerful, requires
a high number of range lines to be stored on board before
performing the filtering, reaching the limit of the hardware
capabilities of the system [4].
Predictive quantization has been known in the signal pro-
cessing literature for decades, and was originally imple-
mented for speech coding [5]. In this paper predictive cod-
ing has been is investigated for data volume reduction in
the context of Staggered SAR systems, due to its low com-
plexity and memory requirements. Starting from Predic-
tive BAQ (PBAQ) [12], a more challenging application of
predictive coding is presented (DP-BAQ), where the main
focus relies on performance optimization. Moreover, we
also propose a Non-Causal Predictive BAQ, aiming at com-
pressing the SAR raw data in a simple and effective way,
only at the cost of a considerable increase of the system
complexity in the decoding phase. Since the computational
power available on ground consists of high-end CPUs, this
solution does not represent a limitation. The idea to in-
clude the non-causality in the encoding system allows, at
least from a theoretical point of view, for doubling the per-
formance of DP-BAQ. The paper is structured as follows:
Section 2 provides an overview on SAR raw data quanti-
zation. Section 3 describes the Dynamic Predictive Block
Adaptive Quantizer (DP-BAQ) together with its mathemat-
ical formulation, while in Section 4 the Non-Causal Predic-
tive Block Adaptive Quantizer (NC-PBAQ) is defined. The
results of Monte Carlo simulations are reported in Section
5 while conclusions and outlook are drawn in Section 6.



2 SAR Raw Data Quantization:
Background

Onboard SAR raw data consists of a complex matrix where
the value of each pixel represents the coherent backscat-
ter radar power from targets illuminated within the antenna
beamwidth. Due to the low correlation of the raw data ma-
trix samples, onboard data compression is a highly chal-
lenging topic, since the available memory and the down-
link capabilities are limited. Operative SAR systems such
as TerraSAR-X and TanDEM-X are equipped with a Block
Adaptive Quantizer (BAQ). It is a quantization scheme
which allows for a fair trade-off between SAR products
quality and resulting volume of data [3], [7]. BAQ groups
a number of samples within blocks and adapts the deci-
sion levels of the quantizer to each block statistics [3], [8].
The introduced complexity of this technique is rather low,
featuring a considerable advantage in the trade off with en-
coding performance. The typical implementation of the
BAQ is through a Cartesian quantizer, thus treating the In-
phase (I) and Quadrature (Q) components of the signal as
independent ones during the encoding procedure. This as-
sumption is theoretically correct since the two components
of the raw data samples are statistically independent Gaus-
sian variables.

3 Dynamic Predictive Block Adap-
tive Quantization (DP-BAQ)

The application of predictive coding for SAR raw data
compression has been firstm introduced in [11], and then
further elaborate in [12][13]. It consists of a linear pre-
diction along the azimuth domain, assuming a certain gain
if specific assumptions apply. Linear Predictive Coding
(LPC) [5] is considered along the azimuth direction. The
key feature of this technique is the encoding of the differ-
ence between the data and its prediction. This allows a
reduction of the dynamic range of the signal, thus a lower
amount of encoding bits. The prediction consists of a linear
combination of the N preceding samples, where N defines
the order of the predictor. Being s̃[n] the prediction of s[n]
from N previous samples, it can be expressed as

s̃[n] =
N

∑
i=1

βi (s[n− i]+ e[n− i]) , (1)

where βi represents the weight assigned to every i-th pre-
vious sample and e[n− i] is the quantization error for the
i-th previous sample. Considering (1) as the prediction of
one single azimuth sample, the encoded signal will be the
difference between the actual sample value s[n] and its pre-
diction

sd[n] = s[n]− s̃[n]. (2)

The weights βi are computed during the system design
stage from the autocorrelation function of the signal. The
formulation seeks for the best set of weights which mini-
mizes the prediction error. The variance of the difference
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Figure 1 Predictive quantization encoding (a) and decod-
ing (b) flow schemes.
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It is possible to derive the set of weights that minimizes the
MSE [5]

βββ ===CCC−1
ρρρ (4)

where βββ is the unknown weights vector, CCC is the correla-
tion matrix between the N previous samples used for the
prediction, and ρρρ is the vector of the correlation between
the N previous samples and the sample to be predicted.

3.1 Theoretical Gain
The coding gain GP in LPC is known as the ratio between
the variance of the input signal s and the one of the predic-
tion error sd

GP =
σ2

s

σ2
d
. (5)

This means that a more limited signal dynamic after pre-
dictive coding leads to a higher gain [6]. Since SAR raw
data are approximated by a zero-mean circular Gaussian
process, it is possible to express the difference between
N Gaussian variables (see (1)) still as a Gaussian random
variable. This allows one to mathematically express the ex-
pected gain by estimating the standard deviation of the dif-
ferential variable σ2

d for a given set of system constraints.
In Figure 3, the theoretical gain curves are plotted as a
function of the pulse repetition frequency (PRF). For the
mean PRF of Tandem-L the expected gain is about 5 dB
for the 4th order predictor.

3.2 Implementation
BAQ operates in blocks of samples within the same range
line. For the case of TerraSAR-X and TanDEM-X one
block consists of 128 samples. The fusion between LPC
and BAQ is made by considering the prediction process of
an entire range line and then applying BAQ to it. A block



length of 128 samples has been considered, and the encod-
ing scheme depicted in Figure 1(a) shows how the BAQ
operates in the process. Figure 1(b) shows the block dia-
grams for the decoding operation [6]. The whole process is
known to be coherent as it takes into account the quantized
difference for the prediction both in encoding and decod-
ing, making possible the exact same prediction system both
on board and on ground.

3.3 Gap mitigation
The techniques we are presenting are applicable to future
SAR systems featuring a suitable constraint (e.g. sufficient
sampling in azimuth). One possible system is the Stag-
gered SAR, which brings also as an issue blind ranges [14].
As introduced in [12], the location of blind ranges along
the azimuth domain is known at system design level. This
allows one to adapt the prediction process as a function of
the gap positions. We introduce here an optimised config-
uration named “Dynamic”. Our analysis showed signifi-
cant losses in the presence of gaps if we consider a pure
4th order predictor. Thus, we propose to encode the sub-
sequent sample of a gap with a direct BAQ (no prediction
is in charge), then perform a 1st order prediction for the
following sample and so on. The increase of the predic-
tion order at each sample is done till the designed predic-
tion order for the system is reached. Moreover, in order
to recover the missing information in the blind range po-
sition, we also suggest to increase the bit rate before and
after the gap position for having a finer representation to
be exploited during the interpolation process. The latter is
performed on-ground before the focusing operation [12].
Given a bit rate of Nb bits/sample, we exploit the remain-
ing Nb, which are not used for the gap, for the adjacent
samples. The complete scheme of the DP-BAQ is depicted
in Figure 2, showing both the variable bit rate and the dy-
namic prediction process. This technique features a signal
representation performance in vicinity of the gaps in the
interpolated data comparable to the other gap-free portions
of the signal.

4 Potentials for Non-Causal Predic-
tive Block-Adaptive Quantization

In the previous section we have considered a prediction
process which takes into account the previous samples to
predict the subsequent one. This formulation is known in
literature as “causal” system. Looking for an even more
efficient system, it is possible to consider a “Non-Causal”
prediction process, by performing a prediction on the basis
of past and future (subsequent) samples [15]. We will refer
to this specific technique as Non-Causal Predictive Block
Adaptive Quantization (NC-PBAQ). For this case, the pre-
diction is then described as

s̃[n] =
N/2

∑
i=1

βi (s[n+ i]+ e[n+ i])+

N/2

∑
i=1

βi (s[n− i]+ e[n− i]) .

(6)

The encoded sample is still expressed as

sd[n] = s[n]− s̃[n]. (7)

We will now focus on the encoding and decoding formu-
lation of the 2nd order non-causal predictor (exploiting one
previous and one subsequent sample). Equation (6) and (7)
can also be expressed in matrix notation:

EEEsss = ddd, (8)

where EEE is the encoding matrix containing the weights βi,
sss is the samples vector and ddd is the vector of the prediction
error. It is worth noting that the quantization error has been
neglected as the reconstructed samples are not available at
the encoding phase. By inverting the upper formula we can
derive the decoding operation, expressed as:

EEE−1ddd = x̄xx, (9)

where x̄xx denotes the reconstructed samples vector. As the
encoding matrix is invertible since it is a banded Toeplitz
matrix featuring N sub-diagonals, the encoded signal can
be correctly reconstructed provided that no addition error
sources are considered. If we include the quantization in
the encoding process, as this represents the actual case for
SAR raw data, the decoded signal does not match anymore
with the encoded one due to accumulation errors intro-
duced in the quantization process. This is mainly due to the
fact that the closed loop operation depicted in Figure 1(a),
which allows to perform the prediction with reconstructed
samples (available on ground), is not implementable in a
straightforward manner. Moreover, the decoding matrix
EEE−1 does not feature any zeros, thus the quantization er-
ror of each sample is linearly combined in the prediction
of all samples, causing more noise in the decoding oper-
ation. Preliminary investigations have shown that the ma-
trix inversion itself gets more computational demanding as
the sample vector increases. In our analysis we observed
that this leads to an encoding result which does not sat-
isfy the theoretical expectations. The assumption that the
raw data samples can be represented by a zero-mean cir-
cular Gaussian distribution still holds, thus one can derive
the dynamic reduction σd and the resulting gain GNC in the
same way as done for the causal encoding scheme for a
given set of system constraints.

5 Results

As briefly introduced in Section 1, we take as reference
system Tandem-L in order to fix a scenario in order to vali-
date our method. Table 1 summarizes the main parameters
of the considered system. For this configuration, a 4-bit



Figure 2 (Left) Typical distribution of the gaps (black rectangles) within a staggered SAR acquisition. Each blind
range typically extends by hundreds of samples in the range direction but only one sample in the azimuth direction.
(Right) Zoom-in of a raw data matrix with gaps. Each cell corresponds to a complex raw data sample. The proposed
method is implemented by varying the bit rate allocation (indicated in each box, where Nb represents the mean bit rate
in bits/sample) together with a dynamic prediction order (highlighted by colors and shown on the top of the figure) in
the gap vicinity.

Table 1 Tandem-L system parameters.

Parameter Value

Orbit altitude 745 km
Horizontal baselines 800 m . . . 20 km

Inclination 98.4◦

Revisit time 16 days
Frequency L band

Range bandwidth up to 84 MHz
Azimuth resolution 7 m

Swath width 175 km . . . 350 km
Downlink capacity ∼8 Terabytes/day

Look direction left/right
Reflector diameter 15 m
Lifetime of mission 10 years

Polarization single/dual/quad

BAQ is required for guaranteeing a low interferometric co-
herence loss of about 1% [9]. This constraint is directly
related to the quantization errors themselves, as an error in
the discretization of the samples is associated to an error
in the phase of the focused image. The correlation intro-
duced by the antenna pattern is enough to implement such
a technique, as an oversampling is necessary due to the op-
eration in the Staggered SAR mode [14]. The Tandem-L
mission features a reflector antenna (see Table (1)), but in
this paper an approximation to a planar array with uniform
aperture and azimuth length L=10 m has been considered,
which allows for the description of the antenna pattern with
a standard sinc function. In Figure 3 we report the expected
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Figure 3 Theoretical gain in dB for Causal and Non-
Causal predictive coders as a function of the PRF. The
dotted line refers to the PRF required for Tandem-L.

theoretical gain as a function of the PRF for both DP-BAQ
and NC-PBAQ. In order to verify the implementation of the
causal and non-causal encoding techniques, we have per-
formed several Monte-Carlo simulations. As introduced in
Section 4, the practical implementation of the NC-PBAQ
affected by quantization noise brings an accumulation of
error leading to mismatch between the encoded and de-
coded signal. Therefore, in this section we will focus on
the DP-BAQ encoding capabilities. The quantitazion error



Figure 4 Signal-to-Quantization Noise Ratio of DP-BAQ
at different orders of prediction as a function of the bit
rate.

can be expressed as q = s− sq, thus the difference between
the uncompressed signal and its quantized version sq. The
effective data reduction capability must be verified at the
end of the SAR processing chain, i.e., after the focusing
operation. The performance parameter which assess the
encoding quality is the Signal-to-Quantization Noise Ratio
(SQNR), defined as

SQNR =
∑

I
i=1|xi|2

∑
I
i=1|qi|2

, (10)

where I represents the total number of azimuth samples,
x is the received signal before the quantizer, and q is the
quantization error. In Figure 4 the SQNR for the DP-BAQ
is depicted for different bit rates as well as for the state of
the art BAQ. One can notice that the performance for the
BAQ at 4 bps (∼22 dB) is approximately equivalent to the
4th order DP-BAQ at 3 bps. Hence, a∼25% data reduction
is observed for the considered system constraints.
It is possible to define the data reduction for the 4
bit/sample case as:

DR% =
GdB

G1-bit
· 100

4
, (11)

where GdB and G1-bit represent the gain in dB for a given
encoding technique and the approximated gain for an in-
crease of 1 bit per sample in the encoding (normally around
6 dB), respectively. The factor 100 stands for the percent-
age expression and 4 is the designed bit rate for the state-
of-the-art reference technique (i.e. BAQ). In Figure 5 the
expected data reduction is reported as a function of the PRF
for all the proposed techniques. We have considered for the
GdB factor the theoretical curves depicted in Figure 3.

6 Discussion and Conclusions

In this paper novel raw data encoding techniques for SAR
systems have been investigated. The goal of the paper is
to present encoding systems featuring satisfying perfor-
mance, together with low computational burden and on-
board memory consumption. The expected theoretically
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Figure 5 Expected data reduction performance as func-
tion of the PRF. The considered reference bit rate is 4 bps.

derived performance of the first technique (DP-BAQ) has
been verified through Monte-Carlo simulations, showing
a data reduction capability of 20-25% with respect to the
state-of-the-art technique (BAQ). The proposed method re-
quires a linear combination of previous samples (up to 4)
and pre-computed weights. Moreover, for the investigated
case of Tandem-L, the required memory consumption is
only∼25% of the technique proposed in [10] (4 range lines
to perform prediction instead of around 16 to perform az-
imuth filtering). Another advantage with respect to [10] is
the availability of the complete SAR raw data on ground,
leaving room for further investigations and post-processing
algorithms. However, the DP-BAQ is still not compara-
ble in terms of data reduction capabilities with [10], but it
is an interesting alternative thanks to its low complexity,
which is a desired feature in satellite systems. Potentials
for a new technique exploiting Non-Causal prediction had
been introduced from a theoretical point of view, show-
ing the capability to double the performance of DP-BAQ.
Nevertheless, the implementation of the encoder and the
decoder through matrix inversion leads to a higher compu-
tational complexity and, at the current state, unsatisfying
results. Future work will focus on a coherent and more
complete formulation of the non-causal problem aiming
at finding a suitable practical realization and verification
trough Monte-Carlo simulations.
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