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The dynamics of a dual-swirl gas turbine model combustor (GTMC) at atmospheric 

pressure close to lean low-out (LBO) are studied using laser diagnostic and optical 

measurements with high spatio-temporal resolution. When operated close to the LBO, the 

GTMC exhibits an intermittent state, and frequently partial or global extinction of the flame 

followed by a re-ignition of the flame are observed. In the present study, the GTMC was 

operated using prevaporized ethanol as fuel. Both air and fuel as well as all supply lines were 

preheated to 100°C in order to avoid any fuel condensation within the supply lines or inside 

the fuel plenum. The flow field was measured with stereoscopic particle image velocimetry 

(S-PIV), the distribution of the OH radical within the combustion chamber was measured 

using planar laser-induced fluorescence (OH PLIF) and the overall flame shape and flame 

dynamics was imaged using OH* chemiluminescence (OH* CL). All optical and laser-based 

measurements performed at a sustained repetition rate of 10 kHz. The time scales of the 

flame extinction and re-ignition as well as the frequency of the extinction events were 

deduced from time series of the integrated OH* CL signal. Conditionally averaged flow 

fields of the reacting and extinguished state were used to derive information about the re-

ignition process, which is discussed using time series of OH PLIF and OH* CL. 

 

Nomenclature 

L = air split ratio 

𝑚̇ = mass flow 

Pth = thermal power 

φ = equivalence ratio 

ξ = mixture fraction 

CL = Chemiluminescence 

GT = gas turbine 

GTMC = gas turbine model combustor 

IRZ = inner recirculation zone 

ISL = inner shear layer 

LBO = Lean Blow-Out 

ORZ = outer recirculation zone 

PSD = Power Spectral Density 

PVC = precessing vortex core 

PLIF = Planar Laser-Induced Fluorescence 

S-PIV = Stereoscopic Particle Image Velocimetry 
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dt = pulse separation time 

( )i = inner 

( )o = outer 

( )r = reacting 

( )nr = non-reacting 

I. Introduction 

lternative aviation fuels are becoming of increased importance due to the commitment of the airline industry to 

achieve CO2 neutral growth from 2020 onwards [1], and due to the finite sources of crude oil based kerosene. 

Those fuels can be produced from a variety of sources, such as coal, natural gas, biomass or as power-based fuels 

(often termed “e-fuels”). The corresponding production pathways offer control of the chemical composition of the 

fuel, allowing the optimization of the physical, chemical and combustion properties. Depending on the feedstock 

and process parameters, alternative fuels can contain hydrocarbons of significantly different types and chain lengths 

[2]. For a detailed understanding of the combustion behavior of different fuels, knowledge of the combustion 

properties of the single fuel components is of great importance [3-5]. However, the influence of the chemical 

composition of the fuel on combustion performance is not fully understood [6]. 

In technical applications, the combustion of liquid fuels is governed by four main processes: atomization, 

vaporization, turbulent mixing and chemical reaction. These processes occur simultaneously, have strong 

interactions and cannot easily be distinguished. Here, prevaporized liquid fuels have the potential to separate 

physical and chemical processes, allowing studying the combustion properties of different fuels based on their 

chemical properties alone. One important aspect is the lean blow-out (LBO) limit of different fuels [7-9] and hence 

also the dynamics of the lean blow-out process [10-12]. Since this process is highly dynamic and occurs on 

timescales on the order of milliseconds, optical diagnostics with high spatio-temporal resolution are necessary in 

order to fully resolve this phenomenon. 

In recent years, different approaches for online prediction of the LBO were discussed, for example based on 

chemiluminescence sensors [13, 14] or sensors in combination with a chemical reactor network [15]. However, 

prediction of the lean blow-out limit during the design process or for different fuels remains challenging. Thus, the 

LBO has to be determined experimentally. Here, the LBO limit can depend on different parameters, such as the 

swirl number or the sense of a secondary swirl [16-18]. The LBO is also dependent on the reactivity of the flow, and 

can be influenced by the injection of pilot fuel/air [19], or by the preheat temperature [16].  

In the current study, a gas turbine model combustor (GTMC) was adapted and set-up for the study of prevaporized 

single component fuels [20]. Prevaporized ethanol was supplied to the combustor using a direct evaporizer. All 

supply lines and the combustion air were preheated to 100°C in order to avoid fuel condensation within the supply 

lines. Laser-based and optical diagnostics with high spatio-temporal resolution, namely stereoscopic particle image 

velocimetry (S-PIV), OH planar laser-induced fluorescence (OH PLIF) and OH* chemiluminescence (OH* CL) 

were applied at a sustained repetition rate of 10 kHz to measure the flow-field and flame dynamics close to the lean 

blow-out limit. Additionally, pressure fluctuations within the air plenums and within the combustion chamber were 

measured using calibrated microphone probes. Close to the LBO, the flame exhibited an intermittent state, where it 

frequently partial or global extinction, followed by a re-ignition of the flame was observed. The goal of the current 

study is to study the flame dynamics close to the LBO limit and to identify the cause-and-effect chain of the flame 

extinction and re-ignition. 
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II. Experimental 

A. SFB Dual Swirl Burner 

A schematic of the combustor can be seen 

in Figure 1. Details on the geometry can 

be found in the literature [21-23], and only 

a brief overview is provided here. The 

design is based on previously studied 

dual-swirl-burner configurations, but 

features several improvements to the 

boundary conditions. Most importantly, 

the burner features two swirlers with 

separate plenum chambers. Thus, the air 

flow to each plenum can be controlled 

independently, such that the air split ratio 

between the inner and outer nozzle can be 

set exactly. The combustion chamber 

offers very good optical access and it is 

equipped with several ports for pressure 

probes. A nearly identical setup is 

available for liquid fuels [24]. Further, the 

design allows for several identical burners 

to be combined into a combustor array, in 

order to investigate cross-flame 

interactions [25]. Previous studies have 

focused on the feedback mechanism of the 

thermo-acoustic cycle [21], the variations 

of the thermo-chemical state throughout 

the acoustic cycle [22], the influence of 

the air split ratio on the dynamics of a 

precessing vortex core (PVC) [23] and the 

impact of the material temperature on 

thermo-acoustic properties of the burner 

[26]. 

In the current experiments, the combustion dynamics of prevaporized liquid fuel flames (here: ethanol) were 

studied using high speed laser diagnostics. An overview of the operating conditions studied in this paper is shown in 

Table 1.  

 

L 𝑚̇𝑎𝑖𝑟,𝑖 𝑚̇𝑎𝑖𝑟,𝑜 𝑚̇𝑎𝑖𝑟,𝐶2𝐻6𝑂 Pth φglobal 

[-] [g/min] [g/min] [g/min] [kW] [-] 

1.6 154 246 1.09 8.1 0.41 

Table 1. Operating Conditions. 

Fuel was supplied to a direct evaporizer (aSteam DV1) using a mass flow controller (Bronkhorst Mini Coriflow) 

fed by a piston accumulator, which was pressurized using nitrogen. All fuel lines were heated to a temperature of 

Tfuel = 150°C to avoid condensation in the fuel supply. Additionally, the air was preheated to Tair = 100°C using two 

electrical air heaters (Osram Sylvania Threaded Inline) to avoid condensation in the nozzle. The air and fuel 

temperatures were monitored using thermocouples close to the air swirlers and inside the fuel plenum, respectively.  

 

B. High-Speed OH Planar Laser-Induced Fluorescence (HS OH PLIF) 

A schematic of the experimental setup is shown in Figure 2. OH planar laser-induced fluorescence was measured at 

a repetition rate of 10 kHz using a Sirah Credo Dye laser pumped by an Edgewave DPSS pump laser. The frequency 

doubled output of the dye laser was tuned around 283.2 nm to match the Q1(7) transition of OH in the (A-X) 1,0 

band. The laser beam was extended into a light sheet using a two-stage cylindrical telescope and focused into the 

 

Figure 1. Detail of the nozzle and combustion chamber of the SFB 

dual-swirl-burner. 
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test section using a third cylindrical telescope, resulting in a laser sheet of approximately 45 mm height with a 

0.4 mm beam waist. The fluorescence signal in the (1,1) and (1,0) band was collected using a high speed CMOS 

camera (Photron SA5) equipped with a two-stage high speed image intensifier (LaVision HS IRO), a Halle 

f = 64 mm f/2 UV lens and a high transmission (T > 80% at 310 nm) band pass filter. A part of the light sheet was 

coupled into a dye cell containing Rhodamine 6G solved in ethanol to correct for shot-to-shot sheet profile and laser 

energy fluctuations. Fluorescence from the dye cell was imaged using a Photron SA1.1 high-speed CMOS camera 

equipped with a Nikon Nikkor f = 50 mm f/1.4 lens.  

 

C. High Speed Stereoscopic Particle Image Velocimetry (HS S-PIV) 

The three-component velocity field in the measurement plane was acquired with Stereoscopic Particle Image 

Velocimetry (S-PIV) at a repetition rate of 10 kHz. Titanium dioxide (TiO2) particles were added to the flow and 

illuminated with a frequency doubled dual-head Nd:YAG laser (Edgewave) with a pulse energy of 5 mJ at 532 nm 

and a pulse separation time of 20 µs. Mie scattering of the particles was recorded with a pair of high speed CMOS 

cameras (Phantom V1212). The cameras were mounted at an angle of 30° relative to the normal of the laser light 

sheet and equipped with Tokina f = 100 mm macro lenses (set to f/5.6) and band-pass filters (532±5 nm) to suppress 

background luminosity of the flame. A total of 30.000 single shot particle pairs were recorded for each operating 

condition and the velocity fields were calculated from the particle image pairs using a multi-scale cross-correlation 

PIV algorithm (LaVision DaVis 8.3). 

D. OH* Chemiluminescence (CL) 

OH* chemiluminescence was measured simultaneously with the OH PLIF and S-PIV measurements using a Photron 

SA5 high speed CMOS camera equipped with a LaVision HS IRO image intensifier. The intensifier was equipped 

with a Cerco f = 45 mm f/1.8 UV lens and a bandpass filter centered around 310 nm to collect OH* 

chemiluminescence in the (1,0) and (1,1) band. 

E. Acoustic Measurements 

Pressure oscillations in the combustion chamber and in the two air plenums were measured using calibrated 

microphone probes (Brüel & Kjær, type 4939), with a sampling rate of 100 kHz. The microphone probes were 

calibrated for frequencies up to 10.000 Hz. The pressure power spectrum at each location was computed by slicing 

the long-duration pressure signal into one-second segments, and calculating the power spectrum for each segment. 

Afterwards, the spectra of the segments were averaged, resulting in a frequency resolution of 1 Hz. No additional 

filtering or smoothing of the raw signals or the frequency spectra was performed. Acoustic modes leading to an 

asymmetric pressure distribution in the combustion chamber, such as transversal thermo-acoustic modes or 

asymmetric flow instabilities like precessing vortex cores (PVCs) could be detected by calculating the frequency 

spectrum of the difference signal of two microphone probes that were mounted on opposite sides of the combustion 

chamber, but at the same axial position. 

  

 
 

Figure 2. Experimental Setup. a) top view b) front view. 
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III. Results and Discussion 

Close to the lean blow-out (LBO) limit, the flame exhibits a intermittent state, where it frequently lifts off and 

becomes partially or globally extinguished. After a short time span of a few hundred microseconds, the flame re-

ignites and a “stable” flame is re-established. First, a brief overview of the flame during the stable state is given. 

Figure 3 shows the mean OH* CL signal (on the left-hand-side) and the standard deviation (on the right-hand-side) 

of the OH* CL signal. 

 
The flame exhibits a V-shape and is attached to the nozzle, the main flame zone is approximately 15 mm 

downstream of the fuel nozzle, the flame brush extends downstream to z = 35 mm. The main zones of the heat 

release fluctuations are in the inner shear layer between the inflow and the recirculation zone. In contrast to methane 

flames in the same combustor (without preheated air) [23], where the flame brush extends throughout the complete 

combustion chamber when approaching the LBO, for prevaporized ethanol (with preheated air), the flame becomes 

more compact with decreasing equivalence ratio until it extinguishes completely.  

Figure 4 shows the mean flow field during the stable state (left) and when the flame is extinct (right). 

 
Both flow fields are typical for enclosed swirl flows, featuring a high velocity inflow region and an inner (IRZ) 

and outer recirculation zone (ORZ). The shape of the flow field is similar for both the reacting and the extinct state 

with a similar apex of the inflow for both flows. However, the velocity magnitudes of the flow fields differ 

significantly. While the reacting state features higher inflow velocities with an axial velocity component of 

approximately uax,r = 20 m/s (at z = 2.5 mm), the axial velocity component of the extinct state at the same location is 

on the order of uax,nr = 15 m/s. In contrast, the backflow in the extinct state is more pronounced with a larger region 

of high negative axial velocities (up to uax,nr = -10 m/s). This larger and more pronounced region of negative axial 

velocities could play an important role in the re-ignition process, as will be discussed below. 

As mentioned above, the flame frequently extinguishes, and, after a short time span of 20 ms to 50 ms, the flame 

re-ignites, and subsequently a “stable” flame establishes. This sequence of events repeats every 100 ms to 200 ms. 

Hence, during the recording sequence of 3 s, approximately 5 global and approximately 10 local extinction events 

 
Figure 3. Mean (left) and standard deviation (right) of the OH* chemiluminescence signal. 

 
Figure 4. Mean flow field of the reacting (left) and extinguished (right) state. Color coded is the total 

velocity and overlaid are the velocity arrows. 
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were observed. A similar behavior was also observed e.g. in gas-fueled GTMCs [10], in pre-vaporized fuel flames 

[27], and in spray flames [28]. 

The process and dynamics of the extinction and re-ignition process are shown in Figure 5. 

 
In Figure 5 a) a time trace of the normalized average OH* CL signal is shown. Frequently, a steep “dip” in the 

signal intensity is observed (marked by the black and grey arrows in Figure 5 a)). Those dips can correspond to 

global extinction events (signal level < 0.1, marked by the black arrows), where the flame is extinct completely and 

is later re-ignited by an ignition event, as will be discussed below. Additionally, partial extinction events are 

observed (signal level < 0.25, marked by the grey arrows), where large regions of the flame become extinct for a 

short period of time. However, in the latter case, a part of the flame persists, such that after a short time span, a 

stable flame is re-established. During the 3 s recording sequence, the flame is extinct (defined as an OH* CL signal 

level < 0.1) for approximately 5% of the time and partially extinct (defined as an OH* CL signal level < 0.25 and 

> 0.1) for approximately 1.9% of the time. Figure 5 b) shows a spectrogram of the average OH* CL signal. No 

dominant frequency is observed for global fluctuations, however the global extinction events can be observed as 

regions in the spectrogram where the PSD is very low for all examined frequencies (marked by the black arrows). 

The partial extinction events are not visible in the spectrogram. 

 
Figure 6 shows the time trace of the OH* CL signal during a global extinction event. Before the extinction event, 

the OH* signal intensity fluctuates around its long-time mean value with a standard deviation of approximately 

25%. At t = 0.7 s, a fast decrease of the CL signal intensity occurs, which lasts for approximately 10 ms, until a 

signal level close to zero is reached, corresponding to a global extinction event. The signal intensity remains < 0.1 

(corresponding to image noise) for approximately 40 ms, followed by a fast increase of the signal level for 5 ms, 

 
Figure 5. a) Time trace of the average OH* CL signal. b) Spectrogram of the average OH* CL signal. 

Global and local extinction events are labeled using black and grey arrows, respectively. 

 

Figure 6. Zoom in on the time trace of the OH* CL signal during a global extinction and re-ignition event. 

a) b) 

global extinction 

partial extinction 

global extinction 
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corresponding to a re-ignition event. Hence, the duration of the re-ignition event is approximately half as long as the 

duration of the extinction event. Subsequently, the signal level increases to nearly twice the long-time mean value. 

This is due to unburnt fuel that accumulated in the combustion chamber during the flame extinction being rapidly 

consumed. After a 10 ms period of strongly increased fuel consumption and OH* CL signal intensity, the flame 

reaches a mean value approximately 20% higher than the long-time mean value, probably also due to unburnt fuel in 

the combustion chamber being consumed. The long-time mean value is reached approximately 250 ms later. 

An overview of the flame dynamics during the extinction process is shown in Figure 7. 

 

 
Here, a time sequence of OH* chemiluminescence and OH PLIF is shown. The time between frames of 0.4 ms, 

corresponding to every fourth frame in the image sequence. As visible from the OH PLIF measurement, the flame 

stabilizes within the inner air nozzle, i.e. the flame root is upstream of the burner exit plane. For the operation with 

gaseous fuels (and without preheating the air) [21], as well as in similar geometries [10], the flame root was found to 

be several millimeters downstream of the burner exit plane. As OH* CL is a line-of-sight integrated measurement 

technique, it is well suited to determine “global” parameters of the flame, such as a lift-off of the flame, or global 

extinction. OH PLIF on the other hand is a 2D-light sheet technique which is more suited to determine cause-and-

effect chains in dynamic flame processes due to the higher spatial resolution. At t = 0.4 ms, a first local extinction 

event can be observed in the OH PLIF image on the left-hand-side of the flame root. The extinct flame region 

subsequently growths in size and is transported downstream. At t = 1.2 ms, the extinction event is partially mended, 

either due to flame propagation, or due to transport of a flame fragment from outside the measurement plane. At 

t = 2.0 ms, an additional extinction event at the flame root can be observed on the r.h.s. of the flame. Shortly after 

that, a large extinction event is observed further downstream of the fuel nozzle on the left hand side. At t = 2.8 ms, 

large regions of the flame are extinct, and shortly after (not shown in the image sequence), the flame is globally 

extinct. Only after extinction of the flame downstream of the burner exit plane, the flame appears to be lifted from 

the burner nozzle for a short period of time until it extinguishes completely. 

  

 
Figure 7. Image sequence of OH* chemiluminescence and OH PLIF during the flame lift-off in an 

intermittent state close to the lean blow-out limit. For a better overview, only every fourth image frame is 

shown, corresponding to a time between the images of 0.4 ms. 

Local extinction on l.h.s

Local extinction on r.h.s

Local extinction downstream

t = 0 ms t = 0.4 ms t = 0.8 ms t = 1.2 ms

t = 1.6 ms t = 2.0 ms t = 2.4 ms t = 2.8 ms
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The following re-ignition event is shown in Figure 8.  

 
In the first frame of the image sequence at t = 0 ms, no OH* CL signal is visible, indicating the absence of flame 

reactions within the combustion chamber. However, the OH PLIF image at the same time reveals hot, OH 

containing gas in the inner recirculation zone. As discussed above, the conditionally averaged flow field for the 

extinguished state showed large regions of negative axial velocities in the IRZ, probably leading to the transport of 

still hot gas upstream towards the inlet plane. Whether the OH PLIF signal corresponds to weak chemical reactions 

or just to high temperatures still occurring in the IRZ cannot be determined with absolute certainty. However, the 

low OH PLIF signal llevel and the absence of an OH* CL signal leads to the conclusion that the flame is completely 

extinguished. At t = 0.4 ms, a small flame fragment is visible in the OH* CL image, corresponding to a re-ignition 

event. In the OH PLIF frame, an increase of signal can also be observed on the r.h.s. of the image at the interface of 

the inflow and the IRZ. This flame fragment subsequently growths in axial and radial direction. At t = 1.2 ms, the 

upstream edge of the flame fragment has propagated into the inner nozzle, and subsequently at t= 2.0 ms a reaction 

can be seen along the inner shear layer on the r.h.s. of the combustor in the OH* CL frame, probably due to flame 

propagation along the ISL. During that time, no continuous OH layer is visible in the OH PLIF. This however could 

be an out-of-plane effect, i.e. reactions occurring outside the measurement plane. At t = 2.0 ms, further flame 

fragments (either auto-ignition, or transport of reacting fluid from outside the measurement plane) can be observed 

in the OH PLIF frame. Shortly afterwards, reactions can also be observed on the l.h.s. of the combustor, and a 

“stable” flame is re-established, which will eventually extinguish again after some hundred microseconds. 

IV. Conclusions and Outlook 

A dual swirl gas turbine model combustor was setup for pre-vaporized liquid fuel flames and studied using high-

speed laser diagnostics. Close to the lean blow-out limit (LBO) the flame exhibited an intermittend state, where it 

frequently extinguished and, after a short time period of several ten microseconds, re-ignited again. Both the flame 

extinction and re-ignition events occurred on a timescale on the order of a few milliseconds. The duration of the re-

ignition event however was approximately half as long as that of the extinction event. The time between the 

individual extinction / re-ignition events was on the order of several hundred milliseconds. After the flame re-

ignited, an increased OH* CL signal level about twice the level of the long-time average was observed. This was 

attributed to the reaction of fuel that accumulated in the combustion chamber during the extinguished state, leading 

to increased reactions and a temporary increased global equivalence ratio within the combustion chamber. 

Immediately before a global extinction event, local flame extinction at the flame root and downstream of the 

flame root were observed. The extinguished regions grew in number and size, until global extincition was observed. 

A comparison of the conditionally averaged flow-fields of the reacting and extinguished states revealed that the 

 
Figure 8. Image sequence of OH* CL and OH PLIF during the flame re-ignition in an intermittent state 

close to the lean blow-out limit. For a better overview, only every fourth image frame is shown, 

corresponding to a time between the images of 0.4 ms. 
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magnitude of the backflow increased when the flame was extinguished, while the velocity magnitude of the inflow 

decreased. Hot, OH containing gas remained present in the inner recirculation zone while the flame was 

extinguisehd. Isolated flame gragments occured in the inner shear layer, and subsequent flame propagation in 

combination with further “ignition events” led to the establishment of a “stable” flame.  
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