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Zusammenfassung

Die Erkennung von Objektbewegungen in Videosequenzen ist eine Notwendigkeit fiir viele
Videoanalyseanwendungen. Fiir mobile Roboter, die mit RGB-D-Kameras ihre eigene Posi-
tion bestimmen, ist es erforderlich Objekte, die nicht Teil der statischen Umgebung sind,

herauszufiltern. Die Identifizierung dieser Objekte kann lber deren Eigenbewegung erfolgen.

Daher ist das Ziel dieser Arbeit die Entwicklung eines Systems, das aus dem Live-Stream einer
sich bewegenden RGB-D Kamera dynamische Objekte von statischen Objekten in Echtzeit
trennen kann. Die groBte Herausforderung fir diese Aufgabe ergibt sich aus der Tatsache,
dass Verschiebungen in aufeinanderfolgenden Bildern entweder durch eine Kamerabewegung

oder durch dynamische Objekte verursacht werden kdnnen.

Es wird ein System vorgestellt, das eine bindre Segmentierungsmaske erzeugt, welche fiir jeden
Pixel anzeigt, ob es zu einem statischen oder dynamischen Objekt gehort. Das Verfahren in
dieser Arbeit basiert auf Tiefenhintergrundmodellierung, was fiir Echtzeit-Bewegungserkennung
mit einer beweglichen Kamera neuartig ist. Es wird eine Anti-Blurring Technik vorgeschlagen,

welche die Scharfe von Kanten im Hintergrundmodell bewahrt.

Die experimentelle Validierung zeigt, dass dynamische Objekte erfolgreich mit einer durch-
schnittlichen Bildrate von 25 Bildern pro Sekunde segmentiert werden kénnen. Anhand der
Analyse verschiedener Setups und Szenarien werden Anpassungsmoglichkeiten vorgestellt.
Im Vergleich zu modernen Methoden mit dem gleichen Ziel konnte die Verwendung von
Tiefenbildern sowie die Anti-Blurring Technik in vielen Szenarien die Segmentierungsergebnisse

verbessern.



Abstract

Detecting object movements in video sequences is essential for various video analysis appli-
cations. For mobile robots that use RGB-D cameras to determine their own position, it is
necessary to pre-filter interfering objects that are not part of the static environment. These

interfering objects can be identified as they are dynamic and exhibit thus an own motion.

Therefore, given a live color and depth video input stream from a moving camera, the
objective of this work is to develop a system capable of segmenting dynamic objects from static
objects in real-time. The key challenge for this task arises from the fact that displacements

in consecutive images could either be caused by a camera movement or by dynamic objects.

A system is proposed which yields a binary segmentation mask showing for every pixel
whether it is assumed to belong to a static or dynamic object. The method in this work is
based on depth background modeling which is novel for real-time motion detection with a
moving camera. An anti-blurring technique is proposed which preserves the acuity of the
background model.

Experimental validation demonstrates that dynamic objects are successfully segmented at
an average frame rate of 25 frames per second. Adaptation possibilities are presented based
on the analysis of different setups and scenarios. Compared to state-of-the-art methods with
the same objective, the usage of depth images could enhance the detection accuracy in many

scenarios.
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1 Introduction

The detection of object movements in video streams is a fundamental task in computer vision.
It is required in many fields such as automatic surveillance [1], object tracking [2], behavior
analysis [3] or Simultaneous Localization and Mapping (SLAM) in dynamic environments [4].
Methods for motion detection with a static camera have already been developed in the early
history of computer vision. Borst and Engelhaaf [5] examined the principles of visual motion
detection, Horn and Schnunck [6] developed a method to determine apparent velocities in an
image sequence and Wren et al. [2] showed how moving objects can be extracted by modeling
the static scene. However, when the camera moves, the problem is more challenging. The
apparent motion in an image sequence could not only be caused by moving objects, but also
by the ego-motion of the camera. When no reliable information about the camera movement
itself is known, it has to be estimated by analyzing the consecutive images. This is done in
Visual Odometry systems, where the key objective is the identification of the position where
the images have been taken from. A lot of Visual Odometry systems, are, however, designed
for the operation in static environments, where the camera is the only object to move in
the scene. Thus the emerging challenge for motion detection in dynamic environments is
to extract the camera motion among the observed additive apparent motions and detect
objects that move differently. Several approaches exist already that tackle this issue. One of
the most recurrent issues in these methods is the trade-off between computational efficiency
and detection accuracy. Algorithms operable in real-time do often yield substantially poorer
results [7]. In this work, a real-time method for the segmentation of moving objects is chosen

based on related work, implemented and evaluated.

1.1 Problem Statement

In the Robotics and Mechatronics Center (RMC) of German Aerospace Center (DLR), a
humanoid robot called Rollin’ Justin (Figure 1) was developed as a platform for research
in service robotics. Rollin’ Justin is designated to assist astronauts in space as well as
care-dependent people in their households. For the latter, where the robot is deployed in the

interiors of a building, the environment in which the robot interacts is partially known. Walls,



1 Introduction

Figure 1: The humanoid robot Rollin’ Justin, equipped with RGB-D cameras shown in the
red rectangles.

windows, doors and most of the furnitures remain at their places, allowing the robot to use
a three-dimensional map of the interiors to interact with the environment. Characteristic
interactions are navigation, object grasping and other robot movements. For all of these tasks,
it is necessary for the robot to know its own position in the map, otherwise path planning

fails, collisions can occur and objects are missed.

Therefore, Rollin" Justin determines its own position by comparing the current observations
with the three-dimensional map of the environment. This process is also called localization.
Rollin’ Justin is equipped with several Red-Green-Blue-Depth (RGB-D) cameras that are used
for the localization. By recognizing walls, furnitures and other static objects in a certain
distance and direction, it is possible to derive the location where the images have been taken

from, which is, namely, the robot’s position.

Dynamic objects, i.e. those that move independently of the robot in space, make the
localization challenging so far. If, for example, people carry out activities in the environment
and move through the robot's field of view, misinterpretations can occur. As no image
segmentation is performed prior to the localization, information gained from measurements
on the human body is included in the matching process. Since the human body does not exist
in the 3D model of the environment, the matching algorithm cannot associate it correctly,

resulting in wrong robot localizations.
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1.2 Objective and Contributions

In this work a system is to be developed that is capable of segmenting objects that are not
part of the background. As there could be also other robots, object displacements and further
disturbing factors in the scene, the approach cannot be restricted to the exclusive detection
of humans. Also, no prior knowledge is given, so the segmentation cannot be achieved
solely based on the appearance of the objects. Instead, foreground objects are detected by
their relative motion to the background. The apparent motion of the background follows
a certain pattern, whereas the foreground objects exhibit a different motion. Extracting
the foreground objects based on this pivotal idea is subject of this work. The proposed
system should process the images from an RGB-D camera and filter out all objects that
have exhibited an independent motion. It serves thus as a preprocessing stage before any
localization is performed. When only the information of the static background is considered

for the localization process, misinterpretations as described above can be avoided.

Given an RGB-D stream from a moving camera as its only input, the system should output
a label for every pixel, where the label indicates whether the pixel belongs to a foreground
object. Foreground objects are defined as all objects that have actually moved in the scene.
These objects are also referred to as moving objects or dynamic objects, however, their own
motion may cease and they should still be detected as foreground objects. This requirement
is sensible in particular for the robotic use case discussed before because objects could just be

displaced once and yet they are no longer useful for the localization process.

Regarding the requirements on its qualitative results, over-filtering, i.e. yielding false
foreground positives, is acceptable to a minor degree whereas undetected foreground may still

compromise the success of the localization process.

The proposed method is based on local background modeling. The system tries to model
the depth of the background in current field of view of the camera. Consequently, all elements

in the image, which do not occur in the background model, are probably foreground objects.

Combining and extending existing methods from Yi et al. [8] and Yun et al. [7], the optimal
setup and configuration is sought that achieves the best detection accuracy while still fulfilling

the real-time requirement.



1 Introduction

The main contributions of this work are
e the usage of depth images for background modeling
e modifications improving the performance for indoor scenes
e an anti-blurring scheme preserving the sharpness of the background model

The key task is thereby the maintenance of an uncontaminated background model. It must
provide consistent information about the appearance of the static background in every area of
the current frame and must not contain any parts of foreground objects. Moreover, it must

be able to cope with errors introduced by inaccurate camera motion estimations.

In contrast to pure motion detection, where often only boundaries of the object are detected,
the system must continuously yield a foreground segmentation mask for every pixel. The
system is designed to operate in real-time on a CPU with the live camera stream as its input,

meeting the hardware requirements of Rollin" Justin.

1.3 Outline

The following chapters describe the conceptual design, implementation and evaluation of a
system for moving object detection with a moving camera. Chapter 2 examines related work.
First, fundamental techniques for the detection of object movements with a static camera are
explained. Thereafter, it is discussed how the challenges that arise with a moving camera are
solved in related work. Chapter 3 focuses on the conceptual design of the proposed system,
where a method from related work serves as a base line. Here, the proposed system is broken
down in its components and their underlying algorithms. Improvements and extensions are
presented that were motivated from the drawbacks of the existing system. How the entire
system is implemented in C++ is shown in chapter 4. Besides the architecture and the
overall data flow, the tasks of the functional modules that form the system are explained
in detail. In chapter 5, the implemented system is evaluated. Examination of the effects of
the proposed improvements from chapter 4 and further optimizations for both run-time and
detection accuracy is performed. The obtained results are compared to results achieved by
related work. Finally, chapter 6 summarizes the idea and the achievements of this work and

features enabled future work.



2 Detection of Object Movements in
Related Work

2.1 Fundamental Techniques for Movement Detection

with a Static Camera

Basic visual motion detection techniques that assume a static observer can be classified in
three categories [9]: Frame difference, background subtraction and optical flow. This section
explains the key principles behind each technique as their ideas can be utilized also for motion

detection with a moving camera.

2.1.1 Frame Difference

Frame differencing is a common technique when moving objects are to be detected in the
static camera case [10]. Two consecutive frames are compared by calculating the difference of
each pixel's value from the pixel’s value in the other frame. The resulting differencing image
describes the change between these two frames. If its value is high for a certain pixel, it is
probable that a boundary of a dynamic object is located there. Since the images from both
frames show the dynamic object, merely at a slightly displaced position, the entire dynamic
object cannot be extracted by differencing. Frame difference on depth images typically only
detects depth edges, i.e. the boundaries of moving objects. Frame difference on color images

detects both boundaries and the texture of dynamic objects.

2.1.2 Background Subtraction

Background subtraction is similar to the frame difference method as there is also a differencing
image calculated which serves as an indicator for dynamic objects. Instead of selecting two
consecutive frames, one initial frame and another more recent frame is selected. The more
recent frame is the frame in which the dynamic objects are to be detected. The image from
the initial frame shows the scene before any dynamic objects entered the scene. Hence, the

differencing images shows all objects that look different than the static scene behind. In
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contrast to frame difference from 2.1.1, the whole shape of the dynamic object is detected as
long as the dynamic object differs from the static objects behind. However, when parts of the
dynamic object exhibit a visual appearance similar to the static scene, holes emerge in the
detection mask. Also, when the background scene does not remain exactly as it was captured
in the initial frame, background subtraction yields false detections. To overcome this problem,
it is necessary to update the image that is expected to show the static background. This is

also referred to as background modeling.

2.1.3 Optical Flow

While the frame difference and background subtraction techniques are based on the pixel
value change, the concept of the optical flow attempts to find point correspondences in two
consecutive images. These point correspondences form the start and end points of motion
vectors that show how objects have apparently moved. The underlying assumption is that
objects do not change their visual appearance over time. Horn and Schunck [6] define the
optical flow as the distribution of apparent velocities of movement of brightness patterns in
an image. At the same time Horn and Schunck provide in [6] a method to determine the
optical flow. Treating the optical flow as a motion vector field, two main types of optical flow
methods are to be distinguished. Dense optical flow methods [6] [11] [12] [13] yield a motion
vector for every pixel. On the other hand, the sparse optical flow [14] is only defined for a
few points in the image. Given the dense optical flow field, the binary foreground mask could

be obtained by extracting all points whose motion vectors exceed a certain length.

Determining the optical flow is a more costly operation than background subtraction and
frame difference. In contrast to background subtraction, the optical flow and frame difference
methods only extract objects that have moved from the previous to the current frame. If the

motion of the dynamic object ceases, they do no longer detect the dynamic object.

2.2 Methods for the Operation with a Moving Camera

In the previous section, basic techniques for the detection of motion were introduced for the
case of a static camera. However, as the objective of this work is to segment dynamic objects

with a moving camera, applying these techniques is not sufficient. All of the above discussed
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methods yield false foreground positives when the camera moves even though all objects in
the image are static. Yet their underlying principles can be reemployed for the operation with

a moving camera.

2.2.1 Camera Motion Estimation

When applying the techniques from sec. 2.1 to a static camera, objects remaining static
in the scene are falsely labeled as foreground and objects that move parallel to the camera
are falsely classified as background objects. This is because these techniques determine the
motion relative to the camera. When the camera itself moves, consecutive images differ even
though there is no dynamic object in the scene. Therefore, in order to make the techniques
from sec. 2.1 applicable for moving cameras, the motion caused by the camera must be
compensated. To this end, several methods for the estimation of the camera motion between

two frames exist.

Three-dimensional approach with color and depth images

Some methods that use both color and depth images estimate the motion of the camera
by searching for the best alignment of the two image in all three dimensions. Knowing the
pinhole model of the camera, it is possible to convert the 2D image with depth and color
values to 3D points with color values. Given these 3D points of two consecutive images, it
is subsequently possible to estimate a transformation that aligns the points of both images.

This transformation is caused by and thereby corresponds to the motion of the camera.

The scene flow algorithms from Jaimez et al. [15] [16] [17] apply this technique. They align
two images by finding a transformation that minimizes both the geometric and photometric
errors in a reprojection. The geometric error is defined as the difference of the depth value
and the photometric error is, in their case, simply the intensity value difference. The scene
flow is a three-dimensional extension of the optical flow (see sec. 2.1.3) and its motion
fields can thereby already serve as a valuable indicator for independent motion from dynamic
objects. However, solving the minimization problem in real time requires a high degree
of parallelization which could only be achieved on a GPU in [16]. Jaimez et al. proposed
an accelerated version for CPUs in [17], where clustering was applied in order to reduce

computational cost. Running on multiple CPU cores, it still consumed 80ms per frame at
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QVGA resolution. In contrast to the objective of this work, where a binary information about
foreground or background belonging is sufficient, the scene flow from [17] aims to figure out
the direction and speed of objects while providing a visual odometry at the same time. Scona
et al. [18] also utilize the idea of minimizing the geometric and photometric reprojection
error in order to obtain the camera motion. Their work has the objective to make SLAM
applicable in dynamic environments. Therefore, they jointly estimate the camera motion
and foreground segmentation in a single term which is to be minimized. This is achieved by
forcing clusters to be segmented as dynamic when their residuals are high and simultaneously
reducing their effect on the camera motion estimation. Thus the system from Scona et
al. is able to generate a foreground segmentation mask, however, also this algorithm is only

real-time operable when running on a GPU.

Other methods try to find matchings in point clouds that were generated from the depth
images. A common technique for the registration of point clouds is the Iterative Closest Point
(ICP). The ICP aims to find a transformation that minimizes the sum of the squared distances
between the two point clouds from the previous and current frame. As it considers the closest
point in the target point cloud in each iteration, it performs well only if the point clouds have
a small displacement. Variants of the ICP for the estimation of the camera motion are used
in [19] and also in SLAM systems like KinectFusion [20]. Li and Lee [4] use an intensity
assisted variant of the ICP, where they create 3D points with intensity values as mentioned
above. Having thus fused color and depth information, in the point matching process they

aim to minimize the intensity difference in addition to the Euclidean distance.

Two-dimensional approach for color images

Less time-consuming than most point cloud registration approaches are classical tracking
methods based on the optical flow in two dimensions. Given only color or gray images,
the camera motion in dynamic environments can be determined by combining a tracking
method, such as Kanade-Lucas-Tomasi feature tracker (KLT)[14] and a consensus finder,
such as Random Sample Consensus (RANSAC). First, the tracker finds corresponding points
in the two consecutive images. Then, the transformation that aligns these point pairs best is
determined by finding a large consensus set among the point pairs. This transformation is the
inverse of the camera motion since when the camera moves exemplary to the left, the vectors

of the apparent motion field in the image point to the right. KLT is often used because
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it is a fast method to find corresponding features in two images and works well if the two
images have not to much displacement. RANSAC is a suitable choice in particular because
it is resistant against motion outliers that are caused by the independently moving dynamic
objects. RANSAC works with the found point correspondences of two images as its input and
yields a transformation that aligns the point pairs. This is achieved by iteratively selecting
four point pairs, computing the exact transformation valid for them, checking for how many
other pairs this transformation fits and repeating this process until a transformation is found
that is supported by a large ratio of point pairs. Exactly four points are selected because the
transformation to determine, with that the relationship between the previous and the current
image, is a homography. A homography sets any two images of the same planar surface in
a relationship. When describing the transformation through a homography, it is assumed
that the camera has taken images from the same surface from two different perspectives.
The perspective transformation associated with the homography is non-rigid, but preserves

straight lines.

The principle of applying KLT and subsequently RANSAC is implemented in the moving
object segmentation systems from Xu et al. [21], Kim et al. [22], Wu and Chiu [23], Sun et
al. [24] Yi et al. [8], Yun et al. [7] and Makino et al. [9]. They all work with the intensity
image and determine the camera motion first and then proceed with the obtained results.
Xu et al. [21] propose a geometrical approach that extracts the pixels that do not follow the
motion induced by the camera. Kim et al. [22], Yi et al. [8] and Yun et al. [7] maintain a
model of the background. Wu and Chiu [23] and Makino et al. [9] combine the optical flow

with a background model for deriving foreground probabilities.

Inaccuracies in camera motion estimation as a primary issue

Once the camera motion has been estimated by one of the aforementioned techniques,
attempts can be made to remove the effects caused by the moving camera in order to make
detection methods from sec. 2.1 applicable. With an exact transformation that warps every
pixel from the previous frame onto the correct location in the current frame, the problem
of the moving camera were solved and methods for static cameras could be directly applied.
However, small offsets in the projection on the current frame are enough for a significant
amount of false detections, especially at edges in the image. Yet inaccuracies in the estimation

of the camera movement are barely evitable. This paragraph explains the emergence of these
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inaccuracies under different circumstances.

In the two-dimensional case, a homography represents the camera motion. Homographies
set, by definition, two observations of the same planar surface in a relationship. Unfortunately,
in most indoor environments the observed objects are not located on the same surface.
Consensus estimators like RANSAC strive to find a solution that keeps the thus induced error
low for most of the pixels, however, a small error might remain through this conjuncture. After
applying the homography transformation on the previous frame, the resulting image does
therefore almost never coincide with the current image. Less inaccuracies emerge when finding
the dense pixel matchings. When correspondences are found for every pixel, no transformation
matrix needs to be estimated. Comparison of two images can be directly applied on the
found point correspondences. Interpolation is still necessary since there may be remain some
unmatched points. In contrast to sparse optical flow methods like KLT, determining such a
dense optical flow is more expensive. Methods attempting to obtain accurate results [23] [12]
do not achieve real-time performance. For the explanation of sparse and dense, see subsec.
2.1.3.

In the three-dimensional case, where point clouds are to be registered, the occurrence of
inaccurately warped points depends on the applied method. The ICP in its conventional
form estimates a rigid body transformation. Rigid body transformations cannot represent
scalings as they are induced by zooming for instance. A homography can represent any rigid
body transformation but not vice versa. Therefore, the errors resulting from the inaccurate
transformation when applying ICP are greater than if a homography were estimated. More
accurate are methods that utilize the pinhole model of the camera. Instead of aligning point
clouds, the approach is here to find a camera position that would explain the difference
between two frames. Thus Jaimez et al. [15] and Scona et al. [18] propose a warping function
where a transformation is applied to the 3D points of the current frame, which are subsequently
reprojected in the two-dimensional plane according to the camera’s pinhole model. It is
searched for the transformation that causes the best match in the image plane. Having
solved this error minimization problem as it is done in [18] on real time on the GPU, the
true motion of the camera has been estimated. In contrast to the other techniques, the
transformation does not align the observations and assume the camera motion is the inverse of
this transformation. Instead, the transformation of the point where the field of view originates

has been determined, which is the camera’s location. Thereby, the estimated camera motion

10
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could be exact, however, deviations in depth measurements, depth measuring errors, noise,
illumination differences and the need to solve the minimization problem in a coarse-to-fine

scheme [18] are sources for new inaccuracies in the alignment.

2.2.2 Moving Object Detection after Camera Motion Estimation

The estimation of the camera motion is motivated by the idea of enabling the comparison
of images taken from different spots. When the current frame is aligned by transforming it
according to the estimated transformation, methods from sec. 2.1 become applicable again.
As the previous section points out, a key issue for motion detection with a moving camera are
inaccuracies in the estimation of the camera motion. Therefore, the selected method must
be resistant to small spatial deviations. This subsection reconsiders the techniques from sec.

2.1 with respect to the inaccurately estimated camera motion.

Frame Difference

Sun et al. try to apply frame difference on the camera motion compensated image in [24].
They use Speeded up Robust Features (SURF) [25] to determine a set of point pairs in both
images. Next, RANSAC is applied to eliminate outliers. The homography corresponding to
the camera motion is estimated from the inliers as described in subsec. 2.2.1. After aligning
the previous and current image with this transformation, they apply interpolation to fill gaps
and define a least squares of distances minimization term to refine the transformation. On the
thus aligned images they now apply frame difference. This way they detect motion at object
boundaries. However, the images in their evaluation show that also edges of static objects
are detected. To cope with these false detections and to segment the entire body, particle

filter [26] based tracking as well as depth value based clustering is employed in their work.

Frame difference as in subsec. 2.1.1 is not suitable for the objective of this work as it only
detects the boundaries of moving objects. Subsequently applying clustering mechanisms
to segment the entire body of the moving object as in [24] would be too time-consuming.
Moreover, whole surfaces could falsely be detected as foreground when trying to cluster
objects based on their boundaries. When two images are aligned with a small offset and frame
difference is applied, the effects are similar to an asymmetric sharpening kernel, where edges

are extracted. Consequently, edges of actually static objects are then detected as foreground.

11
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Background Modeling and Subtraction

Kim et al. [22], Yi et al. [8] and Yun et al. [7] use the intensity image only and maintain a
background model in their systems. The background model is only kept for the current field
of view of the camera. Hence, no global coordinate system is used. As a result, to make the
existing background model usable when a new frame arrives, it must be transformed according
to the camera motion between the previous and the current frame. Having transformed the
previous background model, it can be updated with the current observations as described in
subsec. 2.1.2. Also for background modeling, the inaccuracy of the transformation hampers
the process. False detections similar to those in the frame difference method occur when
the transformation is not exact. This is because background subtraction, which is applied
to detect objects that are not part of the background, is also an image differencing method,

where in this case the image to be subtracted is the background model.

Kim et al. [22] tackle the inaccuracy problem by considering also neighboring pixels in both
the update and background subtraction process. When the current observation updates
the existing background model, the pixel with the best match to the current observation is
selected from the neighborhood in the transformed background model of the previous frame. In
contrast, the common approach is to update the underlying pixel in the transformed previous
background model directly, without looking at the neighborhood. Also the background
subtraction is applied on the pixel with the best match in the neighborhood of the model,
which prevents false detections caused by the inaccuracy of the transformation. In their
system, the background model is a Gaussian model, see also subsec. 2.1.2. In addition to the
mean and variance, they introduce an age value that corresponds to the number of frames
that have been incorporated in the background model at the respective pixel. The higher
the age, the lower is the proportional impact of the current frame. When the camera moves,
newly covered regions initially have the age zero and are thus faster updated than regions
that have already been updated several times. This way Kim et al. try to keep the model

receptive in uncertain regions and stable in well known regions.

However, the background model from Kim et al. is vulnerable to corruption [23]. When
dynamic objects are located in the newly covered areas after a camera shift, they are initially
classified as background as no prior information exists. When the dynamic object is observed
to move in the following images, some background areas which were occluded by the dynamic

object are revealed, others are occluded. Instead of only labeling the newly occluded areas
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2 Detection of Object Movements in Related Work

as foreground, also the revealed areas are falsely classified as foreground. This is because
the background model contains the dynamic object. Background subtraction then detects a
difference between the current observation and the background model. When the camera
keeps moving, this error is dragged along from frame to frame. Suchlike detections of dynamic

objects that do not exist anymore at the detected location are also referred to as ghosts.

Yi et al. [8] try to solve this issue by introducing a second Gaussian model in addition
to the existing one from Kim et al. [22]. The second model collects observations that do
not match with the primary background model. This has mainly two effects: Firstly, the
primary background model is not contaminated with single false detections. Secondly, when
observations in subsequent frames support the conjecture of the second model and it becomes
thus more probable that the background actually looks like it is modeled in there, focus can be
switched on the second model. In the work of Yi et al. [8] this idea is realized by comparing
the ages of the Gaussian model. When the age of the second model exceeds the age of
the first model, they are switched. Dynamic objects in newly covered areas are thereby less
problematic. Yi et al. also estimate a homography based on the intensity images, but tackle
the inaccuracy problem with a different approach than Kim et al. They reduce the resolution
of the background model drastically by dividing the image in equal grid cells. Instead of
transforming every pixel with the homography, the cell centers are transformed and the new
grid is obtained by averaging the overlapping transformed cells. By not matching pixels
directly this way, inaccuracies in the homography have less impact. Moreover, computational
cost is reduced by maintaining only a low resolution model. Yi et al. thus claim their algorithm

can run on real time on a standard mobile phone from 2013.

Yun et al. [7] try to improve the robustness of the system of Yi et al. by the assumption
that dynamic objects move smoothly. They further reduce computational cost by restricting
the considered pixels to a sample set which is created based on the foreground probability in
the previous frame. When operations are performed only on a few pixels, the time consumed

for processing one frame decreases.
The methods of Yi et al. [8] and Yun et al. are delineated in more detail in chapter 3.

The work of Wu and Chiu [23] as well as the /ViBe [27] use multiple samples instead of
a Gaussian model to represent the background. Each time new observations arrive, they
replace an existing sample through the current observation with a certain probability. As

against Wu and Chiu's system, the [ViBe is real-time capable and also models the depth of
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2 Detection of Object Movements in Related Work

the background. However, drawbacks are that no scheme for coping with motion inaccuracies
is proposed, newly covered regions are often detected as foreground and objects that cover

small proportions of the image are falsely incorporated in the background model [10].

There are also methods that model the background three-dimensionally. In contrast to the
above explained methods, where only a small size background model is maintained, Scona et
al. [18] model the background globally and in three dimensions. This has the advantage that
no information is discarded in regions that slide out of the image and may reenter later on.
Their representation of the background is a set of 3D disks, also called surfels. Each disk has
an associated position, normal vector, RGB color, viability value, timestamps and an age value.
These values are updated for concerned disks with every incoming frame. Rendering from
this 3D model is performed to predict the image the camera would see if the scene consisted
of static objects only. As subsec. 2.2.1 already elucidates, the set of dynamic pixels is jointly
obtained with the camera motion estimate through a single minimization term. However, real

time performance with [18] can only be achieved on a GPU.

Optical Flow

Detecting moving objects after the estimation of the camera motion is also possible by
analyzing the optical flow field. Independently moving objects exhibit a divergent motion
and thus remain in the optical flow field after removing the effects caused by the camera.
If optical flow methods like the KLT (sparse) or EpicFlow [12] (dense) have already been
used for estimating the camera motion, their results can be reutilized. This is in particular
advantageous with respect to the runtime since no additional computations like frame

difference or background subtraction have to be performed.

Huang et al. [28] estimate two different types of optical flow. First, they employ FlowNet2.0
[29], a fast neural network based method, to obtain the current optical flow field. Next,
they try to calculate the optical flow of the background. To this end, they consider the
background optical flow field as a quadratic function of the point coordinates. For estimating
this quadratic function, they sparsely select pixels distributed over the entire image and find a
solution with Least Squares Regression Estimation (LSRE) and RANSAC. Points for which the
background optical flow differs strongly from the actual optical flow field are assumed to have

a high foreground probability. Therefore, the foreground mask is obtained by thresholding the
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difference of the two optical flow fields. Wu and Chiu [23] also calculate two optical flow
fields. For the actual dense optical flow, they use the method of Liu [30]. The background
optical flow is generated by applying the estimated homography corresponding to the camera
motion to every point and measuring the displacements. Wu and Chiu now calculate an initial
foreground guess by comparing the two optical flows. As against Huang et al. [28], they

combine this with background modeling and are not able to achieve real-time performance.

While Huang et al. and Wu and Chiu separately calculate the camera motion and the dense
optical flow, Sun et al. [31] merge these processes by deriving the camera motion from the
dense optical flow. The homography corresponding to the camera motion is estimated by
finding the most common motion in the dense optical flow field yielded by [12]. After that,
generating the background flow and determining the foreground probability based on the
difference of the vector fields is performed as in Wu und Chiu's work. Furthermore, Sun et
al. memorize how foreground objects look like by storing their RGBD values once they have
been detected. This principle is also referred to as foreground modeling. Since the dense
optical flow method they use [12] takes about seven seconds to process one frame, their

method is not real-time operable.

Makino et al. [9] also try to use discrepancies in the optical flow field as an indicator for
dynamic objects. Unlike the methods above, they are able to go without the estimation of a
dense optical flow. This is beneficial as the calculation of the dense optical flow is the major
time consumer in the other methods. To this end, they apply conventional KLT and obtain
thus a sparse optical flow, from which again the homography is estimated with RANSAC (see
subsec. 2.2.1). The background flow is generated from the homography as in the previously
discussed methods. Equally, it is subtracted from the actual optical flow, which is in this case,
however, the sparse one resulting from KLT. Therefore, subsequent interpolation is required
to obtain the differencing vectors for every pixel. To make the foreground decision, Makino et
al. consider the angle of the residual flow vectors after subtraction instead of focusing on their
Euclidean length. This is based on the assumption that moving objects do not often change
their moving direction. Consequently, when the angle of the residual flow vector remains
similar over time, the corresponding pixel is assumed to have a high foreground probability.
Merging the so determined foreground probability with another, background modeling based
foreground indicator from [8], their system is able to achieve a higher accuracy than [8] and

still runs at 45fps at a similar resolution [9].
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2.2.3 Summary

The prevailing approach in related work is to estimate first the camera motion (subsec. 2.2.1)
so that the current image can be transformed in a coordinate system in which knowledge from
previous frames is available. This can be achieved either two-dimensionally, which is faster,
or, considering also the depth image, three-dimensionally, which is more accurate. Being
thus able to compare the current image with prior knowledge, different indicators are utilized
in order to distinguish between static and dynamic objects. The most common indicators
are a large difference between consecutive frames, the deviation from an incrementally built
background model and anomalies in the optical flow (2.1). When working with a moving
camera, frame difference seems to be the least suitable technique as inaccuracies in the
camera motion estimation are difficult to handle. Background modeling and subtraction has
the advantage of accumulating information over time. Detection results can thus become
more stable as if the current image is only compared with the previous one. Background
modeling can be either performed in 2D or 3D, where again the above mentioned trade-off
between speed and accuracy is pivotal. Methods utilizing anomalies in the optical flow often
calculate the flow field for every pixel. This is necessary when seeking the dense foreground
segmentation mask without interpolation, however, it comes with high computational cost

and is hardly feasible in real-time.
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3 Proposed Method: Background
Subtraction with Two Local
Background Models

Through its robustness and efficiency, the background modeling technique from MCD5.8
[8] proved to be a suitable base line for this work. Therefore, the method proposed in this
work is based on MCD5.8 [8] and the system of Yun et al. [7], who attempt to enhance
both speed and accuracy of MCD5.8 by considering fewer pixels and by remembering the
position of dynamic objects. Section 3.1 to 3.4 cover the base method from Yi et al. and
show adaptations and improvements to it. Section 3.5 focuses on the extensions introduced

by Yun et al. , which are also slightly modified in the proposed system.

KLT
intensity image .— on previous and — Tracking Results —» RANSAC —>
current frame

Homography
matrix

!

Camera motion Mixing models
4—— Re-Sharpening <——/ compensated ~€—— from previous
model (blurred) frame
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(deblurred)

'y
Select Samples

depth image Update Models — Updated models o s (e '—‘
Vg

Background

Subtraction,

Thresholding
and Smoothing

» Foreground mask

Figure 2: Concept of the proposed system visualized as event driven process chain. Hexagons
represent information which are the input or output of processing stages (yellow rectangles).
Based on the intensity image and the depth image, a binary foreground mask is calculated
(orange hexagons).

Figure 2 provides an overview of the proposed system. The system’'s procedure can be
outlined as follows: First, the camera motion is estimated using intensity images. By applying

this transformation, the background model from the previous frame is transformed so it can
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3 Proposed Method: Background Subtraction with Two Local Background Models

be used in the current frame (section 3.2). Next, the background model is updated with the
current depth image (section 3.1). Subsequently, background subtraction is applied in order

to find foreground objects (section 3.4).

One of the most relevant adaptations is the usage of depth images for the background
model. Also in contrast to MCD5.8, the update rate of the model, the variance and the
plausibility are treated in a decoupled manner (section 3.1). Apart from that, one of the main
contributions of this work is an anti-blurring scheme that keeps the background model sharp
(section 3.3).

3.1 Two Local Gaussian Background Maodels with Age

in a Low Resolution

Similar to an image, a background model maps spatial and visual information. For a certain
region, a background model should provide information about the appearance of the static
environment. As depth images are used to model to the background, the appearance of the
static environment is expressed in terms of the distance of objects to the camera. Gaussian
models are employed to represent the background depth. A Gaussian model consists of a
mean and a variance, where the mean value represents the average depth in the covered

region.

Background modeling is performed grid-wise, locally and dually. This strategy has been
introduced in MCD5.8 [8].

Grid-wise background modeling means that it is not performed for every pixel. Instead, the
image is divided in a coarse grid with equal quadratic cells and all pixels belonging to a certain
cell share the same background model. This lowers the resolution of the background model
and reduces computational cost. Additionally, inaccuracies in the camera motion estimation

have less impact on the foreground decision (see subsection 2.2.2).

The above mentioned local property refers to the fact that the background model is only

maintained for the current field of view of the camera.

Lastly, dual signifies the idea of maintaining two background models for every cell in the
grid, but using only the more reliable model for the detection of moving objects. In the

following, the more reliable background model is called the apparent model, whereas the
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3 Proposed Method: Background Subtraction with Two Local Background Models

other model is referred to as the candidate model. While the apparent model can provide
the appearance which is believed to belong to the background, the candidate model collects
possible foreground observations. In systems with only one Gaussian model, the information
of the latter could be discarded. When using two models per cell, initial false classifications
can be rectified by simply interchanging the apparent and candidate models. This happens in
MCD5.8 when the number of observations which support the second model is higher than the
number of observations that support the first. This number of observations is called the age,
and the age value is stored alongside every Gaussian model. It is capped at an empirically
chosen a4, in order to keep the model receptive.

In the following, the background model as it is used in this work is defined. Affiliation of a
function or variable to the depth value is expressed by the D superscript. The input depth
image LP(p) provides the depth value d, for the pixel p with the coordinates (x,y) at time ¢
through

L?(p)de, p:(x,y)EQp. (1)

The pixel domain €2, contains all pixels of the input image with height 7,4,s and width n.s:
Q, = {(ac,y) EN? | (0 <2 < Nyows,0 <y < ncols)} (2)

Instead of holding a background model for every pixel p, it is only maintained for quadratic
cells. Being arranged in a two-dimensional image, the cells also have an index tuple ¢ = (i, j)
with 4 and j as the row and column index of the cell. A cell C.. at position c is a set of pixels,

so that C,. C €,,.

All cells are, by definition, quadratic and have an equal number of elements, therefore they
share the edge length of N € IN pixels as well as the number of contained pixels, which is
N -N:

VC.:|C]=N-N. (3)

The Gaussian model that is associated with every cell is denoted as the tuple
(n,0,a) €Y CR2 | (4)

where 1 is the mean depth value, o the variance and « the age of the model. The image

LY : Q. — Y maps each cell onto a Gaussian model using the cell's index c. The grid
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domain €2, contains all pairs of row and column indices of the grid. For a point in time ¢, the

background model image L} is defined as
LtY(C) = (;ut,ca Ut,ca O‘t,c) . (5)

Up to here, the general structure of cells and Gaussian models as well as their mutual
relationship have been considered. In this work, there are two images L) stored, one holding
the apparent models, the other the candidate models. Both images are defined on a grid of
cells that is obtained by dividing the input image into N x N squares. The grid holding the
background model is constructed in a way cells do not overlap each other and fully cover the
input image. The grid domain €2, is thus a partition of the pixel domain €2,. In other words,
every pixel is located in exactly one cell. Partitioning in squares with edge length N is only
possible if N is a factor of both the image height n,..,s and width n.,s. The grid domain

can then be defined as

.. . Nrows . Neols
Q. =3 (4, N2 |0<i< 0<j< } 6
{iyenjocicm o)< (6)

The set of all pixels that are located in C, after dividing the input image L (p) into N x N

ci=fpeani[3] - »

which allows the mapping from pixels to cells.

squares assembles C, as

For each incoming frame, the components of every model L) (c) are updated as:

Ht,c = A mygc + (1 - )\) CHt—1c 5  Ho,e = Mo, (8)
Otec = A Ut,e + (1 - )\) S 00,c = Vo,c (9)
Ot e = Qg1 ¢ +1 ) Qo = 0. (10)

In the update process described in eq. (8)(9)(10) the update rate A determines the influence
of the current observation m, . with its variance v, . on the existing model. A higher X implies
faster model adaption. In contrast to MCD5.8, in this work the update rate is kept at a fixed
value independent of the model’s age. The main reason for this is that depth values naturally

change when the camera moves whereas the intensity, used in MCD5.8, remains constant.
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Updating the model slower the higher the age is would hamper keeping the model up-to-date.
Also, through mixing and averaging models for every frame after the camera moved, the
background model tends to get blurry especially in cells where lots of observations have been
incorporated. A slower update in older regions as in MCD5.8 intensifies this blur. The reasons
and consequences of this blur as well as further counteracting technique is depicted in section
3.3.

The values m; . and v;. from eq. (8)(9) are obtained from the pixel values in the current
image. The cell's mean value m; . is determined by simple arithmetic averaging of pixels

which are located in the cell with index c, i.e. by

> LP(p), (11)

peCec

1
mgec =
|Cel
where LP(p) is the value in the current depth image LY at pixel p. The corresponding
variance v; . is obtained from the pixel that shows the largest depth difference of the model’s

mean:
vie = max(p. — L (p))*. (12)

peCe

The formulation of v; . is adopted from MCD5.8 and contrasts to the standard definition of
a variance in statistics.

For each input frame and for each cell, either the apparent or candidate model is updated
according to equations (8)(9)(10) and the other one remains untouched. If the current
observations in a cell match with the apparent model, the apparent model is updated. A
match is given when two conditions are fulfilled. First, the difference between the mean in
the current observation and the mean in the Gaussian model must be less than the variance

of the model:

(mt,c - Mt,c)2 < O¢c - (13)

Second, the variance in the current observation may not exceed the variance of the Gaussian

model by more than factor k.

vt,c < kvar : Ut,c ) (14)

If the conjunction of equation 13 and 14 is false for the apparent model, but true for the
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candidate model, the candidate model is updated. In case the conjunction is false for both
models, the candidate model is reinitialized with the current observation and the age is reset

to one.

The condition from equation 13 ensures that the apparent background rejects depth values
from objects that are probably dynamic. Instead of discarding the information in this case, it
is absorbed by the candidate model, which is either updated or reinitialized. The additional
condition from equation 14 is introduced in this work to tackle issues arising at boundaries of
dynamic objects. A depth edge in the current image passing through a cell causes a high
variance v, .. If only a small ratio of the sample pixels belongs to the dynamic object, the
mean my is similar to the background model's mean ., so equation 13 would be fulfilled.
The variance of the apparent model would then be increased according to the update process
in equation 9. Since the dynamic object should not influence the apparent model, this is
undesirable behavior. The high variance allows equation 13 to become true in the following
frames, leading to a false incorporation of dynamic object edges. Therefore, equation 14
ensures that a model is only selected for the update process if the variance of the current

observation is similar or lower than the model’s variance.

After updating, the two background models are switched if the age of the candidate model
exceeds the age of the apparent model multiplied with factor ki, . Thus the apparent
model holds information which is believed to belong to the static background, whereas the
candidate model incorporates information that do not fit in the apparent model. These
deviating information are probably caused by foreground objects or noise, however, if further
observations support the conjecture that rather the candidate model holds information of the

static background, models can be switched.

3.2 Camera Motion Estimation and Compensation by

Transforming and Mixing the Background Model
For the most part, the camera motion estimation and compensation system is adopted
from MCD5.8. Point pairs indicating correspondences in the previous and current frame

are determined with conventional KLT on the intensity images. RANSAC is applied to find
a homography that is supported by the most point pairs (see subsection 2.2.1). The thus
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estimated homography is presumed to be the inverse of the camera motion. Applying the
homography matrix on any pixel coordinate in the previous frame, its coordinate in the current
frame can be determined. For the reasons expounded in subsection 2.2.1 this matching is not
exact for every pixel. As a robust method to deal with these inaccuracies, Yi et al. and this
work therefore choose to maintain the background model cell-wise instead of pixel-wise. The
estimated homography matrix is then only applied on every cell center. Thus the cells valid
for the coordinate system of the previous frame can be transformed onto the current grid.
However, as most probably the matrix does not transform every cell center by a multiple of
the cell's edge length, cells in the transformed grid from the previous frame intersect cells in
the current grid. Making the previous background model valid for the current grid despite this
issue is achieved by mixing overlapping cells. For each cell in the current grid, the background
model containing the information of the previous frame is obtained by calculating the mean

flt—1,, variance 6;_; . and age value &;_; . of Lf_l(c) through interpolating intersecting cells:

ﬂt—l,c = Z Wy~ Ut—1,z (15)
z€Q),
6}_1’3 - Z Wy - (O-t—l,z + ((Nt—l,z)Q _([Lt—l,c)Q)) (16)
z€Q,
dt—l,c = Z Wy - g1,z - (17)
2€Q,

The cell specific mixture weights w, are proportional to the intersection area of the squares

R. and R, which are defined according to figure 3:

w, x Area{R.NR.}, > w.=1w,€][0,1]. (18)

In equation 15-18, z indicates the value refers to a cell from the previous grid cell domain
Q),. Therefore, it is found on the right-hand side of the equations only. The index c signifies
affiliation to the current grid, for which the background model is generated by eq. 15-18.
Lastly, the tilde above the mean, variance and age value signifies that the model has been
transformed and the values are thus valid in current frame. The process is executed for both

the apparent and the candidate models.
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A Ay Ay * edgelength DAy
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Figure 3: Calculating the overlapping area of the two equal sized squares R, (blue) and
R. (orange) based on the distances A, and A, between their center coordinates. From the
figure it can be easily derived that the overlapping area of the blue and orange cell equals
to the entire blue square area minus A, - edgeLength minus A, - edgeLength and, to add
what has been subtracted twice in the top left, plus A, - A,.

To sum up, frame-to-frame camera motion compensation of the background model is
achieved by estimating a transformation matrix with intensity images and subsequently
applying it on every cell center of the grid of the previous frame to find the cells’ positions in
the grid of the current frame. Each cell in the current grid is influenced by the transformed
previous cells proportional to their joint overlapping ratios as shown in figure 3. Given the
camera motion compensated background model, current observations can be incorporated as
per section 3.1. To this end, in the update functions of equations 15, 16 and 17, 1., 0¢—1,¢
and a;_; . are replaced through their camera motion compensated versions fi;_; ¢, 6¢—1, and

Qp_1c-

3.3 Anti-Blurring Technique to Preserve Acuity of
Background Model

A prevalent issue that comes with the camera motion compensation technique in MCD5.8

and section 3.2 is blurring. Through mixing adjacent background models after every frame

24



3 Proposed Method: Background Subtraction with Two Local Background Models

when the camera has moved, the background model gradually loses its sharpness. When the
same region is observed for a certain time and the camera meanwhile makes small movements,
edges are no longer visible in the background model. This effect is shown in Figure 4. Objects
in the background model change their appearance as nearby observations, that are actually
not part of the object, incorporate into the model at the position of the object. Edge regions
around actually static objects are thus incorrectly classified as foreground. This is because the
depth values in the current image differ from the value in the background model. Therefore,

with a blurred background model, motion detection by background subtraction becomes

erroneous.
Background Model (Defined on Cells) Depth Image (Defined on Pixels)
N .
N -
| .
Co C1 CZ C3

Figure 4: Schematic visualization of the blur effect. A section covering four cells of the
background model is selected to show the emergence of blurs while mixing cells in a minimal
example. The measured distance of objects increases with the brightness. At time ¢ — 2, the
artificially created scene can be thought of showing a wall (light gray) and a pillar in front of
it, where the depth value of the pillar is significantly lower (dark gray). The camera moves to
the left from time t — 2 tot — 1 as well as from ¢t — 1 to t. As a consequence, the captured
images apparently move to the right. Adding the motion over both frames, the pillar has
moved in the depth image by 4 pixels, corresponding to one cell edge length. Hence, at time
t the background model is expected to show the pillar in cell C5 and the wall in all other cells.
However, the bottom row shows that the dark gray of the pillar has diffused and affected cell
01 and Cg.

This work proposes a technique to counteract the blurring visualized in Figure 4. The main

idea is to measure and maintain the degree of blur for every cell and consequently prevent
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unblurred cells from being contaminated with blurred cells. To this end, a blur compensation
value is calculated for each cell. After the camera motion has been compensated as in section
3.2, the blur compensation value is added to the mean value of the respective apparent
model. Although the candidate model also experiences the blur effects when mixing cells,
blur compensation is not applied on the candidate model in order to save computation time.
Omitting the candidate model is reasonable since the apparent model is always the model

with the higher age and blur effects thus concentrate on the apparent model.

3.3.1 Derivation of the Blur Effect in Exemplary Scenario

Suppose a situation as depicted in Figure 4. No dynamic objects interfere the scene. The
observed scene contains a wall in distance d,,,; and a pillar in front of it with distance dpqr
to the camera. To simplify the modeled scenario, the grid consists of (1 x 4) cells only. The
vertical pillar covers the cell Cy in the second column with coordinates ¢; = (0, 1), so that

Hi—2.c; = dpingr- All other mean values in the grid belong to the wall and hence equal dyq.

Three frames are envisaged to understand the blur effect. From the first to the second
frame, camera motion estimation yields that the entire image has moved by n!} pixels to
the right. From the second to the third frame, the more recent image appears to be shifted
by ni_, pixels to the right. A scenario is envisaged where both displacements add up to the

cell's edge length (see equation 3):
n_y +ni_y = N. (19)

Comparing the first and the third frame, the pillar should consequently have moved by one
cell to the right, so that 1,2, = dpiuar. All other cells, including C, should exhibit dyqu
as their mean values. However, this is not the case. In the following, the reason for that is
examined.

The mean value of a model for time ¢ —1 is assembled from the mean values of the models in
the transformed grid from time ¢t — 2. Weights are calculated corresponding to the overlapping
ratio. Because the same right shift transformation has been applied on every cell, for each

cell C. at t — 1 the weight of its left-handed cell from ¢ — 2 is equal and corresponds to

N =

t
ny_

N Y

(20)

Wit—2 =

26



3 Proposed Method: Background Subtraction with Two Local Background Models

where the coordinate [ left of ¢ is given by [ = ¢ — (0,1). The weight w, of each cell with

the same indices in the frame from ¢t — 2 is

N

N ot
L R (21)

Wet—2 =

For the cell Cj at position (0,0), C; at (0,1) and C5 at (0,2), the mean values are obtained
by
fit—2.cy = Wit—2 - -2 T (1 — Wis—2)flt—2.c,, (22)

fit—2.cy = Wii—2 * f—2.e, + (1 — Wri—2)flt—2.cy - (23)

Expressed in terms of the depth values of the wall and the pillar, this is
,at—lcl = Wi t—2 - dwall + (1 - wl,t—2)dpillar (24)

fit—2.cy = Wit—2 - dpittar + (1 — wi—2)dwan- (25)

Through the right shift of the images due to the camera motion, each cell at time t — 1
incorporates the ratio w;;—o of its left-handed cell from time ¢t — 2. Up to here the cell states
are as expected. The scene is static, therefore the current observations do not change the
background model, so that V¢ : p;_1. = fi;_2.. Otherwise equation 8 would be used to

obtain : p;—1 . from fi;_o .

Next, from ¢ — 1 to ¢, the image appears to have moved to the right by n! ;| pixels. Under

the scenario constraint of equation 19, the weights w; ;1 and w.—; can be expressed through
w1 =1—w o (26)

W1 =1 — W2 = w1 (27)

Mixing models according to equation 15, the mean values for time ¢ are thus
fit—1c; = (1 — wig—o)th—1.c + Wit—2 - flt—1,c15 (28)

fit—1c, = (L — wigo)thi—1.e; + Wit—2 - flt—1,co- (29)

Substituting expressions using equations (24)(25), the means valid for the frame at time ¢
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are given by
fi—t1,e, = (1 — wis—2)dwan + wi—2(wit—2 - dyan + (1 — wie—2) - dpitiar), (30)

fit—1.c, = (1—=wyg—2) (Wit—2-dywau+ (1 —wit—2) dpitiar ) Fwit—2 (Wi 1—2- dpitiar + (1 =Wy 1—2) dipair) -

(31)
Reducing (30)(31), it turns out that
ft—1.e, = (1 — (wrg—1)(Wis—2))dwan + (Wie—1) (Wi t—2)dpitiar (32)
and
fit—1.c, = (1 — 2(wp 1) (Wi t—2) ) dpitiar + 2(wi—1) (Wi t—2)dwair- (33)

However, since all objects in the image have actually moved by exactly one cell, the value for
flt—1,¢, should be 1.0 - dp;yqr, completely containing the pillar. Equally, fi;—1 ., should actually
attain 1.0 - d,,q because the current image shows wall in the entire cell region. Even the
cell in the fifth column is unequal to d,,,; because it absorbs the ratio w; ;4 of 1,1 ., even
though the pillar has never been there. The difference between the target and actual mean

value of C5 and C; (equation 30) can be understood as

Aﬂt,cl = Aﬂ’t,q; = dwall - ,at—Lcl *Wyt—1 (34)

and for the forth column in equation 31 as

A,ut,CQ = dpillar - ﬂt*l,CQ *Wyt—1 (35)
so that
A,uii,cl - AMt,c;; - (wl,t—l)(wl,t—2) : (dwall - dpillar)a (36)
and
A/’Lt,CQ - _2((wl,t—1)(wl,t—2) ' (dwall - dpz'llar)) (37)

Note that the signs of Ay ., and Ay, ., differ and the sum of the target-actual difference

over all cells is zero, implying it changes only the local appearance of the background model,
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which is typical for blurs [32]:
A:ut,cg = _(Aut,cl + A,ut,cg) y Z A,ut,c =0 (38)

Up to here, it was shown how after two frames the actual value deviates from the desired
target value. The origin of the blur effect in the mixture process becomes apparent. Cells
partially comprise the original state of other cells. Considering this effect on the whole image,

the background model becomes blurry over time.

3.3.2 Generalization of the Example Using an Intermediate Blur

Value

A general formula is to be determined so that the blur effects can be quantized beyond the
scenario above. Equations 36 and 37 show that the blur effect depends on weights in earlier
mixture processes as well as on the original mean values of cells. Although the weights that
formulate A ., and Apy ., are the same, the expected results differ in both magnitude and
sign.

In the following, the target-actual difference is represented by the sum of two functions.
The primary function, L;**"(c), is able to represent Ay, and At ey It occurs on every
depth edge when the image is transformed by an amount unequal to any multiple of the cell’s
edge length N. The secondary function, L;***“(c), approximates the effect leading to A,
It is observed that L;*°(¢) is only necessary when a single-row or single-column depth line
is involved. The reason for that can be comprehended when considering the composition of
fli—1,¢, In equation 29.

Given only the Gaussian models from the previous frame as it is the case in the standard
mixture process, the blur target-actual difference cannot be deduced. This becomes clear
through equations 36 and 37, where weights and mean values from time ¢t — 2 are involved.
A blur measure is introduced whose formulation is based on the composition of the mean
value through mixing cells from time ¢ — 2. In the scenario examined above, the mean value
is influenced by two different observations from time ¢ — 2 with the respective weights w; ;o
and wy, ;—2. The resulting mean value for ¢t — 1 is thus some value in between. This is already

a blur, however, since the resolution of the grid is fixed, it is not avoidable at this point.

29



3 Proposed Method: Background Subtraction with Two Local Background Models

Instead, the blur can be quantized in a value denoted as 3;_; . by determining the value to

which the result differs from the original component with the highest weight:

515—1,0 = Mt—2 zmae — ﬂt—?,ca Zmaz = argmax wy, (39)
ZEQZ

where the notation is adopted from equation 15. In words, 3,_; . represents the value that
must be added to 41 . to obtain the original mean of the cell that had the largest influence

in the mixing procedure.

With ;_; . from the previous mixture process, the difference between target and actual
values in Ay, and Apy ., can be explained. In equation 28, cell Cj is still unblurred because
in the previous frames it has not incorporated any different mean value. Its blur value 3;,_; .,
is therefore zero. In contrast, cell ¢; has been composed out of different means and therefore

exhibits a blur value 3,_; ., according to equation 39:

d illar — llt—Q,c = (wl,t—2)<d illar — dwall) if Zmaz — C1
Bt—l,cl - P R ' P ) (40)
dwall — Ht—2,c; = (1 - wl,t72)<dwall - dpillar) if Zmaz — €0

Target-actual difference when mixing blurred and unblurred cells

The primary target-actual difference function L2*P"™ is based on the inequality of mixed

cells with respect to blurriness.

To find blurred and unblurred cells in general, the influencing cells €2, are split in two equal
sized subsets. If |€2,| is uneven, one subset contains one element more than the other. The
split of €2, is performed by the blurriness |3;_; .|, resulting in a subset containing all lower
blurred cells and a subset containing the higher blurred cells. The values and weights of the
models in each subset are averaged in order to obtain the two artificial cells u and b, where «

contains the less blurred model and b the stronger blurred model.

Then, the difference of the absolute blur values can be calculated by

5ﬁt,c = ‘ﬁtfl,b‘ - ‘Btfl,u’- (41)

As [3,_1 5 contains the cells with the stronger blurred cells, d, . is always positive. For further
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calculations, also the mean difference between blurred and unblurred cell is determined:
b
O e = Ht—1p — ft—1.u - (42)

The primary blur effect L:*"™(c) is now to be expressed in terms of the blur difference
33, Exemplary for C, 63, ., (equations 40,41) and Ay ., (equation 36) differ by a factor

only:

A,Ut’q 1-— Wiy t—2 if Zmaz — C1

fea | (43)
Broc Wig—2  if Zmae = Co

The generalized formulation for this missing factor is derived in the following. The scenario
from subsection 3.3.1 showed that a deviation from the expected mean value occurs when a
certain cell influences another cell twice. A gap between the actual value and the target value
could be observed that depends on both the weights from the second last and the previous
frame. The blur value 3;_; . implicitly includes a weight from the second last frame. Equation
39 shows that the blur value calculation is based on the cell from ¢t—2 with the highest influence,
which is w,, .. ;2. Because of the cell partition in two artificial cells, the cell with index
Zmin complements 2,4, S0 that €, = {2, Zmas }- By replacing fi;_o . by its composition
according to equations 22 and 23, it can be shown that the weight which is included in 53;_; .

is the weight of the cell with the lower influence, namely w,_, ;o= (1 —w,,, . +—2):

Btfl,c = :ut*2yzmaz - lat*2yc = (1 - wzmaz>t*2)5zi_r?zax : (44)
In equation 44, §™"ma* s the difference of the influencing means for the composition of cell
Ht—1,C g
C. at time t — 1:

5minma:c

Mt—1,C = /"Lt_szmaz - ,u’t—2,Z"Lin : (45)

Equation 44 showed that 3;_ . is proportional to w,, . ; 2. The cell from time ¢ —2 with the
lower influence for C. is likely to have a larger overlap with another cell and thus propagates
its mean to time ¢t — 1. As aforementioned, when this cell again influences the already blurred
cell in the mixture process at time t, the target-actual difference emerges. Subsection 3.3.1
and equation 36 yield that the target-actual difference is a factor of both the weights from
t—2andt—1. Given B;_1., the weight that is missing is the weight from ¢t — 1. The
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influencing cell holding the mean that had less influence in the previous mixture process is
found by checking if the sign of the blur value of the stronger blurred cell contradicts the

sign of the mean difference:

wyy—1 if Sgn(ﬁt,b) = _39”(51‘?0)
wzcomplvt_l = Hee (46)

wyt—1 Otherwise .

The blur difference dg, . is based on the stronger blur 3;,_; ;, containing a weight from time
t —2. When 4, . becomes proportional to w.,,, 1, it can formulate Ay, and Ay,
from equation 36. The primary blur effect can thus be explained through

LtAﬂap”‘m(C) = —sgn(5“b ) " Weeomptit—1 651&70 (47)

Ht,C

with the sign function sgn( - -) choosing the sign so that L;***"™(¢) favors the mean of the
unblurred cell.
Being able to determine the difference between target and actual value through Li*P"™(c),

the system can counteract the blur effect for cells C; and Cj5 in the example.

Target-actual difference when mixing two blurred cells

However, for cell (5, there is another logic necessary to derive Ay ., from equation 31.
Equation 29 shows that j;;—1 ., and p;_1 ., are the influencing means. For cell C%, the blur

value 3;_1 ., has been calculated according to equation 39 as
615—1,62 - dwall - ﬂt—Q,cz - 0'3(dwall - dpillar)- (48)

Considering 3;_; ., from equation 40, the influencing cells have thus the same absolute blur
value. Hence, the blur difference dg, ., is zero. The value of Ay ,im(c2) can therefore not
explain Ay, or any other target-actual difference when both cells are blurred. However, the
effect of Ay, only emerges when the pillar covers a single column. If the pillar was larger
than one column by also covering cs, all mixture components in equation 28 would exhibit
dpitiar as their mean values. No blur emerges thus, therefore 3;,_; ., would be zero. The blur
value for Cs, B;_1.,, remains unchanged under this changed conditions. This way there is

only cell C5 blurred at time ¢t — 1, and the technique from equation 47 can be applied to
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explain Agic,.
Becoming capable of modeling the blur induced by single row or single column objects

requires the determination of the common blur of both cells. The common blur is given by

the less blurred cell u:
tC(ém =2 ’ﬁt—l,cu’- (49)

Analogous to equation 47, the absolute value of the wanted Ay q.(c) is obtained by
multiplying 8™ with the weight of the unblurred cell:

LtAu,sec<C) ~ g5 . W, - com (50)

t,c

As the approximate sign indicates, as against equation 47 this term is not exact in general. It
is only based on the idea to strengthen the edge when two blurred cells are mixed, which
is typical when single column or single row objects occur. The sign of Ay g..(c) is chosen
so that the zero sum property from equation 38 is preserved. To this end, neighboring
At prim(c) are considered that have been determined yet. If the sum of Apyprim(c) values
in all cells with directly adjacent coordinates S;;; C ). is positive, Az scc(c) is assigned a

negative sign and vice versa, so that

s = —sgn( > LT (coq)) (51)

Cadj €545

Combining the two concepts from equation 47 and 50, the target-actual differences can be

generalized in the blur compensation image L;":

Lt me Lo 4 Lptsee (52)

From frame to frame, the blur values are inherited analogously to equation 15. They are
increased using equation 39 and decreased when the blur compensation based on LtA“(c) is

applied, which is focused in subsection 3.3.3.

This section showed how the blur effects can be formulated in a general manner. When
mixing unblurred and blurred cells, a closed-form derivation of the compensation value is
possible (equation 47). With equation 52, the blur can be approximated when both cells have

a non-zero blur value.
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3.3.3 Modification of the Model Mixture Process with a Blur

Neutralization Scheme

Seizing the findings from the previous section, this work includes a neutralization scheme
which counteracts the discovered gradual blur. After mixing models and before updating

them, the mixed means [i;_; . can be modified so that blur effects are neutralized.

First, the background model from equation 4 is extended to
Y ={u,o0,a,5}. (53)

Adding the blur value 3 to each cell's model allows recording blurs when they are inevitably

induced and reacting at a later instance of time.

The mixing rule corresponds to the averaging of the mean in equation 15:

Btfl,c = Z Wy - ﬁtfl,z ) ﬁO,c =0 (54)

ZGQZ

Given the set of influencing cells €2, and their corresponding weights, it is checked if blurred
cells exist that would further spread through the mixture process. As this causes the image

to blur increasingly, the anti-blurring technique is applied here.

With equation 52, the blur effects can be explained for the scenario where two cells are
mixed and the current observations do not change the model, so that ;2. = p;—1 . and
fli—1,c = pt. However, in real scenarios, both presumptions are not given. In most cases
the model of a cell is assembled out of four overlapping models. When there is a zoom,
even nine overlapping cells are possible. To make the idea yet applicable, the influencing
cells are separated by their blur value as described in subsection 3.3.2. Equation 52 and its
derivation can now be understood with respect to this two artificially created models. The
primary blur effect which is to be compensated is given by equation 47. The secondary effect
is approximated in equation 50. Equation 52 adds them up, multiplies this sum with the

weight of the unblurred cell and yields thus the blur compensation image Lf“(c).
This value of L:*(c) is calculated for the entire grid domain.

Mixing models is executed according to equation 54 standardly and without consideration of

LtA”(C) . After mixing models, the blur value is updated by adding the blur caused by the
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most recent mixing. Adopting k... and the logic from equation 39, the blur value is updated
by
ﬁt,c = Btfl,c + (,utfl,zm,u - ﬁtfl,c)- (55)

Finally, when all cells for the current frame have been assembled from the overlapping
cells of the previous frame, the blur compensation image LtA“(C) is used. It was calculated
beforehand following equation 52. The means determined as of yet by mixing are overwritten
as per

fiy_1c = fle-1,c + L (c). (56)

At the same time, the blur of the respective cell is reduced by the amount of the impact of

the blur compensation on the model's mean:

Bio = Bic— sgn(Bre) - Li*(c). (57)

As (3. is signed, the sign function ensures that |3{.| < |B;.[, which means after blur
compensation, the cell should be less blurred than before. The blur compensated mean value

ft;_1. becomes p; . through updating with the current observations as per equation 15.

For efficiency reasons, the blur compensation technique is applied on the apparent model

only. However, it is also sensible to apply it on the candidate model.

3.4 Obtaining the Foreground Mask by Applying

Background Subtraction

The next step in each frame after camera motion compensation, deblurring and model
updating is background subtraction. The basic logic for background subtraction is borrowed
from MCD5.8 [8] and adapted to the needs of depth images. Using the apparent models
which are believed to contain uncontaminated background information, the difference between
the current depth image and the current background model is calculated. Since the resolution
of the input depth image is greater than the resolution of the grid containing the Gaussian

models, the background model is extended to the image domain. Every pixel p in the newly
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constructed image L, (p) is assigned the apparent model of the cell containing p:
¥p € Co: L™ (p) = L (c) (58)
Background subtraction can now be carried out and the differencing image LAP is given by
Vp € Q,: LP(p) = LY (p) — peyp (59)

where i, is the mean of LI (p). For each pixel, a foreground probability can be calculated
relative to the variance of the underlying cell. If the variance of the background model is high,
the same L2 (p) corresponds to a lower foreground probability because the uncertainty is

larger. Seizing this idea, the foreground probability is calculated by

rproy) = LW o pangy), (60)
Ttp

where O( - -) is the Heaviside step function which ensures the foreground probability is zero
if the depth difference is positive. Only pixels which are in the current frame closer to the
camera than in the background model are thus detected. L/%""’(p) is not scaled from zero
to one. However, the greater L{%"*"(p), the higher is the probability that p belongs to a
dynamic object. All values less than one indicate the current depth observation fits in the
background model according to equation 13 and therefore the pixel likely belongs to a static

object. To obtain a binary mask from LI%”"", simple thresholding can be applied:
LI (p) = LI (p) > 6y, (61)

where the detection threshold 6, regulates over- or underdetection of foreground objects.

3.5 Efficiency Enhancement through Foreground

Probability based Sampling

Instead of performing the model update and background subtraction with every pixel in
the current image, only a few pixels are selected. This lowers computational cost. The

strategy to choose these pixels is similar to the sampling map from Yun et al. [7]. Based

36



3 Proposed Method: Background Subtraction with Two Local Background Models

on the binary foreground mask output L{gbm from the previous frame, an initial foreground
probability image Lffg (p) for the current frame is generated. When pixels have a high initial

foreground probability, they are selected as samples. The samples, denoted as S? replace

smpl’

C. when updating the model (equations 11 and 12) as well as €2, when applying background

subtraction (equation 59).

The sample set Sfmpl is obtained by extracting pixels with a high initial foreground probability
L7 as
P
Sempl = {p €Q, [ L (p) > Qsmzvl} USha » (62)

with €2, as the set of all pixels. In order to detect newly appeared dynamic objects, Sfmpl

does also contain S’ ,, which is a set obtained by randomly selecting 5% [7] of the pixels in
Q,.

From L{gbm(p), the initial foreground probability Lffg (p) is derived based on the assumption
that the dynamic objects move smoothly and can thus be found at time ¢ near the position
where they have been at time ¢ — 1. This expresses the presumed spatio-temporal property of

dynamic objects. Following [7], the spatial property image is calculated by

1
Ineigh(p)|

>R, (69)

j€neigh(p)

prat(p) = (1 - )\smpl)prat(p> + )\smpl

where Ay, is the update rate and the function neigh(p) yields all pixels inside a 5 x 5

window with p as its center. The temporal property is obtained by
Limp(p) = (1 - )\smpl)Limp(p> + /\smpl : L{gbin(p)' (64)

A high temporal property L;""(p) signifies that a dynamic objects has been frequently detected
at pixel p over the last frames. When the spatial property prat(p) exhibits a high value,
many pixels in the neighborhood of p were classified as foreground in the previous frames.

The initial foreground probability is calculated based on these two properties:

L7 (p) = L™ (p) - L™ (p) (65)

P
sm;

According to equation 62, the sample set S, is assembled by selecting all pixels with an

initial foreground probability Lffg (p) higher than 6.
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The initial foreground probability Lff"’ (p) exhibits a higher value in regions with previous
foreground detections, so that samples are selected densely in these regions. On the contrary,
in regions without prior foreground detections, samples are only sparsely selected based on

the randomly chosen pixels S”

rnd-

For all pixels that are no samples, the result of the background subtraction is defined as
zero. Consequently, the pixel is classified as background. The advantageous effect thereof is
a reduction of false detections in regions where no dynamic objects have been located in the
previous frame. On the other hand, when the dynamic object covers image regions newly,

only those pixels are detected which are contained in the randomly chosen set S ..

Therefore, to recover the dense detection of these areas, this work proposes post-processing

of the foreground mask. After the samples for the next frame have been determined, a

bi :
97 3s it was

box-filter with kernel size K size is applied on the binary foreground mask Lf
obtained in equation 61. Blurring with a box filter removes the binary characteristic of the
image. Hence, the final output mask is generated by cutting the box-filtered mask to a low
threshold of 5% - | Ksize|. For example, if Ksize =7 x 7, the threshold is 5% - 49 assuming

gbin

the binary mask L,{ is encoded using 1 for true and 0 for false.
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4 Implementation using C++ and
OpenCV

The proposed method from chapter 3 is implemented using the programming language C++.
The computer vision library OpenCV 3.3.1 provides algorithms and data structures that

reduce the amount of custom-written algorithms necessary.

Step 3
Deblurrer
\._A_J
fput
Step1 ([ step2 !
| Intensity Image | Camera !l Camera : Ba(;.:(g(;z:md
Motion Motion !
Estimator Compensator .

" Depth Image "

| Modelupdater
: _“ModelMaintainer Y Output
-------- i [—__
[ e |
Background EG Mask
. Subtractor

Sample Set

Step 6

h 4

Sampling

Figure 5: Data flow diagram showing the functional modules in green rounded rectangles
and data structures in red double-edged rectangles.

Key components for the elaborated system from chapter 3 are identified. The strategy for
the extraction of modules primarily follows the separation of concerns principle. Figure 5
shows the data flow between those modules resulting in the binary foreground segmentation

mask. C++ classes and the overall software architecture are chosen referring to Figure 5.

For every frame, a coordinator function (see subsection 4.2.8) prompts the respective modules
to execute the action they are responsible for. The coordinator provides the required input

for the module and collects the result. Given the result from one module, the next module in
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the procedure order is called. Inputs and outputs as well as the procedure order are visualized

in Figure 5.

In section 4.1, the data structures being used are presented. The functional modules

performing operations on these data structures are inspected in section 4.2.

4.1 Data Containers

Extends W
;‘E 2

— SGM
Square
Cell + mean: float

- edgelength: unsigned int

+ apparent: SGM + variance: float
- pointsinside: vec<cv::Point2i>

+ candidate: SGM K>/ | +age:float
- center: cv::Point2i

+ samples: vec<Sample> <>—\ + blur: float

+ Square(center: cv::Point2i, edgeLength:
unsigned int) + Cell(center: cv::Point2i, edgelLength:
unsigned int)

+ intersectionRatioWith(sq:Square): float

Rl Sample

+ recenter(newCenter: cv::Point2i): void + position: cv:-Point2i
+ center(): cv::Point2i +value: unsigned int

+ pointsinside(): vec<cv::Point2i>

Figure 6: The cell class and its members’ types that are used for cell-wise background
modeling. The geometric configuration of cells in the grid is prescribed by the Square class. A
Gaussian model is represented by the class SGM. The cell also holds a set of samples, which
are formed from their pixel coordinates and the value at this pixel

Besides the core functional classes, data container classes are created to express the data
structures that contain the system’s information. First of all, a custom class Image2D for
two-dimensional images is defined. It is created as a template class and can take objects
of any type as its pixel values. This allows representing the grid containing the background
model as an image of cells, where an object of type Cell is defined as shown in Figure 6.
Consequently, the cell contains the apparent and candidate Gaussian models and a sample
set. Moreover, it inherits from Square. The Square class defines a geometric square by a
given center point and its desired edge length. The coordinates of the center point as well
as the edge length are integers. Thereby, the shape of the square outlines a set of points
with integer coordinates, which are stored in pointsinside in Figure 6. The member function
intersectionRatioWith(Square) is relevant in the mixture process when the overlapping ratios

are to be determined according to equation 18.
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The background model grid can now be represented by an image of type Image2D< Cell>,

i.e. with Cell objects as its pixel values.

4.2 Functional Modules

In this section, implementation details of the functional components are shown. Each
subsection focuses on an individual component, which is also a C++ class each. Their role
in the entire system can be comprehended best from Figure 5. Most of them are usable

independently, which facilitates unit testing.

4.2.1 Model Maintainer

The model maintainer is responsible for creating and maintaining the grid containing the
background model. Its constructor takes the desired edge length of the cells as an argument.
Since the size of the input depth image is known globally, the number of required cells can
be derived and the grid can be created as an Image2D of Cell objects. Width and height
of the grid are chosen in a way they equal to the input depth image width and height when
being multiplied by the cells’ edge length. Hence the prerequisite for the edge length is that
it is a common factor of both the width and height of the input depth image.

The model maintainer also conducts the camera motion compensation by mixing the grid as
well as the model update by incorporating current observations. However, these two tasks are

delegated to distinct classes explicated in subsections 4.2.5.

Figure 7 illustrates the relationship between ModelMaintainer, CameraMotionCompensator
and ModelUpdater. The coordinator, in which the main loop for processing each frame runs,
calls the update function of the ModelMaintainer passing the homography transformation
estimated beforehand and the current depth image. Then, the CameraMotionCompensator is
prompted to perform its task based on the homography. After that, the ModelUpdater is
triggered to update the compensated model with the samples of the current depth image.

The functionality of the model maintainer can be summarized by its inputs and outputs:

Inputs Previous background model, Homography, Current depth samples

Outputs Current background model
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ModelMaintainer ModelUpdater

- grid: Image2D<Cell> + updateOfirefCell: Cell): Cell

- updater: ModelUpdater

- motionCompensator:
CameraMotionCompensator C \
L ) CameraMotionCompensator
+ ModelMaintainer(edgeLength: unsigned 1
int) - gridToCompensate: Image2D<Cell>

+ update(trans: cv:Mat, .
samples:vec<Sample>: void + compensate(homography: cv::Mat): void

Figure 7: Class diagram showing the ownership relation between the components that
change the background model. With the creation of a ModelMaintainer object, also a
CameraMotionCompensator and a ModelUpdater object is created. When the function
update is called, the model maintainer initiates the motion compensation and update of the
model.

4.2.2 Camera Motion Estimator

Goal of the camera motion estimator class is to estimate the transformation that aligns the
previous frame and the current frame. Since the transformation is calculated from two 2D
images, it is a homography (see subsection 2.2.1). In contrast the background model, which
is based on depth images, the camera motion estimator uses intensity images. Its inputs and

outputs are therefore
Inputs Previous intensity image, Current intensity image

Outputs Homography transformation matrix.

As Figure 8 shows, the only externally accessible member function is calcTrans, whose
arguments and return value correspond to the in- and outputs listed above. Internally, the
transformation is estimated in two stages. In the first stage, covered by the function findCor-
respondingPointsWithKLT, the KLT implemented in OpenCV is used. Before applying the
actual feature tracker, points are extracted in the previous intensity image which are believed
to be good features to track. OpenCV's function cv::goodFeaturesToTrack(. .. ) determines
these points under consideration of custom-definable constraints. Having selected features to

track, they are passed to cv::calcOpticalFlowPyrLK(. .. ), which finds the corresponding points
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CameraMotionEstimator

+ calcTrans(previntensity: cv::Mat,
currintensity: cv::Mat): cv::Mat

-findCorrespondingPointsWithKLT
(previntensity: cv::Mat, currintensity: cv::Mat):
PointSetPairs

- findHomographyWithRANSAC(pointPairs:
PointSetPairs): cv::Mat

Figure 8: The camera motion estimation is internally performed in two steps: First, corre-
sponding points are found with t KLT, then the homography is estimated based on these
points with RANSAC. The type PointSetPairs is a pair of vectors.

in the current intensity image using the Lucas-Kanade method in pyramid-levels [33]. From
an ordered set of points from the previous intensity image yielded from goodFeaturesTo Track,
calcOpticalFlowPyrLK determines for each element the position where the observation can be
found in current image. Thus there are two ordered sets of points, which are returned by the
function findCorrespondingPointsWithKLT and represent at the same time the input argument
for the function findHomographyWithRANSAC. This function uses cv::findHomography, which
estimates a homography that transforms the previous point set onto the current point set
with a minimal error over all points. Among the parameters of cv::findHomography, RANSAC
can be choosen as the method to use. The obtained homogeneous matrix is believed to
represent the inverse camera motion and is therefore returned as the result of the calcTrans

function.

4.2.3 Camera Motion Compensator

The CameraMotionCompensator class is responsible for generating a model valid for the
current grid containing the information of the previous grid. To this end, the previous grid is
warped with the transformation determined in section 4.2.2. Warped cells having an overlap
with a cell in the current grid influence the respective cell proportional to the overlap ratio. If
one looks at the CameraMotionCompensator module from the exterior, data flows in and out

as follows:

Inputs Previous background model, Homography
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Output Information from the previous background model placed in the current grid

CameraMotionCompensator

- ftoCompensate: Image2D<Cell>

- warpResiduals: cv::Mat

+ compensate(homography: cv::Mat): void

- determineWeightsOfPrevCells
(prevCells: Image2D<Cell>, transformedCell: Cell, startSearchHere: cv::Point2i). map<Cell, float>

- ransformPoint2WithMat3(toTransform: cv::Point2i, homography: cv::Mat): cv::Point2i
- recenterAll(celllmage: Image2D<Cell>, homography: cv::Mat): void

- normalize CellWeightsSoTheirSumlisOne
(weightSumSoFar: float, weights: map<Cell, float): void

Figure 9: Fields and methods of the CameraMotionCompensator class. From outside, the
compensate function is accessible, which modifies the grid toCompensate based on the passed
transformation matrix.

Figure 9 shows that the function compensate acts as the module’s only interface to the
outside. When compensate is called, first of all recenterAll transforms every cell in the
grid according to the passed matrix. The function transformPoint2WithMat3 applies the
homogeneous transformation matrix to the cell’'s center point to obtain the new center point's
coordinates. The transformed cell is constructed around the determined center point. Since
the point coordinates are integers, rounding is necessary. To avoid the accumulation of
manipulations through rounding over several frames, the residuals of the rounding operation
are accumulated in warpResiduals. For future rounding operations, the warp residuals are

considered, i.e. added before rounding.

Next, a local object of type Deblurrer is created whose life time ends with exiting the function.
It is used in the following cell mixture process. A loop iterates over all cells in the grid to be
motion compensated. Therein, the transformed cells from the previous frame are determined
that overlap with the current cell. When using the term transformed cells it is referred to
cells whose centers were transformed as explained above. Checking each transformed cell for
an overlap for each cell in the current grid would be too costly since it entailed a complexity
of n?, where n. is the number of cells in the grid, typically > 2000. Instead, a pre-calculated

point is additionally passed to the function determineWeightsOfPrevCells. This point has
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been calculated during cell recentering and indicates where to start the search. The cell
is determined where this start point is located. A 3 x 3 block with this cell in the center
is selected for the overlap check. The complexity can thus be reduced to 9 - n.. Since all
overlapping cells can be found inside the 3 x 3 block as long as there is no extreme zoom,
this technique does not affect the results. Suchlike zooms are not possible with the speed of

Rollin’” Justin.

Iterating over the cells in the 3 x 3 block, the overlapping ratio is obtained by calling the
intersectionRatioWith function on the transformed cell, passing the cell from the current
grid. The function intersectionRatioWith is based on the geometric properties of the cell only
and is therefore defined in the inherited Square class. It is based on the x- and y-coordinate
displacements between the centers of the cell and can be understood best from the illustration
in Figure 3. The cell's weights are equated to their overlap ratio. Following equation 18 (page
23), the weights in the 3 x 3 block should add up to one. With the strategy of equating
weights to the overlap ratio, however, this is not always the case. Due to the homography
transformation, it is not guaranteed that the transformed grid fully covers the current grid.
The sum of the weights over all influencing cells can thereby be less than one. Weight sums
greater than one are also possible when the camera moved closer to objects, thus causing a
zoom effect. To fulfill equation 18, the weights must add up to one while the proportionality
among them is preserved. Changing the weights accordingly is the responsibility of function

normalizeCellWeights.

Having determined the weights for the cell in the current grid, its Gaussian model can
be assembled by averaging the influencing cells proportional to their weights according to
equations 15 - 17 (page 15) and equation 54 (page 54). The locally created Deblurrer is
notified to process the influencing cells. Influencing cells with a zero age value are skipped as
a zero age indicates no measurement is incorporated in this cell. This can happen in newly

covered regions where only depth error measures have been captured so far.

After all Gaussian models in the current grid have been obtained, the Deblurrer is called to

adapt the mean values of the apparent Gaussian models.
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Deblurrer

- blurCompensation: Image2D<float>

+ processCell(cell: Cell, overlaps: map<Cell,
float>): void

+ applyDeblurring(toDeblur: Image2D<Cell>):
void

Figure 10: The method processCell is to be called for each cell during the cell mixture
processes, passing the weights of the influencing cells. The Deblurrer then checks if a blur
compensation is necessary and stores the compensation value in its member blurCompensation,
which is an image with grid resolution. After all cells have been processed, applyDeblurring
can be called to add each value in the compensation image to the respective apparent model's
mean.

4.2.4 Deblurrer

The Deblurrer class undertakes the tasks necessary to realize the concept elaborated in section

3.3. Its inputs and outputs are therefore:

Inputs Influencing cells from the previous grid for each cell in the current grid,

Camera motion compensated background model
Output Camera motion and blur compensated background model

Following the concept from subsection 3.3.3, the function processCell analyzes the influencing
cells of each cell and determines a blur compensation value. First, the influencing cells are
bisected in two halves. From these halves, the blur difference and all other values required
for equation 47 and 50 are calculated so that the blur compensation value Ay (¢) can be
determined as per equation 52. The resulting Ay (c) is written in the image blurCompensation
at the coordinates of the center of cell c. Thereby for each cell in the current grid there is
an entry in the image blurCompensation that states what must be added to the apparent’s
mean value in order to compensate the blur. This blur compensation is performed on the

grid passed on the invocation of applyDeblurring.
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ModelUpdater

- maxAge: unsigned int

+ updateOf(cell:refCell): Cell

- currentObservationMatchesWithModel(currObs, float, sgm: SGM): bool

- switchCondition(c: Cell): bool

- updateSGM(sgm: SGM, meaninCurrimg: float, varinCurrimg: float): void

- reinitialize SGM(sgm: SGM, meanInCurrimg: float, varinCurrimg: float): void
- getMeanOfSamples(samples: vec<Sample>): float

- getVarOfSamples(samples: vec<Sample>, sgm: SGM): float

Figure 11: Member overview of the ModelUpdater class. The method updateOf updates
the mean, variance and age of the passed cell with samples of the current depth image and
uses thereto the displayed functions.

4.2.5 Model Updater

When the background model from the previous frame has been transformed onto the current
grid, it can incorporate the current observations. Incorporating the current depth image is
the responsibility of the model updater. Since the update logic of one cell does not depend
on any other cell, the functions of the ModelUpdater class process only one cell at the same

time. The incoming and outgoing data can hence be presented as:

Input A cell with the Gaussian models containing information from the previous frame
Output The input cell updated with the current depth image

The ModelMaintainer holds the instance of the ModelUpdater and calls the updateOf

function after the background model from the previous frame has been motion compensated.
When updateOf is called, it is first checked if the sample set of the passed cell is empty.
If so, the passed cell is returned unmodified. The sample set for the current frame has
been determined by the sampling module in the previous frame (see subsection 4.2.7).
Next, getMeanOfSamples and getVarOfSamples calculate the mean depth value of the
sample set and the variance following equations 11 and 12. Pixels with an invalid depth

measurement, here indicated by a zero value, are not considered. If it turns out the sample
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set consists of only invalid measurements, the cell is also returned unmodified. In the next
step, currentObservationMatchesWithModel checks whether the samples’ mean fits into the
apparent model (equation 13). If so, the apparent model is updated with the sample’s mean
and average value. Otherwise it is checked whether the samples support the candidate model.
If it does, the update is performed on the candidate model. The model that is selected
for the update increments its age value by one as one more frame supports the state of
the model. The age is capped at maxAge. When currentObservationMatchesWithModel is
true for neither the apparent nor the candidate model, reinitializeSGM is called passing the
candidate model. This reinitializes the candidate model with the samples’ mean and variance
and sets the age to one. The update process finishes with the call of switchCondition, which
returns true if the age value of the candidate model is greater than the age of the apparent
model. In this case the candidate model becomes the new apparent and the new candidate is
reinitialized with the current samples’ observation. Finally, updateOf returns the passed cell

with updated apparent and candidate models.

4.2.6 Background Subtracter

BackgroundSubtracter

+ bgSubtraction(samples: vec<Sample>, apparentBgModel: Image2D<Cell>): cv::Mat
+ calcFGProbability(samples: vec<Sample>, apparentBGModel: Image2D<Cell>): cv::Mat
+ makeBinary(diffimg: cv::Mat, threshold: unsigned int): cv::Mat

+ applyBoxFilter(foregroundMask: cv::Mat, Ksize_x: unsigned int): cv::Mat

Figure 12: Methods of the BackgroundSubtracter namespace. Besides of generating the
differencing image and binary mask based on the background model and the current depth
image, the BackgroundSubtracter is also responsible for applying the box filter that smooths
the output mask.

The background subtracter module consists of a name space containing three functions
covering the functionality explained in section 3.4. Background subtraction is applied only on

the samples selected by the sampling module (see subsection 4.2.7).
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The first function, bgSubtraction, takes the samples and the background model as its input.
From each sample the mean of the apparent background model of the subjacent cell is
subtracted. The subjacent cell can be found by considering the coordinates of the sample.
Having executed this operation for every sample, the differencing image is returned. For
all other pixels that are no samples, the value in the differencing image is zero. From the
differencing image, the foreground probability of a sample is determined in calcFGProbability
by considering also the variance of the underlying apparent model (see equation 60). The
foreground probability is zero when the pixel in the current depth image is farther away than in
the background model, which is the case when the aforementioned difference is positive. The
function makeBinary thresholds this differencing image, so that the returned mask has value
one if the pixel in the differencing image is larger than a passed threshold and zero otherwise.
One values indicate a dynamic object and the desired foreground mask is thus obtained.
Lastly, the function applyBoxFilter realizes the concept from section 3.5. It takes the raw
foreground mask as its input, applies box filtering with a kernel size of Ksize, x Ksize,,

and returns the smoothened final binary detection mask.

4.2.7 Sampling

Sampling

- foregroundProbabilityMap: cv::Mat
- samples: vec<Samples>

- updateRate: float

- temporalPropertyMap: cv::Mat

- spatialPropertyMap: cv::Mat

+ update(binaryFGMask: cv::Mat): void
- updateTemporal(binaryFGMask: cv::Mat): void
- updateSpatial(binaryFGMask: cv::Mat): void

- updateSamples(): void

Figure 13: The sampling class being responsible for extracting pixel positions that are used
as samples in the next frame. Regions are densely selected as samples if dynamic objects
have covered the region in the previous frames.

After the binary foreground mask has been determined for the current frame, pixel positions
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are selected that serve as samples for the upcoming frame. In- and outputs of the Sampling

module are
Input Binary foreground mask from time ¢
Output Set of pixels which serve as samples for time ¢t + 1

The pixels selected for sampling are stored in the samples field. Besides of the pixel position,
a sample consists also of the observation at that pixel. However, as it is not yet known for
the upcoming frame, only the position of the sample is set. The value is assigned to the

samples when the new frame arrives.

Samples are selected in the Sampling class by following the method from section 3.5. To this
end, an alternative foreground probability is calculated for each pixel based on whether dynamic
objects have been detected in this region in the previous frames. The pixel-wise defined
images temporalPropertyMap and spatialPropertyMap correspond to L;™"(p) and L;"™(p)
from equations 64 and 65. When the foreground mask is calculated for the current frame, the
Coordinator passes is to the update function, which triggers the update of the temporal and
spatial property images. In updateSpatial, a box filter is used to average the neighboring pixels.
After updating the temporal and spatial property images, the foregroundProbabilityMap is
obtained by element-wise multiplication of these two images. Then, the samples field is

updated with the strategy discussed in section 3.5.

4.2.8 Coordinator

Finally, the coordinator concatenates the afore presented modules. In a loop processing every

incoming frame, the coordinator initiates the processing stages:

// called for every frame
void loop() A
// estimate the camera motion
cv::Mat homography = cameraMotionEstimator.calcTrans(prevImg.depth,
currImg.depth) ;
// update the model with the current observation
modelMaintainer .update (homography, currImg.depth, samplingMap.
m_samples) ;
// calculate foreground probability through background subtraction
cv::Mat fgProb = BGSubtraction::calcFGProbability(samplingMap.

m_samples, modelMaintainer.getApparent());
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9 // threshold foreground probability image with threshold 4
10 cv::Mat fgMask = BGSubtraction::makeBinary(fgProb, 4);

11 // generate the samples for the next interation

12 sampling.update (fgMask) ;

The calculated foreground mask fgMask is then ouput in a stream readable for other systems.
The current and previous depth and intensity images are captured beforehand from the sensor.
As the logic of the system does not require the time intervals between frames to be equal,
the most recent available frame is processed. If the loop has finished and the next frame is
not available yet, the coordinator fills the gap with an active wait until a new image can be
tapped from the stream. Processing of a frame ends by setting up the previous frame for the

next iteration, i.e. overwriting previmg with currlmg.
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5.1 Experimental Setup

Experiments are conducted on a workstation computer with an Intel(R) Xeon(R) W-2133 CPU
at 3.60GHz with six cores using the openSUSE Leap 42.3 operating system. As in most of
related work [8][7][9][18], an image resolution of 320 x 240 is chosen for both depth and RGB
images. Four image sequences from the LIRIS human activity dataset [34] are selected to
evaluate the proposed system. The LIRIS dataset consists of training data and test data. The
training data is used to configure the parameters of the system. Quantitative measurements
are performed on two other sequences from the test data. Both camera motion and dynamic
object movements are included in the selected sequences vid0121, vid0172 (training data)
and vid0066, vid0124 (test data). The dynamic objects are humans walking in the field of
view in order to execute a certain activity. This scenario matches with the motivation of
this work as Rollin" Justin should be able to segment persons operating in the surrounding
area. The videos are recorded from a Kinect mounted on a mobile robot [34]. At a fame rate
of 25fps and a resolution of 640 x 480 pixels, the dataset provides depth and gray images.

Depth images are converted to metric units before being used in the proposed system.

Ground truth information is provided in the form of bounding boxes of the dynamic object.
The bounding box coordinates are valid for the gray image. Since the primary goal of the
LIRIS dataset is to train systems classifying human activities, the annotation file containing
the bounding boxes only covers certain time intervals in the video. Also, the bounding box
is only provided for one dynamic object at the same time. Evaluation metrics can therefore
not be determined for sequences containing multiple dynamic objects. As the output of the
proposed system is a pixel-wise mask, its quantitative performance cannot be measured using
bounding boxes. Instead, in order to obtain a ground truth mask that segments every pixel
belonging to the dynamic object, k-means clustering is performed with sklearn [35] in Python
on the depth values inside the bounding box. Setting k = 2, the cluster whose center is closer
to the camera is believed to contain the pixel values of the dynamic object. Hence, all pixels
in the bounding box are extracted that belong to this foreground cluster. This technique
works only for sequence intervals where there are no other objects in the bounding box in a

similar or closer distance to the camera. Quantitative comparison of the proposed system is
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therefore restricted to these sequences and intervals. Depth error measurements are filtered
out before applying k-means. Furthermore, the bounding box is enlarged beforehand by ten
percent of the image width and height because the bounding box coordinates are valid for
the gray image, but the depth image is not registered ! with the gray image in the dataset.
Camera calibration parameters are provided, but for simplification of the evaluation process

registration of the gray and depth image is not performed.

Omitting the registration stage also tests the robustness of the grid-wise background modeling
technique with respect to inaccurate estimates of the camera motion since the gray images
are used for the camera motion estimation with KLT and the depth images are used for

background modeling.

5.2 Performance Evaluation

Quantitative evaluation is performed by pixel-wise comparison of the output mask and the
ground truth. Using the default parameters from table 2, the system is evaluated with respect
to precision, recall, F-Score and the Jaccard index, which are explained in the following.
All metrics range from 0 to 1, where a score is better. The number of true positives, true
negatives, false positives and false negatives is denoted as TP, TN,FFP and FN. The
precision TP/(T' P + FP) represents the ratio of correctly detected foreground pixels to
all detected foreground pixels. The recall TP/(T'P + F'N) describes the ratio of correctly
detected foreground pixels to actual foreground pixels. Both metrics in combination are
relevant for estimating a system'’s performance. Under-detection typically results in a good
precision since the number of false positives is low. The recall, however, is high, since
many actual foreground regions have not been detected. Conversely, this applies to over-
detecting systems. Therefore, the F-Score is measured which combines precision and recall:
F =2 (precision - recall) [ (precision + recall). Finally, the Jaccard index, also known as
Intersection over Union (loU), is measured. Expressed in terms of true and false positives and
negatives, it is J = TP/(T'P + FP + FN). Hence, the Jaccard index is always less than or

equal to the precision and recall individually.

1Two images are registered if their data is in the same coordinate system
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Table 2: Standard parameters used when measuring performance metrics

Parameter Value Description Reference

Nrows 320 input image height sec. 3.1

Neols 240 input image width sec. 3.1

N 4 cell edge length sec. 3.1
maxPointsToFind 100 for cv::goodFeaturesToTrack subsec. 4.2.2
minQualityFor AGoodPoint | 0.01 for cvi:goodFeaturesToTrack subsec. 4.2.2

Cnaz 170 model age cap sec. 3.1

A 0.3 model update rate sec. 3.1

Omin 100 minimum variance to keep sec. 3.1

koar 2 variance fit factor sec. 3.1

K switch 2 switch models factor sec. 3.1

Asmpl 0.25 sampling map update rate sec. 3.5

Osmpl 0.02 sample probability threshold sec. 3.5

g 2 difference image threshold sec. 3.4

Ksize 7x7 | kernel size box filter output mask sec. 3.5

Table 3: Quantitative results on test sequences from the LIRIS dataset averaged over
all frames where ground truth data is available. The sequence vid0124* is generated by
prepending 75 frames (3 seconds) to the original sequence vid0124. The prepended frames
are all equivalent to the the first frame of vid0124.

Sequence | Frames | Precision Recall F-Score Jaccard index
vid0066 | 140-222 | 0.979 0.983 0.978 0.957
vid0124 | 93-214 0.774 0.444 0.564 0.441
vid0124* | 168-289 | 0.868 0.928 0.900 0.853

Table 3 shows the performance of the system elaborated in this work. The program was
run with the parameter setup listed in table 2. They were manually chosen based on the

sequences vid0121 and 0172 in the training data.

Not all frames of the sequence are considered for determining the metrics as ground truth
annotations are only partially available. Ground truth data were to be extracted first based
on bounding boxes. This was not possible for all frames (see sec. 5.1). However, the time
interval for which the shape of the dynamic object could be extracted is fully included in the

measurements.

Sequence vid0066 shows a person walking through an open door in order to put some

documents in a shelve inside the room. An early frame is depicted in the left images of
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figure 14. Shortly after the person passed the door and still while they are walking, the

camera is panned. Scores of all above 0.95 in table 3 show that the system is able to handle

simultaneous camera and object movements.

Result : Ground Truth Ground Truth

Figure 14: Gray image, depth image (top row), segmentation results and ground truth
(bottom row). The four images on the left show frame 93 of sequence vid0066 and the
images on the right represent frame 93 of sequence vid0124.

Figure 15: Dynamic object detection results on the 160th frame of vid0124 (left) and the
235th frame of vid0124* (center). The input depth image is identical for both frames since
vid0124* was generated by prepending 75 frames to vid0124 (160 + 75 = 235). Ground
truth data valid for both is depicted in the right image. The figure shows that the person is
detected significantly better on the modified sequence vid0124*.

Testing with the sequence vid0124 yielded poor results in particular for the recall. A person
entered the scene in the 51st frame and stopped at a door trying to open it with their keys. As
it is depicted in the images on the right in figure 14, foreground segmentation works properly

at frame 93. At about frame 150, the switch condition from section 3.1 takes effect in some
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regions of the image. This is because the number of frames where the person was observed
is more than twice (Oswiten = 2) as large as the number of frames where the background
was recorded. Hence, the apparent and candidate models are switched and the person is
incorporated in the background model. In the following frames the person is consequently
no longer detected as a dynamic object. This effect, visualized in figure 15, explains the
large number of false negatives leading to the low recall score from table 3. Increasing the
threshold 6., could be a countermeasure, however, initial wrong classifications would then
remain longer in the image. The primary issue is that the age of the background model is not
large enough before the person occludes the static background. When increasing the time
before the person enters the scene, the problem can be eliminated. Therefore, in the sequence
vid0124*, the first frame of vid0124 is duplicated 75 times. Before the real sequence starts,
the system is thus supplied 75 times with the initial image. Figure 15 shows that the defect
of sequence vid0124 does not eventuate in sequence vid0124*. Evaluating the same images

as in vid0124, table 3 shows that significantly higher scores are achieved with vid0124*,

Runtime

Table 4: Computation time per frame per functional module. The CameraMotionEstimator
(CME) consumes the least time, whereas the CameraMotionCompensator (CMC) is responsible
for more than 50% of the time spent on both maximum and averaged frames.

CME CMC BGSubtractor Deblurrer ModelUpdater Sampling | Total
avg | 0.2ms 22.5ms 5.1ms 2.5ms 3.4ms 50ms | 38.7ms
max | 0.2ms 32.9ms 5.1ms 3.9ms 4.6ms 7.6ms | 54.0ms

Running on the sequences of the LIRIS dataset, an average computation time of 39ms per
frame is achieved with a variance of 1.3ms. This performance allows the system to be run with
a live camera input stream at 25fps. Table 4 shows the composition of the total computational
cost based on the time spent in each functional module. The largest observed time spent on a
single frame was 54ms. Computational cost increases mainly through two factors, which are a
large occlusion from dynamic objects and camera motion. Large rates of the image belonging
to a dynamic object induce the Sampling module to extract more pixels which are to be
processed in the next frame. When the camera moves, the transformation of the background

model becomes necessary. Transforming the background model is achieved through the cell
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mixture process, which is the most time consuming part of the proposed system. On average,
58% of the computation time is spent within methods of the CameraMotionCompensator

module.

5.3 Effects of Parameters

The detection results are examined under various parameter setups. Depending on the
environments in specific use case scenarios, an adaption of the default parameters from table

2 may be sensible. Testing is performed on the training subset of the L/RIS dataset.

Figure 16: Detection results on frame 146 of vid0059 while the camera is shifting to the
right. Gray and depth images which are the input for the system are shown in the top row.
The foreground mask output with the default parameter setup from table 2 is shown at the
bottom left. At the bottom right the ground truth mask is displayed.

A frame of sequence vid0059 is selected to examine how the results change under the
modification of parameters. Running the system with the default parameter setup, the mask
displayed at the bottom left of figure 16 is output. Figure 17 shows how the foreground mask

from figure 16 changes when exactly one of the following parameters is modified.

For the record of the top left image, the model update rate )\ is decreased from 0.25
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Omin=20

Asmp=0.08 Bsmpi=0.06 h -, Ksize=1x1

Figure 17: Results on frame 146 of vid0059 when changing exactly one parameter each.

to 0.1. This leads to false foreground positives above the head of the women since the
background model was unable to adapt to the changing depth while the camera moved.
Hence, parts of the wall are closer in the current depth image than in the background model.
After applying background subtraction, these parts of the wall are incorrectly extracted as
foreground regions. A too low update rate A can thus cause wrong foreground classifications
when the camera moves. Fast camera motions require a larger update rate A. If a high A
is chosen, the observations of new frames replace the existing model more quickly. Single
erroneous measurements are thus more harmful. Furthermore, when dynamic objects are
initially in a similar distance to the camera as the background but then move towards the
camera, the model adapts its mean value to the depth of the dynamic object in each frame.

Hence, the dynamic object remains undetected.

The second image in the top row shows the effects when the minimum variance to keep
O min IS decreased. Similar to the first image in the top row, but to a greater extent, areas
above the women's head are incorrectly classified as foreground. The minimum variance to
keep 0, describes the value which is assigned to the model’s variance o, . whenever it would
fall below o,,;,. It prevents the model from becoming unreceptive for small changes in cells
where all samples are very similar. Samples with a very similar depth value occur frequently
when observing planes frontally. In the sequence of figure 17, the camera pointed directly
to the wall for some frames and then started to move. Since the variance became very low
while observing the wall, some cells did not adapt to the slightly changed depth value after

the camera has moved. The resulting mask in the image exhibits false foreground positives

58



5 Experiments and Results

arising from this. On the other hand, if 0,,;, is chosen too large, foreground objects cannot
be distinguished from the background if they are close to the background. The reason for
that is that background subtraction is performed considering also the variance (see equation
60).

In the third image of the top row it is depicted what happens if the variance fit factor k.,
is assigned an infinite value. With k,.,. = inf, the condition from equation 14 is always false.
This means the variance of the current observation is not required to be similar to the variance
of the model when selecting the model for the update process. This condition, complementing
equation 13, was introduced in this work to prevent dynamic object boundaries from being
incorporated in the background model. Section 3.1 explained how wrong incorporations can be
caused by a gradual increase of the variance at boundaries of dynamic objects. Consequently,
the image of the resulting mask without this condition shows that the boundaries of the person
are incorrectly classified as background. On the contrary, when activating the condition from
equation 14 with a k... < 1, the apparent model would reject a sample set if the variance
among the samples is higher than the variance of the model. This is not sensible because the

model’s variance could never increase and is therefore limited to the initial value.

The model switch factor kg, formulates by which factor the age of the candidate
model must exceed the age of the apparent model so that they are switched. A low kgyiten
facilitates the switch, meaning the candidate model must be supported by a lower number of
frames in order to become the apparent model. The age of the candidate model becomes
large in particular when dynamic objects stand still for a longer time. Hence, it is useful
to select a higher kg if dynamic objects are expected to stop after moving in the field
of view. On the other hand, a higher kg, also increases the time for which initial false

classifications remain in the output detection mask.

The sampling map update rate \,,,,;; determines how fast the sampling image L{g adopts
to changing positions of dynamic objects (see section 3.5). Faster object movements require
a higher Agp. If Agpi is chosen too low, the resulting mask lacks of foreground detections
in the moving direction of dynamic objects. This is shown by the image on the bottom left of
figure 17. The under-detection is due to the fact that samples are not selected densely in
these regions and therefore the sparse detection points are eliminated when smoothing the
mask later on. If, on the other hand, a too large A, is chosen, single wrong detections are

more likely to persist in the output mask. Such single wrong detection occur in particular on
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depth discontinuities of static objects.

Increasing the sample threshold 8,,,,; primarily affects regions in which the dynamic object
covers only a few pixels. In the second image in the bottom row it can bee seen that the
book in the hand of the person is not detected. This is because for the calculation of L{g
the spatial neighborhood of the detection mask from the previous frame has been considered.
For thin objects like the hand on the book, L{g is consequently smaller and samples are no

longer selected if L{g(p) is smaller than 0.

The detection threshold 8¢, directly regulates over- or under-detection. If the difference
between the input depth image and the background model divided by the variance of the
background model is greater than ¢, the respective pixel is classified as foreground. The
third image in the bottom row of figure 17 shows the output mask for 6, = 1. In Comparison
to the results from figure 16, where 6, = 2, a small region above the women's head is falsely
detected. In this region, the difference between input depth image and model was therefore
between one and two times the variance. Because the variance describes the maximum
deviation of the background in the respective cell, a 64, smaller than one is not sensible as
pixels showing the background would be additionally assigned the foreground label. When
84 is chosen too large, the system will be unable to detect dynamic objects in front of depth
discontinuities in the background since the variance of the background model is high for these

cells.

Ksize is the size of the kernel for box filtering the output mask which is executed as the
final step in each frame. The box filter smooths the binary output mask, removes single
foreground classifications and fills holes. Without this step, the output mask would exhibit
multiple tiny false classifications as shown by figure 17 in the bottom right. However, a large
K size can also reduce the accuracy as fine structures are removed from the output mask.
Hence, when the dynamic objects are expected to cover only a small region in the image, a

smaller K size is advisable.

5.4 Effects of Deblurring Technique

Evaluation of the anti-blurring technique introduced in this work is performed on the TUM
RGB-D dataset [36]. In contrast to the relatively short sequences in the LIRIS dataset

used above, sequence walking_ static in the dynamic object category of the TUM dataset
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contains continuous camera motion over 25 seconds (723 frames). Blurring of the background
model happens gradually, therefore its consequences can be seen best using longer sequences.
Analyzing the behavior for longer sequences is also reasonable as the system developed in this

work should be able to serve as a filter in long-term applications.

Figure 18 shows how the background model becomes blurry when the blur neutralization
mechanism is skipped. A blurry background model can cause both false positives and negatives
in the foreground detection mask. Although no dynamic objects are visible in frame 350,
figure 18 shows that parts of the table are classified as foreground without deblurring. These
false positives originate from the fuzzy edge in the background model. The input depth
images clearly shows the edge of the table, whereas in the background model it has almost
disappeared. Background subtraction yields thus a large difference for the affected cells.

Consequently, the table edge is assumed to be a foreground object.

This can be prevented by the proposed blur neutralization scheme. In the image showing
the background model with deblurring for frame 350, the table edge is still visible in a darker
gray than the wall above and the floor below. The resulting foreground mask shows that the

number of false positives is significantly lower also for frame 190 and 650.

In the last column of figure 18, the two persons returned to their chairs. The left chair has
been moved and it influenced the background model in its different positions. Therefore, the
region around the left chair can be perceived in darker gray in both the blurred and deblurred
background model. As the depth of the person sitting on it does not significantly differ from
the chair in the background model, only the head which is above the chair is segmented in
the foreground mask. The legs from the person on the left are detected only when using the
blurred background model because the right outer edge of the chair is not clearly visible in
the blurred background model. On the other hand, the legs of the person on the right are
only detected with activated deblurring since the blurred background model shows the entire

region in darker gray.

Figure 19 focuses on the realization of the blur compensation method focusing a single
frame. The image in the center shows the absolute values of the blur compensation image
L7 (c) from subsection 3.3.3. This is the image which is calculated while mixing cells from
the previous frame and added afterwards to the mean of the apparent background model.

Adding LtA“(c) to the left image in figure 19 (means of apparent background model) results
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in the right image (blur compensated apparent background model). Not only the edges have

been sharpened, but also white regions have been preserved from turning gray.

From a quantitative perspective, the detection accuracy can be significantly enhanced by
the proposed anti-blur technique. Deactivating this mechanism, the Jaccard index for vid0066
of the LIRIS dataset drops from 0.957 to 0.686. Also for the second measured sequence
vid0124, the achieved Jaccard index decreases without deblurring (0.394 instead of 0.441).

5.5 Comparison to Results Achieved in Related Work

This work seizes the idea of a dual-mode background model from MCD5.8 [8]. Extensions
from Yun et al. [7] are adopted. However, a performance comparison to their work is not
possible for two reasons. First, neither quantitative results nor any images are presented
alongside the original method MCD5.8. Second, this work introduced depth background
modeling, but both MCD5.8 and the system from Yun et al. use RGB images only. The
dataset used by Yun et al. contains therefore no depth data. Xu et al. [21], Kim et al. [22]
and Wu et al. [23] used also only intensity images. Other work, including StaticFusion [18]
and the method of Sun et al. [31] provide only measures for their improved visual odometry.
Xu et al. [27] evaluated their /Vibe system on the Princeton dataset [37], where multiple
objects move, but ground truth annotation is only available for one object. For the evaluation
of IVibe, they added therefore ground truth manually to each frame, however, they did not

publish these annotations.

Consequently, comparison of this work is limited. In order to provide a comparison neverthe-
less, the DEVB [38] method and an own implementation of the method from Yun et al. is

selected.

The DEVB was not considered up to here as their system is only operable with a static
camera. However, as the system proposed in this work should also work when the camera
is static, this constraint does not forbid a comparison. Figure 20 compares the qualitative
results of DEVB and this work. It shows that the result mask of this work is smoother and
without holes. Dynamic objects near the right margin of the image remain undetected in
this work as they move in front of regions where no depth could be measured. With no

information in the background model, the dynamic object cannot be distinguished from the
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background. Therefore, the proposed system works best in indoor environments where the

background is in a measurable distance.

Additionally, the results of this work are compared to the results achieved when using
intensity images only. Background modeling with intensity images is performed in the method
from Yun et al. , which also uses MCDb5.8 as its baseline. The system developed in this
work can be viewed as the system from Yun et al. extended by additional rules, parameters,
smoothing and anti-blurring and modified by using depth images for the background model.
Therefore, to compare this work to the work from Yun et al. , evaluation is performed without
all aforementioned contributions sticking to the system as it is proposed in their paper [7].
Figure 21 shows the results from that evaluation compared with the results achieved in this

work.

Improvements by using depth images for the background model

When modeling then background using the intensity image, false detections occur at the
edges of the shelve, where the intensity value differs strongly. The variance is therefore high
in cells covering these edges. As a moving object can only be detected in front of a cell if the
intensity of the moving object is outside the interval spanned by mean + sqrt(variance),
false negatives arise at the edges of the shelve. Their emergence can be seen in figure 21 as
the thin black lines protruding in the person’s body in the mask at frame 150. The long term
effect of these false positives becomes visible at frame 200, where large parts of the person
are incorporated in the background model (third row). Consequently, their detection is no

longer possible.

Figure 21 shows also false positives at the edges of the shelve and the door, which can be
seen best in frame 150. One factor for them is the blurring of edges, which makes them
disappear in the background model but not in the current intensity image. A second factor
is that the intensity is assumed to remain constant over time, however, it can change when
the camera moves. Although the shelve is actually plain white, the observed intensity value
is lower in the inner panels. This is because their reflectance is lower than that of frontally
observed edges. Additionally, the shelve shadows itself partially. With the camera starting to
move, the angle of incidence changes and therefore also the observed intensity value. The

mean and variance of the background model does thus no longer accurately describe the
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intensity in the current input image, resulting in false foreground detections.

Furthermore, illumination changes are critical for systems maintaining an intensity background
model. In the foreground mask based on intensity only, a region with false positives was
extracted in the top left of the image of figure 21 at frame 150. Shortly before, the camera
adjusted its exposure settings. Hence, the new incoming images are brighter than the
background model. In regions with a low variance like the wall in the top left of the image,

this offset leads to false detections firstly.

Lastly, when the intensity value of the background is equal to the intensity of the dynamic

object, it is impossible to detect the dynamic object.

Figure 21 shows that most of the aforementioned issues in related work do not occur in
this work since depth images are used for modeling the background. Firstly, visible dynamic
objects are always located in a smaller distance to the camera than the background behind
them. Hence, the problem of very similar values for the background and the dynamic object
does not only occur when the dynamic object is immediately in front of the background
object. Secondly, depth modeling can exploit the fact that coherent objects have a similar
depth value, reducing the amount and magnitude of edges in the background. Problems with
large variances of cells occur thus far less frequently when maintaining a depth background

model. The depth image is also resistant to illumination and reflectance changes.

Modeling the depth of the environment could thus reduce detection holes inside dynamic
objects as well as false detections at edges while keeping the computational cost equal to

intensity modeling.

5.6 Summary and Discussion of the Results

The basic concept of modeling the background with two Gaussian models extended by an age
value [8] proved to be efficient and adaptive. Pooling pixels in cells allows the method to run
in real-time. Maintaining two models keeps the model adaptive as initial false classifications
can be rectified. By storing a mean and a variance in each model, it is possible to distinguish
foreground and background if the foreground object is not similar to any background object in
this cell. If there is an edge running through a cell, meaning the pixel values in this cell differ

strongly, the variance of the model is high and ambiguities cannot be solved if the pixels on
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the dynamic objects have a value which is not beyond the margin spanned by the variance.
In comparison to intensity-based methods as MCD5.8, the usage of depth images could lower
the occurrence of such ambiguities since objects typically have a smooth depth gradient,
but their colors and intensities may vary. Additionally, foreground objects are believed to be
always in front of the background. All foreground detections are thus filtered where the depth
in the current image is larger than in the background model, reducing the amount of false
positives in this way. Tests on a scene of the LIRIS dataset showed that the segmentation
results are clearly more complete when modeling the depth instead of the intensity. The depth
of the moving person differs from the background at the entire body, whereas the intensity

only differs strong enough in some regions.

Quantitative evaluation of the system was performed on the LIRIS dataset. On a sequence
with both camera and object motion, the detection accuracy measured by the Jaccard index
reached 0.957. For a sequence with an object entering the scene already in the beginning of
the sequence, the detection accuracy was significantly lower. The number of frames showing
the dynamic object was larger than the number of frames showing the background. Therefore
the switch mechanism took effect and the apparent background model falsely contains the
moving object. Adding frames at the beginning of the sequence could eliminate this adverse

effect.

The developed system works thus best when the initial frames show the static scene without
any dynamic objects. Wrong classifications caused by the switch mechanism may occur when
the background model is recent and the object’s motion ceases. However, dynamic objects
can be detected as soon as they move even if they are already present in the first frame. With
respect to the intended use on the mobile robot Rollin’ Justin, this behavior is acceptable as
it is a long-term use case, where the camera provides a continuous stream as soon as the

robot’s system is turned on.

Experiments furthermore showed that fast dynamic object movements relative to the camera
can pose a difficulty for the segmentation. The concept of background subtraction is suitable
for fast object movements in general, however, due to the sampling strategy background
subtraction is only performed densely in regions with a high foreground probability. Therefore,
if the dynamic object is recently located in an image region where the background has been
observed in the previous frames, the foreground extraction is sparse and therefore incomplete.

An increase of the foreground probability update rate is an adaption to scenes where either
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the camera or objects move quickly.

Experiments to evaluate the proposed deblurring technique were conducted using the TUM
dataset [36] as in short sequences as in the LIRIS dataset the blur is weak. When the camera
makes small movements and meanwhile observes the same region for a longer time, the
background model becomes blurry. Experiments showed that a blurry model inhibits the
detection of dynamic objects as the variance also rises with the blur. Activating the deblurring
mechanism, edges preserve their sharpness and planes retain their actual depth value. The
background model does thus represent the scene more accurate and background subtraction
yields thus in general results with a higher validity. False detections, in particular at edges
which are due to the blur no longer visible in the background model, could be reduced applying
the deblurring. However, in some cases a blurred background model proved to be useful as

holes are filled through the interpolative characteristic of the blur.

The general performance of the proposed system is satisfactory in indoor environments with
moderate camera motion and dynamic objects which cover more than a few pixels, but less
than half of the image. While parameter adjustments can adapt the system to the roughly
expected velocities of camera and objects, a too large dynamic object coverage leads to a
wrong camera motion estimation. On the contrary, too small dynamic objects are liable to be
eliminated in the smoothing post-process. Foreground segmentation is also not possible in
regions where no valid background information is available. As the proposed system models
the background, is not designed to work in outdoor environments or halls with large distances

that cannot be measured by the camera.
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Figure 18: Effects of the deblurring technique using the sequence walking_static. The
figure shows the apparent background model and the binary output mask with and without
deblurring. In the first frame, the states are identical. The camera makes small movements
over the entire sequence leading to a strongly blurred background model without the proposed
deblurring technique (third row). The forth row shows that the sharpness can be preserved
when applying deblurring. False detections on the table caused by a blurred background
model can be eliminated with the proposed scheme (bottom rows). Also, the legs of the
person on the right are only detected with the sharp background model.
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a) b) c)

Figure 19: Visualization of the blur compensation for a frame from the walking_static
sequence. From the previous to the current frame, the camera has moved. Image a) is the
background model obtained by transforming and mixing background model cells from the
previous frame. Due to the interpolative characteristic of the mixture process, the background
model blurs. Image b) shows the absolute blur compensation values calculated for every
cell. White represents a large value. Image c) is obtained by adding a) and b). Edges in the
resulting image c) are sharper than in the original from a).
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Figure 20: Comparison to DEVB [38] using a sequence with a static camera. The shown
color images are converted to gray scale and depth images to metric units before being

processed.
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Figure 21: Comparison to intensity modeling as it is proposed by Yun et al. [7]. Sequence
vid0066 of the LIRIS dataset is used. The figure shows clearly that the detection accuracy
could be improved by modeling the depth instead of the intensity.



6 Conclusion

In this thesis, an approach for foreground segmentation with a moving camera was presented.
The following section summarizes the approach and the results of the proposed system.

Eventually, section 6.2 contemplates future work enabled by the achievements in this work.

6.1 Summary

This work was motivated by the need to filter dynamic objects in the RGB-D camera stream
of a mobile robot. Given the live color and depth streams, every pixel belonging to a dynamic
object is to be extracted. Since objects that have moved once but then stop for a short time
should still be detected as dynamic objects, frame to frame motion detection is not sufficient.
Self-development became necessary since no suitable open source method could be found
that is able to achieve this at a high frame rate without a GPU. Analyzing related work,
background modeling proved to be the most suitable method for finding dynamic objects

even if their motion ceases.

The proposed method is based on the background modeling strategy introduced in MCD5.8
[8]. Unlike MCD5.8, this work models the depth instead of the intensity. The input image
is spatially partitioned and for each partition two Gaussian models are maintained. The
Gaussian model’s mean describes the depth value expected in this region. Modeling the
same region twice enables storing two distinct depth values. The model that is supported
by the most frames is assumed to model the depth of the static background. The desired
foreground mask can be obtained by subtracting this background model from the input depth
image. As the images are recorded from a moving camera, the background model has to be
transformed from frame to frame. The background model was observed to blur gradually
through consecutive transformations. This work improves the camera motion compensation
technique by adding an anti-blur mechanism. The effects leading to this blur are analyzed,
quantized and generalized to a formulation valid for all cells. Given a general formula which

describes the emerging blur, the blur effects can be mostly neutralized.

The system is fully implemented in C4++ using OpenCV libraries. Evaluation showed

satisfying results for both detection accuracy and run time. With an average run time of
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39ms (25fps) and a maximum observed run time of 54ms (18fps), the formulated real-time
requirement is met. Impacts of adaptations show how the method can be adjusted for different
use cases. With respect to the intended use on a mobile robot, the achieved detection accuracy
and frame rate allows the usage of the proposed system as a pre-filter for incoming images

from the camera.

6.2 Future Work

Evaluation of the method proposed in this work proved that dynamic objects can be successfully
segmented from the static background given the images from a moving camera. The next
step is the integration on DLR's mobile robot Rollin’ Justin. The foreground detection mask
is to be provided as an output stream which other systems can subscribe to. The system
responsible for the localization process can then read the foreground mask and modify its

logic so that only static objects are considered for the localization.

Regarding improvements of the system'’s performance, combining depth and intensity back-
ground modeling could improve the detection accuracy in many scenarios. Background
subtraction on a depth model proved to be a reliable technique unless the dynamic object is
very close to the background. When also considering the intensity value in such cases, the

dynamic object could still be distinguished from the background.

The robustness of the system developed in this work could be further improved by considering
the foreground detection mask from the previous frame for the camera motion estimation in
the current frame. When the dynamic objects covers a large ratio of the image, the estimation
of the camera motion could fail because the most common motion in the image is the motion
of the dynamic object. This is, however, a realistic case as a person may walk directly in front
of the robot where the camera is mounted on. Therefore, future work will strive to enhance
the stability in such scenarios by executing the camera motion estimation only on points that

have been classified as background in the previous frame.

Maintaining both a depth and an intensity background model as well as filtering points for
the camera motion estimation would increase the computational cost of the system. As the
most time was spent on calculating the overlap ratios for every cell after the camera has

moved, future work will target to optimize this stage with respect to the runtime.
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