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Abstract

Deep learning based classifiers have achieved tremendous success on different tasks. How-
ever, this kind of classifiers cannot provide a reliable uncertainty estimation and express
excessive overconfidence, which means that the models are always highly certain even on
unfamiliar data. This behavior can easily lead to severe consequences in safety-critical ap-
plications such as diagnosis of diseases, perception of self-driving car or robotics. Robots
should be aware of the correctness of their predictions to prevent unnecessary accidents
and/or to detect failure cases. Furthermore, this kind of introspection can help the robot
to recognize unfamiliar environments and to adapt gradually. However, uncertainties of
independent data examples do not take into account uncertainty related to dependencies
between data examples. Given a classifier with good uncertainty estimations the classi-
fication of objects with similar appearances should result in a high uncertainty about its
prediction due to the appearance ambiguity, which can still lead to miss-classification. To
overcome this issue, contextual information can be used to resolve the ambiguities and
improve the initial prediction.

In this work, the uncertainty estimation of deep neural networks is improved by employ-
ing Bayesian neural networks. Within this context the applicability and performance of
different inference techniques such as dropout variational inference and scalable Laplace
approximation are evaluated. The resulting network is applied to a continuous learning
use-case where the improved uncertainty estimation is used to select data samples for
fine-tuning in an interactive (automatically and manually labeling) manner. For further
improvements a conditional random field is employed to fuse the initial predictions with
contextual information between objects. Extensive experiments are performed to show
that the uncertainty estimation can be improved with Bayesian neural network in terms
of different evaluation metrics. Besides, it is experimentally shown that manual efforts for
collecting a dataset for fine-tuning a classifier can be reduced with the help of improved
uncertainty estimation on two benchmark datasets. Last but not least, experiments also
show that the conditional random field is able to further improve the performance by
incorporating contextual information.
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List of Abbreviations

BNN Bayesian Neural Network.

CRF Conditional Random Field.

DNN Deep Neural Network.

KL-div Kullbach-Leibler divergence.

LBP Loopy Belief Propagation.

MAP Maximum a posterior.
MCMC Markov Chain Monte Carlo.
MLE Maximum Likelihood Estimation.
MLP Multi-layer Perceptron.

OOD Out-of-distribution.

SGD Stochastic Gradient Descent.
SGLD Stochastic Gradient Langevin Dynamics.

VI Variational Inference.

WRGBD RGBD Dataset from Washington
University[LBRF11].
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Chapter 1

Introduction

1.1 What is uncertainty?

This question seems a little philosophical and difficult to answer. However, in the con-
text of probabilistic modeling in machine learning, one reasonable and illustrative answer
can be found in [KFB09]: ”Uncertainty arises because of limitations in our ability to
observe the world, limitations in our ability to model it, and possibly even because of
innate nondeterminism”. In spite of the innate nondeterminism, the uncertainty can be
further categorized into two main types: the epistemic uncertainty and the aleatoric
uncertainty [DKD09, SBD+14, KG17].

The former one, epistemic or model uncertainty illustrates the the uncertainty in modeling,
associated with imperfect models of the real world due to the insufficient or imperfect
knowledge of reality, i.e., it refers to the epistemic state of the decision maker. Therefore
it can reduced by collecting more knowledge. One simple example to illustrate this kind
of uncertainty is a linear regression with a limited number of observed points, where dif-
ferent curves are obtained during training and then used to predict the unobserved points.
After observing enough points in some intervals, the generated models or curves are more
restricted, hence the uncertainty decreases. On the other hand, if there are insufficient
points in specific intervals, upon which the large number of curves can be obtained to fit
them during training, which induces high model uncertainty. In reality, it is common to
have inadequate amount of data, and thus hard to model the underlying distribution well
and precisely. Therefore the observed data can be explained by a large variety of different
models, from where the model uncertainty comes.

The latter one, aleatoric or data uncertainty, accounts for the inherent randomness
of an underlying phenomenon which is expressed as variability in the observed data and
meanwhile associated with the limitation of our observing ability. It is treated as non-
reducible within our ability to observe the data. Examples for this kind of uncertainty are
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the noise induced by limited resolution of sensors or the ambiguity from the content of the
data which are unrelated to the model used to represent the data. One simple example
can be the classification of images captured by cameras with different resolutions. Images
with lower resolutions have the higher uncertainty because they are more ambiguous and
less illustrative compared to those with higher resolutions.

In other words, the epistemic uncertainty refers to the reducible part of the (total) uncer-
tainty, whereas the aleatoric one refers to the non-reducible part. In the end, the model and
aleatoric uncertainty, are combined together and expressed in the final prediction, which
is the so-called predictive uncertainty.

1.2 Why do we need uncertainty?

The aforementioned model uncertainty represents the belief of a model about its predic-
tions, which brings additional information about the randomness induced by the model
compared with the deterministic counter part, which provides only a hard prediction. This
kind of uncertainty plays an important role in the two following scenarios.

The first use-cases are those requiring high safety guarantee or optimal decision-
making, in which false predictions can cause hazardous consequences, which is the so-
called AI safety[AOS+16]. A reliable model uncertainty estimation can equip the model
with the ability to know when the it does not know. More than that, people or opera-
tor can take corresponding counter measures to avoid unnecessary accidents. With more
and more machine learning algorithms applied in real life applications, this kind of ability
meanwhile plays an more and more important role. Concrete examples include the steering
control in self-driving cars[MGK+17], disease diagnosis in the medical domain[LAA+17],
or even applications in aerospace or other domains requiring higher precision and stronger
robustness. One could argue that if the trained model can perform perfectly, thus having
achieved 100% accuracy, there is no need for the uncertainty information. [DL91] argue
that, it is hard or even impossible to have enough training data to define a precise model,
which is in coincidence with reality because it is hard to define a task very precisely and
get access to enough samples drawn from its real distribution. The uncertainty informa-
tion is even more valuable and important when algorithms are confronted with multiple
tasks[KGC]. Other relevant tasks such as misclassified and Out-of-distribution (OOD)
data detection[HG16] and adversarial attacks [KGB16, FCSG17] have also attracted more
and more research interests in uncertainty estimation, aiming to address these challenges.

The second scenario are cases requiring interaction between algorithms and peo-
ple or environments. The model uncertainty can be treated as a bridge between ma-
chine learning algorithms and humans. Such interaction or the exploration of the envi-
ronment can establish a more robust and more data-efficient machine learning system.
This scenario involves different kind of fields such as active learning[GIG17], reinforcement
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learning[BCKW15][OBPVR16][GMR] , automatic labeling, industrial components inspec-
tion and so on. The idea behind that is, with reliable model uncertainty estimation we
know which data sample the model is unfamiliar with and thus providing more information
for the model . In active or reinforcement learning, theses unfamiliar data samples can be
used to improve the corresponding model more efficiently. In tasks involving human robot
interaction, the uncertainty estimation indicates when the model requires help from human
experts. For instance, in industrial component inspection task, firstly a model which can
perform quite well on some evaluation datasets is trained. With the assumption that all
predictions made by the model are correct, the system is deployed to the real application.
However, there is no guarantee that this model represents the real distribution of data
perfectly and is robust against a slight or even large domain gap. If the distributions
of the real world data vary a lot because of unexpected factors e.g. equipment aging or
changes of weather condition, the model could fail silently and lead to unexpected acci-
dents. With reliable model uncertainty estimation, this kind of weakness can be mitigated
or even eliminated.

On the other hand, aleatoric uncertainty mainly assists in improving model perfor-
mance by quantifying and considering this kind of information by representing noisy level
of predictions and making good use of data points with less noise. By taking this informa-
tion into account, the model can be trained more optimally and yield a better performance,
some examples of image data and Lidar data can be referred to [KC16][FRD18]. Instead
of representing noise, data uncertainty also includes uncertainty from a semantic view
point, which we can be also incorporated into training and yield more robust models. This
kind of uncertainty is not quantified explicitly but can be incorporated conceptually with
the help of specifically designed models and high level statistic cues or features to disam-
biguate predictions directly. One example of this is the modeling contextual information
among pixels by a so-called Conditional Random Field(CRF) in the semantic segmenta-
tion task[KK11][SM+12][LSVDHR16]. The idea behind that is simple and CRF provides
a principle way to realize this idea. Since uncertainty caused by the appearance ambiguity
represents strong correlation between different categories, CRF can model the correlations
or dependencies between random variables by taking into account high order potentials.
In the task of semantic segmentation, for tractable computation, at most second order
potentials are taken into account and can yield better performance compared results with
just first order potentials.

1.3 How can we obtain and handle uncertainty in

deep learning?

As already known, deep learning is a powerful black box model while it has achieved
tremendous success in different tasks. Therefore to obtain and handle uncertainty can help
to get a better understanding about this black box model and make deep learning based
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applications more robust and safer.

Regarding model uncertainty or quality measure that acts similar to model uncertainty,
there are many different ways to obtain this kind of quality measure of prediction. On the
one hand, due to the intractability of the real model uncertainty in Deep Neural Network
(DNN), there are some ad-hoc approaches that try to obtain such a quality measure on
specific tasks. [LLS17] combine temperature scaling and input preprocessing which is called
adversarial training together and yields a simple but effective OOD sample detector, but
this approach requires an additional OOD dataset for training which is hard to collect in
reality. [DT18] modify the loss function to train a classifier against OOD data, however this
approach is hard to generalize in case of slight domain transfers. [LLLS17] treat a uniform
distribution as ground truth distribution of the OOD data and show that OOD data can
be generated via a so-called Generative Adversarial Network(GAN). This approach seems
practical, but training a GAN effectively does not always work for images because of the
high dimensionality of the data distribution.

On the other hand, there are some other more theoretically sound approaches which em-
ploy Bayesian Neural Network (BNN)[Mac92][Nea12], bootstrapping[OBPVR16], ensemble
methods[LPB17] or even ensemble of [SG18]. Although a BNN provides a principal way to
obtain model uncertainty by considering distribution on model parameters, it is difficult to
infer the exact posterior distribution over model parameters of DNN because of its com-
plex architecture and large scale training set. Therefore approximate inference plays an
important role in addressing this issue. The golden standard for the approximate inference
is Hamiltonian Monte Carlo[Nea12], which requires dealing with whole batch training data
and storing the samples of posterior distribution. While the former issue is addressed par-
tially byStochastic Gradient Langevin Dynamics(SGLD)[WT11], the latter one attracts a
lot of research interests like [BRMW15][WVL+18]. However, since it is a Markov Chain
Monte Carlo (MCMC) method, to assess the convergence is still non-trivial.

There are some alternatives to MCMC, one popular one is Variational Infer-
ence(VI)[HVC93]. In VI, this inference problem is cast into optimization problem
by minimizing the Kullbach-Leibler divergence (KL-div) between the approximate
posterior distribution and real posterior. Therefore approximate distribution family needs
to be chosen and thus has a large influence on the performance. [Gra11] firstly employed
fully factorized Gaussian with a biased gradient estimator on a practical problem. Later
[BCKW15] improved the result with the same approximate distribution but different
estimator with help of ”re-parameterization trick”[KW13]. HLA15 also used the same
approximate distribution but with expectation propagation[Min01] instead of VI. Since
the assumption of fully factorization may impose an strong restriction on the flexibility of
the approximate distribution and the correlations between weights can not be captured.
By taking this into account, there are many attempts trying to use more expressive
approximate distribution such as Bernoulli (treated as mixture of two Gaussian with
small variance)[GG16] and Gaussian with non-diagonal covariance matrix [KSW15] which
can capture variances of rows in weight matrices. Another more expressive one is matrix
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variate Gaussian distribution[LW16][SCC17][ZSDG17], which capture both rows and
columns correlations in weight matrices. Additionally inspired by the idea of normalizing
flow in latent variable models [LW17]applied normalizing flows to auxiliary latent variables
to produce more flexible approximate posteriors with help of ”local re-parameterization
trick”[KSW15].

Another alternative is the Laplace approximation[Mac92], which puts a Gaussian centered
at Maximum a posterior (MAP) estimate of the model parameters with a covariance de-
termined by the inverse of the Hessian matrix of the log posterior distribution. The main
issue of this approach for large neural networks is infeasible computation and storage cause
by large size of the Hessian matrix which is quadratic of the number of parameters and
inversion operation on it whose complexity is cubic over the number of elements of Hes-
sian matrix. Recently [RBB18] address this problem by approximating the Hessian or the
Fisher matrix of log-likelihood with a scalable approximation for them.

However, most of those ideas are verified with a relatively simple architecture and on toy or
small-scale datasets and need to be modified a lot in order to serve the existing advanced
architectures, which is undesirable in many practical applications. Therefore the so-called
dropout inference[GG16] looks promising considering this restriction and thus is adopted to
obtain model uncertainty in this work. On the other hand, scalable Laplace approximation
[RBB18] has the potential to resolve this issue, because it requires only one MAP point
estimate of model parameters, so there is no need to modify the training phase which
could save a lot of computation effort and unnecessary modifications for many existing
architectures.

When it comes to aleatoric uncertainty, as noise of data itself, it can be modeled by adding
another head on top of the network [KG17]. However, the uncertainty caused by appear-
ance ambiguity is not trivial to include in a deep neural network training. Therefore another
model, CRF [LMP01], is adopted based on the predictions of a discriminative neural net-
work classifier. As mentioned in the previous section, the choice of features of second order
potentials is a key factor in this problem. In this work, addressing the scene object recog-
nition task, the correlation between objects in specific scene are of importance. The corre-
lation can be represented by a co-occurrence matrix [LRKT10][RV09][GRB08][RVG+07].

1.4 Contributions and Structure

This work can be divided into two main parts, both focusing on uncertainty-based im-
provement for a deep learning based classifier on object recognition task.

The first part is to employ BNN to obtain reliable and calibrated uncertainty. In order
to keep the ability of powerful feature extraction of DNN, we modify a classifier with
ResNet50[HZRS16] as backbone to incorporate different aforementioned inference tech-
niques including dropout variational inference and scalable Laplace approximation. We
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evaluate prediction and calibration performance of BNN and then select predictions with
low uncertainty/high confidence as automatically labeled data based on improved uncer-
tainty estimation. This labeled dataset collected with little manual efforts is used for
training a more accurate classifier while the performance of original one drops a lot in
case of slight domain transfer caused by possibly by changes of light condition, changes of
appearance and even changes of recording equipment. This is proof-of-concept idea which
tries to prove that improved uncertainty estimation can assist in automatic labeling and
reducing manual effort in fine-tuning a more accurate classifier in case of slight domain
transfer during deployment of robots.

The second part is to handle the uncertainty caused by appearance ambiguity properly. To
note that again, this kind of uncertainty is not modeled directly, but the concept is taken
into account in choosing model and features. To this end, CRF is selected to capture the
contextual relationship between objects with similar appearance but different contexts and
at the same time utilize the information brought by better uncertainty estimation obtained
in the first part. Key factor to make CRF to work is to design informative pairwise features
which should not contradictory to unary feature. In this work, binary co-occurrence matrix
of categories as pairwise features are employed.

The main contributions of this work are:

• to show that dropout variational inference and scalable Laplace approximation can
obtain better uncertainty information from a large and complex network on a multi-
class classification problem with 51 classes, which can be further improved by learning
dropout rates during training and their ensemble.

• to show that manual effort in data collection in a slight domain transfer learning task
can be reduced by making use of reliable uncertainty estimation. With help of this,
classifier can learn continuously in test environment which has domain gap to the
training set.

• to show that CRF can improve the results from discriminative classifier by handling
uncertainty caused by appearance ambiguity and utilizing information brought by
better uncertainty estimation.

The structure of this work is as follows. In order to give the reader a clear theoretical
background of techniques applied in this work, the basic theory and ideas of Bayesian
neural network and inference techniques such as dropout variational inference and scalable
Laplace approximation, and the theory of CRF are briefly reviewed in chapter 2. In chapter
3, technical approaches proposed and employed in this work, including proposed variants
of concrete dropout, modified network architecture, combination of BNN and CRF as well
as pipeline of continuous learning are introduced. In chapter 4, extensive experiments
are performed to evaluate performance of uncertainty estimation of BNN with different
inference techniques. In the following, experiments on performance of continuous learning
and improvements brought by CRF are performed. Then summary of this work, conclusion
and possible future work are presented in chapter 5.



Chapter 2

Theoretical Background

2.1 Bayesian neural network

In this chapter, a brief review on theory of BNN is given. Since calculating the exact
posterior distribution over the parameters of large and complex networks is intractable,
proper techniques to perform approximate inference are required. Those techniques can be
categorized into two main mainstreams, VI and MCMC. However, since larger dataset and
more complex neural network are popular nowadays, the traditional approximate inference
techniques are difficult to scale to large datasets and complex architectures. Therefore
modern approximate inference techniques need to be adopted. In this section, two modern
approximate inference techniques for BNN including dropout variational inference[GG16]
and scalable Laplace approximation[RBB18] are introduced.

2.1.1 Introduction

Let D denote an observable dataset consisting of a set of input and output pairs (xi, yi),
that is D = {X,Y} = {(xi, yi)Ni=1}, where xi ∈ RD and yi ∈ Y , Y is the set of labels,
and fω denotes one function parameterized by ω. Here in this case the model is a neural
network with its parameters ω consisting of weights W 1:L and biases b1:L for L layers.

In supervised learning, our goal is to learn a distribution of the output conditioned on the
input, p(y|x) that can explain the underlying data distribution based on the observables D
which are samples drawn from the underlying data distribution. Then this model can be
used to make predictions on unobservable data samples under the same data distribution.
In classification where output is label represented by discrete integer, the likelihood function
is defined based on parametric model, which is softmax score:

p(y = d|x,ω) =
exp(fωd )∑
d′ exp(f

ω
d′ )

(2.1)

7



CHAPTER 2. THEORETICAL BACKGROUND 8

where d is possible class of random variable y, and fwd represents the probability that class
d is assigned to y.

In the regression case, the likelihood is the Gaussian distribution:

p(y|x,ω) = N (x; fω(x), τ−1I) (2.2)

with the model precision τ , which represents the inverse of noise level of the outputs.

As mentioned above, learning aims to find model(s) which is parameterized by a set of
parameters that can explain the data well, which means the likelihood should be maximized
w.r.t. model parameters over the observables. On the other hand, some prior constraints
are imposed on the model via the prior distribution of the model parameters p(ω). The
probability distribution of the model parameters is updated from the prior into the posterior
after observing the training dataset D via Bayes’ theorem:

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)
(2.3)

where p(Y|X) =
∫
p(Y|X,ω)p(ω)dω is the so-called model evidence or marginal likeli-

hood, whose integration is always intractable when the dimensionality of parameters is too
high.

After obtaining the posterior distribution over the model parameters, predictions can be
obtained by marginalizing the likelihood of unseen input points such as x? over the model
parameters, which leads to a predictive distribution over the output:

p(y?|x?,D) =

∫
p(y?|x?,ω)p(ω|D)dω (2.4)

Explaining the difference between the deterministic neural network and the BNN can help
understanding the mechanism of BNN better. In Fig.2.1, graphical model is used to ex-
press these two kinds of neural network, in which the solid point denotes the deterministic
variable, the circle denotes the random variable, while the shaded circle denotes the ob-
served random variable. The plate notation denotes N observed data pairs (x,y). Fig.2.1
demonstrates that parameters ω in the deterministic neural network is normal variable
which is a point estimate obtained by MAP:

ω? = argmax
ω
{p(Y|X,ω)} (2.5)

On the other hand, in BNN, the model parameters ω are random variables with the
distribution function parameterized by θ. To note that, for explanation of concept here,
no simplified assumptions are made on the function parameterized by θ, which means
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it can be a arbitrary function. This distribution over model parameters can be inferred
based on the Bayes’ rule in Eq.2.3. However, for model with large number of parameters,
it’s hard to compute the model evidence (denominator of r.h.s of Eq.2.3) with integration
tractably. An approximation needs to be employed to solve this problem. It’s worth noting
that if we choose the approximate distribution to be a delta function, qθ(ω) = δ(ω − θ),
the corresponding BNN is recovered into the deterministic neural network. Because the
computation of model evidence p(Y|X) is always intractable in a complex model and a
large dataset, approximate inference needs to be applied, which is briefly introduced in
next section.

Figure 2.1: Differences between parameter estimation of the deterministic neural network
and the BNN. The solid point denotes deterministic variable, and the circle denotes random
variable, while the shaded circle denotes observed random variable. The plate notation
denotes N observed data pairs (x,y).

2.1.2 Dropout variational inference

VI casts inference into optimization by minimizing the KL-div between the approximate
posterior distribution and the real posterior distribution. However, there is no analytical
definition of this KL-div if the real posterior distribution is unknown. A lower bound
can be derived with Jensen’s inequality for tractable optimization, which is the so-called
evidence lower bound(ELBO) which bounds the log marginal likelihood. And from that,
the marginal likelihood is the sum of ELBO and KL-div between the approximate posterior
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and the real posterior. The derivation is given in the following:

log(p(Y |X)) = log(

∫
p(Y |X,ω)p(ω)dω)

= log(

∫
qθ(ω)

p(Y |X,ω)p(ω)

qθ(ω)
dω)

≥
∫
qθ(ω) log(

p(Y |X,ω)p(ω)

qθ(ω)
)dω

= Eqθ(ω)[log(p(Y |X,ω))]−KL(qθ(ω||p(ω)))

= ELBO

(2.6)

where p(Y |X) is the likelihood, p(ω) is the prior over the model parameters, qθ(ω) is the
approximate posterior over the parameters which are parameterized by θ.

The log(p(Y )|X) can be obtained by calculating the sum of ELBO and KL-div between
the approximate posterior qθ(ω) and the real posterior p(ω|X,Y ):

ELBO +KL(qθ(ω)||p(ω|X,Y ))

=

∫
qθ(ω) log(

p(Y |X,ω)p(ω)

qθ(ω)
)dω +

∫
qθ(ω) log(

qθ(ω)

p(ω|X,Y )
)dω

=

∫
qθ(ω) log(p(Y |X,ω))dω

= log(p(Y |X))

(2.7)

When maximizing the ELBO w.r.t the parameter of approximate posterior θ, which is
also called variational parameter, it is equivalent to minimizing the KL-div because the
log marginal likelihood is not a function of θ. Then a well-defined objective ELBO comes
out, in which the first term is called expected log likelihood which ensures the model can
explain the data well and the second term is called the regularization term which ensures
the approximate posterior does not deviate too far from the prior. Now the inference
problem has been cast into an optimization problem:

θ? = argmin
θ
{KL(qθ(ω)||p(ω|X,Y ))} (2.8)

which is equivalent to

θ? = argmax
θ
{ELBO} (2.9)

However, there are still difficulties solving this optimization problem with this objective.
The first one is to deal with large size datasets, which induce too much computations in the



CHAPTER 2. THEORETICAL BACKGROUND 11

expected log likelihood term. [Gra11] shows that this can be solved by data sub-sampling
which is similar as the stochastic optimization. Another one is the need of the derivatives
of ELBO w.r.t. the variational parameters θ. Since the model parameters are samples
from the approximate posterior, a good estimator for the derivatives is required which are
introduced in the next subsection.

Dropout variational inference

Dropout[SHK+14] is originally introduced as regularization approach in training the
DNN which can improve the generalization performance. Although the author said this idea
is inspired from the human beings sexual reproduction, there are different interpretations
trying to explain why it can work such as ensemble and Bayesian perspective. In this
subsection, the Bayesian interpretation of dropout is introduced and used for improving
the uncertainty estimation of DNN.

The mechanism of dropout is straightforward, each units of specific layer is multiplied by
a random variable under Bernoulli distribution with p as its parameter, where 1− p is the
so-called dropout rate. In each iteration during training, the dropout is turned on, which
means each unit is multiplied by the sample drawn from Bernoulli distribution in forward
propagation which is kept in derivatives back propagation within the same iteration. In
the testing, the sampling phase is turned off, only one forward propagation is needed to
produce predictions. Normally, in order to avoid rescaling weights in the testing, which is
used to keep the output magnitudes in the same scale when dropout is off, rescaling of the
output of the dropout is always done in training. In Fig.2.2, there are two figures showing
how the dropout is turned on and off.

Figure 2.2: Schematic illustration of dropout in a three-layer fully connected neural net-
work. (a) the standard neural network with all neurons switched on. (b) after applying
dropout only a subset of neurons are used[SHK+14].
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Bayesian interpretation of dropout: In VI, the goal is to minimize the KL-div be-
tween the approximate posterior and the real posterior over the model parameters. This
objective is equivalent to the maximization of the evidence lower bound(ELBO). When
dropout is interpreted in Bayesian way, the distribution over hidden units is reformulated as
distribution over weight matrices. The training objectives of neural network with dropout
is proved to be similar as the ELBO of Bayesian neural network with Bernoulli distribu-
tion factorized over the input dimension of weight matrix. In the following, we will explain
this interpretation including following key factors: approximate distribution, training
objective, marginalization in testing by using one simple example in classification case
in Fig.2.3, in which we define the hidden layer as the first layer and output layer as the
second layer and assume a fully factorized Gaussian prior over parameters.

Figure 2.3: An example of two layer neural network with dropout, a Bernoulli random
variable is imposed on each unit of input layer and hidden layer.

Approximate distribution: Fig.2.3 shows a simple example of DNN with dropout, in
which the following variables are defined: y ∈ Rm×D2 as the output layer, x ∈ Rm×D0

as the input, h1 ∈ RD1 as the response of the hidden layer, where m represents the
number of data instances, and Di is the dimensionality of the i-th layer, where the 0-
th layer represents input layer and i ∈ {1, .., L}, L = 2. Further ω = {(W i)

L
i=1} is

defined as model parameters, and εi ∈ RDi−1 as the Bernoulli distributed random vector
parameterized by pi ∈ RDi−1 , for i-th layer, which we call keeping rate in this report.
The corresponding dropout rate is equal to 1 − pi. It is assumed that a fully factorized
Gaussian prior distribution is placed over the weights. These assumptions can easily be
generalized and transfered to a multi-layer neural network easily.
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In naive version of the dropout, each element of vector pi has the same value as pi, which
means that there is only one keeping rate for each layer. In the following, if there is no
further specification, pi and pi are used interchangeably depending on the context. Because
the weights in weight matrix are treated as random variables, M i ∈ RDi−1×Di is used to
denote position of non-zero element in Bernoulli distribution for W i . Additionally, the
bias bi ∈ RDi is absorbed into Wi by appending a new row at the end of weight matrix
and 1 at the end of each data input vector, also called homogeneous coordinate. Another
assumption is that the approximate weight distribution is factorized over the layer, which
yields

qθ(ω) =
L∏
i=1

qθ(W i).

To start with the formulation of dropout, the likelihood of output conditioned on input
with softmax scores of neural network is modeled in the classification case as:

p(y|x,ω) = σ((h1 � ε2)M 2)

= σ(h1(diag(ε2)M 2))

= σ(h1W 2)

= σ(φ(x(diag(ε1)M 1) + b1)W 2)

= σ(φ(xW 1)W 2)

(2.10)

where � is the Hadamard product(element-wise product), σ(aj) =
exp(aj)∑
k exp(ak)

the softmax

function, and φ(·) the element-wise non-linear activation function such as the rectified unit
function (Relu).

From the equation above, it can be derived:

W i = g(M i, εi) = diag(εi)M i

with εi ∼ p(εi) = Bernoulli(pi)

which means that the weight matrix W i is a matrix of random variables whose probability
density function is parameterized by pi and M i, which are denoted by θ = {(M i,pi)

L
i=1}

in Eq.2.8, where i = 1, .., L denotes i-th layer of the network, and L = 2 in this example.
The expression of approximate posterior distribution is not obvious, but we can define the
its form as

qθ(ω) =
L∏
i=1

qθ(W i)

=
L∏
i=1

∫
qθ(W i|εi)p(εi)dεi

(2.11)
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with

qθ(W i|ε) = δ(W i − g(M i, εi))

= δ(W i − diag(εi)M i)
(2.12)

As can be seen, the approximate posterior over the model parameters puts the same
Bernoulli distribution over the input dimension of the weight matrix, which is the di-
mension of row in this example. Meanwhile each element of the same row is multiplied
with same realization of the random variable but with the different non-zero position,
which is corresponding to the different expectation of each row element and thus induces
the correlations between the row elements. To make this definition more clear, based on
the computation of expectation and variance of the Bernoulli distribution, the first and
second moment of the approximate distributed random variables can be written down like:

Eqθ(W i) = M i � P i (2.13)

where P i = [pi, ...,pi] ∈ RDi−1×Di .

The covariance matrix of the parameter matrix is:

[
Covqθ(vec(W i))

]
jk

= 1
[
l = m

]
mi
lq ∗mi

mn ∗ pi ∗ (1− pi) (2.14)

where
j = l ∗Di−1 + q,

k = m ∗Di−1 + n,

which is the linear mapping between the element index before and after the matrix vec-
torization. The element of the l-th row and the q-th column in matrix M i is defined
as mi

lq, which applies to mi
mn as well. The indicator function is denoted as 1

[
i = j

]
,

which is equal to 1 only when i is equal to j and otherwise 0. Because vec(·) operation
converts matrix W i ∈ RDi−1×Di into a column vector vec(W i) ∈ RDi−1Di×1 by stacking
the columns of matrix on top of each other. Then it is easy to obtain covariance matrix
Covqθ(vec(W i)) ∈ RDi−1Di×Di−1Di .

From Eq.2.14, it can be seen that the entire covariance matrix is consisting of Di ∗ Di

diagonal sub-matrices whose dimensionality are Di−1 ×Di−1. When observing the covari-
ance matrix of the parameter matrix W i w.r.t. the approximate posterior qθ(W i), it is
known that the samples of row vectors in the weight matrix are drawn independently and
thus the covariance between rows are zero. On the other hand, the samples for different
weights in the same row are drawn at the same time because they are multiplied by the
same realization of εi, from which covariances between the weights within the same row
are induced. Therefore, weights within the same row can be learned by fitting this approx-
imate distribution to the real posterior. This means that the approximate posterior family
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has more flexibility to approximate the real posterior when compared with other common
approximate posterior distribution family such as fully factorized Gaussian that assumes
distribution for each parameter is independent.

Training objective: Up to now, only the approximate distribution of dropout inference
is explained. As mentioned in introduction section of this chapter, it is known that by
performing an optimization of ELBO w.r.t. variational parameters, a good approximation
to the true posterior distribution over parameters can be obtained. This posterior can be
used in testing to produce more reliable uncertainty estimation. In the following, training
a DNN with dropout is equivalent to optimize the ELBO w.r.t. the variational parameters
is illustrated.

At first, the training objective of DNN with dropout is defined as the cross entropy between
the predictive distribution and the target distribution plus L2 regularization:

Ldropout =
N∑
i=1

[
− log(p(yi|xi,ω))

]
+ λ(

L∑
i=1

||W i||2) (2.15)

where N represents the size of entire dataset, λ is L2 regularization coefficient. The
likelihood over the entire dataset should be maximized w.r.t. the model parameter ω.
This estimation of the model parameters is known as Maximum Likelhood Esitmation
(MLE). Equipped with L2 regularization and Gaussian prior over parameters, a MAP
estimation is attained by minimizing Eq.2.15.

Normally gradient descent is used to tune the parameters during training, which requires
first derivative of the objective w.r.t. the model parameters ω. Since large size of dataset
is ubiquitous, which means N in Eq.2.15 is too large, exact gradients of whole batch (entire
training set) is hard to calculate exactly and efficiently. Therefore many mini-batches of
data are used to estimate gradients. This is the so called Stochastic Gradient Descent
(SGD). Apart from making computation tractable, the noise of gradients estimations in
each mini-batch is helpful for the optimization procedure to escape from the poor local
minimum. The expression of gradients required in each iteration of SGD is given in the
following:

∂Ldropout
∂ω

=
N

K

∑
i∈S

[
− ∂log(p(yi|xi,ω))

∂ω

]
+ λ

∂(
∑L

i=1 ||W i||2)
∂ω

(2.16)

where S is a random subset of the entire dataset, and |S| = K.

On the other hand, when looking at the ELBO in Eq.2.6, to maximize ELBO is equivalent
to minimize negative ELBO with SGD w.r.t. the variational parameter θ. The gradients
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are computed with the following expression:

∂(−ELBO)

∂θ
=
N

K

∑
i∈S

[
−
∂Eqθ(ω)

[
log(p(yi|xi,ω))

]
∂θ

]
+
∂KL(qθ(ω)||p(ω))

∂θ
(2.17)

In order to calculate two terms in Eq.2.17, re-parameterization trick[KW13] needs to be
introduced for the first term and the condition called KL condition[Gal] is introduced for
the second term.

Re-parameterization trick: when taking a close look at the first term in Eq.2.17, it’s
required to compute the gradients of expectation w.r.t. the parameters of distribution to
which this expectation is subject. That means, the gradients of variational parameters
are random because our objective is evaluated with the realizations of these parameters.
Fortunately, there are different approaches to estimate the gradients of variational param-
eters such as score function or REINFORCE estimator[Wil92], re-parameterization trick
[KW13] and so on. As is stated in [KW13], the re-parameterization trick has lower variance
than the score function estimator. There is a quick recap of this technique given and it
can be seen that it is already a built-in part in DNN with dropout.

To identify the problem, a more general form is given in the following, the expression of
derivatives of expectation w.r.t. the parameters upon which the distribution is defined:

I(θ) =
∂

∂θ
Epθ(x)

[
f(x)

]
=

∂

∂θ

∫
f(x)pθ(x)dx (2.18)

Assuming that pθ(x) can be re-parameterized as p(ε) which is a parameter-free distribu-
tion such that the random variable x can be generated from a deterministic differentiable
function with θ and ε as arguments, that is

x = g(θ, ε) with ε ∼ p(ε)

Then the estimator of the gradients w.r.t. the distribution parameters θ is as follows, the
derivation of it can be referred in A.3:

I ′(θ) =
∂

∂θ

∫
f(x)pθ(x)dx

= Ep(ε)
[
f ′(g(ε, θ))

∂

∂θ
g(θ, ε)

] (2.19)

From practical point of view, the expectation of last line in Eq.2.19 can be approximated
with the Monte Carlo integration. In the dropout inference, it is known that if the dropout
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rate is fixed to 1− pi in Eq.2.12 during training, εi in Eq.2.12 is a parameter-free random
variable and g(·) is a differentiable function w.r.t. its input arguments M i. Now the
variational parameters θ only contain {(M i)

L
i=1}, which are exactly the weights to be

learned in training DNN with dropout. As a consequence, if the gradient of ELBO w.r.t.
{(M i)

L
i=1} can be computed, which is the first term in Eq.2.17, it is equivalent to calculate

the gradients of the dropout loss w.r.t. the model parameters ω which is the first term in
Eq.2.16.

KL condition: The second term in Eq.2.17 is proved to be equivalent to the second term
in Eq.2.16 for a large enough number of hidden units when we specify the model prior to be
a product of independent Gaussian distributions over each weight with prior length scale
l, that is:

p(ω) =
L∏
i=1

(p(W i))

with
p(vec(W i)) = N (0, l−2IDi−1Di)

To establish this condition, we need to make a approximation of the approximate posterior
distribution qθ(ω) in Eq.2.11, where we approximate qθ(W i|εi) in Eq.2.12 as a narrow
Gaussian with a very small standard deviation. As we know, qθ(W i) factorizes over each
row of the weight matrix. Then that means qθ(ω) is a mixture of two Gaussian distributions
with small standard deviations, and one component with mean as zero:

qθ(ω) =
L∏
i=1

qθ(W i)

=
L∏
i=1

Di−1∏
j=1

qθ(wi,j)

=
L∏
i=1

Di−1∏
j=1

[
piN (mi,j, σ

2IDi) + (1− pi)N (0, σ2IDi)
]

(2.20)

where wi,j ∈ RDi is the j-th row of weight matrix W i and pi is the parameter of Bernoulli
distributed random variable of i-th layer. With this, the KL divergence between approx-
imate posterior and prior is KL-div between mixture of Gaussian and a single Gaussian.
Reader who has interest can refer to derivation of KL-div between mixture of Gaussian
and single Gaussian in [Gal]. KL condition is given in the following:

KL(qθ(ω)||p(ω)) ≈
L∑
i=1

Di−1∑
j=1

[pi
2

(l2mT
i,jmi,j +Di(σ

2 − log(σ2)− 2logl − 1)−H(pi)
]

(2.21)
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with
H(pi) = Di−1(−pilogpi − (1− pi)log(1− pi))

for large enough Di. If we fix dropout rate in training and compute the gradients of KL
divergence w.r.t. variational parameters θ = {(M i)

L
i=1}, which is now exactly the same

as the model parameters ω = {(W i)
L
i=1}. Then the term entropy of dropout rate can be

ignored. We can see that, if we choose λ = l2pi
2

, then it’s equivalent to the gradients of
regularization term in dropout loss function(cf. Eq.2.16):

∂KL(qθ(ω)||p(ω))

∂θ
≈ ∂

∑L
i=1 λ||M i||2

∂θ
(2.22)

With aforementioned re-parameterization trick and KL condition, the computation of gra-
dients of objective function w.r.t. model parameters in Eq.2.16 is shown to be equivalent to
that of negative ELBO w.r.t. variational parameter in Eq.2.17. That means, if we train a
DNN with dropout, it’s equivalent to train a BNN with approximate posterior distribution
over model parameters defined in Eq.2.11.

Marginalization in testing: After obtaining parameters θ of approximate posterior
distribution qθ(ω), we can marginalize all possible parameters over approximate posterior
distribution to compute the final predictive distribution of output, similar to Eq.2.4 but now
with approximate posterior distribution over model parameters, which has an expression
in Eq.2.23. Because the integration is hard to evaluate analytically. In practice, we always
use Monte Carlo integration to approximate this:

p(y?|x?,D) =

∫
p(y?|x?,ω)p(ω|D)dω

≈
∫
p(y?|x?,ω)qθ(ω)dω

≈ 1

K

K∑
i=1

p(y?|x?, ω̂i)

(2.23)

where ω ∼ qθ(ω) and ω̂i is one of K realizations of ω, which is equivalent to turning on
dropout in testing time.

Concrete dropout

Based on the aforementioned description of dropout inference, we can see that if we fix
dropout rate in training, then parameters of approximate distribution θ only contain
{(M i)

L
i=1}, which are equivalent to ω = {(M i)

L
i=1} in DNN with dropout. Therefore op-

timizing any DNNs with dropout is equivalent to perform approximate inference on BNN
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with the same architecture. Thus the optimal weights learned during the optimization of
DNN with dropout are the same as the optimal variational parameters of the corresponding
BNN.

However, selecting dropout rate before training is not a trivial task for several reasons.
Firstly, as shown in [SHK+14], different dropout rates have different influences on model ca-
pacity and thus model performance. To choose an optimal dropout rate manually requires
repeating tedious experiments which induces a lot of time consumptions and computation
efforts. Secondly, if we want the model not only to achieve satisfied accuracy but also to
produce reliable uncertainty estimation. The dropout rate should matter a lot because it
can influence the flexibility of approximate distribution family from the perspective of its
Bayesian interpretation.

Accordingly, one direct counter measure is to learn dropout rate from the data [GHK17].
One major difficulty to learn dropout rate from the data in gradient-based optimization is
that it is not easy and intuitive to estimate gradients of expectation w.r.t. parameters of
a discrete distribution. Before when the approximate distribution is continuous, gradients
can be estimated with help of re-parameterization trick. As introduced in the last sec-
tion, re-parameterization trick requires re-parameterizing samples of the distribution into
a differential function with variational parameters and a parameter-free random variable
as input arguments. For continuous distribution, this function can be found easily if they
have tractable inverse cumulative density function or functional form like Gaussian[KW13].
For most of discrete distributions such as Bernoulli or categorical distribution, they lack
useful re-parameterizations due to the discontinuous nature of discrete states [MMT16].

Confronted with this issue, [JGP16] and [MMT16] come up with one approach, which
is called concrete distribution, categorical re-parameterization or Gumbel-softmax trick.
In this trick, ”max” operation in Gumbel-Max trick is replaced by ”softmax” function,
which can yield a practical re-parameterization for discrete random variable. With this,
gradients w.r.t. parameters of discrete approximate distribution can be computed and used
in gradient-based optimization. In this subsection, a quick recap of this approach is given
in the following.

Re-parameterization for Bernoulli distribution: Gumbel-Max trick[MTM14] is
shown in Fig.2.1.2, which is used for drawing samples from a discrete distribution which is
parameterized by set of unnormalized probability {αi}ni=1 via inverse cumulative distribu-
tion function of Gumbel distribution, where αi ∈ R>0 and n denotes the number of class.
Assuming that we use one-hot encoding vector for label representation, that is d ∈ {0, 1}n
and

∑n
i=1 di = 1. The Gumbel-Max trick proceeds as follows(cf. Fig.2.1.2):

• sample Gi ∼ Gumbel(0, 1) = −log(−log(Uniform(0, 1))), for i = 1, .., n

• compute xi =log(αi) + Gi, for i = 1, .., n

• set dk = 1, where k = argmaxi{xi}i=1,..n, and di = 0 for i 6= k
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Then we obtain one sample from this discrete distribution and the probability for specific
class.

Figure 2.4: Example of Gumbel-max trick for drawing samples from a discrete distribution
whose random variable has 3 states and {αi}i=1,2,3 as class parameters representing the
possibility of occurrence of that class. {Gi}i=1,2,3 are i.i.d Gumbel(0, 1) [MMT16].

As observed in Gumbel-Max trick, the sampling step is re-parameterized by one function
with distribution parameters and parameter-free random variable as arguments. This
function is component-wise addition of two input arguments followed by argmax operation.
However, argmax operation is not differential w.r.t. distribution parameter αi.

With a little abuse of notation, we denote temperature by λ here. Fortunately, the argmax
operation can be approximated by a continuous function, softmax function with λ as
temperature parameter. This function is differential w.r.t. distribution parameters. With
this replacement, a continuous approximation to one-hot encoding vector d on the simplex
4n−1 = {x ∈ Rn|xk ∈ [0, 1],

∑n
i=1 xi = 1} is obtained:

xk =
exp((logαk +Gk)/λ)∑n
i=1 exp((logαi +Gk)/λ)

(2.24)

The sampling steps are similar to Gumbel-Max trick, but with smoothed softmax oper-
ation instead of argmax(cf. Fig.2.5). When λ → 0, the softmax function is recovered
to argmax operation, when λ → ∞, this operation generates uniform vector instead of
one-hot encoding vector. In practice, we set temperature as 0.1.

When it comes to Bernoulli discrete distribution in our case, it becomes simpler because
there are only two states in this distribution and samples live in two dimensional simplex.
On the other hand, the difference of two Gumbels distributed random variable is similar
to a logistic distributed random variable. With the probability of state 1 which can be
expressed by:
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Figure 2.5: Example of continuous approximation to Gumbel-max trick for drawing sam-
ples from a discrete distribution whose random variable has 3 states and {αi}i=1,2,3 as class
parameters representing the possibility of occurrence of that class. {Gi}i=1,2,3 are i.i.d
Gumbel(0, 1)[MMT16].

P(d1 = 1) = P(logα1 +G1 > logα2 +G2)

= P(logα1 − logα2 +G1 −G2 > 0)

where G1−G2 = log(Uniform(0, 1))−log(1−Uniform(0, 1)), which is the inverse cumulative
density function of Logistic(0,1). Then we can infer the re-parameterization of continuous
approximation of sample x ∈ [0, 1] from Bernoulli distributed random variable with p as
parameter as follows:

x = sigmoid
(1

λ
(logp− log(1− p) + u− log(1− u))

)
(2.25)

where u ∼ Uniform(0, 1).

In order to make explanation more clear and validate the continuous approximate re-
parameterization, one plot (Fig.2.6) is given to show the relationship between average
values of 100 samples drawn from this continuous approximation of Bernoulli distribution
with different probability parameter from 0 to 1 with increasing step of 0.1. It can be
seen that the empirical average of samples drawn from Eq.2.25 is close to expectation of
Bernoulli distribution of corresponding parameter. Additionally, one single sample in the
figure is shown. As can be seen, most of samples are lying on the boundary of range [0, 1]
and only few of them lie in the interior.

Dropout regularization: Because keeping rate of dropout is being optimized in con-
crete dropout, the variational parameters θ contain both {(M i)

L
i=1} and {(pi)Li=1}. In order

to compute gradients of ELBO in Eq.2.17, categorical re-parameterization is employed to
estimate the gradients w.r.t. Bernoulli distribution parameter pi in the first term, for the
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Figure 2.6: One sample and average value of 100 samples drawn from continuous approx-
imation of Bernoulli distribution with parameter p = [0.1, 0.2, ..., 1.0] and temperature
λ = 0.1.

second term, we could not ignore the term with pi in KL condition Eq.2.21, which is the
entropy term. Consequently, unlike Eq.2.22, the KL-div term should be:

∂KL(qθ(ω)||p(ω))

∂θ
≈ ∂

∑L
i=1 λ||M i||2 − βH(pi)

∂θ

=
∂

∂θ

( L∑
i=1

λ||M i||2 − βDi−1(−pilogpi − (1− pi)log(1− pi))
) (2.26)

where λ and β are coefficients for L2 regularization and dropout regularization, respectively.
They are hyper-parameters which can be tuned based on performance on validation set.
From the equation above, it can be seen that this term maximize the entropy of Bernoulli
distribution, which means this term pushes pi to 0.5. The coefficient of the dropout
regularization term means that large models will push the dropout probability towards
0.5 much more than smaller models, but as the amount of data N increases the dropout
probability will be pushed towards 1 because of the expected log likelihood in the first
term. One of reasons behind could be pushing pi to 0.5 would decrease the capacity of the
model which will decrease the expected log-likelihood.
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2.1.3 Laplace approximation

Introduction

In this section, another method to approximate the real posterior distribution over the
weights is introduced, which is called Laplace approximation[Bis06]. It requires only the
MAP point estimation of the model parameters, thus there is no need to re-train the
existing model which has already obtained an point estimate. This characteristic makes
this approach more appealing because it is not required to modify the model and thus can
be applied to any existing models. The idea behind Laplace approximation is to put a
Gaussian approximation on the MAP point estimate of the model parameters, which is
one mode of the true posterior. The reasons why we choose this approach are as following:

• it has the easy compatibility to the existing network. To perform Laplace approxi-
mation, we only need one point estimation of the model parameters which is already
available for all DNNs. There is no need to modify the training phase which saves a
lot of computation and time.

• it can capture the relationship between model parameters. As mentioned in the first
chapter, most of approximation approaches make an assumption that parameters are
independent to each other for reasons like simplicity, scalability as well as efficient
computation. This could be a quite strong restrictions on the approximation which
would lead to bad performance.

In the following,the basic idea of Laplace approximation is introduced and further its
scalable version for DNN based on Kronecker factor approximation is explained.

Assume there is already a point estimate of the model parameters via MAP or MLE:

ω? = argmax
ω
{p(ω|Y ,X)}

= argmax
ω
{p(Y |X,ω)p(ω)

p(Y |X)
}

= argmax
ω
{p(Y |X,ω)p(ω)}

(2.27)

After taking a second order Taylor expansion of the logarithm of of the posterior distribu-
tion p(ω|Y ,X) around its mode ω? (cf. A.4), the negative Hessian can be expressed as
follows:

H = −∂
2logp(ω|Y ,X)

∂ω2

= −
∂2log

(
p(Y |X,ω)

)
∂ω2

− ∂2p(ω)

∂ω2

, p(ω) is the prior distribution over model parameters. When exponentiating the second
order Taylor expansion of log posterior, the following Gaussian-like functional form can be
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attained:

p(ω|Y ,X) ∝ p(ω?|Y ,X) exp{−1

2
(ω − ω?)TH(ω − ω?)} (2.28)

which means ω ∼ N (ω?,H−1). Therefore, we can obtain a Gaussian approximate dis-
tribution with local maximum ω? as mean and inverse of negative Hessian as covariance
matrix.

If Gaussian prior is chosen, it’s easy to know that the second order derivative of the prior

distribution term ∂2p(ω)
∂ω2 is a identity matrix multiplied by regularization coefficient. And

the non-trivial part is the first term, second derivatives of log likelihood. To make the
explanation uncluttered, the negative Hessian of log likelihood is defined as Ĥ as follows:

Ĥ = −
∂2log

(
p(Y |X,ω)

)
∂ω2

However, for a large training set, it is always infeasible to analyze the gradients or Hessian
exactly. To resolve this, normally the expectation of gradients or Hessian is estimated with
a mini-batch of data. It means that the Hessian can also be estimated with the empirical
average Hessian computed in mini-batche:

Ĥ ≈ NEp(Y ,X)[Ĥ ]

where N is size of training samples, and

Ep(Y ,X)[Ĥ ] ≈ − 1

K

∑
k

[ 1

M

∑
i

∂2log
(
p(yik|xik,ω)

)
∂ω2

]
(2.29)

where K is the total number of mini-batch, and (yik,xik) is the i-th training data sample
in k-th mini-batch.

Fisher information matrix is an approximation to the expected negative Hessian of
exponential family log probability:

F̂ = Ep(X,Y )[Ĥ ]

Therefore the Fisher information matrix can be used as replacement of the expected Hessian
for the log likelihood term. The derivation of equivalence between expected Hessian and
Fisher matrix is straightforward. We define Fisher matrix F in the following:

F̂ = Ep(Y ,X)

[ ∂
∂ω

logp(Y |X,ω)
∂

∂ω
logp(Y |X,ω)T

]
≈ 1

K

∑
k

[ 1

M

∑
i

( ∂
∂ω

logp(yik|xik,ω)
∂

∂ω
logp(yik|xik,ω)T

)] (2.30)
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We include the derivation of equivalence between negative expected Hessian and Fisher
matrix for case that parameter is scalar in appendix A.2, which can be extended to case for
vector easily. The relationship between Fisher information matrix and expected negative
Hessian when considering the entire training set is as follows:

Ĥ ≈ N F̂ (2.31)

and after taking the Gaussian prior into account:

H ≈ N F̂ + τI (2.32)

To compute the empirical average of outer product, large storage space should be used to
save values with amount quadratic to the number of model parameters. More than that,
the computation complexity of matrix inversion is cubic of dimensionality of the matrix
which is the number of parameters of the whole network. This is also infeasible because the
number of parameters in DNN can exceed million easily nowadays. Therefore an efficient
approximation for Fisher matrix is required.

Scalable Laplace approximation for neural network

In order to mitigate the computational burden in Laplace approximation above, Kronecker-
factored approximation curve(KFAC) in [MG15] can be used to approximate the Fisher
information matrix F , with which Laplace approximation can be performed for neural
network[RBB18]. This approximation is derived by approximating the large blocks matrix
of Fisher(corresponding to each layer) by Kronecker product of two much smaller matrices.
While several times more expensive to compute this, the issues of storage and inversion in
Laplace approximation can be mitigated. Additionally, because Fisher information matrix
is only required after training, this little expensive computation is need to perform only
once.

With the notations used in previous subsection, where dropout variational inference is
introduced, the derivation of the approximation is given in the following. For clarity, we
repeat the definitions of existing notations and new defined ones here. A DNN transforms
its input a0 = x to an output aL = p(y|x,ω) = σ(x,ω) through a series of L layers. The
units each receive as input a weighted sum of outputs of units from the previous layer and
compute their output via a non-linear activation function φ(·). We denote by si the vector
of these weighted sums for i-th layer, and by ai the vector output of non-linear activation
function. Computation performed for each layer i ∈ 1, ..., L is given as follows:

si = aiW i and ai = φ(si) (2.33)

We define w̃ to be the vector consisting of all of the network parameters concatenated

together, i.e. w̃ =
[
vec(W 1)

T vec(W 2)
T ... vec(W L)T

]T
, where vec is the operator which
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vectorizes matrices by stacking their columns together. For simplicity the following nota-
tions are defined:

∂v = −∂ log p(y, |xω)

∂v
and gi = ∂si

The first derivatives of objective w.r.t. w̃ is defined as follows:

∂w̃ =
[
vec(∂W 1)

T vec(∂W 2)
T ... vec(∂W L)T

]T (2.34)

From Eq.2.30, F̂ = E[∂ŵ∂ŵT ] can be viewed as L by L block matrix, with the (i, j)-th
block F̂ i,j given by F̂ i,j = E[vec(∂W i)vec(∂W j)

T ].

Noting that ∂W i = ai−1g
T
i and vec(uvT ) = v ⊗ u, then we have:

vec(∂W i) = vec(ai−1g
T
i ) = gi ⊗ ai−1

Then by rewriting it into:

F̂ i,j = E[vec(∂W i)vec(∂W j)
T ]

= E[(gi ⊗ ai−1)(gj ⊗ aj−1)T ]

= E[(gi ⊗ ai−1)(gTj ⊗ aTj−1)]
= E[(gig

T
j )⊗ (ai−1a

T
j−1)]

Here we need to define F̃ i,j as approximation to F̂ i,j in the following:

F̂ i,j ≈ F̃ i,j

= E[gig
T
j ]⊗ E[ai−1a

T
j−1]

= E[Gi,j]⊗ E[Ai,j]

(2.35)

where Gi,j = gig
T
j and Ai,j = ai−1a

T
j−1. The expectation of a Kronecker product is, in

general, not equal to the Kronecker product of expectations, and so this is indeed a major
approximation to make, and one which likely won’t become exact under any realistic set
of assumptions, or as a limiting case in some kind of asymptotic analysis. Nevertheless,
it seems to be fairly accurate in practice, and is able to successfully capture the ”coarse
structure” of the Fisher information Matrix. In this work, we only consider the case that
layers are independent to others. Therefore the Fisher information matrix of the entire
network is a large diagonal block matrix, which means F̃ i,j is non-zero only for i = j. For
i-th layer, the Fisher information matrix can be computed with Eq.2.35. The two factors
in Kronecker are outer product of gradients of pre-activation Gi = gig

T
i and outer product

of activation from previous layer Ai = ai−1a
T
i−1, respectively:

F̃ i = Gi ⊗Ai

If they are treated as covariance matrix of resulting Gaussian. That means each Gaus-
sian has a Kronecker factored covariance matrix, corresponding to a matrix normal
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distribution[GN99], which considers the two Kronecker factors of the covariance to be
the covariances of the rows and columns of a matrix. The two factors are much smaller
than the full covariance and allow for significantly more efficient inversion and sampling.
The final posterior of Laplace approximation for i-th layer is:

W i ∼MN (W ?
i ,E[Ai]

−1,E[Gi]
−1) (2.36)

If Gaussian prior and scale of Fisher information matrix(cf. Eq.2.32) are taken into account,
then the resulting posterior can be written in the following form:

W i ∼MN (W ?
i , (
√
NE[Ai] +

√
τI)−1, (

√
NE[Gi] +

√
τI)−1) (2.37)

where N is the size of training set and τ is the standard deviation of Gaussian prior.
However, we find that, in practice to treat them as hyper-parameters and tune them w.r.t.
the predictive performance on a validation set can yield better performance. The possible
reasons for this are two fold. Firstly, nowadays the scale of dataset is really large which
can exceed tens of thousand easily. The large size of data could be probably redundant
and if we take the redundant data into account and thus increase N . This will lead to
unreasonably high precision for Gaussian and underestimate the uncertainty significantly.
Second, Laplace approximation requires positive definite Hessian and τ always serves as
damp factors to fulfill this condition, therefore it needs to be chosen and tuned carefully.

2.2 Conditional random field

Graphical models allow us to encode relationships between multiple variables using a con-
cise, well-defined language. Because it’s hard to solve the problems deterministically in
real world. Probabilistic graphical model(PGM)[KFB09] can assist in this case by encoding
a joint or conditional probability distribution with graph, which means that PGM can
encode the relationships between multiple random variables.

The various types of PGM differ by the graph structure and the conditional independence
assumptions. There are mainly two types, directed and undirected graph. Directed graph-
ical model which is also called Bayesian network, specifies the family of distributions by
means of directed acyclic graph and its joint distribution is factorized over each node which
is a random variable with probability distribution conditioned on its parents. On the other
hand, undirected graphical model, also known as Markov random field has undirected
acyclic or cyclic graph. Its joint distribution is factorized over cliques, which is a fully-
connected subgraph within the graph. This means, the marginal probability distribution
in undirected graphical model is not normalized over nodes, but over cliques.

In a object recognition task, the input is set of images and output is set of predicted labels.
Because the dimensionality of input is always large so that it’s difficult to model it directly.
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Nevertheless, we want to exploit the contextual relationship between different objects. To
this end, it’s better to just model the relationship between output random variables, which
obey the conditional distribution of output given input. CRF, first proposed by [LMP01],
is a suitable model for this purpose. In this chapter, a concise introduction of CRF is
given, including definition, learning and inference in the following subsection.

2.2.1 Definition

CRF can model the conditional distribution of a set of output random variables y given a
set of inputs x, that is p(y|x). In the scope of scene object recognition problem, assume
we have multiple objects in one scene denoted by x = [x1, ..., xn] and their labels y =
[y1, ..., yn]. We want to learn p(y|x) with CRF and make predictions for unseen data.

To formulate the problem clearly, we denote the set of output random variables by y and
overall output domain by Y . CRF for one scene x is defined by a graph G = (V , E),
where a set of nodes V representing the random variables in y, and a number of undirected
edges E ⊆ V × V representing the dependencies between random variables. The output
domain of CRF is the product of individual variable domains Yi so that we have Y = ×

i∈V
Yi,

where Yi = L, which is a set of all possible labels. With these notations, the probability
distribution of y conditioned x with model parameter θ can be defined as

p(y|x;θ) =
1

Z(x,θ)

∏
c∈C

ψc(yc, xc,θ) (2.38)

where C is the set of cliques of graph G, and Z(·) is normalizer to make sure∑
y∈Y p(y|x;θ) = 1, which is also called partition function. θ stands for the parame-

ters of CRF to be tuned during training phase. ψc(·) is called potential function or factor
which encodes the contribution of clique c to the total density. The order of number of
random variables in clique c can be arbitrary number. However, for computational reason,
only factors with number of random variables up to two are considered in common case.
The first order potential is called unary potential which means that the clique of this kind
of potential contains only one random variable, that is ψi(yi, xi,θ). Unary potential can
be treated as the likelihood that a label is assigned to this random variable independently
to others. The second order potential is called pairwise potential ψi,j(yi, yj, xi, xj,θ) char-
acterized by edges in the graph. This kind of potential states the compatibility of two
random variables (yi, yj) being assigned to a certain pair of categories.

To make the explanation more clear, we illustrate a simple example in Fig.2.7, we ignore θ
here and explain it later and use ψi,j for ψi,j(yi, yj, xi, xj) to make expression of conditional
probability uncluttered:
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p(y1, y2, y3, y4) =
1

Z(x1, x2, x3, x4)
ψ1ψ2ψ3ψ4ψ1,4ψ1,2ψ2,3ψ2,3ψ1,2,4

=
1

Z(x1, x2, x3, x4)
ψ1ψ2ψ3ψ4ψ1,4ψ1,2ψ2,3ψ2,3

where the transformation from first line to second line comes from the ignorance of poten-
tials with order higher than two.

Figure 2.7: Simple example of conditional random field.

According to Hammersley-Clifford theorem [HC68], the factors must be always positive,
we can employ log-linear models for the potential functions, which results in:

p(y|x;θ) =
1

Z(x,θ)

∏
c∈C

exp(〈φ(xc, yc),θ〉)

=
1

Z(x,θ)
exp(

∑
i∈V

〈φu(xi, yi),θu〉+
∑

(i,j)∈E

〈φp(xi, xj, yi, yj),θp〉)
(2.39)

being 〈·, ·〉 the inner product, and φ(xc, yc) the sufficient statistic of the factor over clique
c. Because we only consider the potentials up to second order, only feature function for
unary potential φu(·) and feature function for pairwise potential φp(·) are considered here.
This function can also be treated as feature function which extracts feature of the data
over clique.

Now we have made assumptions of graph structure and conditional dependency for the
graph. This can be interpreted as a filter of a probability distribution family. Only the
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class of probability distribution that satisfies these assumptions such as up to second order
potentials can be expressed and learned with this graph. To further identify different
probability distribution in this class, we need to parameterize it and identify it with specific
parameters which can be learned during training.

Parametrization of the probability distribution is expressed explicitly in Eq.2.39. This
means that the dimension of the parameter in each kind of potential should be the same as
the dimension of feature function. In this work, the feature function should be a function
of input and class label, while the feature function can also be the function of only input
and weight should be defined as matrix whose output dimension is the number of class
serving as a linear mapping. In this work, we only consider the former case.

Regarding unary feature, we utilize the probability vector p(yi|xi) which is predictive
likelihood from a discriminative classifier which is a deep neural network in this work.

Pairwise feature in this work is quite simple context cue in the scene which is defined
as binary co-occurrence matrix H(yi, yj). If one category occurs with another category in
the same scene, then the corresponding entry in the matrix is filled with 1, otherwise 0.

Although obtaining this pairwise feature requires knowing the ground truth labels of objects
in the scene, it still makes sense in the application of this work. Because we use T-LESS
dataset which will be introduced in the experiment part, each of scene images in this dataset
contains multiple industrial-relevant texture-less objects, some of them are combination of
objects of other categories. We want to simulate the situation that, we treat each scene as
one product which is composed of multiple sub-parts. Because we know the product, and
thus we also know the real labels of components of this product which is corresponding to
the co-occurrence of objects in this scene and our goal is to classify the components with
help of this contextual information.

Based on these two kinds of features, we have the formulation of likelihood function of
CRF model for one scene as follows:

p(y|x;θ) =
1

Z(x,θ)
exp(θu

∑
i∈V

p(yi|xi) + θp
∑

(i,j)∈E

H(yi, yj)) (2.40)

where θ = {θu, θp} ∈ R2.

2.2.2 Learning

The most popular approach to estimate θ is MLE. The likelihood for one scene is defined
in Eq.2.40. Normally we have a large amount of scenes in training set where each of them
contains multiple objects. We denote training set by D = [d1, ..., dm], where each scene is
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represented by di = (xi,yi). For each scene, we create a CRF model for it. Therefore we
can denote the whole set of graph by G = [G1, ...,Gm], where Gi = (Vi, Ei). This is consistent
to previous notations when we make little modifications for x and y: xi = [xi1, ..., x

i
n, ] and

yi = [yi1, ..., y
i
n]. For computational convenience and stability, negative log likelihood as

objective function is always employed. The objective in MLE on training set is defined as
fallows:

NLL(θ;D) = −
m∑
i=1

(
θu
∑
j∈Vi

p(yij|xij) + θp
∑

(j,k)∈Ei

H(yij, y
i
k)− Zl(xi;θ)

)
(2.41)

where
Zl = log

( ∑
yi∈Y

(
θu
∑
j∈Vi

p(yij|xij) + θp
∑

(j,k)∈Ei

H(yij, y
i
k)
))

(2.42)

With this expression, our problem is defined in the following form with MLE:

θ? = argmin
θ

[
NLL(θ;D)

]
(2.43)

The log likelihood function of CRF is proved to be concave [KFB09], which means the
local optimizer is also the global optimizer although it’s not unique. To optimize this
objective w.r.t. the model parameters on dataset with large size, we can employ SGD,
which requires to calculate the gradient of object w.r.t. the model parameters θ. The
gradients can be computed as follows, where we use θ to represent parameters in order to
make the expression clear:

∂

∂θ
NLL(θ;D) = −

m∑
i=1

(
φ(xi,yi)− Ep(y|xi;θ)

[
φ(xi,y)

])
(2.44)

where the expectation Ep(y|xi;θ)
[
φ(xi,y)

]
stands for the partial derivative of the log-

partition function, which is retrieved by:

Ep(y|xi;θ)
[
φ(xi,y)

]
=
∑
y∈Y

p(y|xi;θ)φ(y,xi) (2.45)

The gradients of parameters corresponds to the difference between the empirical expecta-
tion of its associated sufficient statistics (the sufficient statistics of ground truth) and its
expectation over the estimated probability distribution p(y|x;θ). The goal of the opti-
mization is to decrease the gradients until they reach zero, which means that we match of
first moment of sufficient statistics over the output distribution. Therefore this way is also
called moment matching.

When taking a closer look at Eq.2.44 and Eq.2.45, to calculate the gradients in each
step of SGD, we need to compute p(y|x;θ), which requires to compute the partition
function Z(·). Because the number of possible assignments grows exponentially in the
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number of classes, it’s infeasible to get a exact solution in practice. This problem also
appears when we want to obtain a probability distribution(marginal inference) instead of a
single prediction(MAP inference) in testing time. To compute the probability distribution
in probabilistic modeling always refers to as inference. There are a bunch of research
works focusing on inference. Because the CRF model in this work is fully connected, we
adopt a popular and effective approach which is called Loopy Belief Propagation (LBP)
and introduced in next subsection. This approach can provide a approximation to the
log-partition function Zl(·), which is required in Eq.2.45 and to the marginal probability
distribution of random variables in y to be plugged in Eq.2.44 in the graph with cycles
and exact solution in graph without cycle.

2.2.3 Inference

LBP introduced by [Pea14], also known as sum-product algorithm, is a popular approach
for probabilistic inference in graphical models. Briefly, this approach is based on the
exchange of statistical information among the nodes in the graph according to their rela-
tionships. The core idea behind that is for each node in the graph to maintain its belief,
which is a k-dimensional vector b(yi) if the node is discrete random variable where k is the
number of class. The i-th entry of this vector indicates the probability that i-th class is as-
signed to this node. The belief of a node evolves as it receives messages from it neighbors.
A message mij(yj) sent from node yi to node yj encodes belief of yi about what class node
yj should belong to. This message, in turn, based on the messages it received from all the
other neighbors except for the recipient in a previous time-step.

The algorithm keeps sending messages until the graph is calibrated, which means that the
messages of two consecutive iterations are less than one threshold. However, in practice,
the algorithm can not calibrate or converge. A maximum number of iteration can be set
to obtain satisfactory results. The messages computation is as follows:

mij(yj) =
∑
yi∈Yi

ψij(yi, yj, xi, xj, θp)ψi(yi, xi, θu)
∏

yk∈N (yi)\yj

mki(yi) (2.46)

where N (yi)\yj is the set of node neighbors of yi except for yj. Once the iteration reaches
maximum number or the graph is calibrated, we can compute the belief of each node as
follows:

b(yi) =
1

Zi
ψi(yi, xi, θu)

∏
yj∈N (yi)

mji(yi) (2.47)

where Zi is the normalizer of unnormalized belief of node yi to ensure the sum of marginal
probability of yi is 1.



Chapter 3

Technical Approach

In this chapter, the approaches employed in this work are explained. Firstly, confronted
with the limitations of concrete dropout, an adapted version of concrete dropout is pro-
posed, which is called multiple dropout (multi-drop). Secondly, a modified architecture of
ResNet50 is introduced in order to incorporate different inference techniques for BNN with
this powerful feature extraction network. Thirdly, a pipeline combining BNN and CRF
is presented. Thereby, The CRF works as a post-processor to capture the relationship
between random variables. Last but not least, the approach combining aforementioned
techniques for continuous learning is introduced.

3.1 Multiple dropout

Based on Fig.2.2 and the expression of the approximate distribution in equation 2.11, only
one probability of Bernoulli distributed random variable for each layer is chosen. Each
element of random vector pi = [pi]

Di−1 for i-th layer is the same. While the dropout
regularization term pushes the probability of Bernoulli to 0.5 to maximize the entropy, the
expected likelihood term tries to increase the probability since a decreasing probability
will lead to a different model with lower capacity and thus lower performance. Thus,
an equilibrium state between them should be achieved in training. With the concrete
dropout introduced above, this approach can be extended for each hidden unit instead of
each layer(cf. Fig.3.2), which results in the random vector pi = [pki ]

Di−1

k=1 . The difference
between multiple dropout and concrete dropout can be easily seen by comparing the figures
Fig. 3.2 and Fig. 2.3. While the first term in the gradients computation stays the same,

33
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the second term should be modified to:

∂KL(qθ(ω)||p(ω))

∂θ
≈ ∂

∑L
i=1 λ||M i||2 − βH(pi)

∂θ

=
∂

∂θ

( L∑
i=1

λ||M i||2 − β
Di−1∑
k=1

(−pki logpki − (1− pki )log(1− pki ))
) (3.1)

The reasons for multi-drop are as following:

• to increase flexibility in tuning variational parameters. The tunability of the param-
eter of the Bernoulli random variable in the likelihood term is low since there is only
one single parameter controlling the entire layer. As observed in the experiments(cf.
Fig.3.1), the parameter is always increased for each layer. The reason for this is
probably that reducing it would lead to low capacity and thus low likelihood.

• the solution space of concrete dropout should be a subset of the solution space of
multi-drop if all of them are reachable. Because if it is optimal to assign the same
probability for each hidden unit, this can be recovered in training with the multi-drop.
Otherwise, other optimal solutions of assigning different probabilities to different
hidden units could be considered.

• multi-drop can extend the flexibility and diversity of the dropout approximate dis-
tribution family by adding more parameters. Hence the truth posterior can be ap-
proximated better by the approximate posterior.

Figure 3.1: Changes of keep probability of the first two concrete dropout layers during
training.
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Figure 3.2: Different dropout rates for different hidden units in multi-drop.

3.2 Modified network architecture

After introducing dropout and concrete dropout variational inference, in this subsection
the modified network architecture is described. As already mentioned, the fundamental
task in this work is object classification. Thus, due to its strong ability to learn powerful
representation for images a ResNet50[HZRS16] pre-trained on ImageNet as backbone for
fine-tuning is selected. However, there is no dropout in the original version of this network.
In order to employ dropout variational inference for a reliable uncertainty estimation, the
dropout concept should be inserted into the network. In this work, three fully connected
layers with 1024 hidden units are added before the output layer – whose dimension needs
to be set to the number of classes – which are initialized from scratch. Next, a concrete
dropout at flatten layer is added, and at the three new fully connected layers, respectively.
There are three reasons why the network is modified this way:

• By inserting dropout in pre-trained layers, the pre-trained features will get destroyed.
Since the major part of the network is initialized with pre-trained weights, hence this
would lead to a significant drop of performance after fine-tuning.

• According to the suggestions from [SHK+14], insertion of dropout reduces the ca-
pacity of the model and thus a model with dropout should have larger capacity than
one without dropout. Therefore three additional fully connected layers are added to
ensure that the model possesses a large enough model capacity.
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• As introduced in previous sub-sections, weights are a major part of variational pa-
rameters. Therefore, more weights can enhance the flexibility and capacity of the
approximate distribution family, which improves the quality of approximation.

Fig.3.3 shows the sketch of the modified network architecture. The major part of the
network without dropout can be interpreted as deterministic feature extractor. Following
this, the four layers with dropout work as a probabilistic classifier. These four layers
include one flatten layer with 2048 hidden units, and three fully connected layer with 1000
hidden units each. At the end, an output layer with the size of number of categories is
appended. The version of dropout inserted can be normal dropout, concrete dropout or
multiple dropout. In this report, only results of concrete dropout and multiple dropout
are presented since normal dropout significantly underperforms.

During training, these two parts are trained together in order to achieve a better bal-
ance between uncertainty estimation and accuracy. As known to all, freezing the feature
extraction part can lead to worse performance, but it can also reduce the influence on
predictive uncertainty from aleatoric uncertainty. To investigate this effect, an ablation
study is conducted shown in experiment part. In testing, possible parameters according to
posterior distribution have to be marginalized. Layers with dropout should be turned on,
sampled and run multiple times to perform Monte Carlo integration to approximate pre-
dictive distribution. The reduction of run time during testing can be achieved by different
techniques, such as parallel computing or distillation. But this surpass the scope of this
work.

Figure 3.3: Modified network architecture of ResNet50.
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3.3 Combination with CRF

After employing BNN, the model can provide more reliable uncertainty estimation in a
probabilistic manner. In other words, the predicted probability distribution contains more
valuable information than before. In order to make use of this information another prob-
abilistic model is applied. The idea is to combine the output from BNN and relationships
between the objects in a scene via a CRF. In detail, the output distribution from BNN is
used as unary feature and a binary co-occurrence matrix for pairwise feature (introduced
in 2.2.1). Fig.3.4 demonstrates the flow chart how BNN and CRF are combined together.
As can be seen, objects in one scene are firstly fed into BNN and their output distribu-
tions are fed into the CRF as unary feature for each node. In the scene, their contextual
relationship is represented by the binary co-occurrence matrix which is forwarded to the
CRF as pairwise feature. Then LBP is applied to infer the marginal distribution of each
node.

One key factor in this case is that the pairwise feature is required to be designed by
hand. The choice and design of it have significant impact on the improvement achieved
by CRF. The information brought by pairwise feature should be complementary instead
of contradictory to that of unary feature. Once this point is fulfilled, the more infor-
mation the unary and pairwise feature have, the more improvement CRF can achieve.
One thing worth noting, in experiment part, this approach is tested only on the T-LESS
dataset, since constructing scenes for objects in the RGBD Dataset from Washington
University(WRGBD)[LBRF11] dataset is non-trivial. The reason therefore is that most
objects there have not only similar appearances but also similar contexts. Therefore it is
hard to disambiguate miss-classification by incorporating their contextual information.
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Figure 3.4: Combination of BNN and CRF.

3.4 Approach for continuous learning

With a reliable uncertainty estimation, one of our goals is to enable the classifier or robot
to learn continuously. The classifier should be introspective and express the confidence
about its predictions. It is common that the test data in real environment does not have
exactly the same distribution as the training set, which induces a significant performance
drop. In this situation, the classifier is expected to adapt itself to the real environment by
fine-tuning itself with as little manual effort for the user as possible.

This idea is visualized in Fig.3.5. The initialization phase includes the training of the
model with an easily obtainable dataset, which can be a public or synthetic dataset. Before
deploying to the real environment, there is an adaptation phase which makes use of the
aforementioned techniques. In this phase, the classifier should be able to adapt itself to the
objects in the real environment by fine-tuning with the dataset collected. The annotations
for the collected dataset are generated automatically by the initial network and manually
by the user. In order to prevent a high amount of miss-classified training data for fine-
tuning, only high confident predictions are used for the automatic labeling. Therefore,
a reliable uncertainty estimation is essential. If the relationship between objects in real
environment is complementary to the discriminative classifier and can be encoded well, the
CRF can be employed to capture the relationship to further improve the performance (cf.
section 3.3). After that, the classifier is deployed to the test data in the real environment.
In the experiment part, this approach is evaluated on both UniHB(WRGBD) and T-
LESS(synthetic T-LESS) data.
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Figure 3.5: Approach for continuous learning.



Chapter 4

Experiment and Discussion

4.1 Background

In this chapter, different experiments with the following purposes are conducted:

• to evaluate the performance of uncertainty estimation of the dropout variational
inference and its variants as well as the Laplace approximation. Comparisons and
analysis towards the results of these two kind of approaches are given.

• to evaluate the performance of training a domain specific classifier, with different
strategies for collecting training data including manual and automatic labeling, where
the latter one is chosen based on the uncertainty estimation.

• to evaluate performance of classifier including context information via a CRF.

Before looking into the results, some details of experiments such as the dataset and eval-
uation metrics have to be specified. The models of deep neural nets are implemented in
Tensorflow[ABC+16], and the optimization is performed using RMSprop with an initial
learning rate of 1e−5 and L2 regularization with coefficient of 3.5e−6 as well as the dropout
regularization with coefficient of 1.0e−5. The concept of early stopping is applied to all
methods, where the amount of epochs to run is determined based on performance on a
validation set. The number of maximum epoch is set to 20.

Regarding the implementation of CRF, the C++ library from [RSGGJ15] is employed.
However, the weights there are assumed to be category-independent, which means that the
weights are defined as a weight matrix to build a linear mapping from the feature function
to the potential function. Therefore the type of weights in this library are modified in
order to incorporate the different type of weights defined in Eq. 2.40. These weights
serve as coefficients of different potential functions instead of a linear mapping inside the
potential functions. To note that the messages are initialized uniformly during loopy
belief propagation and the parameters are initialized with a Gaussian prior with a small

40
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standard deviation (0.01) around 0. Besides, the optimization is performed with SGD
with momentum and set size of mini-batch as 16. The learning rate is set to 1e−4 and the
maximum number of iteration is 15× 103. LBP is used for inference both during training
and testing. The maximum number of iterations for computing messages in LBP is 100,
and the convergence threshold is 1e−4.

4.1.1 Dataset

WRGBD[LBRF11]

This dataset is a public large-scale dataset of 300 household objects captured from multi-
viewpoint. The objects are organized into 51 categories and 300 instance classes in hier-
archical structure. There are multiple instances in different categories. Each object was
placed on a turn table and captured from a systematically sampled view hemisphere with
15◦ step in elevation (from 30◦to 60◦) and 2◦ step in azimuth (from 0◦ to 360◦) (cf. Fig.4.1).
The total size of entire dataset is around ∼160.9K. To note that the category level recogni-
tion involves classifying objects with similar semantic appearance such as cereal boxes with
different texture into the same category, instead of just physical appearance. Instance level
recognition is to classify objects with similar physical appearance to the same category.
Therefore the overlapping in feature spaces between classes in category recognition is larger
than that in instance recognition. More abstract and semantic concepts are expected to
be learned in category recognition.

UniHB

To simulate application-specific situations in the deployment of robots, a similar dataset
is recorded by putting objects on a turn table in front of the robot and recording partial
views of the objects. Thereby, the same methodology as [LBRF11] suggests for WRGBD is
applied, but with only one object instance for each category in the dataset. This analogue
of the WRGBD dataset is called the IAI-ODU dataset of UniHB, which in the following is
called UniHB due to simplicity. The size of data with the elevation 45◦ is around ∼8.6K
and that of data with the elevation 30◦ and 60◦ is around ∼17.1K.

While the UniHB dataset’s setup strives to mimic the WRGBD one, the differing cap-
turing environments such as different equipment and light conditions even appearances of
objects, result in obvious changes in the feature space, thus yielding a significant drop on
the classification accuracy. In addition to the existing 51 categories, there are 28 novel
objects(cf. Fig.4.2) that do not belong to the original 51 categories and are treated as
out-of-distribution(OOD) data for testing the uncertainty estimation of the model. It has
to be mentioned that the data of these novel classes are recorded in a slightly different way,
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that is, their view points are sampled with 15◦ steps in elevation (from 30◦to 60◦) and 5◦

steps in azimuth (from 0◦ to 360◦). The size of this OOD dataset is around ∼6.0K.

Original T-LESS[HHO+17]

This dataset features 30 commodity electrical parts which have no significant texture,
discriminative color or distinctive reflectance properties, and often bear similarities in shape
and/or size. Furthermore, an unique characteristic of the objects is that some of them are
parts of others. All images were captured systematically sampled from a view sphere,
resulting in around ∼38.0K training images (cf. on the left of each thumbnail in Fig.4.3)
and ∼10.0K test scene images (cf. on the right of each thumbnail in Fig.4.3). The training
images depict objects in isolation with a black background, while the test images are from
20 table-top scenes with arbitrarily arranged objects placed on table. In this work only the
cropped images of objects in testing scenes are considered, resulting in a testing set with
size ∼69.5K. Nevertheless, the context information in the scenes can be exploited with
CRF which is showed in the experiment part.

Synthetic T-LESS

Since the data collection of real objects requires a high amount of manual efforts, the idea
is to first train the classifier on a synthetic dataset which is easy to obtain. AFor this
end, a synthetic T-LESS dataset is generated which contains multi-view images of objects
rendered from 3D reconstructed CAD models with similar augmentations(cf. on the right
of each thumbnail in Fig.4.4). There is a significant large domain gap between the synthetic
objects and real objects (cf. on the left of each thumbnail in Fig.4.4) such as texture and
geometries on the surface. This domain gap can induce a large performance drop when
the model trained with synthetic objects is tested on real objects.

Augmentation is employed for both original and synthetic T-LESS dataset. Because
objects in the test scenes are mostly occluded and have different backgrounds and light-
ness, this practical technique can improve the generalization of the model and thus the
performance. In augmentation, the real and synthetic single objects are put onto different
background images from the VOC2012 dataset[EVGW+](cf. Fig.4.4) and augmented in
different ways such as Gaussian noise, color changes, rotations and so on. One characteris-
tic of the augmentation is that each background image can be treated as one scene, in which
a random number of objects are placed randomly, inducing large variety of occlusions and
combinations of different objects. This tries to simulate the situation in the test set, where
different objects are placed randomly in each scene. More than that, the relationships
between objects in one scene can be utilized by the CRF for a further performance gain.
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Figure 4.1: Example of masked images of objects from 51 categories in WRGBD and
UniHB dataset. In each category, the left is from WRGBD and the right is from UniHB.
We randomly pick one instance for the objects of WRGBD. Some light and appearance
differencse between objects can be seen in these two datasets.
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Figure 4.2: Example of masked images of objects from 28 categories which are not belonging
to WRGBD categories, which are treated as OOD data samples.
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Real single object(left) and occludded test object(right)

Figure 4.3: Example of object of each category in original training set and test set. In each
thumbnail, the left image is real single object with black background and the right image
is cropped image of object in test scene. (label index starts from 1.)
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Domain difference between real augmented data(left) and synthetic augmented data(right) for training

Figure 4.4: Example of object of each category with augmentation. In each thumbnail, the
left image is real augmented object and the right image is synthetic augmented object.(label
index starts from 1.)
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4.1.2 Uncertainty measure

For each prediction, a predictive probability distribution from the model based on the
equation 2.23 is obtained. In order to quantify the uncertainty of the prediction, there are
different measures for uncertainty of a prediction, which are introduced in the following.
A test data sample is defined by x? and D as the training set.

Confidence is defined as the maximum probability of the output predictive distribution,
whose index is the class prediction.

conf = max
c

[
p(y = c|x?,D)

]
(4.1)

where conf ∈ [0, 1], c ∈ L = {0, ..., |L|−1}, and L represents the output space in which the
label is expressed as the number index which is transformed into a one-hot representation
in computation of the objective function. The larger this quantity is, the less uncertain
the prediction is.

Predictive entropy is the quantity that captures the average amount of information
contained in predictive distribution[Sha48]:

H[p(y|x?,D)] = −
∑
c

p(y = c|x?,D)logp(y = c|x?,D) (4.2)

where c is the possible class y can take, H(·) ∈ [0, log|P|], the larger this quantity is, the
more uncertain the prediction is.

Mutual information between the prediction y and the weights posterior offers a differ-
ent uncertainty measure when compared with the aforementioned ones. This measure is
widely used in active learning tasks[HHGL11], which is also called Bayesian active learning
disagreement(BALD). The definition of this measure is as follows:

I[y,ω|x?,D] = H[y|x?,D]− Ep(ω|D)
[
H[y|x?,ω]

]
= −

∑
c

p(y = c|x?,D)logp(y = c|x?,D)

+ Ep(ω|D)[−
∑
c

p(y = c|x?,ω)logp(y = c|x?,ω)]

≈ −
∑
c

p(y = c|x?,D)logp(y = c|x?,D)

+ Eq(ω)[−
∑
c

p(y = c|x?,ω)logp(y = c|x?,ω)]

(4.3)
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where I(·) ∈ [0, log|P|]. This quantity considers the effect of an approximate posterior
distribution more directly. Compared with aforementioned uncertainty measures, this one
should be able to capture the model uncertainty more accurately. To think about it
intuitively, this quantity measures the information gain between the entropy of predictive
output distribution and the expected entropy of output distribution w.r.t. the weights
posterior. It is only low if the predictive distribution agrees with most of the possible
models (weights realizations), which means that the model is sure about its prediction.
Otherwise, it is high because most of the possible models do not agree with the other
models and thus the predictive distribution is more uniform and thus has a higher entropy.

4.1.3 Evaluation metric

As stated in [GBR07], the goal of the probabilistic prediction is to maximize the sharpness
of the predictive distribution subject to calibration. Calibration refers to the statistical
consistency between the predictive probability and the occurrence of observations, which
is the frequency of the event. Therefore different metrics including both the accuracy
and other quantities related to calibration as well as summary of accuracy and calibration
are employed. Additionally, a histogram and diagram to express the results visually are
applied. While the visual one can show the results more intuitively, the quantitative one
allows to evaluate the results more objectively. The comparison between them may help
to examine if the visual metrics correspond to the numerical metrics, which may provide
more insights in evaluating uncertainty estimation.

Uncertainty histogram is an intuitive visual tool for analyzing the statistics of the
uncertainty estimation. Compared with normal histograms, there is one difference to
stress on. In order to make the visual effect more clear and hence the analysis easier, the
normalizer of each type of prediction is the size of this type of predictions instead of size
of all predictions. In detail, there are three types of predictions for plotting the histogram,
which are:

• correct prediction

• miss-classification

• out-of-distribution(OOD)

The range of y axis is [0, 1] since the bins are normalized, and the range of x axis is set by
the range of the corresponding type of the uncertainty measure.

Reliability diagram(Calibration curve) is another visual tool for expressing the
calibration performance of the model[GPSW17], which plots the frequency of the suc-
cess(accuracy of predictions in specific bin) as a function of confidence, which is the predic-
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tive likelihood of the prediction. If the model is perfectly calibrated, this function should
be exactly overlapping with the diagonal line. The closer this curve is to diagonal curve,
the better the calibration performance is. In order to draw the curve, firstly the predictions
are grouped into M (here: M = 20) interval bins w.r.t. the confidence. Next, the accuracy
of predictions in each bin is calculated. To quantify the proximity to the diagonal curve,
two metrics are used:

• Expectation calibration error(ECE): In order to obtain a more objective mea-
sure of the calibration quality, the ECE is obtained by computing the weighted
average of the difference between the accuracy and the confidence:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (4.4)

where n is the number of samples, acc(Bm) represents the accuracy of the samples,
and conf(Bm) the average predicted confidence of samples in the m-th bin. One can
see that this metric measures the inconsistency between the statistics and predictive
distribution. To note that this metric only considers the calibration quality instead
of the accuracy. One drawback of this metric is that, because the weights are com-
puted based on number of samples in each bin, the metric would be bias if most of
predictions are clustering in few bins. Then the weights of these bins are much larger
than other bins and other bins with large error would be ignored.

• Maximal calibration error(MCE): Considering the drawback mentioned in ECE,
this metric is used. Additionally, in high risk applications where reliable confidence
measures are absolutely necessary, one might take into account the worst case. The
MCE is defined as follows:

MCE = max
m
|acc(Bm)− conf(Bm)| (4.5)

Proper scoring rules: Scoring rules provides a summary measure in the evaluation
of probabilistic forecasts. It assigns a numerical score based on the difference between the
predictive distribution and real one.

Because we want to make predictions for the future and also have a suitable measure of the
uncertainty associated with them (see [GR07] for a review). The scoring rule can be defined
as a function S(p(y|x), (y|x)) that evaluates the quality of the predictive distribution p(y|x)
relative to an event y|x ∼ q(y|x) where q(y|x) represents the true distribution over (y|x).
Consequently, the expected scoring rule is:

S(p, q) =

∫
q(y|x)S(p, (y|x))dy (4.6)
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S(p, q) is proper if S(p, q) ≤ S(q, q), with equality holds if and only if p(y|x) = q(y|x).
Here we adopt two simple and famous proper scoring rules in which the less it is, the better
the performance is:

• averaged negative log likelihood(NLL) is a popular metric for evaluating the
predictive uncertainty [QCRS+05]. This metric considers the aforementioned confi-
dence as a likelihood. The smaller this metric is, the better the predictive distribution
is.

NLL = − 1

|Dtest|

|Dtest|∑
i=1

log(p(yi = ci|xi)) (4.7)

where ci is the ground truth label for xi.

• Brier score is the mean squared error between the target distribution(one-hot en-
coding label) and the predictive distribution:

BS = − 1

|Dtest|

|Dtest|∑
i=1

(ygti − p(yi|xi))2 (4.8)

where ygti is the one-hot encoding ground truth label for xi.

Separability metrics: In addition to the summary metrics of predictive probability. It
is also interesting to see the separability between different types of predictions, which can
assist the down-stream tasks if they are highly separable (e.g. separate correct predictions
and false predictions or out-of-distribution data to improve robustness of system and pro-
vide more safety guarantee). To note that, the correct predictions are treated as positive
samples in the two following metrics.

• Area under Receiver Operating Characteristic curve(AUROC): Since one
of the goals is to choose automatically labeled data based on the uncertainty esti-
mation, it is necessary to evaluate the separability between correct predictions and
false predictions or out-of-distribution data predictions. The ROC curve describes
the relationship between the true positive rate(tpr = tp

tp+fn
) and the false positive

rate(fpr = fp
fp+tn

). Moreover, AUROC can be interpreted as the probability that a
positive samples has a greater score than a negative samples. However, the drawback
of AUROC is that, the normalizers of two kinds of rates in the ROC curve are inde-
pendent to each other. When these two normalizers differs too much, AUROC can
provide misleading conclusion. For example, if the number of negative predictions is
much higher than the positive one, the AUROC could still achieve a relatively high
value although there are already many false positives.
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• Area under Precision Recall curve(AUPR): Considering the downside of AU-
ROC, another evaluation metric is AUPR. This metric describes the relationship
between the precision(pr = tp

tp+fp
) and the recall(tpr = tp

tp+fn
), which resolves the

problem of different base numbers. In the previously mentioned case, though the
AUROC is high, the AUPR will be low because the precision is low.

4.2 Uncertainty estimation experiments

In this part, the performance of accuracy and uncertainty estimation as well as the summa-
rized performance of different inference techniques for BNN on WRGB and UniHB dataset
is evaluated. Before that, the shorthands of different techniques should be explained. In
the following the original ResNet50 is depicted as ”ori”, ResNet50 with concrete dropout
as ”cdp”,and ResNet50 with multiple dropout without specifications as ”mdp”.

In the first experiment, they are evaluated on a relatively simple task, namely instance
recognition. However, the main focus is in the second experiment, where different tech-
niques including dropout, Laplace approximation and ensembles are evaluated and com-
pared on a more difficult task, namely category recognition. Besides comparing them, an
ablation study is conducted to investigate how the feature extractor influences the predic-
tive uncertainty.

4.2.1 Experiments I: uncertainty estimation on instance recog-
nition

The appearances of different classes as well as the out-of-distribution data are highly dis-
criminable. To this end, the WRGBD dataset is separated into two subsets based on the
instance classes. The Subset I contains objects with the instance classes from 0 to 199 (as-
suming that here the index denotes the instance label) and the Subset II contains objects
with the instance classes from 200 to 299.

The model is trained with objects captured in the elevation 30◦ and 60◦ of the Subset
I (in which 20% are split off as validation set for model selection in the training). The
size of the training set and validation set is around ∼71.0K. Then the model is tested on
objects captured in the elevation 45◦ of both Subset I and Subset II. In this experiment,
the objects in Subset II serve as out-of-distribution samples because they are not present
during training. The size of the test set is around ∼35.6K and that of the OOD dataset is
around ∼17.8K.

In this experiment, the performance of different approaches should be evaluated relatively.
Since the OOD data is highly different to the training set, the model should express high
uncertainties when facing these data. Nevertheless, the miss-classifications should have
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higher uncertainty than the correct predictions because the model should be confident
when it makes predictions correctly. Otherwise the model is overconfident when it is
confident with its incorrect predictions, which can induce hazardous consequence in some
safety-critical applications. As can be seen in the Fig.4.5, the original ResNet50 model
is highly overconfident, which assigns high confidence to nearly 50% of miss-classification
and nearly 30% of OOD data in the highest bin. While the model with concrete dropout
and multi-drop can significantly decrease these two proportions. As can be seen, different
uncertainties show similar a trend in this experiment.

In addition to the uncertainty histogram, the calibration curve of each model evaluated on
both test set and OOD dataset in Fig.4.6 is shown. As expected, the calibration perfor-
mance of the original model is much worse than those of the other two models. This result
corresponds to the results in [GPSW17], that the original ResNet50 is highly overconfident.
The concrete dropout and multi-dropout can mitigate the undesired problem significantly.
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Figure 4.5: Uncertainty(confidence, predictive entropy, mutual information) histograms of
original ResNet50, ResNet50 with concrete dropout and ResNet50 with multi-dropout.
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Figure 4.6: Calibration curves of original ResNet50, ResNet50 with concrete dropout and
ResNet50 with multi-dropout evaluated on both test set and OOD dataset.

4.2.2 Experiments II: uncertainty estimation on category recog-
nition

In this experiment, the model is evaluated on a category recognition task. The difficulties
are expressed in two-fold. First, in this task, the model is confronted with classes which
overlap more. Second, in order to simulate the situation of deploying robots in real world
scenario and facing data in real world, the UniHB dataset with a domain gap(cf. Fig.4.1)
to WRGBD is used to achieve this goal. This means, the uncertainty estimation should not
only be able to perform well on the dataset with the exactly same distribution to training
set, but also to generalize well to the dataset with domain gap which may decrease the
accuracy significantly.

Accordingly, the entire WRGBD dataset is used including all view points, whose size is
around ∼160.9K, to train the model (in which the ratio between training and validation
set is 2:8). When it comes to UniHB dataset, objects captured in elevation 30◦ and
60◦ are treated as adaptation set, whose size is around ∼17.1K. The performance of
uncertainty estimation is tested on this adaptation dataset. The images of 45◦, whose size
is around ∼8.6K , are used for the final evaluation after being fine-tuned with a subset of
the adaptation set to obtain a domain specific model. The latter part will be experimented
in next section. Besides, the uncertainty estimation on OOD dataset(cf. Fig.4.2) whose
size is around ∼6.0K is also evaluated.

In the following, firstly the protocols for different kinds of metric are explained, which can
help understanding the plots and extracting useful information more easily and quickly.

• The following visual metrics are chosen in one of the three runs of different ran-
dom seeds. The average quantitative results are given in tables following the visual
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metrics.

• The calibration curve with the title ”Classification” on the left is plotted only on
the predictions of the test set. The one with the title ”OOD detection” on the right
is plotted on the predictions of both OOD dataset and test dataset.

• The ROC curve and the PR curve measure the separability between the two types of
prediction. The ones with the title ”classification” on the left measure the separability
between correct predictions and miss-classifications. The ones with title ”OOD
detection” on the right measure the separability between correct predictions and
OOD predictions. In all the ROC and PR curves, correct predictions are always
chosen to be positive.

• As shown in the uncertainty histogram, three uncertainty measures are applied. Each
one has its own ROC curve and PR curve of the correct predictions versus the miss-
classifications or OOD predictions. In the following plots of the ROC curve and
the PR curve, only the one with highest area under curve is depicted. In detail, the
Confidence is chosen in case of the correct predictions versus the miss-classifications.
The Mutual information is chosen in case of the correct predictions versus the
OOD predictions.

Comparison with Ensemble

In this subsection, the results are shown in not only a qualitative (visual) way, but also
in a quantitative way. The approaches compared in this part include original version of
ResNet50(ori), modified ResNet50 with concrete dropout(cdp), modified ResNet50 with
multiple dropout(mdp) as well as their ensemble version. The members in ensemble are
just initialized from different random seeds and no other techniques for enhancing the
performance are used. In order to quantify the results more objectively, the results are av-
eraged from three different random seeds and report the mean and the standard deviation.

In the Fig.4.8, on the left there are calibration curves of different approaches, plotted from
predictions on test dataset. It can be seen that the calibration performance is improved a
lot by the cdp and mdp. Additionally, their ensemble versions can give even better results
which are tightly overlapping with the diagonal curve. On the right there are curves plotted
from predictions on both test dataset and OOD dataset. Similar ranks and trends as the
left curves appear here. After adding the OOD data into evaluation, all of the calibration
curves are pulled down, which means that the calibration performance get worse. If all
OOD data is assigned with low confidence, then curves between left and right should be
similar because the accuracy in middle or high confidence interval would not change a lot
or be pulled down a lot. By comparison these two figures, the robustness against OOD
data of cdp, mdp and their ensembles are better than the original version.

In the Fig.4.7, uncertainty histograms for different approaches and different uncertainty
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measures. Firstly, by comparing them vertically, the improvement can be observed visually.
The original version is still overconfident, which express low uncertainty to more than
50% of OOD data and nearly 40% of miss-classification. The cdp and mdp can lower this
percentage to around 10%, although at the same time the percentage of correct predictions
is decreased. But it is known that the predictions for which the model expresses low
uncertainty are more likely to be correct. And the ensemble of cdp and mdp can perform
even better with miss-classification. However, the ensemble of mdp does not work as well as
cdp version on OOD data, which can be seen in the histogram on the last row of the figure.
The reason for this will be investigated in a ablation study later. Then by comparing
them horizontally, it’s shown that different uncertainty measures have similar trends in
the histogram. Therefore other quantitative metrics for them are requiredm in order to
evaluate different approaches as well as metrics more accurately and objectively.

When it comes to the separability metrics in Fig.4.9, as stated before, the separability
between correct prediction and miss-classification (on the left) and that between correct
prediction and OOD prediction (on the right) are measured. On separability between
correction prediction and miss-classification, cdp, mdp and their ensemble version can
improve the results compared with original version in both ROC curve and PR curve on
the left. On the other hand, the improvements on separability between correct prediction
and OOD data are more obvious on the right. However, as observed before, the ensemble
of mdp does not work well with OOD data, which can be observed with this metrics.
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Figure 4.7: Uncertainty histograms of confidence, predictive entropy, mutual information
for ori, cdp, mdp, ensemble of cdp, ensemble of mdp in one of three runs.
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Figure 4.8: Calibration curve for ori, cdp, mdp, ensemble of cdp, ensemble of mdp in one
of three runs.
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Figure 4.9: ROC and PR curve of ori, cdp, mdp, ensemble of cdp, ensemble in one of three
runs.

Before only visual metrics for evaluation are shown, it’s better to quantify the performance
quantitatively. To this end, different aforementioned metrics are presented in the following
table 4.1. In order to exclude the influence of random initialization, three models of
different random seeds are trained and the mean and standard deviation for each metric
are reported. It can be seen the improvements is achieved by cdp, mdp and their ensemble
versions along all metrics. The phenomenon that mdp does not work well with OOD and
this effect enlarged by ensemble is also expressed in the table. Based on these experiment
results, the following conclusion can be drawn, concrete dropout and multiple dropout
can improve both accuracy and calibration performance compared with original ResNet50.
While the ensemble of concrete dropout and multiple dropout work even better without
OOD data, the ensemble of multiple dropout work worse than that of concrete dropout
when considering OOD data in this work. When comparing concrete dropout and multiple
dropout, concrete dropout is more robust than multiple dropout because the latter one
does not work well with OOD data.
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Table 4.1: Quantitative results of acc, bs, nll, ece, mce, auroc, aupr averaged from 3
different random seeds

accuracy↑ brier score ↓
negative
log
likelihood ↓

ori 0.568±0.008 0.722±0.019 3.242±0.340
cdp 0.577±0.008 0.594±0.013 2.088±0.181
mdp 0.599±0.023 0.566±0.020 1.940±0.064
emsemble cdp 0.604 0.534 1.452
emsemble mdp 0.645 0.496 1.389

expected
calibration
error(w/o. OOD/
w. OOD)↓

maximal
calibration
error(w/o. OOD/
w. OOD)↓

area under
ROC
(vs. Miss-
classified/
vs. OOD)↑

area under
PR curve
(vs. Miss-
classified/
vs. OOD)↑

ori
0.304±0.016 /
0.633±0.065

0.461±0.027 /
0.362±0.025

0.750±0.007 /
0.664±0.011

0.802±0.008 /
0.751±0.018

cdp
0.124±0.023/
0.288±0.048

0.206±0.015/
0.374±0.018

0.775±0.008/
0.783±0.022

0.825±0.007/
0.850±0.022

mdp
0.114±0.012/
0.383±0.046

0.199±0.016/
0.367±0.023

0.780±0.011/
0.709±0.004

0.838±0.013/
0.788±0.006

emsemble cdp
0.044/
0.042

0.086/
0.093

0.798/
0.811

0.845/
0.868

emsemble mdp
0.032/
0.170

0.058/
0.227

0.789/
0.653

0.875/
0.754

Comparison with Laplace approximation

Because Laplace approximation requires only MAP point estimate of model parameter.
Therefore the already trained model of different approaches are taken as MAP point esti-
mate. The approximation of Kronecker factors are computed with half of training set. The
scale parameter of Kronecker factors

√
N is set to 1 and dump factor

√
τ to 15 in equation

2.37 based on grid search on the validation set.

Different visual metrics such histograms, calibration curves, ROC curve and PR curve of
cdp, mdp and their Laplace approximation versions are showed in the following. It can
be seen that the Laplace approximation can achieve similar results as the cdp or mdp do
in uncertainty histograms, calibration curves as well as ROC curve and PR curve. The
histograms of different uncertainty measure show similar trend as before.
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By comparing the Laplace approximation between cdp and mdp, it can be seen that the
result of Laplace approximation is similar to the their dropout versions. This can be
observed through that the percentage of OOD prediction with high confidence of Laplace
approximation for network trained with mdp is higher than that of Laplace approximation
for network trained with cdp in the histogram. Besides, in ROC curve/PR curve on correct
prediction vs. OOD data prediction of mdp and cdp, the area under curve of Laplace
approximation of mdp is obviously lower than that of cdp. This phenomenon also exists in
the histogram and ROC as well as PR curve of mdp and cdp. In the table of quantitative
results (cf. 4.2.2), the quantities of different metrics corresponding to the visual metrics.
To summarize this, although Laplace can achieve similar results as concrete dropout and
multiple dropout do, their performance is highly related to the point estimate of parameter
obtained during training.
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Figure 4.10: Uncertainty histogram of cdp, mdp and their Laplace approximation versions
with confidence, predictive entropy and mutual information as uncertainty measure in one
of three runs.
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Figure 4.11: Calibration curve of cdp, mdp and their Laplace approximation versions in
one of three runs.
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Figure 4.12: ROC and PR curve of cdp, mdp and their Laplace approximation versions in
one of three runs.
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Table 4.2: Quantitative results of acc, bs, nll, ece, mce, auroc, aupr averaged from 3
different random seeds

accuracy ↑ brier score ↓
negative
log
likelihood ↓

cdp 0.577±0.008 0.594±0.013 2.088±0.181

laplace cdp 0.576±0.009 0.602±0.011 2.322±0.350

mdp 0.599±0.023 0.566±0.020 1.940±0.064

laplace mdp 0.598±0.024 0.567±0.018 1.970±0.117

expected
calibration
error(w/o. OOD/
w. OOD) ↓

maximal
calibration
error(w/o. OOD/
w. OOD)↓

area under
ROC
(vs. Miss-
classified/
vs. OOD)↑

area under
PR curve
(vs. Miss-
classified/
vs. OOD)↑

cdp
0.124±0.023/
0.288±0.048

0.206±0.015/
0.374±0.018

0.775±0.008/
0.783±0.022

0.825±0.007/
0.850±0.022

laplace cdp
0.129±0.058/
0.341±0.157

0.235±0.073/
0.406±0.070

0.779±0.004/
0.782±0.017

0.826±0.007/
0.849±0.016

mdp
0.114±0.012/
0.383±0.046

0.199±0.016/
0.367±0.023

0.780±0.011/
0.709±0.004

0.838±0.013/
0.788±0.006

laplace mdp
0.104±0.018/
0.352±0.061

0.179±0.029/
0.352±0.038

0.776±0.012/
0.711±0.005

0.837±0.015/
0.798±0.005

Ablation study

As can be seen from the previous results, mdp can work better than cdp without con-
sidering OOD data. However, it underperforms when OOD data is included. In order
to investigate the reason behind this, a ablation study is conducted to investigate the in-
fluence of aleatoric uncertainty which comes from mainly the feature extractor part. To
this end, assumption is made that the feature extractor part has a dominant effect on the
aleatoric uncertainty, because it’s deterministic compared with the following Multi-layer
Perceptron (MLP) classifier.

Considering this, the parameters of feature extractor are frozen trying to keep the dominant
effect on aleatoric uncertainty fixed for different approaches and just train our probabilistic
classifier which is a three-layer MLP. In the following the results of this ablation study of
the same metrics used before are shown. It’s clear that the accuracy would drop when the
feature extractor is frozen. However, it can be seen that mdp can have better calibration
performance than cdp and much better than original ResNet50. Regarding the separability
metrics, although mdp still doesn’t work better than cdp, the gap between is much smaller
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than the version without freezing feature extractor. These observations are expressed
quantitatively in the table 4.2.2.

Based on these observations, it can inferred that the underperformance of mdp on OOD
dataset can attribute to the influence of aleatoric uncertainty. If the feature extractor is
not frozen, then the aleatoric uncertainty is trained to adapt to the dataset. The problem
why optimizing dropout rates for each hidden units can change the point estimate of the
model parameter to have low aleatoric uncertainty for OOD data arises here. One possible
reason for this could be the variance of estimation of derivatives of variational parameters
is too large because of increased number of variational parameters[KSW15]. And the larger
variances are back propagated to the feature extractor which may make the point estimate
deviate from the better local minimum. One possible solution to resolve this is to sample
the realization of activations of hidden units independent to each data instance, which may
decrease the variance and help to improve the results.
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Figure 4.13: Uncertainty histograms of ori, cdp, mdp trained with frozen features in one
of three runs.
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Figure 4.14: Calibration curves of ori, cdp, mdp trained with frozen features one of three
runs.
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Figure 4.15: ROC and PR curves of ori, cdp, mdp trained with frozen features one of three
runs.
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Table 4.3: Quantitative results averaged from 3 random seeds.

accuracy ↑ brier score ↓
negative
log
likelihood ↓

ori 0.532±0.015 0.717±0.023 2.383±0.053
cdp 0.521±0.011 0.655±0.017 2.190±0.149
mdp 0.520±0.012 0.641±0.014 1.804±0.073

expected
calibration
error(w/o. OOD/
w. OOD)↓

maximal
calibration
error(w/o. OOD/
w. OOD)↓

area under
ROC
(vs. Miss-
classified/
vs. OOD)↑

area under
PR curve
(vs. Miss-
classified/
vs. OOD)↑

ori
0.262±0.011/
0.793±0.012

0.365±0.010/
0.491±0.013

0.716±0.005/
0.602±0.014

0.724±0.022/
0.681±0.007

cdp
0.141±0.022/
0.270±0.037

0.203±0.053/
0.359±0.056

0.748±0.002/
0.712±0.006

0.770±0.002/
0.782±0.004

mdp
0.068±0.009/
0.158±0.006

0.134±0.018/
0.311±0.008

0.730±0.009/
0.674±0.014

0.749±0.009/
0.748±0.010

4.3 Automatic labeling experiments

In experiments of automatic labeling, the goal is to perform a proof-of-concept experi-
ment, which simulates the situation that a classifier trained on a public large scale dataset
or synthetic dataset is deployed in a real world environment and tries to fine-tune itself
to improve performance with automatically labeled dataset and as little manually labeled
data as possible (cf. 3.5). The automatically labeled data is collected based on improved
uncertainty estimation. Because ResNet50 with concrete dropout shows more stable re-
sults than other versions, it is applied to improve uncertainty estimates in the following
experiments and call it BNN without specifications.

This way to enable the classifier to learn continuously is seldom seen in the literatures.
Therefore, in order to investigate the practicability of this method, experiment are firstly
performed on WRGBD and UniHB dataset with restriction on the size of collected dataset.

Then the experiment is extended to another dataset, T-LESS dataset, to test its general-
ization ability in second part. In the second experiment, the situation is similar to the first
experiment, where a classifier is firstly trained on synthetic dataset and then deployed in
a real world environment which is simulated by the real objects in training set. Data aug-
mentation is employed to address the problem of imbalance in fine-tuning classifier found
in the first experiment.
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4.3.1 Experiment I: evaluation on WRGBD and UniHB dataset

The first experiment is performed on the WRGBD and UniHB dataset. As is mentioned
in experiment II of uncertainty estimation experiments, BNN with entire WRGBD dataset
are trained and evaluated on objects of elevation 30◦ and 60◦ in UniHB dataset, which is
called adaptation dataset. The size of adaptation dataset in this experiment is around
∼17.1K. The objects of 45◦ with size ∼8.6K are used for final evaluation after fine-tuning
the classifier. The dataset used for fine-tuning are collected from the adaptation set with
different settings in order to investigate the issues of this way for continuous learning.

The uncertainty measure used in this part is confidence because OOD data is not considered
in this part and confidence performs better in separating correct predictions and miss-
classifications based on the results of previous experiments.

Automatic Labeling: One major restriction in this experiment is the size of dataset
for fine-tuning. Because if the size is not restricted, the performance is influenced by both
the size of dataset and other factors such as imbalance or quality of dataset. In order to
exclude the influence of dataset size, which is fixed to 3% of the adaptation set which is
around 510. If the dataset is balanced in number of data sample of category, then there
are around 10 data samples in each category. Then how two factors may influence the
performance of fine-tuning can be investigated. These two factors are:

• the balance in number of data sample of each class

• the amount of information of data samples

In the following table 4.3.1, different settings are described and capital letters are used to
denote them.

The steps of selecting automatically labeled data in this experiment is firstly ex-
plained, which is a little different to the strategy in experiment II.

For C, D, E, F, G, the following steps are performed:

1. Automatic labeling: select the most confident predictions and label them with their
predictions.

2. Manual labeling: select the data randomly or with least confidence required for
manual labeling.

3. Combining: combine automatically labeled and manually labeled data, then check if
any category does not have data sample, if yes add one random data sample of this
category.

4. Balancing dataset: firstly check if number of data sample of any categories exceed
the average number of data sample (which can be calculated beforehand), if yes, drop
the data sample of this category randomly until its number reach the average number
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of category. After that, if augmentation is chosen, then use augmentation to increase
of the number of data sample of category in which the number of data sample is less
than average number of data sample.

To note that, the accuracy of automatically labeled data in C, E, F, G is around 96%, which
means not all labels of them are correct. And ”randomly” in this context means that
the data of each class are randomly chosen according to number computed based on the
difference between current number of data samples of each class and the average number
of data samples of each class.It is assumed that all the predictions except for automatic
labeling have been manually labeled and a proof-of-concept experiment is performed with
a as balanced as possible dataset in F and G.

Table 4.4: Results of fine-tuned network with different settings

Settings of dataset for fine-tuning
Accuracy
(average over 3
random seeds)

A: 0% (no fine-tuning) 66.9%
B: 3% manually labeled data randomly
(balanced)

91.7%

C: 3% automatically labeled data
(imbalanced)

79.0%

D: 3% manually labeled data with least confidence
(imbalanced)

83.3%

E: 2% automatically labeled data and
1% manually labeled data with least confidence,
augmentation for balance (balanced)

83.8%

F: 2% automatically labeled data and
0.5% manually labeled data with least confidence and
0.5% manually labeled data randomly,
augmentation for balance (balanced)

88.3%

G: 2% automatically labeled data and
1% manually labeled data randomly,
augmentation for balance (balanced)

89.6%

Fine-tuning: After collecting the dataset with different settings, the results of BNN
fine-tuned with those dataset on the final test set which contains only objects of 45◦ from
UniHB data is shown in the table 4.3.1. The following observations can drawn from the
results:

• diverse and balanced dataset can achieved best performance.

• the difference of performance between C and D may attribute to quality of dataset
which include correct labeling and information of data sample.
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• by comparing performance of E, F and G, it is known that diverse data sample
before augmentation is important to achieve better performance. When considering
information of data sample, manually labeling of lest confident data sample sounds
better. However, before augmentation dataset in E is more imbalanced than that in
F, and F is more imbalanced than G because of the higher proportion of predictions
with least confidence. Therefore it shows that data balance is more important than
information of data sample in this case.

By comparing the results of other settings with that of A and B, it is can be seen that
the manual labeling effort can be reduced based on automatic labeling. The performance
of fine-tuned domain specific classifier can nearly reach the the performance of classifier
fine-tuned with all manually labeled data.

In the end, a conclusion can be drawn that diversity of data and balance of number of
data sample of each category play an significant role. Based on the last aforementioned
observation, balance of number of data sample of each category is more important in than
information of data sample.

4.3.2 Experiment II: evaluation on T-LESS dataset

In this experiment, original ResNet50 and BNN are trained on synthetic dataset introduced
in section 4.1.1. Then automatically labeled data is collected by testing the trained model
on real single objects (original training set of T-LESS) which is called adaptation dataset.
The difference between the strategy of selecting data in experiment I is that threshold
used for selecting data based on uncertainty is chosen on validation set. The accuracy of
predictions with uncertainty smaller than this threshold is set as 95%. Validation set is
split off from training set with ratio 2:8. The reason why this way is selected to choose
threshold is that it’s more practical and closer to the real world applications. In this
experiment predictive entropy is selected as uncertainty measure, because it shows better
performance in term of separability metrics on validation set.

The improved uncertainty estimation from BNN plays an important role here, because
it not only provides a reliable uncertainty estimation, but also increases the separability
between correct predictions and false predictions, which is more useful in this task.

Automatic labeling: The comparisons of uncertainty estimation are shown in term of
different evaluation metrics with BNN and original ResNet50 in the following figures. As
can be seen in the uncertainty histogram (cf.4.16), the mode of distribution of uncertainty
estimation between correct prediction and miss-classification is further from each other
when testing with BNN than with original ResNet50. In Fig.4.17, BNN expresses better
performance in terms of both calibration and separability metrics.

With the same procedure of selecting automatically labeled data, the size of dataset is
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around ∼1.05K with only 93% accuracy using original ResNet50, but around ∼1.6K with
96% accuracy using BNN. Because original ResNet50 produces less automatically labeled
data with lower quality, the dataset for fine-tuning is collected with BNN.
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Figure 4.16: Uncertainty histograms of original ResNet50 (top) and BNN (down).

However, as found in experiment I, the problem of imbalance in number of data samples
of each class still appears on this dataset and has a large influence on the performance.
The horizontal histogram in Fig.4.18 reveals this problem, in which most of confident
predictions cluster in few classes which are class 6, 7, 28 and so on. To mitigate this
problem, two simple ways are adopted here:

• to manually label data uniformly with size 3% of the adaptation set(around ∼0.9K
data samples).

• to employ augmentations described in section 4.1.1 to the objects to balance the
dataset as much as possible.

The balance of dataset with/without manually labeled data after augmentations are showed
in Fig.4.18. By using augmentations, datasets are more balanced than before. But the
balance before augmentations has significant effect on the performance, which is discussed
in the following.
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Figure 4.17: Calibration curves, ROC curves, PR curves of original ResNet50 and BNN.

Fine-tuning: BNNs trained with only synthetic data previously are fine-tuned on dataset
collected with different strategies. Table 4.3.2 gives the results of BNN trained with dif-
ferent dataset. They are all tested on the test set of T-LESS dataset. By comparing A
and B, the performance drop caused by the domain gap between synthetic objects and
real ones is quite large, around 35%. By fine-tuning model on dataset collected based on
uncertainty estimation, the accuracy increases a lot. With more balanced dataset, the
accuracy even exceed the model trained with augmented entire real dataset by around 3%.
By comparing C and D, it’s obvious that the balance of data samples in each class before
augmentation is important to obtain more accuracy gain. The reason behind that is the
diversity of data samples before augmentation. Although augmentation can help the model
generalize better by increasing the number of data samples, if the distribution of training
set is poorly represented by few training samples, the way does not help much. This can
also be observed in comparison of the corresponding confusion matrices in Fig.4.19, even
though the number of data samples in some classes are similar after augmentation, their
accuracies differ a lot (35% vs. 65% in class 0).
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Table 4.5: Results of BNN trained with different dataset (size of dataset before augmen-
tations is showed in the bracket).

Setting of dataset Accuracy
A: augmented, synthetic dataset 34.91%
B: augmented, entire real dataset (∼30K) 72.78%
C: fine-tune A with
augmented, only automatically
labeled real dataset (∼1.6K)

53.54%

D: fine-tune A with
augmented, automatically labeled
and 3% manually labeled real dataset
(∼1.6K + ∼0.9K)

72.48%
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Figure 4.19: Confusion matrices of BNN fine-tuned with dataset without (top) and with
(down) small portion of manually labeled data.

4.4 Context-based improvement experiments

In this section, experiments are performed to investigate the effect of combining improved
uncertainty estimation with a probabilistic graphical model in down-stream task. In detail,
a CRF is employed to capture the dependencies between objects by exploiting contextual
information in the scene(cf. Fig.3.3). The intuition behind this idea is that, if the predictive
distribution from BNN is more reliable and can represent the inherent randomness better.
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Then this bit of information can be utilized by CRF for further performance gain. Similar
to previous experiments, ResNet50 with concrete dropout is used to improve uncertainty
estimation in the following experiments and we call it BNN without specifications.

Firstly a simpler experiment is performed on subset of T-LESS dataset to show that CRF
can capture the dependencies and improve the accuracy, which can be boosted with better
uncertainty estimation from BNN. Secondly, the same idea is tested on the entire T-LESS
dataset to show the generalization ability of this approach.

4.4.1 Experiment I: evaluation on subset of T-LESS dataset

In this experiment, original ResNet50 and BNN are trained on the real single objects with
black background (original training set of T-LESS dataset). Then a subset of test scenes
of original T-LESS dataset are used for training and testing CRF. In detail, scene 1, 2, 3,
4 (∼8K objects and ∼2K scenes) are used for training CRF, and scene 5, 6, 7, 8 (∼12K
objects and ∼2K scenes) for testing. To note that no augmentations are applied in this
experiment. To note that, based on the prior knowledge about the testing set, that no
objects repeat in the test scenes, the diagonal entries of binary co-occurrence matrix is set
to -1 to penalize the outcome with two same objects.

In the table 4.6, results of CRF trained with two different unary features from original
ResNet50 and BNN are given. As can be seen, CRF trained and tested with unary feature
from BNN can yield more improvement(13.17%) compared with that from deterministic
network (12.42%).

Table 4.6: Results of CRF trained with unary feature from different versions of ResNet50
accuracy with

unary
potential

accuracy with
unary and pariwise

potentials
unary feature

from ori
48.79% 61.21%

unary feature
from BNN

51.94% 65.11%

Additionally, because the weights in CRF model act as coefficients for two kinds of features,
the magnitude of these two weights represents their contributions to overall performance.
In the table 4.7, the weight of unary feature θu from BNN is larger than the one of edge
feature θp. The situation is inverse in unary feature from original ResNet50. It’s evident
that the unary feature from BNN contributes more than the pairwise one while the one
from original ResNet50 contributes less. It also shows that the predictive distribution
from BNN contains more information than its counterpart from original ResNet50. More



CHAPTER 4. EXPERIMENT AND DISCUSSION 71

importantly, this information can be utilized to improve the performance which is shown
in the table 4.6.

Table 4.7: Learned weights of CRF trained with unary feature from different versions of
ResNet50

node weight
θu

edge weight
θp

unary feature
from ori

3.744 4.213

unary feature
from BNN

4.635 3.882

4.4.2 Experiment II: evaluation on entire T-LESS dataset

In this experiment, approach of combination of BNN and CRF is tested on the whole
T-LESS dataset. Based on the results obtained in experiment II of automatically labeling
in subsection 4.3.2, the accuracy should be improved further by exploiting contextual
information with CRF (cf. Fig.3.4). In details, CRF are trained with unary features
extracted from BNN before fine-tuning with size around ∼24.5K objects and ∼5K scenes
(cf. Fig.3.5). In testing, the whole testing set of original T-LESS dataset with size ∼70K
objects and ∼10K scenes, whose unary features are extracted from fine-tuned BNN.

Because the combinations in the whole test set are more complex than its subset (scene
5, 6, 7, 8) in experiment I, different values on the diagonal are explored for they encode
different prior knowledge. There are many objects occurring repeatedly in other scenes of
test set besides scene 5, 6, 7, 8. Therefore there is a trade-off between different kind of prior
knowledge. Filling diagonal entries with 1 indicates that co-occurrence of same objects is
more likely to happen and it suits better on the whole test set. As can be seen in the table
4.4.2, CRF trained with pairwise matrix with 1 on diagonal has most improvement (4%)
when comparing with matrices with other diagonal values.

Table 4.8: Results of CRF with different type of potentials
Type of potential Accuracy
Unary 72.48%
Unary and
pairwise(-1s on the diagonal)

73.40%

Unary and
pairwise(0s on the diagonal)

74.64%

Unary and
pairwise(1s on the diagonal)

76.50%



Chapter 5

Summary and Conclusion

5.1 Summary

In this work, different approaches for the improvement of a classification system related to
uncertainty are investigated.

Firstly, in order to enable a classifier to adapt itself to a test environment which has a
domain gap with its training set, dataset for fine-tuning should be collected with as little
human efforts as possible. Therefore it is proposed to gather automatically labeled data
based on the uncertainty estimation of the classifier. Considering the overconfident be-
havior of deep learning classifiers, a Bayesian neural network is employed to improve the
uncertainty estimation. For easy compatibility with existing neural network architectures,
dropout variational inference and scalable Laplace approximation are chosen for this task.
In addition to the naive version, advanced variants of them such as concrete dropout, mul-
tiple dropout and ensemble of them are further taken into account. The original ResNet50
is modified to incorporate these techniques and keep the ability of extracting powerful
features at the same time. Extensive experiments on WRGBD and UniHb dataset are per-
formed to evaluate the performance of the uncertainty estimation of different approaches
in terms of different metrics including accuracy, proper scoring rules, calibration metrics,
and separability metrics. The results show that Bayesian neural network can improve
the performance of both accuracy and calibration as well as uncertainty estimation when
compared with the original ResNet50.

Secondly, the improved uncertainty estimation is used for collecting automatically labeled
dataset, which is used for fine-tuning the model trained on a easily obtainable dataset.
The goal is to obtain a more accurate domain-specific classifier with as little human efforts
as possible. Experiments of this part are performed on both WRGBD/UniHB dataset and
original T-LESS/synthetic T-LESS dataset. During the experiments, it is found out that
the balance of data samples in each class has a significant influence on the performance after

72
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fine-tuning. Augmentations are employed to mitigate this problem and the experiments
results show that, a more accurate domain-specific can be obtained with much less human
efforts, while its performance can reach or even exceed the performance of the classifier
obtained with much more human efforts.

Thirdly, the improved uncertainty estimation should be utilized further with a proper
probabilistic model. On the other hand, uncertainty induced by appearances similarity
should be handled by modeling the contextual information between objects. On account of
these two points, a conditional random field is employed to further improve the performance
by utilizing more information from the output of the Bayesian neural network and capturing
the contextual relationship between objects in the same scene. For the end, experiments
are performed to validate this idea but only on the T-LESS dataset because designing
pairwise features in WRGBD dataset is non-trivial. The experimental results show that
the CRF can improve the accuracy further by not only making use of the information from
better uncertainty estimation but exploiting the contextual relationship between objects.

Although the experimental results show that these approaches can achieve better perfor-
mance compared to the original version, the problems occurring when constructing ap-
proaches and performing experiments should require more attention and efforts towards
solving them. There are several main problems listed in the following:

• inefficiency in testing with BNN: testing each input requires sampling the posterior
many times. Different approaches are already available such as network[HVD15]
distillation and parallel computation.

• Uncertainty estimation should be defined more clearly and explored with more efforts.
For example, the difference of separability metrics and calibration metrics are used to
evaluate the uncertainty estimation in literatures[HG16][GPSW17]. However, they
should account for different abilities which should not be summarized with one word.
As can be seen in the experiments, well calibrated models may have similar or even
worse separability between correct predictions versus miss-classifications or OOD
predictions than the badly-calibrated model.

• Other approaches to improve uncertainty estimations should be considered. A
Bayesian neural network is a principal way for this purpose. But the computa-
tion behind that is too high. It is like using a generative model to solve a problem
which can be solved by a discriminative model. Maybe there is a more efficient way
to achieve this goal such as different post-processing methods [GPSW17].

• the way to choose highly confident predictions as automatically labeled data for
continuous learning sounds practical and meaningful. However, from the perspective
of active learning, the confident predictions contain little information required by
the classifier. To train a classifier with a better performance requires a training set
with more information. To label predictions with more information (low confidence)
sounds more meaningful. Therefore a better technique to combine them should be
taken into account.
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• modeling dependencies between random variables is a promising and natural way to
improve the results because the i.i.d. assumption does not hold all the time. However,
employing probabilistic graphical models requires hand-crafted edge feature which is
non-trivial to have and design. Therefore, graph neural networks which can learn the
edge feature based on data is promising to work on.

5.2 Conclusion

• Bayesian neural network can improve uncertainty estimation in terms of different
evaluation metrics including accuracy, proper scoring rule, calibration and separabil-
ity between correct predictions versus miss-classifications or OOD predictions, while
the ensemble of them can achieve even better performance.

• Multiple dropout can work better without considering OOD data, while concrete
dropout can offer more stable performance on separating correct predictions and
miss-classifications.

• Scalable Laplace approximation with Kronecker-factored approximation can achieve
a similar performance as the concrete dropout and multiple dropout, indicating that
the performance is highly related to the point estimate obtained during training.

• Manual efforts in collecting datasets for fine-tuning to enable classifiers to adapt itself
to test environments can be reduced with the help of better uncertainty estimation.
Nevertheless, the imbalance of a collected dataset has a negative effect on fine-tuning,
which can be mitigated by data augmentation and adding little manual labeling.

• A conditional random field can improve the performance further by utilizing informa-
tion brought by better uncertainty estimation and exploiting contextual information
between objects in the same scene.

5.3 Future work

There are interesting works related to the approaches used in this work:

• Uncertainty distributions of different view points of the object can be checked. On the
one hand, to understand the behavior of the neural network better with uncertainty.
On the other hand, if the uncertainty can represent the actual discriminability of
different view points, this information is useful in down-stream tasks such as optimal
view point planing for grasping and so on.

• As mentioned in summary, inefficiency in testing is an important problem. It would
be interesting to try a distillation method to decrease the runtime during testing.
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• Although in this work, dropout variational inference and Laplace approximation
are evaluated, the approximation distribution of them seems restrictive and simple.
Interesting future work would be to try more complex and expressive approximate
posterior distributions such as normalizing flow .

• In the experiments of evaluating uncertainty estimation, multiple dropout can achieve
a better performance without considering OOD data. The ablation study also shows
that multiple dropout can have a better performance. As stated in [KSW15], co-
variances between instances increase the variances of estimating derivatives of the
variational parameters. One way to improve the performance of the multiple dropout
would be to decrease the variance of estimating variational parameters by sampling
masks for each instance separately because there are more parameters than concrete
dropout.
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Appendix

A.1 KL condition

Proposition Fix K, L ∈ N, a probability vector p = (p1, ..., pL), and Σi ∈ RK×K

diagonal positive definite for i = 1, ..., L, with the elements of each Σi not dependent on
K. Let

q(x) =
L∑
i=1

piN (x;µi,Σi)

be a mixture of Gaussians with L components and µi ∈ RK , let p(x) = N (0, IK), and
further assume that µi − µj ∼ N (0, I) for all i and j.

The KL divergence between q(x) and p(x) can be approximated as:

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2

(µTi µi + tr(Σi)−K(1 + log2π)− log(det(Σi)))−H(p)

with

H(p) = −
L∑
i=1

pilogpi

for large enough K.

Proof. We have

KL(q(x)||p(x)) =

∫
q(x)log

q(x)

p(x)
dx

=

∫
q(x)logq(x)dx−

∫
q(x)logp(x)dx

= −H(q(x))−
∫
q(x)log p(x)dx
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which is sum of entropy of q(x) and the expected log probability of x. The expected log
probability can be evaluated analytically, but the entropy term has to be approximated.

We begin by approximating the entropy term. We write

H(q(x)) = −
L∑
i=1

pi

∫
N (x;µi,Σi)log q(x)dx

= −
L∑
i=1

pi

∫
N (εi; 0, I)log q(µi +Liεi)dεi

with a re-parameterization of x, that is x = µi +Liεi with LiL
T
i = Σi and εi ∼ N (0, I).

Now the term inside logarithm can be written as

q(µi +Liεi) =
L∑
j=1

pjN (µi +Liεi;µj,Σj)

=
L∑
j=1

pj(2π)−
K
2 det(Σj)

− 1
2 exp {−1

2
||µj − µi −Liεi||2Σj}

where || ·||Σ is Mahalanobis distance with Σ as covariance matrix. Since µi−µj is assumed
to be normally distributed, the quantity µi−µj −Liεi is also normally distributed. Since
the expectation of a generalized X 2 distribution with K degrees of freedom increases with
K, we have that K � 0 implies that ||µi −µj −Liεi||2Σj � 0 for i 6= j(since the elements

of Σj does not depend on K). Finally, we have for i = j that ||µi − µj − Liεi||2Σj =

εTi L
T
i L
−T
i L−1i Liεi = εTi εi. Therefore the last equation can be approximated as

q(µi +Liεi) ≈ pi(2π)−
K
2 det(Σi)

− 1
2 exp {−1

2
εTi εi}

I.e. in high dimensions the mixture components will not overlap.This gives us

H(q(x)) ≈ −
L∑
i=1

pi

∫
N (εi; 0, I)log

(
pi(2π)−

K
2 det(Σi)

− 1
2 exp {−1

2
εTi εi}

)
dεi

= −
L∑
i=1

pi
[
log pi −

K

2
log 2π − 1

2
log det(Σi)−

1

2

∫
N (εi; 0, I)εTi εidεi

]
=

L∑
i=1

pi
2

(
Klog 2π + log det(Σi) +

∫
N (εi; 0, I)εTi εidεi

)
+H(p)

Since εTi εi distributes according to a X 2 distribution , its expectation is K, and in the end
the entropy term can be approximated as

H(q(x)) ≈
L∑
i=1

pi
2

(
K(log 2π + 1) + log det(Σi)

)
+H(p)
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Next, we can evaluate the expected log probability term, we get∫
q(x)log p(x)dx =

L∑
i=1

pi

∫
N (x;µi,Σi)log p(x)dx

for p(x) = N (0, IK), it is easy to show that∫
q(x)log p(x)dx =

L∑
i=1

pi

∫
N (x;µi,Σi)log

[
(2π)−

K
2 det(IK)−

1
2 exp{−1

2
xTx}

]
dx

=
L∑
i=1

pi
[
− K

2
log2π − 1

2

∫
N (x;µi,Σi)x

Txdx
]

= −1

2

L∑
i=1

pi(µ
T
i µi + tr(Σi) +Klog2π)

Finally, combining the equations above, we have

KL(q(x)||p(x)) ≈
L∑
i=1

pi
2

(µTi µi + tr(Σi)−K − log(det(Σi)))−H(p)

as required to show.

�

A.2 Fisher information

Here, we consider the case that parameter of likelihood function is scalar. This can easily
be extended to the case that θ is a vector. Fisher information I(θ) is defined as follows:

I(θ) = E
[( ∂
∂θ

log f(X; θ)
)2]

(A.1)

Where f(X; θ) is probability density function or mass function of random variable X. We

need to prove that E
[(

∂
∂θ

log f(X; θ)
)2]

= E
[
− ∂2

∂θ2
log f(X; θ)

]
. When we suppose that θ

is the true parameter. Based on the fact that f(X; θ) is density, we can have:∫
f(x; θ)dx = 1

Differentiating the above with respect to θ gives:

∂

∂θ

∫
f(x; θ)dx = 0
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After moving differentiating operation into integration and making use of derivative of
logarithm, we get: ∫

∂ log f(x; θ)

∂θ
f(x; θ)dx = 0

Differentiating again w.r.t. θ and taking the derivative inside gives:∫
∂2 log f(x; θ)

∂θ2
f(x; θ)dx+

∫
∂ log f(x; θ)

∂θ

∂f(x; θ)

∂θ
dx = 0

⇒
∫
∂2 log f(x; θ)

∂θ2
f(x; θ)dx+

∫
∂ log f(x; θ)

∂θ

∂f(x; θ)

∂θ

1

f(x; θ)
f(y; θ)dx = 0

⇒
∫
∂2 log f(x; θ)

∂θ2
f(x; θ)dx+

∫
∂ log f(x; θ)

∂θ

∂ log f(x; θ)

∂θ
f(y; θ)dx = 0

⇒− E[
∂2 log f(x; θ)

∂θ2
] = E[

∂ log f(x; θ)

∂θ

∂ log f(x; θ)

∂θ
]

which gives us the required result.

�

A.3 Derivation of Re-parameterization Trick

Let pθ(x) denote the density function of x parameterized by θ, g(·) is a differential function,
ε is a random variable with parameter-free density function p(ε). The estimator of the
gradients w.r.t. θ with p(x|ε) = δ(x− g(θ, ε)) can be derived as:

I ′(θ) =
∂

∂θ

∫
f(x)pθ(x)dx

=
∂

∂θ

∫
f(x)(

∫
pθ(x|ε)p(ε)dε)dx

=
∂

∂θ

∫
(

∫
f(x)pθ(x|ε)dx)p(ε)dε

=
∂

∂θ

∫
(

∫
f(x)δ(x− g(θ, ε))dx)p(ε)dε

=
∂

∂θ

∫
f(g(ε, θ))p(ε)dε

=

∫
∂

∂θ
f(g(ε, θ))p(ε)dε

=

∫
f ′(g(ε, θ))

∂

∂θ
g(θ, ε)p(ε)dε

= Ep(ε)
[
f ′(g(ε, θ))

∂

∂θ
g(θ, ε)

]

(A.2)

�
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A.4 Second Order Taylor Expansion of Log Posterior

p(ω|Y ,X) denotes the posterior over model parameters ω. ω? is one optimizer obtained
after training. Then the second order Taylor expansion of posterior distribution around
ω? is defined as follows:

logp(ω|Y ,X) ≈logp(ω?|Y ,X)+

(ω − ω?)T ∂logp(ω|Y ,X)

∂ω
+

1

2
(ω − ω?)T ∂

2logp(ω|Y ,X)

∂ω2
(ω − ω?)

=logp(ω?|Y ,X)− 1

2
(ω − ω?)TH(ω − ω?)

(A.3)

where the term of first derivatives vanishes because the gradients around an optimizer is
zero and

H = −∂
2logp(ω|Y ,X)

∂ω2

= −
∂2log

(
p(Y |X,ω)

)
∂ω2

− ∂2p(ω)

∂ω2

, where p(Y |X,ω) is the likelihood function, p(ω) is the prior distribution over model
parameters.

�
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Lourakis, and Xenophon Zabulis. T-LESS: An RGB-D dataset for 6D pose
estimation of texture-less objects. IEEE Winter Conference on Applications
of Computer Vision (WACV), 2017.
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