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Abstract 

This paper focuses on the uncertainty sources in experimental techniques applied 

for laminar flame speed measurements. The work was motivated due to the 

necessity to develop flexible standard sets of the key experimental parameters and 

descriptors to be included in the machine-readable files of digitalized data 

repositories such as ReSpeTh, PriMe, CloudFlame, etc. Besides identifying and 

making the data findable through the associated parameterized descriptions, 

available information should be interoperable with numerical codes evaluating 

uncertainty of experimental data. These uncertainty boundaries are very important 

for interpreters of the data and for development of statistical methods applied for 
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the kinetic model optimization. On this way, four most common used techniques - 

Heat Flux Method (HFM), Bunsen Flame Method (BFM), Spherical Flame 

Method (SFM) and CounterFlow Method (CFM) were analyzed. The possible 

sources of experimental uncertainties have been investigated using data published 

by different research groups. Respective principles and structures of the 

experimental uncertainty sources for each studied method have been described. 

The uncertainty sources, their parameters and descriptors have been classified and 

systematically summarized in a universal data set to be used in the XML files of 

digitalized data repositories. 

Keywords:  

laminar flame speed; error assessment; model optimization; machine-readable 

files  



1. Introduction 

Laminar flame speed (LFS) is one of the most important characteristics for 

combustion investigation. Accurate measurement and prediction of LFS is important 

for development and validation of kinetic models [1, 2]. The main problem is that the 

different measuring methods exhibit large scatters for results. Moreover, even 

measurements performed with the same method but obtained employing different 

approaches and/or in different laboratories yield different results. In the past decades, 

great attention has been paid to the development of experimental techniques for 

measuring of LFS [3-10] and a number of excellent reviews on LFS measurements 

have been published over the years [10-14]. These reviews summarize remaining 

problems and challenges in the LFS measurements. The source of inaccuracy of LFS 

data, which unfortunately could not be avoided, follows from the equipment, 

experimental procedures, and data processing. Thus, one can classify two groups of 

uncertainty sources in flame speed measurements: equipment or “hardware” 

uncertainties and numerical interpretation of measured data, data processing (software) 

uncertainties. The human factor might be assessed only by the experimentalists 

themselves.   

To establish the numerical methods for objective evaluating the uncertainty of 

measured data, it is necessary to fix the different error sources and evaluate them 

quantitatively. That helps by expanding growth of the amount of experimental data to 

develop the advanced technologies for digitalized collecting data and making them 



findable, interoperable and interpretable (data mining). The machine-readable files 

should content all necessary information for that. In this paper we try to collect it for 

the LFS measurements. Therefore, our aim is not to establish an error assessment 

methodology for any particular measurement system, but to collect all basic 

uncertainty sources, their criteria and parameters and summarize them all together.  

The past decades have seen a renewed improvement in uncertainty quantification and 

error assessment [15-18]. Gas phase reaction experimental database such as NIST 

Chemical Kinetic Database [19], ATcT database [20], ReSpecTh [21], CloudFlame 

[22, 23] and PrIMe [24] increased rapidly. PrIMe [23-25] has received much attention 

as the prototype for ReSpecTh CloudFlame [22, 23] and of the most promising cyber 

systems offering kinetic database platforms, calculations and data analysis tools.  

In the Warehouse, data is stored in form of Extensible Markup Language (XML) files. 

This format and its modifications are mostly used in digital databases and are easily 

compatible with numerical tolls implemented for statistical data analysis [24-28]. The 

main fields, which should be included in such files for data submission, storage and 

analysis are analyzed and described in the presented paper concerning the four most 

common methods for LSF measurement - Heat Flux Method (HFM), Bunsen Flame 

Method (BFM), Spherical Flame Method (SFM) and CounterFlow Method (CFM). 

The section 2 shortly describes these experimental technologies for the determination 

of LFS. The sources of experimental uncertainty for each method are analyzed and 

summarized in the section 3. The summary and conclusions are drawn in the final 



section. Open questions and future investigation are discussed in this section as well. 

We hope this work can promote and initiate the active discussion in kinetic 

community to find an optimal and objective form for presentation of the studied data 

in the digital form. 

2. Experimental methods 

In this part, an overview of four methods for LFS measurement is presented. Since a 

growing body of literature has examined the described experimental methods, only 

brief descriptions will be given here. However, as the numerical interpretation of 

measured data have less attention in then literature, we described those with same 

details.  Details of designs of experimental installations are given in Supplement 1.  

2.1 Bunsen Flame Method 

Bunsen flame method is a traditional method used for laminar flame characteristic 

study [29-31]. A schematic of a Bunsen flame experiment system from He et al. [30] 

is shown in Fig. S1-1.  

In this method, a conical flame under laminar flow condition is generated with a 

Bunsen burner. Once the conical flame has stabilized on the burner, it is then 

evaluated by optical methods such as streak photography or OH chemiluminescence. 

[29]. A distinction can be made between two methods for determining the laminar 

flame velocity [30]. In the first case, it is assumed that the burning velocity is the 

same everywhere on the flame surface. The laminar flame velocity can then be 



calculated using the mass conservation rate: 

𝜌𝑢𝑆𝐿𝐴 =  𝜌𝑢𝑄̇  →  𝑆𝐿  =  
𝑄̇

𝐴
, 

where 𝜌𝑢 is a density of unburned gas mixture; 

𝑄̇ – volume flow of the unburned gas mixture; 

𝑆𝐿 – laminar flame speed; 

𝐴 – a size of the flame surface. 

In order to use this method, an area A is required. This area is determined by 

analyzing the recordings of the flame using various programs (Figure 1). In the Fig. 1, 

the Abel-inverted recording is illustrated. The Abel inversion is a reconstruction of a 

circular, axisymmetric and two-dimensional function based on their mapping. This 

sets 2-D limits of the flames based on the maximum OH emission. 

 

Figure 1. Processing of OH chemiluminescence recording: (a) original recording; (b) 

Abel inverted image; (c) maximum intensified contour after Abel inversion; (d) 

superimposed outlines of the images with / without Abel inversion (adopted from [30]).  

In the second case, the angle of the conical flame is determined and used to calculate 

the flame velocity (Figure 2). The determination of the angle is carried out as in the 



flame surface method by evaluating the recordings of the flame. This method is very 

convenient for straight-sided flames and requires aerodynamically contoured nozzles. 

Here, the speed of the gas mixture at the nozzle exit is assumed to be uniform and the 

laminar flame speed is then calculated:  

cos(
𝜋

2
− 𝛼) =

𝑆𝐿

𝑆𝑢
→ 𝑆𝐿 = 𝑆𝑢 sin(𝛼) 

       

(a)                                         (b) 

Figure 2. Bunsen flame: (a) photography of stoichiometric methane flame at 10 bar 

(DLR, Institute of Combustion Technology, Stuttgart); (b) schematic diagram of the 

conical Bunsen flame.  

2.2 Heat Flux Method  

In 1993, de Goey and coworkers introduced the heat flux method for stabilizing 

adiabatic flat flames and measuring laminar flame speed [3]. Since then many studies 

on this method have been performed [32-34]. The principle of the heat flux method is 

to use the heat flow to determine the flame speed. Error! Reference source not 

found. shows a schematic of a flat flame burner and its top view. The burner consists 

𝑺𝑳 

𝜶 

𝑺𝒖 



of a burner head, a burner plate and a plenum chamber [32]. The gas mixture absorbs 

heat from the burner plate, causing an increase of the local burning rate of the 

adiabatic flame as compared to the local burning rate of non-preheated gas mixture at 

the exit of the burner plate. That causes thereby a stabilizing of the flame: if the 

velocity of the unburned gas mixture, Su, equal to the laminar flame velocity, SL, 

(Su=SL), then the stabilized state is reached. In this state, the heat loss of the flame qf 

equals the heat gain of the gas mixture qg, (qf=qg), which causes the net heat flux 

∆q(f-g) is equal zero. 

From this result the relation with the laminar flame speed can be deduced: 

𝜆𝑓
𝑇𝑎𝑑−𝑇𝑖𝑛

𝛿𝑟𝑧
= 𝑚̇𝑐𝑝(𝑇𝑖𝑛 − 𝑇0) =  𝜌𝑢𝑆𝑢𝑐𝑝(𝑇𝑖𝑛 − 𝑇0), 

𝑆𝑢 = 𝜆𝑓
𝑇𝑎𝑑−𝑇𝑖𝑛

𝛿𝑟𝑧𝜌𝑢𝑐𝑝(𝑇𝑖𝑛−𝑇0)
=  𝑆𝐿, 

where 𝛿𝑟𝑧 -width of the reaction zone; 𝛿𝑣𝑧-width of preheating zone; 𝜆𝑓-thermal 

conductivity coefficient in the reaction zone; 𝑇𝑎𝑑  -adiabatic temperature of the 

flame; 𝑇𝑖𝑛-temperature at the boundary between the reaction and preheating zone; 

𝑇0-initial temperature or surface temperature of the burner plate; 𝑚̇-mass flow of the 

unburned gas mixture; 𝜌𝑢-density of unburned gas mixture; 𝑐𝑝-specific heat capacity 

of the gas mixture. 

In order to stabilize an adiabatic flame, a heating jacket with hot water to heat up the 

unburnt gas flowing through the burner plate, which can compensate the heat loss of 

the flame [3]. Thermocouples are attached on the burner plate radially to measure the 



upstream surface temperature of the burner plate, as shown in Figure 3.  

 

(a) 

(b) 

 

(c) 

Figure 3. (b) A schematic of a flat flame burner and its top view (b) Flat flame burner 

and the 𝑻𝒑(𝒓) measurements points; (c) typical 𝑻𝒑(𝒓)vor different 𝑺𝒖 

The objective here is to determine the inflow velocity at which the temperature profile 

over the entire surface of the burner plate is constant and corresponds to the 

temperature in the middle of the burner plate, where no heat losses occur. The 

measurements needed to determine are the temperature profile through the surface, 

𝑇𝑝(𝑟), and velocity of unburned gas mixture, 𝑆𝑢. The measured temperature profile 

through the surface of the burner plate was analytically explained by De Goey et al. 
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[3]. Later, K. Bosschaart and L. De Goey [34, 35] simplified this temperature curve to 

the following equation: 

𝑇𝑝(𝑟) = 𝑇𝑝(0) −
∆𝑞𝑓−𝑔

4𝜆𝑝𝑏
𝑟2 →    𝑇𝑝(𝑟) = 𝑇𝑝(0) + 𝛾𝑟2 

where 𝛾 = −
∆𝑞𝑓−𝑔

4𝜆𝑝𝑏
  is a parabolic coefficient and 𝑇𝑝(𝑟) - radial temperature profile 

of the burner plate; 𝑇𝑝(0)-temperature in the middle of the burner plate; 𝑏-width of 

the burner plate; 𝜆𝑝-thermal conductivity of the burner plate in the radial direction; 

∆𝑞𝑓−𝑔 -net heat flow. The adiabatic state is reached when the temperature profile is 

even or constant 𝑇𝑝(𝑟𝑖) = 𝑇𝑝(0). This is the case when γ = 0 and thus, ∆𝑞𝑓−𝑔 = 0, 

which describes the state where the heat losses in the burner plate are zero and can be 

neglected. The speed of the gas mixture 𝑆𝑢 is varied and the respective radial 

temperature profiles are measured. Thereafter, the respective temperature profile is 

adjusted to the parabolic curve using the least squares method, with 𝛾𝑖  as the 

parabolic coefficient, Fig. 3b. The individual 𝛾𝑖 are adapted to a function 𝛾(𝑆𝑢) 

using the method of least squares and then plotted as a function of corresponding 

incident velocities, Figure 4.  



 

Figure 4. An example of graphic for determining γ = 0 and thus Su = SL 

It can be seen from the Fig. 4 that the velocity 𝑆𝑢 equals 𝛾 = 0 (with 𝑆𝑢 = 35.4 

cm/s) and thus one also finds the laminar flame velocity𝑆𝐿. 

2.3 Spherical Flame Method 

In the spherically symmetric flame, the radial propagation velocity of the spherically 

symmetric flame front is measured to derive the laminar flame velocity. Unlike other 

methods, which operational ranges are limited to a few atmospheres due to flame 

stability problems; this technic is applicable at elevated pressures and temperatures. 

Two methods can be used to measure flame speed in this methodology: recording the 

flame front-cconstant pressure method [36, 37] and recording the pressure rise history 

constant volume [8, 9, 38] method. 
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Figure 5. Flame front propagation in the combustion chamber (adopted from [39]). 

In this method, the premixed fuel and air mixture are filled in the chamber with 

known initial temperature and pressure conditions. The mixture is centrally ignited 

and the propagation of the spherical flame front can be recorded with a high-speed 

camera, as shown in Fig [39]. Before the ignition, a vacuum state is established in the 

combustion chamber by a pumping system. The flame front to be examined is subject 

to a stretch or curvature. First, the radial propagation velocity of the flame, 𝑆𝑛, is 

calculated following 𝑆𝑛 =
𝑑𝑟

𝑑𝑡
. The propagation velocity of the unstretched flame, 𝑆𝑏, is 

then obtained from Markstein length and stretch rate. After determining𝑆𝑏, the laminar 

flame velocity, 𝑆𝐿,𝑢, with respect to unburned mixture, is calculated from the following 

continuity equation: 

𝜌𝑢𝑆𝐿,𝑢 = 𝜌𝑏𝑆𝑏  →  𝑆𝐿,𝑢 = 𝑆𝑏

𝜌𝑏

𝜌𝑢
 , 

where 𝜌𝑏 and 𝜌𝑢 are the densities of the burned or unburned gas mixture. 



2.4 Counterflow Flame Method 

         

(a)                (b) 

Figure 6. Counterflow flame: a) image b) schematic [12]. 

As described in [5, 40-45], the basic principle of this method is to create a plane of 

stagnation by directing two identical gas mixture streams against each other. Ignition 

creates two flames, one on each side of the plane, as shown in Fig. 6. The objective 

here is to stabilize a flat as possible one-dimensional flame, which is necessary to 

investigate the structure, stability and extinction of pre-mixed and non-premixed 

flames [46-48]. 

The counterflow flames have a stretch effect, it makes the velocity vary with the 

nozzle radius [49, 50]. The scale of stretch depends on the ratio of the nozzle distance 

to the nozzle diameter.  Therefore, in this method, the axial velocities, 𝑆𝑢,𝑎𝑥 , 

measured by Digital Particle Image Velocimetry (DPIV) technology as a function of 

the distance from the nozzle exit and the associated scale rates, K, are used to 

determine the laminar flame velocities, Fig. 7, [12, 51]. The minimum of the 



measured axial velocity directly in front of the flame front is defined as the reference 

flame velocity, 𝑆𝑢,𝑟𝑒𝑓, and is plotted as a function of the associated scale rates defined 

as the slope. The ascertain data is then extrapolated either linearly or non-linearly to 

determine the strain-free reference flame velocity for K = 0, which is defined as the 

laminar flame velocity. The difference between linear and non-linear extrapolation is 

quite large, as the linear method tends to overestimate the laminar flame velocity.  

 

Figure 7.  Line: Temperature profile; Symbol: axial velocity profile (counterflow) 

(adopted from [6]) 

3. Uncertainty Sources Analysis 

How it was be already noted, the systematical uncertainty of LFS measurements 

follow from factors related to the experimental design (“hardware”) and procedure 

(“software”). In this part, the section 3.1 lists the uncertainty sources shared by four 

studied methods. Section 3.2-3.5 analyzes the characteristics that are related to each 

individual analyzed method of the LFS determination. 



3.1 Common Uncertainty Sources 

Some systematical uncertainty sources related to manufacture, experimental condition 

deviations, measurement facilities, premixed mixture preparation, heat loss, etc. can 

be assumed as common for the studied methods. Unfortunately, we could not find the 

exact quantitative evaluations of these errors in the literature. The different 

estimations of individual factors were done in some studies [3, 12, 37, 49, 52-58]. The 

uncertainty boundaries for experimental devices are mostly given by manufacturers. 

The inaccuracy of thermocouple, pressure sensor and mass flow controller can be 

directly evaluated from recommendations of manufacturers. It is assumed that there is 

no independent (re)calibration. This characteristic can be replaced if a calibration is 

carried out. It is useful to note, that the calibration of the measuring instruments must 

be replicated with certain time intervals to obtain over time deviations. 

The specific material properties of the burner may can cause to inaccuracy in the 

LFS measuring [59, 60] through unsmooth surface of the burner plate. It may have 

active sites with bound radicals, which can react with the fuel. These centers can also 

operate as catalysts, which can accelerate the reaction. This uncertainty source is 

considered to contribute 0.2% to the total uncertainty of LFS.  

The uncertainty of the mixture preparation can follow from the composition of air, 

specific properties of the fuel and the premixed mixture stoichiometry [61, 62]. There 

are three main sources of the air: compressed atmospheric air, factory made premixed 

O2/N2 gas in cylinders and O2/N2 mixture produced during the experiment. The 

https://dict.leo.org/englisch-deutsch/stoichiometry


inaccuracy of the dilution ratio is considered as 0.2%. The impurity in liquid fuel can 

result in inaccuracies of equivalence ratio. Some fuels leave vestiges in the evaporator 

or in the line, which may have unknown chemical reactions and change the 

composition of the fuel. 

The chemical and physical properties of fuel influence the measurements 

uncertainties through possible reactions with devices and phase change. If the fuel is 

CO, the interaction of CO and the material of the gas cylinder wall can produce nickel 

carbonyl or iron carbonyl [63, 64]. Considering that the flowing oscillation can lead to 

undesired changes in equivalence ratio and liquid fuels face a stronger oscillation than 

gaseous fuels due to the difference of supply system, there is a higher inaccuracy for 

liquid fuels than gaseous fuels, which are 0.5% and 0.2% for liquid and gaseous fuels 

respectively [61, 62]. If the fuel is liquid, a heating tube will be used to prevent the 

condensation of the vaporized mixture on the way from the evaporator to the chamber, 

and a long heating tube will increase the error [32, 65]. From the available database, it 

is deduced that the fluctuation of the flame velocities increases for quite lean and 

quite rich combustion, which can contribute 0.5% [5] to the uncertainty of LFS 

The experimental conditions, pressure and temperature are also sources for 

uncertainty of LFS determination [3, 66-71]. The real pressure and temperature of the 

test may not be the desired ones. It has been observed that in high-pressure 

experiments, the flame becomes unstable at pressures higher than 4 atm due to the 

fact that the diffusion of the radicals is slowed down and thus the velocity decreases, 



so an uncertainty of 0.5% is added when the pressure is higher than 4 atm [5]. The 

influence of temperature can be evaluated following Alekseev et al.[11]:  

𝑆𝐿,𝑠𝑒𝑡 = 𝑆𝐿,𝑚(
𝑇𝑔,𝑠𝑒𝑡

𝑇𝑔,𝑠𝑒𝑡 + ∆𝑇𝑔

)𝛼 

where ∆𝑇g is the temperature deviation, 𝑆L,set is the LFS at the chosen temperature 

𝑇g,set , 𝑆L,m  is the LFS at the measured temperature 𝑇g,set + ∆𝑇g , and 𝛼  is the 

temperature exponent. The flame velocity SL,set is proportional to (𝑇g,set + ∆𝑇𝑔)1−𝛼. 

Thus, applies to the error in the flame speed: 

∆𝑆𝐿

𝑆𝐿
=

(1−𝛼)∆𝑇𝑔

𝑇𝑔,𝑠𝑒𝑡
  

For a small 𝛼, the inaccuracy of the LFS is negligibly small. However, for gas 

mixtures at the explosive limit, α is large enough and the inaccuracy of LFS can 

increase up to 2%. 

The heat loss of the flame caused by radiation has an influence on the downstream 

temperature. According to study of Yu et al. [72], the radiation-induced uncertainty in 

the spherical flames is within 2%. Chen’s work [73] indicated that the difference 

caused by radiation re-absorption is within 1%. So here we give a limitation of 2% for 

the uncertainty caused by radiation in the LFS measuring.  

The numerical interpretation of measured data involves some inaccuracies that 

cannot be eliminated. For the extrapolation, a linear method of approximation tends to 

overestimate the laminar flame velocity, so an uncertainty of 0.5% is added when a 

linear method is used [32, 74]. Moreover, every numerical method contribute 0.05% 

[58]. 

https://dict.leo.org/englisch-deutsch/temperature


Table 1. Common uncertainty sources for LFS measurement. 

Source Uncertainty (%) 

specific material properties of the burner +0.2% 

mass flow controller * 

pressure sensor * 

thermocouple * 

composition of the air +0.2% 

specific properties of the fuel 

liquid: +0.5% 

 gaseous: +0.2% 

length of the heating tube L > 2 m: +0.2% 

stoichiometry 

φ < 0.8: +0.5% 

φ > 1.4: +0.5% 

pressure 

up to 1.5% 

p > 4atm +0.5% 

temperature up to 2% 

radiation up to 2% 

numerical method 

basic: +0.05% 

linear: +0.5% 

* is the measuring error self-calibrated or specified by the manufacturer. 

The common uncertainty sources for LFS measurement analyzed in this section are 

listed in Table 1. These uncertainty sources are very common in experimental works 

and are shared by the following four methods, so that they will not be discussed 

repeatedly. Except the measuring error determined by manufacturers, the errors of 

temperature and the heat loss caused by radiation contribute the two highest values to 

the total uncertainty. The error sources of properties of the reactants, the length of 

https://dict.leo.org/englisch-deutsch/stoichiometry
https://dict.leo.org/englisch-deutsch/temperature


heating tube and numerical method can be reduced by making a better experiment 

design or choosing a good source of fuel and air. It is difficult to give exact 

quantitative evaluations of these errors, especially for some extreme conditions like 

high temperature and fuel lean cases. The values here, also in the following sections, 

are generally estimated based on the references and help with identification of 

different uncertainty sources. 

3.2 Uncertainty sources for Bunsen flame method 

The factors that influence the LFS determination in the Bunsen flame method are as 

follow: 

(a) Nozzle geometry: A large nozzle contraction ratio is beneficial for keeping a 

steady laminar flow at the nozzle outlet [29]. 

(b) Length of the line burner: A ratio of line burner length and burner tube diameter 

higher than 50 can ensure a laminar flow [60]. 

(c) Diameter of the burner tube: A diameter of the burner tube between 4mm and 

12mm is beneficial for the flame stability [29]. 

(d) Placement of the thermocouple: A thermocouple can be placed in the center of the 

burner to measure the temperature of the gas mixture. This thermocouple can interact 

with the laminar flow, which will lead to inaccuracy in the LFS [75]. 

(e) Height of the flame: A short flame will lead to an increase of the heat loss at the 

burner edge. On the contrary, a high flame will contribute to the expansion effect. 



Both of too short or too high flames can generate high uncertainty in the 

determination of LFS [76]. 

(f) Pilot flame: Without a pilot flame, it is difficult to stabilize the jet flame because of 

the heat loss at the burner edge. However, the thermal effect of the pilot flame on the 

main flow cannot be neglected [76]. 

(g) H2 proportion (Syngas): The LFS shows a linear development for H2 content 

between 10% and 70%. Outside this range, the LFS shows an obvious non-linear 

variation and increasing fluctuation. In addition, a large H2 proportion can lead to a 

rapid burning and make it difficult to stabilize the flame, and a low H2 proportion with 

a higher CO fraction will cause poor burning [29]. 

Considering the above described factors, the uncertainty sources for LSF 

measurement in the Bunsen flame method are listed in Table 2. 

Table 2. Uncertainty sources for LFS measurement in Bunsen flame method. 

Source Uncertainty (%) 

Nozzle geometry +0.2% 

Length of the line burner L /d< 50: +0.2% 

Diameter of the burner tube 

d > 12 mm: +0.5% 

d < 4 mm: +0.5% 

Placement of the thermocouple yes: +0.5% 

Pilot flame 

with pilot flame: +0.2% 

without pilot flame: +0.5% 

Height of the flame 

h <10mm: +0.5% 

h >30mm: +0.5% 



H2 proportion (Syngas) 

[H2] <10%: +0.5% 

[H2] >70%: +0.5% 

3.3 Uncertainty sources for heat flux method 

The factors that influence the LFS determination in the heat flux method are as 

follow: 

(a) Diameter of the burner plate: Due to the interactions with ambient air, the edge 

effect can cause nonuniform distributions in the heat flux and radial diffusion. 

However, a quasi-one-dimensional laminar flame assumption can be applied to the 

central part of the flame surface. Its size is influenced by the stoichiometry, the speed 

of the gas mixture and the diameter of the burner plate. A burner plate with a larger 

diameter can lead to a larger central flame surface. On the contrary, a small burner 

plate diameter, especially in low-pressure conditions, makes the inaccuracy 

non-negligible because of the nonuniform effect on the laminar flame velocity [77, 

78]. 

(b) Cooling / Heating system: The temperature difference between the heated burner 

plate and the gas mixture has no direct influence on the flame speed, but affects the 

stabilization of the flame. A small temperature difference may cause a premature 

extinction to the flame. Therefore, it is important to keep the temperature difference 

large enough to ensure a stabilized laminar flame [11, 79].  

(c) Number of thermocouples: Blocking of the holes in the burner plate for 

thermocouples can affect the flame by interfering the uniformity of the gas mixture 



flow [12, 32]. The error can be estimated by: 

𝑒𝑟𝑟𝑜𝑟 =
𝑛𝐴𝑇𝐸

𝐴𝐵𝑟
, 

with n – number of thermocouples; 𝐴𝑇𝐸 = 4𝜋𝑟𝑇𝐸
2  – area of the holes, and 

𝐴𝐵𝑟 = 4𝜋𝑟𝐵𝑟
2 – surface of the burner. 

Considering the above factors, the uncertainty sources for LSF measurement in the 

heat flux method are listed in Table 3. 

Table 3. Uncertainty sources for LFS measurement in heat flux method. 

Source Uncertainty (%) 

Diameter of the burner plate d < 16 mm: +0.5% 

Cooling / Heating system dT < 30 K: +0.2% 

Number of thermocouples 

The percentage of blocked holes is then the gross 

error in LFS: e.g. 0.5% (of the 30 mm burner) 

3.4 Uncertainty sources for Spherical Flame Method 

The factors that influence the LFS determination in the spherical flame method are as 

follow: 

(a) Product residues: Before each test, the chamber is rinsed several times with dry air 

to remove the residual products of the previous test, but it is possible that these 

products are not completely eliminated, which can affect the results of the new test 

[36, 80]. 

(b) Time to set a homogeneous condition: It takes time to reach the homogeneous 

state in the chamber, so that the condition may not be 100% homogeneous state when 



the mixture is ignited [7]. 

(c) Ignition delay: The ignition delay can affect the recording time and make a source 

of error [81, 82]. 

(d) Measuring radius: For a small radius, the flame is influenced by the ignition and 

electrodes. For a large radius, the flame can be influenced by the wall effects 

(premature extinguishing of the flame, the assumption of constant pressure is no 

longer valid for the large radius) [58, 83]. 

(e) Thinning agent: The thermal-diffuse instability of the flame increases with 

increasing proportion of diluent, for example CO2 diluent, since this reduces the H2 

content [38]. 

Considering the above factors, the uncertainty sources for LSF measurement in the 

spherical flame method are listed in Table 4. 

Table 4 Uncertainty sources for LFS measurement in spherical flame method 

Source Uncertainty (%) 

product residues 0.2% 

time to set a homogeneous condition 0.5% 

ignition delay 0.5% 

measuring radius 

r < 7 mm: 0.5% 

r > 
𝑟𝑖𝑛,𝑉𝐾

2
: 0.5% 

(𝑟𝑖𝑛,𝑉𝐾 is the inner radius of the 

combustion chamber) 

thinning agent  used: 0.5% 



3.5 Uncertainty sources for Counterflow Method 

The factors that influence the LFS determination in the spherical flame method are as 

follow: 

(a) Nozzle geometry: The same as the Bunsen flame method, a large nozzle 

contraction ratio is beneficial for keeping a steady laminar flow at the nozzle outlet 

[45]. 

(b) Nozzle distance-relationship: The ratio of nozzle pitch to nozzle diameter L/D has 

an influence on the rate of elongation and the one-dimensional flame assumption [43]. 

(c) Silicone fluid particles: Silicone fluid articles can affect the composition of the 

fuel and its behavior [41, 42, 84]. 

(d) Co-flow: A N2-CO flow can be used to shield the counterflow flame from the 

environment, otherwise the interaction between the flame and ambient air or radial 

diffusion can lead to the flame instability [41]. 

Considering the factors described above, the uncertainty sources for LSF 

measurement in the spherical flame method are listed in. 

Table 5. Uncertainty sources for LFS measurement in counterflow flame method. 

Source Uncertainty (%) 

Nozzle geometry +0.2% 

Nozzle distance-relationship 

L/D < 1: +0.2% 

L/D > 1: +0.2% 

Silicone fluid particles +0.2% 

Co-flow without co-flow: +0.5% 



3.6 Optimization of XML-data 

Based on the identified possible sources of uncertainty for the different methods for 

determining the laminar flame speed, the XML files, earlier used in PrIMe, were 

extended with additive fields and indicators which describe the sources of the 

measured data uncertainty. Table 6 contains the information collected in the 

performed data error analysis. It is a universal list containing all possible uncertainty 

sources appearing in four studied laminar flame speed techniques of measurements 

described above. The methods are abbreviated as follows: heat flux method (HFM), 

Bunsen flame method (BF), spherical flame method (SF) and counterflow method 

(CF). The first column, Category, contains the categories of the error sources. The 

second column, Error Source, contains the error sources. The third column contents 

related methods. The column Property Name contains parameters that determine 

uncertainty sources. The last column Label contains the indicators of the error 

prescribed to parameters used in the developed XML file. 

Table 6. Summary of error parameters. 

Category Error Source Method Property Name Label 

Design 

Burner plate diameter HFM BurnerDiameter D 

Heating/Cooling System HFM 

BurnerHeadTemperature 

ChamberTemperature 

T_B 

T_C 

Number of thermocouples HFM 

BurnerDiameter 

PerforationDiameter 

D 

D_P 



NumberTC N_TC 

Heating tube length HFM, BF TubeLength L_T 

Burner tube length BF TubeLength L_B 

Burner tube diameter BF BurnerTubeDiameter D_B 

thermocouple in the flow BF TCPresence TC 

Pilot flame BF PilotFlame PF 

Measuring radius SF 

RadiusMin 

RadiusChamber 

R_m 

R_ch 

Nozzle distance ratio CF 

NozzleDistance 

NozzleDiameter 

L 

D_N 

Co-Flow CF CoFlow CF 

Calibration 

Calibrations 

HFM, BF, 

SF, CF 

OwnCalibration 

ManufactureCalibrations 

OC 

MC 

Mass flow controller 

HFM, BF, 

SF, CF 

MassFlowController MFC 

Pressure controller 

HFM, BF, 

SF, CF 

PressureController PC 

Coriolis mass flow 

controller 

HFM, BF, 

SF, CF 

CoriolisMassFlow 

Controller 

CMFC 

Thermocouples 

HFM, BF, 

SF, CF 

TCScatter 

UnburntGasTemperature 

 

TCS 

T 

Temperature controller BF, SF, CF TemperatureController TempC 

Process 

Fuel properties 

HFM, BF, 

SF, CF 

FuelProperties F 

H2-ratio (Syngas) 

HFM, BF, 

SF, CF 

H2-Ratio H2-R 



4. Summary and conclusion 

Having analyzed a very large set of data [11, 12, 29, 32, 38, 41-43, 45, 60, 75-79, 

81-84]. We can conclude that researchers are reluctant to present detailed analyses of 

the uncertainty of their measured data. Very often, we have to follow from one 

reference to another one to find the background work, which describes the 

experimental facilities in detail and, probably, explains sources of possible errors. 

Very often, two publications are many years apart, so that the background work could 

be considered only approximatively. 

Nevertheless, we analyzed experimental device configurations, diagnostics and 

experimental methodologies of the four techniques widely applied for the flame speed 

measurements and defined parameters and indicators, which describe the important 

sources of the experimental uncertainties. Some parameters are common for all four 

techniques and their minimal contribution to the error can be estimated to within 

5%-6%, as shown in Table1. 

Pressure 

HFM, BF, 

SF, CF 

Pressure P 

Equvalence ratio 

HFM, BF, 

SF, CF 

EqivalenceRatio Phi 

Dilution SF Dilution DL 

Linear or non-linear method 

HFM, SF, 

CF 

LinearExtrapolation 

NonLinearExtrapolation 

ExL 

ExNL 



It is worth to note that the parameters which we describe are related to the 

systematical errors only and random errors have to be determined by investigators. 

Generally, parameters, which we collected in Tables 1-5, can be exactly determined 

only by each experimental group individually How it follows from our evaluations, in 

ideal cases, systematic uncertainties, conditioned by peculiarities of each 

methodology, can reach 3%-4% for the Bunsen flame method, 1.5%-2% for the heat 

flux method, 3% for the spherical flame method and 1.5%-2% for the counterflow 

method. 

The Table 6 presents the generalized factors, which we propose to include in the 

corresponding fields of XML files used for submission of experimental data in the 

digitalized data depositaries. Keywords, specifying the meaning of the properties, are 

machine and human interpretable and interoperable for further handle in numerical 

tools applied for uncertainty analysis. 

Digitalized, parameterized descriptions of experimental devices and methodologies 

are today the fundamental processes of data storing and data mining. We would like to 

emphasize that this work is not a presentation of a final start-of-art in the LFS data 

uncertainty, but an invitation to discuss this problem with focus on the data structure 

for machine-readable files. One of the purposes of this work is to initiate the 

discussion devoted to the reporting studied experimental data. It is very useful and 

actual to establish the consortia of researchers for developing standards and rules for 

systematical cataloging data in a machine-readable format and data exchange 
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