Transition Areas for Infrastructure-Assisted Driving

Julian Schindler
Project Coordinator
Some general information

● About the EC call:
 – Horizon 2020 ART-05-2016 (Automated Road Transport)
 – Grant Agreement Nr.: 723390

● About the project:
 – Duration: 36 months
 – Start date: September 2017
 – Total budget: 3.8 M€
 – Consortium: 7 partners from 6 European countries
 • ICT infrastructure providers
 • Automotive industry
 • Academia
 – 12 associated partners
What if...

- ...your automated vehicle is not able to solve the situation ahead?
- ...this happens not to single vehicles only, but to several?
- ...it always happens on the same location?
Transition Areas are areas on the road where many highly automated vehicles (blue) are changing their level of automation due to various reasons.
Detailed Analysis

© Disney & Pixar 2008
TransAID Goals

● Estimate **impact** on traffic safety and efficiency

● TransAID develops and demonstrates **traffic management procedures and protocols**

● To enable **smooth coexistence** of automated, connected, and conventional vehicles, especially at Transition Areas

● A **hierarchical approach** is followed where control actions are implemented at different layers including centralised traffic management, infrastructure, and vehicles
Expected impacts

- Improved traffic safety and efficiency
- Innovative traffic management and intelligent vehicle communications
- Support of stepwise introduction of road automation
Simulations with vehicles in different levels of automation are performed
Approach & Expected Results

- **Simulations** with vehicles in different levels of automation are performed
- Different approaches in terms of **hierarchical traffic management** are investigated
 - Help vehicle automations to find optimal solutions
 - Help surrounding vehicles
 - Optimize traffic safety and efficiency
- Development of **new ITS-G5 V2X message sets**
Approach & Expected Results

- **Simulations** with vehicles in different levels of automation are performed
- Different approaches in terms of **hierarchical traffic management** are investigated
 - Help vehicle automations to find optimal solutions
 - Help surrounding vehicles
 - Optimize traffic safety and efficiency
- Development of **new ITS-G5 V2X message sets**
- **High fidelity simulations**
Approach & Expected Results

- **Simulations** with vehicles in different levels of automation are performed
- Different approaches in terms of **hierarchical traffic management** are investigated
 - Help vehicle automations to find optimal solutions
 - Help surrounding vehicles
 - Optimize traffic safety and efficiency
- Development of **new ITS-G5 V2X message sets**
- **High fidelity simulations**
- Prototypical **field implementations**
- **Guidelines** and a **roadmap** for stakeholders (OEMs, road authorities, cities...) are provided
Use Cases & Service Definitions

- Lane not usable for vehicles strictly following rules
- Vehicles may stop before obstacle

Providing path information or temporarily change lane category

- Automated vehicles unable to enter highway
- Vehicles may stop or issue take over request

Cooperative lane changes Speed & Distance information
Use Cases & Service Definitions

- Risky situations in highway merge areas
- Vehicles may issue take over request

- Cooperative lane changes
- Temporal traffic separation

- Automated vehicles unable to pass area
- Vehicles may stop (e.g. due to failed transitions) and block free lane

- Find safe spot for stopping without harming traffic
Use Cases & Service Definitions

- Transitions of control in small area
- Higher risk of dangerous situations

Distribute transitions of control to flatten effects
Recent work: Preliminary simulations

Traffic mix [%]

<table>
<thead>
<tr>
<th>Mix</th>
<th>AV</th>
<th>LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Total demand [Veh/h]

<table>
<thead>
<tr>
<th>LoS</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>500</td>
</tr>
<tr>
<td>B</td>
<td>1000</td>
</tr>
<tr>
<td>C</td>
<td>1500</td>
</tr>
</tbody>
</table>

Parameter schemes:

safety: OS, PE, M, OE, PS

efficiency:
Recent work: Preparation of high fidelity simulations

Send V2X-message

Message received

TM Apps

iTETRIS

Trigger vehicle reactions:
• transition of control processes
• minimum risk maneuvers
• maneuver advices

Comm.-Sim

Traffic-Sim

SUMO
Recent work: Message Set Definition

- CAM Extensions
- DENM Extensions
- MAPEM
- Collaborative Perception Message
- Maneuver Coordination Message

Session II: Roadmap, Use Cases and Services
Tomorrow, 11:00 am
Recent work: First steps to real world integration
Any questions? Contact us!

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

NO YES

ANSWER QUICKLY—OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

SO MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

www.reddit.com, funnycartoons/mkellerman

Julian Schindler
German Aerospace Center (DLR)

julian.schindler@dlr.de
+49 (531) 295-3510

www.transaid.eu
@transaid_h2020
https://www.linkedin.com/groups/13562830/
https://www.facebook.com/transaidh2020/