The Impact of Closure Phases on InSAR Processing

Francesco De Zan, Homa Ansari, Giorgio Gomba, Ramon Brcic, Alessandro Parizzi

Remote Sensing Technology Institute
German Aerospace Center (DLR)

AGU Fall Meeting
San Francisco, California
December 10th, 2019
We can reach 1 mm/yr at 100’s km with S1 by correcting

- Troposphere (ERA-5)
- Ionosphere
- Solid Earth tides
Interferograms vs. closure phase

3 images
3 interferograms

3 closure phases

\(\Phi_{1,2,3} = \text{atan} \exp[j(\phi_{12} + \phi_{23} + \phi_{31})] \)

Mis-closures "require" spatial averaging!

Closure phase +/- 40 deg
Interferometric phases and velocities are biased

- The presence of closure phases implies a **path dependency** in the temporal integration

![Diagram showing path dependency](image)

- Presence of **systematic closure phases** means that
 - the interferometric phases are biased, at least some of them
 - velocity estimates are biased

- We now know that **short term** interferograms are the culprit!
Performance Comparison Study

Data set:

- **Sentinel-1 A/B time series**: IW mode
- **acquisition time span**: 4 years (Oct. 2014-Sep. 2018)
- **size of the time series**: 184 SLCs
- **extent of the chosen area**: ≈ 30,000 km²

Benchmark: Persistent Scatterer Interferometry (PSI)

- **StBAS Bandwidth 5**
- **StBAS Bandwidth 10**
- **EMI Full Covariance**
StBAS
Bandwidth 5
905 Interferograms

Deformation Velocity [mm/yr]

Mount Etna
Syracuse
Reference Point
Ragusa
StBAS
Bandwidth 10
1785 Interferograms

Mount Etna
Syracuse
Ragusa
Reference Point
<table>
<thead>
<tr>
<th>Deformation rate</th>
<th>Bias wrt PS’s [mm/year]</th>
<th>Dispersion wrt PS’s [mm/year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 5</td>
<td>-6.50</td>
<td>2.58</td>
</tr>
<tr>
<td>Band 10</td>
<td>-3.05</td>
<td>1.55</td>
</tr>
<tr>
<td>Full Stack</td>
<td>-0.24</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Bias for each lag: (multilooked interf. phase – full-cov phase)

12 mm / 365 days * 6 days = 0.2 mm = 2.6 deg

Lag\(^{-1}\) ≈ 6 days
Lag\(^{-2}\) ≈ 12 days

≈ PS phase
Modeling the velocity bias

Complex coherence model

\[\gamma = 0.2 + 0.08 \cdot \exp(j \cdot 0.03 \cdot t) \exp\left(-\frac{t}{20}\right) \]

Some scatterer (electrically) moving 0.1 mm / day away from the satellite
Moisture inversion (Kumamoto, ALOS-2)

Moisture cycle? Biomass accumulation?

- **Moisture cycle hypothesis: not really working!**
 - Typical moisture cycle is fast wetting and slow drying
 - My moisture model predicts that slow change dominates => drying dominates
 - Scatterers should apparently move **towards** the satellite

- **Different hypothesis: Biomass accumulation in plants** (water)
 - More biomass = more delay = motion **away** from the satellite
 - 0.03 rad/day = 47 mm/yr = 5.4 mm/yr (water)
 - To convert in tons/ha we need extra assumptions…
Conclusions and recommendations

• Depending on the choice of interferograms:
 velocity biases for short lags can reach 5-10 mm/yr (or more)

• Modeling the bias
 • Moisture related phases do not seem to explain the velocity biases
 • Biomass growth could explain the bias sign

• The velocity biases can easily be a performance bottleneck!
 • Modeling => compensation
 • Use of long-term interferograms, as in Phase Linking or EMI
 • Single-look interferometry (PSI)