This project has received funding from the European Union's Horizon 2020 research and innovation programme.
MAVEN
« Managing Automated Vehicles Enhances Network »

European H2020-MG-2014-2015 project
• MG-3.6a-2015 - Safe and connected automation in road transport
• Period: 01-09-2016 ~ 31-08-2019
• Budget: € 3.149.661,-

Focus:
• Platooning on arterial roads in urban areas
 → maximises throughput and efficiency of urban road networks.
 → Esp. at signalized intersections
• Hierarchical Traffic Management
• Traffic light phases negotiated with the demands of the traffic participants (e.g. platoons)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
Objectives

1) Develop a **generic multi-level system** for the **guidance of highly automated vehicles**, applied to dynamic platoons at signalized intersections and signalized corridors.

2) Contribute to the **development of C-ITS communication standards**, in particular message sets for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) interactions to support vehicle platooning and negotiation and scheduling algorithms.

3) Develop and integrate **ADAS techniques to prevent and/or mitigate dangerous situations** taking into account Vulnerable Road Users (VRUs, e.g. pedestrians and/or cyclists).

4) **Develop, test, demonstrate and evaluate the MAVEN system** for signalized intersections and signalized corridors.

5) **Produce a roadmap** for the introduction of MAVEN-type systems.
Objective #1:
Development of a generic multi-level system for the guidance of highly automated vehicles.

- Current speed
- Position
- Planned direction
- Greenwave
- Routing

This project has received funding from the European Union’s Horizon 2020 research and innovation programme.
Objective #2: Contribution to the development of C-ITS communication standards

- Backward compatible extension of CAM message (on Day1 SCH0)
 - For 12V interaction (explicit probing)
 - Includes info needed by TLC (platoon/vehicles intentions + features)
 - Includes feedbacks on advices compliance
 - For platooning initialization
 - Carries info for CAVs to detect opportunities for building/joining a platoon (e.g. Based on same expected route, desired speed, etc)

- Shorter CAM tx on a parallel SCH with higher frequency [10-30Hz]
 - For platoon control (e.g. Planned path, position, speed, acceleration, heading)
 - For platoon management (e.g. joining, brake-up, termination flags)

- SPAT and MAP extensions
 - Lane Specific GLOSA

- Collective Perception Message
 - Vehicles and infrastructure share sensor and detected object data

- Lane Advice Message
 - Vehicles get individual lane advice information

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
Objective #3:
ADAS techniques to prevent and/or mitigate dangerous situations.
Objective #4:
Develop, test, demonstrate and evaluate the MAVEN system.

- Platoon Logic Development
- Simulation of
 - Platoons (forming, breaking...)
 - Lane-based queue length estimation
 - Agent-Aware GLOSA (AGLOSA)
 - Routing algorithms
 - Multi-Intersection Optimization

This project has received funding from the European Union's Horizon 2020 research and innovation programme
Objective #4:
Develop, test, demonstrate and evaluate the MAVEN system.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme.
Objective #5: Roadmap for the introduction of MAVEN-type systems

- Survey with 209 respondents
- SUMO Simulations of Braunschweig, Helmond and Prague
- Real world trials with questionnaires
- Road authority & City interviews

Transition Roadmap & Whitepaper “Management of Automated Vehicles in a Smart City Environment”

➡️ http://maven-its.eu/

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
Some brief results...

- People have high expectations on the positive impact of automated vehicles (AVs)
 - Over 80% of the respondents believe that CAVs will decrease the number of traffic accidents
 - About 70% of the respondents expect improvements in traffic congestions.
 - Most customers would pay a bit extra, up to 5000€ for a car with automated features.
- Proper integration of AVs into a road infrastructure has clear positive effects on
 - Emissions, Travel time, Traffic flow harmonization, Safety and many others
- Already lower levels of penetration influence positively the travel experiences
 - 20% penetration (Effect of Speed change advice and Green wave optimization)
 - - 17,3% delays
 - - 10,9% queue length
 - - 0,4% CO2
- Different algorithms can aim at contradictory objective functions, so they must be combined carefully
 - For example, minimizing delay does not necessarily lead to most harmonized traffic flow.
- The transition phase however plays an important role
 - The transition period (i.e. lower penetration rate of AVs) will strongly influence the impact
 - Other impacts of AVs depend on policies that are enabled by automation (car sharing, electro-mobility, and others)
Thanks for listening!

Julian Schindler
German Aerospace Center (DLR)

julian.schindler@dlr.de
maven-its.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme.