Optimized Cleaning Strategies for CSP

German Aerospace Center (DLR), Plataforma Solar de Almería, Spain

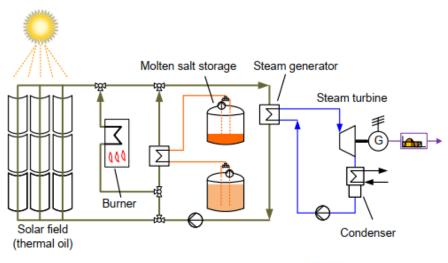
Fabian Wolfertstetter, Stefan Wilbert, Felix Terhag, Oliver Schaudt,

Tobias Hirsch

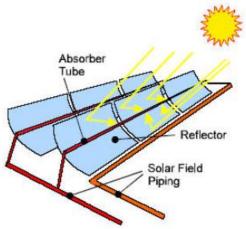
fabian.wolfertstetter@dlr.de

+34 950611877

Knowledge for Tomorrow


Outline

- Introduction
- Soiling related measurements
- Solar field model and comparison parameter
- Reinforced learning algorithms
- Creation of synthetic data series
- Performance of ANN strategies



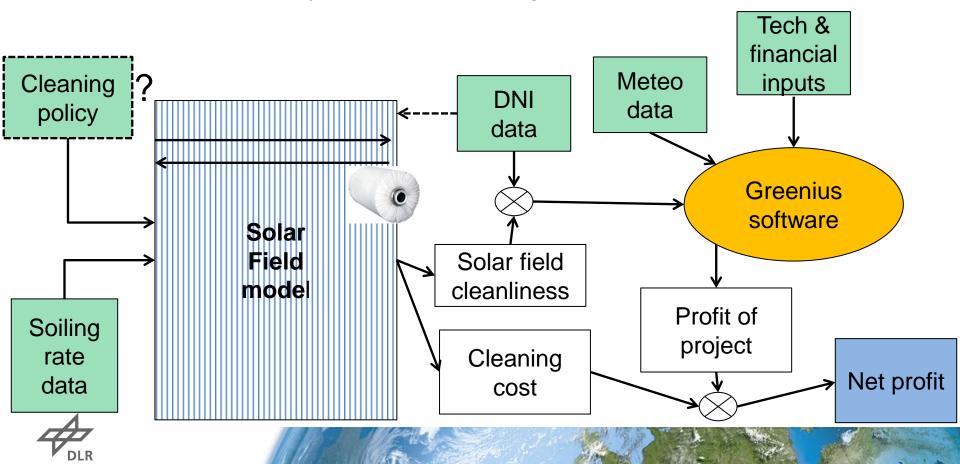
Concentrating Solar Power

- Concentration of direct sunlight with mirrors to achieve high temperatures
- Provision of electricity (turbine cycle), process heat, desalination
- CSP uses only direct component of solar irradiation (=> soiling impact higher as in PV)
- Cost effective thermal storage option
- Grid stabilizing effect thanks to turbine

Images property of: Torresol energy, MASEN, SolarPACES, [T]

Cleaning and soiling

- Cleaning operators have to find the best trade-off between reduced cleaning costs and increased optical solar field efficiency
- Cleaning performance has to be quantified financially
- Time resolved analysis and realistic soiling rate dataset is crucial

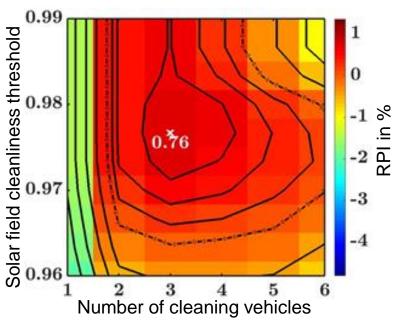


Soiled trough at PSA

Cleaning optimization: solar field model

- Solar field model tracks cleaning vehicles and each troughs cleanliness
- Assumption: all troughs soil with same soiling rate
- Output: net profit = project's profit cleaning cost

Cleaning optimization: scenario & inputs

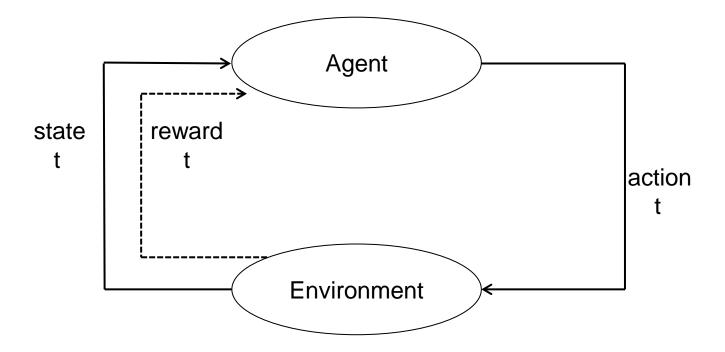

ABENGC

- 50 MW plant with 7.5 h storage
- Water and brush based cleaning vehicles
- Cleaning related technical and financial parameters (see table)
- Cleaning costs:
 - Labor, water, fuel, depreciation of cleaning vehicles
- 5 years of soiling rate measurement data at PSA
- >28 years of irradiance and weather data

Parameter	Value
Nominal turbine power	49,9 <i>MW</i>
Number of loops in Solar Field	156
Aperture area of solar field	$510.000\mathrm{m}^2$
Thermal storage	7.5 h
Cooling	water
Planned lifetime	25 years
DNI-yearly sum at PSA	2388 kWh/m ² /a
Equity ratio	30 %
Specific operating costs	1.8 EUR/m ² /a
Feed-in tariff	0.27 EUR/kWh
Cleaning velocity for one unit	9 loops / shift
Number of personnel per vehicle	1
Cleaning vehicle fuel consumption	6 – 8 l/loop
Cleanliness after cleaning	0.986
Demin. water consumption of cleaning unit	1 m ³ /loop
Estimated lifetime of cleaning unit	15 years

Cleaning optimization: policy comparison

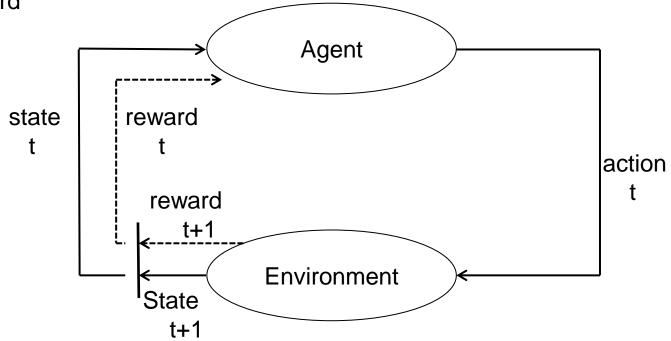
- A **reference cleaning strategy** is chosen as a reference point: constant, daily cleaning in one shift with 1 vehicle
- Cleaning policies are compared to reference by relative profit increase (RPI)
- Previous study: condition based cleaning policies:
 - Vary number of vehicles and cleanliness threshold



Can cleaning strategy be improved by reinforced Learning and forecast?

Artificial Neural Networks: Reinforced learning

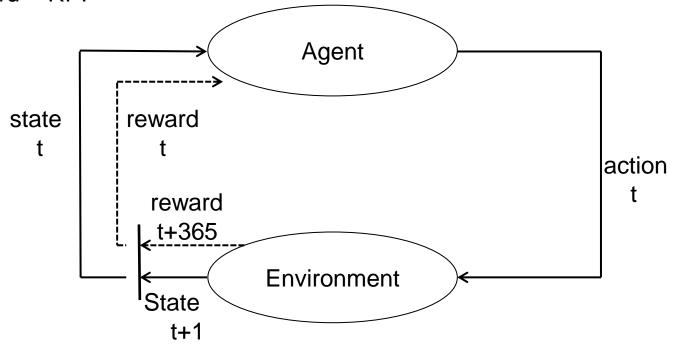
Agent takes action depending on the environment



Artificial Neural Networks: Reinforced learning

- Agent takes action depending on the environment
- Actions influence environment and creates a reward feedback
- Learning process: Agent is updated after each run => negative or positive feedback on current policy according to reward

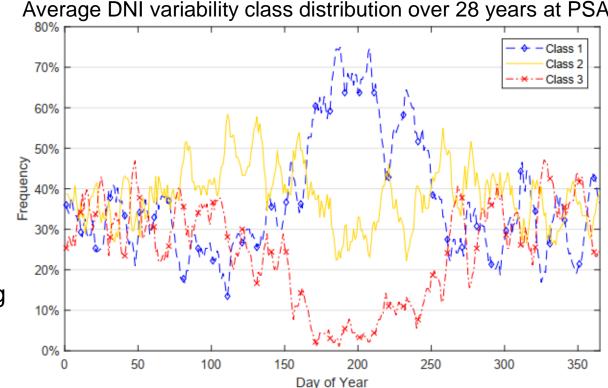
 The fully trained agent can be applied to any new environment to deliver high reward



Artificial Neural Networks: Reinforced learning

- agent = cleaning policy
- action = daily cleaning decision
 - Clean with 0 2 vehicles in 1 or 2 shifts each
- state = solar field cleanliness, weather data, optional: forecast for irradiance class and high/low soiling rate

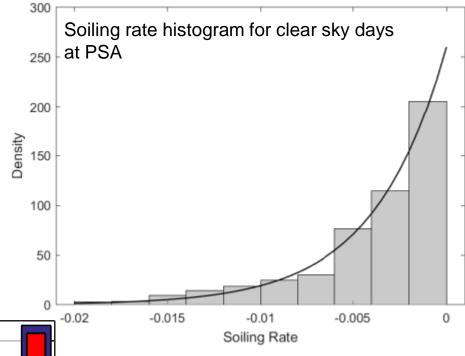
Reward = RPI


Reinforced Learning: Reward and training

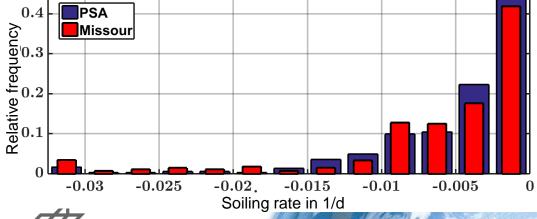
- Each training run involves full simulation year, i.e. 365 states and cleaning decisions
- Option to provide agent with soiling rate and weather forecast information
- Training of reinforced learning agent requires a large amount of data
- 5 years of soiling data and 28 years of weather data is not enough for reinforced learning
- => need to increase database by synthetic data extension

Synthetic data extension: weather

- Measurement days are classified for DNI variability (clear sky, intermittent, cloudy) ¹
- Transition probabilities are determined
- Original measurement days are drawn from a 14 day time window according to transition probabilities
- >5,000 data years are created

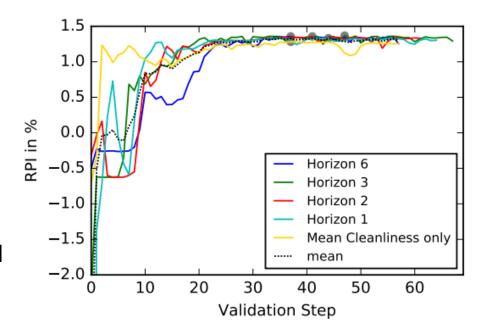


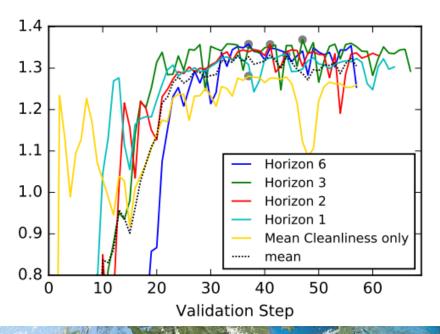
Following day			
	Class 1	Class 2	Class 3
Current day			
Class 1	58 %	32 %	10 %
Class 2	31 %	45 %	24 %
Class 3	17 %	38 %	45 %



Synthetic data extension: soiling rate and natural cleaning

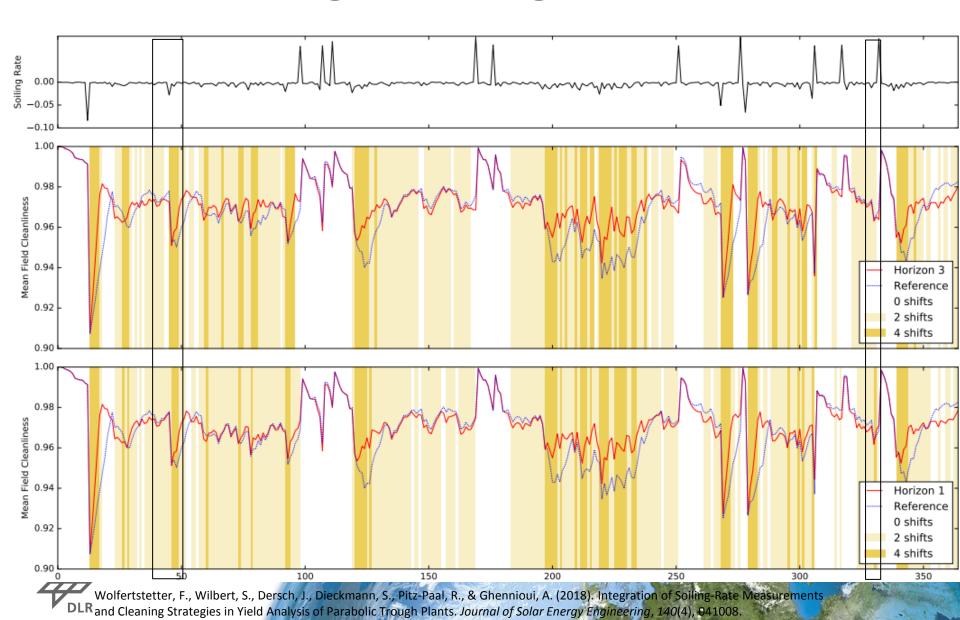
- Soiling rate is drawn according to probability for each variability class
- Rain cleaning action quantified in cleaning efficiency


Soiling rate histograms for PSA and Missour, Morocco and all classes



Learning progress

- Agent begins with random strategy
- Agent is updated after each training year according to reward
- Repeat 10 times on each test year and 15 different years (training run)
- Validation set: fix dataset of 20 years
- Agent is tested on validation set after each training run
- RPI increases with training run
- Exit condition: no RPI-improvement in the last 20 training runs
- Resulting agent is the final cleaning policy


Application of soiling forecast in cleaning policy: results

- Reinforcement learning strategy nearly doubles the RPI of the condition based strategy if no forecast is provided
- Reinforcement learning strategies achieve RPI of 1.3 % if no forecast is provided
- RPI of 1.4% with forecast information
- Note: PSA is not a heavy soiling location
- Much higher results are expected for regions with higher dust loads

Forecast Horizon in days	RPI in [%]
ø	1.28
1	1.33
2	1.36
3	1.37
6	1.36

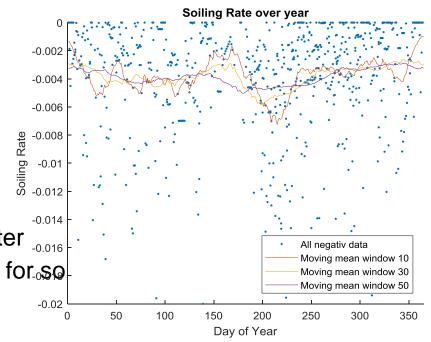
Evolution of soiling and cleaning in solar field

Conclusion

- Solar field model developed: add on to yield analysis software such as greenius
- Data extension algorithm developed for training of reinforcement learning algorithms
- Reinforcement learning applied to cleaning optimization
- Reinforcement learning agent nearly doubles the profit increase compared to condition based cleaning strategies
- Inclusion of forecast for high/low soiling rate and irradiance class can further increase the profit
- Better results expected for sites with higher soiling load

Thank you for your attention

fabian.wolfertstetter@dlr.de


Recommended literature on soiling model:

http://wascop.eu/wp-content/uploads/2018/06/WASCOP_deliverable_3.2_final_plainText.pdf

Soiling rate

- Soiling rate = reduction of cleanliness over time
- Soiling rate is dependent on time and location
- Not (yet) a standard measurement parameter
- Little information available in target regions for so

