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Abstract

The modernization of GPS along with the emergence of new GNSS constellations

opens new opportunities to redesign traditional Receiver Autonomous Integrity Mon-

itoring (RAIM) in order to target more demanding navigation requirements. The

evolution from legacy to Advanced RAIM will became a reality within the next years

thanks to measurement redundancy that will guarantee navigation integrity, conti-

nuity, and accuracy on a global scale. In order for ARAIM users to evaluate these

performance metrics, inputs from ground must be encapsulated within the Integrity

Support Message (ISM). The first set of parameters broadcast through this message

defines the individual satellite and constellation fault rates which reflect GNSS op-

erational commitments. The second set provides the necessary parameters to create

an integrity and accuracy bound for satellite unfaulted ranging errors which need to

be assessed through GNSS performance characterization. In response to this need,

this research focuses on the design of an ISM covering GNSS performance monitoring,

error correlation analysis, sample independence, and overbounding theory.

This dissertation presents a methodology to make use of the currently deployed

Multi-GNSS EXperiment (MGEX) ground infrastructures to emulate the architecture

of a future Air Navigation Service Provider (ANSP) ground network. The main scope

of this technique is the establishment of a security layer between orbit and clock

products and ISM generation. It guarantees that no fabricated errors are introduced at

the same time that no integrity events are overlooked due to data unavailability. Using

this monitor, GPS and Galileo service history are analyzed providing a comprehensive

ephemeris and clock error characterization. A novelty introduced in this work is the

time-dependent analysis which exposes the high correlation that inherently affects

GNSS Signal-in-Space Range Error (SISRE). Based on an estimation variance study,

this dissertation presents an analytical methodology to determine the time between

effective independent samples. Results show that GPS and Galileo exhibit significantly

different correlation behavior in that the European constellation is less affected by it.

Based on Bayesian inference, this work proves that an analytical expression of the error

Cumulative Distribution Function (CDF) as a function of the number of independent

samples can be derived. In order to account for the impact of sample correlation

on the error bounds, this work determines the factor by which the overbounding

distribution needs to be inflated. This factor is inversely proportional to the number

of independent samples representing the higher confidence that can be placed in the

estimation as more independent data are collected. The fact Galileo range error is

less correlated in time than GPS implies that shorter monitoring periods are needed

to characterize the nominal performance of the European GNSS.

This dissertation presents a modification of the error accuracy and integrity models
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in order to create more efficient and equally safe bounds. Based on empirical evidence,

this work proposes the partition of error distributions in two sections; a quasi-Gaussian

core and a flat tail distribution with large error magnitudes. Both distributions are

individually bounded by Gaussian functions which are combined to create a weighted

Multi Gaussian (MG) overbound. Unlike the current Single Gaussian (SG) bound,

results show that the MG methodology provides the flexibility to bound large tail

errors without sacrificing the narrow core. In order to incorporate the MG bound in

the current ARAIM architecture, this dissertation modifies the currently used pair-

bound theory proving that it still is a safe overbound in the position domain after

convolution.

This thesis carries out a modification of the current Multiple Hypothesis Solu-

tion Separation (MHSS) baseline algorithm defined by the US-EU Working Group

C (WGC). ARAIM simulations show that a significant enhancement on service avail-

ability can be achieved with the inclusion of MG bounding within the user algorithm.

Finally, this work presents three different ISM designs for incorporating the necessary

parameters for the users to perform MG overbounds. Out of these three dissemination

options, an optimal design is recommended allowing the ISM generator full flexibility

to exploit core-tail partition.
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1 Introduction

1.1 GNSS for Aviation

The Global Navigation Satellite System (GNSS) has supported aviation navigation

for decades. In particular, the US Global Positioning System (GPS) has provided

lateral guidance for single frequency L1 users since 1995 complementing terrestrial

radio navigation systems. The inclusion of new constellations like European Galileo

and the constant enhancement of GPS will add new navigation signals and frequencies

which will improve the performance of GNSS-based systems. A modernized GNSS

scenario will provide continuous, accurate and reliable positioning service for end-to-

end navigation including en route, terminal area flight, and vertical guidance during

precision approach. The GNSS ambition is to support navigation capabilities for

global users potentially reducing ground infrastructures for systems like Very High

Frequency Omni-Directional Range (VOR), Distance Measuring Equipment (DME),

and Instrumental Landing System (ILS).

The currently in use radio navigation systems (VOR, DME, and ILS) have demon-

strated their reliability and integrity throughout the past sixty years. However in a

globalized world with rapidly expanding air traffic, legacy navaids might become ob-

solete and inefficient in the next few years. GNSS navigation provides accurate, safe,

flexible and fuel efficient guidance reducing airport congestion and contributing to a

cleaner sky. The most demanding requirement that satellite navigation must face is the

guarantee of Safety-of-Life (SoL) during vertical guidance for precision landing opera-

tions. In this context, GNSS needs to be augmented in order to fulfill the integrity and

accuracy requirements that the International Civil Aviation Organization (ICAO) de-

mands. Augmentation systems are independent of the core constellation and based on

how performance is monitored, three different systems can be listed: Ground Based

Augmentation System (GBAS), Space Based Augmentation Systems (SBAS), and

Aircraft Based Augmentation Systems (ABAS). The first two systems are based on

differential GNSS where fault detection capability does not reside within the aviation

user itself but in the provider of the augmentation. Conversely, ABAS users are fully

responsible for detecting and excluding potentially faulty measurements. Figure 1.1 il-

lustrates the application of each GNSS-based navigation attending to the requirements

of each flight phase (information taken from [5]).

GBAS is a local area differential GNSS that supports precision approach service

for aircrafts in the proximity of the host airport. The first task of the GBAS ground

segment is the real-time computation of range corrections by collecting code and phase

measurements through a set of redundant reference receivers [6]. These corrections
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are broadcast to the users through Very High Frequency Data Broadcast (VDB) an-

tennas located in the proximity of the runways. The second task of the GBAS ground

segment is the detection of faults or anomalies in the ranging measurements that can

lead to large positioning errors. It must monitor against four types of faults: erro-

neous navigation message (including ephemeris and clock errors induced by the GNSS

ground segment), erroneous satellite payload behavior (including signal deformation

and on-board clock anomalies), signal propagation anomalies (including tropospheric

and ionospheric gradients), and faults within augmentation system equipment (includ-

ing failures in the local GNSS receivers). In case of a faulty event, it is the duty of

the GBAS ground segment to notify aviation users within the six seconds Time To

Alert (TTA) for Category I approaches and two seconds for Category II and III [1].

The currently certified GBAS only augments GPS L1 service supporting Category I

precision approach operations. Thanks to the modernization of GNSSs, future Multi-

Frequency Multi-Constellation (MFMC) GBAS aims to provide Category II and III

approaches including zero-visibility landings [7].
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Figure 1.1: Aircraft approach procedures based on GNSS augmented systems

SBAS is a wide area differential GNSS that supports precision approach service for

aircraft without the need of local infrastructures at the host airport. The principle of

SBAS is not significantly different from GBAS. On top of the real-time computation

of differential corrections and the integrity monitoring, SBAS adds ranging capability.

The SBAS signals are similar to GPS L1 Coarse/Acquisition (C/A) so that SBAS-

enabled users can track them and incorporate additional ranging measurements in

the position fixed determination. One of the major advantages of SBAS is that no

local augmentation infrastructure is required at the airport (unlike GBAS). SBAS

uses a network of ground reference stations in charge of collecting code and phase

measurements in real time. As with GBAS, redundancy and diversification in the

stations are required to ensure backup hardware and avoid common fault modes. The

collected data is then transferred to the processing facilities which are in charge of
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computing differential corrections, determining the confidence bounds, and encoding

the SBAS message. Finally this message is uploaded to the geostationary satellites and

transmitted to the users. Analogous to the GBAS concept, it is the duty of the SBAS

ground segment to assure the integrity of the system and to guarantee that in case of

a faulty event users will be notified before 6 seconds. The first deployed SBAS was

the American Wide Area Augmentation System (WAAS), certified for SoL operations

since July 2003 and providing CAT I service for airports located in the continental

US, Canada, and Alaska. Then, the European Geostationary Navigation Overlay

Service (EGNOS) was declared operational on 1 October 2009 and was certified on 2

March 2011 for SoL services. Further information regarding SBAS architecture and

operational details can be found in Chapter 12 of [8].

Aircraft Based Augmentation Systems (ABAS) is the last type of augmentation

system. Unlike GBAS and SBAS, the GNSS augmentation is fully performed onboard

the aircraft so that users are fully responsible for their integrity monitoring. Typically,

the augmentation is achieved by two methods: the inclusion of additional sensors and

the leverage of redundant GNSS measurements. The first type of ABAS combines

GNSS signals with additional measurements coming from altimetry systems or inertial

sensors forming the so-called Aircraft Autonomous Integrity Monitoring (AAIM). As

shown in Figure 1.1, the combination of GPS measurements and barometer can provide

horizontal and vertical navigation down to 350 ft.

The second type of ABAS is the most extended augmentation system within civil

aviation, the Receiver Autonomous Integrity Monitoring (RAIM). By leveraging the

GNSS measurement redundancy, users perform consistency checks that enable on-

board integrity monitoring. In traditional RAIM, if more than four satellites are

visible, users are able to identified faulted ranging measurements without the need for

range corrections through a real-time data link. When more than five satellites are in

view, RAIM not only identifies but also excludes potentially faulted ranges. However,

current GPS-based RAIM only supports lateral navigation since it is still very brittle

to satellite availability and geometry. The work developed through this thesis focuses

on the evolution of traditional Single-Frequency Single-Constellation (SFSC) RAIM to

Advanced RAIM in order to support vertical guidance for precision approach. Section

1.4 presents background work performed in the Advanced Receiver Autonomous In-

tegrity Monitoring (ARAIM) field and sets the motivation for the activities conducted

within this work. In addition, Chapter 2 thoroughly defines the ARAIM system and

segments.

1.2 Safety of Life Operations: Integrity, Continuity, Accuracy and
Availability

ARAIM is meant to provide vertical guidance for safety critical operations such as

aircraft precision approach. In particular, the target operational level for ARAIM is

Localizer Performance with Vertical guidance (LPV) with a decision height of 200

ft which conforms to CAT I approaches. In order to assess navigation system per-
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formance, four metrics are evaluated: accuracy, integrity, continuity, and availability.

The ICAO Standards and Recommended Practices (SARPS) [1] and GNSS Manual

[9] define them as follows:

Integrity :“A measure of the trust that can be placed in the correctness of the

information supplied by the total system.” Integrity includes the ability of a system to

provide timely and valid warnings to the user within the required TTA. Integrity risk

or Probability of Hazardous Misleading Information (PHMI) is the probability that

the true position lays outside the error bound. This error bound, also called Protection

Level (PL), needs to be supplied by the navigation system (onboard algorithm in case

of ARAIM) and checked against the corresponding Alert Limit (AL). Depending on

the operational level, the PHMI must be below a certain probability which can range

between 10−7 and 10−9.

Continuity : “It is the capability of the system to perform its function without

unscheduled interruptions during the intended operation, expressed as a probability.

For example, there should be a high probability that guidance will remain available

throughout an entire instrument approach procedure.” As it occurs for integrity, the

continuity requirement depends on the operational level. In case of Approach Proce-

dure with Vertical guidance (APV) and CAT I approaches, missed approaches due to

the lack of visual reference below the decision altitude are considered nominal opera-

tion. The continuity requirement for these operations applies to the average risk (over

time) of loss of service, normalized to a 15-second exposure time.

Accuracy : “GNSS position accuracy is defined as the difference between a com-

puted and a true position.” For an estimated position at a specific location, the proba-

bility should be at least 95% that the position error is within the accuracy requirement.

Since GNSS errors can change over time due to satellite motion, the accuracy is spec-

ified as a probability for each and every sample.

Availability : The availability of a service is the fraction of time during which

the system is simultaneously meeting the required accuracy, integrity, and continuity.

Aviation demands availability figures above 99% depending on the operational level.

In the case of an augmentation system, availability is the parameter that ultimately

measures the operational performance of a given navigation system.

1.3 Navigation Requirements

The navigation requirements are tied to the target operation which ultimately depends

on the phase of flight. As indicated in Figure 1.1, as the decision altitude decreases,

tighter integrity bounds are demanded. A useful interpretation of the integrity require-

ment is the protection levels which are defined as probability bounds on the position

estimation errors. They provide a spatial representation of the volume that contains

the true position with a 1 - IREQ probability. Figure 1.2 gives a graphical interpre-

tation of the Horizontal Protection Level (HPL), Vertical Protection Level (VPL),
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Horizontal Alert Limit (HAL), and Vertical Alert Limit (VAL); as long as the blue

cylinder stays within the limits of the red one, the integrity requirement is met.

1-IREQ

HAL

V
A
L

V
P
L

1-Irisk

Figure 1.2: Protection level and alert limits graphical interpretation

As mentioned above, integrity is not the only requirement that the navigation

systems must meet; continuity and accuracy must also be assured. The target LPV-

200 operations for ARAIM are partially defined in the ICAO SARPS. The work

in [10] provides an interpretation of the four vertical metrics for LPV-200 regarding

VPL, accuracy, and Effective Monitor Threshold (EMT). ICAO SARPS requires

that the 95 percentile vertical error remains below 4 meters, and that the fault-free

system vertical error does not exceed 10 meters with a probability less than 10−7.

As detailed in [10], both tests are of identical form and can be translated to two

maximum all-in-view vertical positioning accuracy values, σv,acc = 4/1.96 = 2.04 m and

σv,acc = 10/5.32 = 1.87 m, with the later one being more stringent. Correspondingly,

EMT can be interpreted as the maximum detection threshold of faults that have a

prior probability of occurrence above 10−5. The EMT must stay below 15 m.

Table 1.1 summarizes the navigation requirements based on different flight phases.

Note that in the case of lateral navigation, the corresponding vertical requirements do

not apply and the full integrity and continuity budget is allocated to the horizontal

component.
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Table 1.1: Navigation requirements established by ICAO [1]

Operation
Continental

en-route
Terminal NPA

APV-I

LPV-250
LPV-200

HAL 3.7 km 1.85 km 556 m 40 m 40 m

VAL N/A N/A N/A 50 m 35 m

TTA 5 min 15 s 10 s 10 s 6 s

Integrity

requirement
10−7/h 10−7/h 10−7/h

10−7

/150 s

10−7

/150 s

Continuity

requirement

10−8/h

to 10−4/h

10−8/h

to 10−4/h

10−8/h

to 10−4/h

8× 10−6

/15 s

8× 10−6

/15 s

σacc
requirement

N/A N/A N/A N/A 1.87 m

EMT N/A N/A N/A N/A 15 m

1.4 Prior Work and Motivation

RAIM has been a profuse topic within aviation for the past three decades experiencing

special popularity after the introduction of the SoL concept. Traditional RAIM is

the simplest and most cost efficient technique for integrity monitoring and was first

introduced in the 980s by Lee [11], Parkinson [12], and Sturza [13] [14]. Respectively,

they defined the range-comparison method, the least-squared-residuals method, and the

parity method establishing the basis of autonomous integrity monitoring by leveraging

measurement redundancy. Later, Brown unified the three techniques in [15] proving

the equivalence among them and proposing a method to compute detection thresholds

and test statistics. The original RAIM navigation system was foreseen to augment

GPS L1 measurements only with no need for external input. This made the system

widely accessible and low priced. However, this simplicity came at the cost of inherent

limitations precluding the system from performing under more stringent requirements

such as precision approaches.

The modernization of GPS and emergence of new GNSS constellations opened

new opportunities to redesign traditional RAIM in order to target more demanding

navigation requirements. In the frame of international collaboration, the US and

the European Union (EU) signed in 2004 an agreement on GPS-Galileo cooperation

activities in the field of satellite navigation. The agreement included “a working

group to promote cooperation on the design and development of the next generation

of civil satellite-based navigation and timing systems” fostering the creation of the

US-EU Working Group C (WGC) and its ARAIM Technical Subgroup (ATS). This

working group gathered experts from academia, research institutes, and civil aviation

authorities from both Europe and the United States. Since then, several key players

have contributed to the evolution of the original concept to today’s Advanced RAIM.

Pervan formalized the fundamentals of the MHSS concept in [16] establishing the basis

of the current airborne algorithm based on the original approach initiated by Brown
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in [17]. Later, Blanch expanded this work with the optimization of the PL equations

leading to a more efficient allocation of the integrity budget [18]. In parallel, Joerger

shaped the residual based ARAIM [19] and demonstrated its equivalence to solution

separation [20]. Their work within WGC has contributed to the elaboration of three

ARAIM milestone reports which are widely recognized as the guidance material for

ARAIM development and implementation [21][22][3]. Further technical details on how

traditional RAIM evolved into Advanced RAIM will be given in Sections 2.3 and 2.4

later in this dissertation.

The evolution to Multi-Frequency Multi-Constellation (MFMC) Advanced RAIM

also entailed a redefinition of the ARAIM architecture and the introduction of the In-

tegrity Support Message. The ISM includes parameters describing measurement errors

and fault rates that the airborne algorithm utilizes to perform integrity, accuracy, and

continuity checks. ISM design and dissemination is fully dependent on the ARAIM

architecture: online or offline (more details in Section 2.4). Both architectures need

the implementation of an ARAIM ground segment which is in charge of determin-

ing the ISM parameters by constellation monitoring throughout a global network of

stations. The work presented in this thesis focuses on the design of an ISM covering

GNSS performance monitoring, error correlation analysis, sample independence, and

overbounding theory.

One of the key elements of the offline architecture is the GNSS performance mon-

itoring with subsequent error characterization. Ultimately, the ISM broadcast to the

users must provide the means to create a safe position error overbound whose protec-

tion levels stay below the alert limits. In the frame of GNSS Safety-of-Life applications,

previous work done by Walter in [23], [2], and [24] has addressed the analysis of GPS

satellites nominal performance and faults during the last decade. In parallel, stud-

ies based on GPS and Galileo nominal range error have been developed in [25] and

[26]. One of the major challenges of characterizing constellation service history is the

assessment of data files veracity and availability. Error analysis necessitates two sets

of inputs: broadcast navigation data and precise reference orbits. As pointed out by

Heng in [27], historical broadcast navigation data must be scrutinized and validated

before they are used to characterize constellation performance. In addition, precise

reference data might also present gaps or inconsistencies that need to be assessed to

neither fabricate fictitious errors nor to overlook them [28]. Gunning [29] and Zhai

[30] proposed two different methods to overcome this problem and compute refer-

ence products. The work in this dissertation leverages the deployed GNSS ground

infrastructure from the MGEX to create a monitoring network for offline ARAIM.

A second aspect that this thesis addresses is the variability of the satellite ephemeris

and clock errors. Both [26] and [23] illustrated the fluctuations on a monthly basis for

GPS range error. The two studies deduced that sample correlation and data indepen-

dence were behind that behavior. Understanding the nature of this correlation and

the difference among satellites and constellations is also a goal within this document.

A key element of the GNSS SoL applications is the error overbound. In the GNSS

integrity literature two extensively used bounding methods can be found: Gaussian



8 Chapter 1. Introduction

CDF bounding [31] and Gaussian Pair overbounding [32]. Both methodologies re-

place the unknown true error distribution by a Gaussian with standard deviation σob
which preserves its bounding properties after convolution in the position domain. In

order to account for non-zero mean and shifted-median errors distributions, the pair

overbounding introduced the so-called nominal bias bnom. The pair overbounding the-

orem has been recently revisited in [33] where a relaxation of the bounding premises

is proposed leading to a less conservative bound. The three previous overbounding

methodologies have one common denominator; they do not account for error sample

correlation and independence. Understanding how integrity monitoring shall inflate

error bounds based on the amount of independent data falls within the scope of this

thesis. Supported by a Bayesian inference analysis, this work proposes a simple mod-

ification of the Gaussian overbound for ARAIM which leads to better availability

performance of the navigation system.

1.5 Dissertation Outline and Contributions

Chapter 1 - current section - provides the introduction of this dissertation. Chapter

2 covers the basic notions of MFMC GNSS positioning. It also provides the funda-

mentals of legacy RAIM and its evolution to today’s state of the art ARAIM along

with its different architectures. Chapter 3 proposes a technique to use existing GNSS

ground infrastructure to validate orbit reference data and to generate precise clocks

for both GPS and Galileo. In addition it details the methodology to compute orbit

and clock errors along with the definition of satellite range error for integrity. Chapter

4 applies this monitoring methodology to characterize GPS and Galileo service history

up to current dates. Chapter 5 analyzes satellite range error correlation and number

of effectively independent samples. Chapter 6 carries out a Bayesian inference analy-

sis of the data in order to determine the effect of correlation on Gaussian overbound.

Chapter 7 collects inputs from the previous sections and proposes an overbounding

methodology based on Multi Gaussian distributions implying a slight modification in

the MHSS algorithm. Finally, Chapter 8 provides the main conclusions of this thesis

and the future work to be developed.

The major contributions of this dissertation can be summarized in the following

six subsections.

1.5.1 Design of a Validation Method for Using a non-Dedicated Network
of GNSS Receivers for ISM Generation

We develop a technique to validate International GNSS Service (IGS) precise products

applied in the characterization of the GPS and Galileo constellation performance and

fault detection. First this methodology compares precise orbits coming from three

different MGEX analysis centers and contrasts the level of agreement among them.

The validated orbits are used along with the code and phase observations collected by

a set of ground stations to simultaneously estimate receiver biases and satellite time
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offsets. Once the network is synchronized, the retrieval of the missing orbit and clock

products is attempted. Results will show that with a simple snapshot based model,

orbit and clock products can be validated to decimeter level. The ultimate goal of this

methodology is to serve as an integrity layer between the MGEX external products

and the ISM generation.

1.5.2 Characterization of GPS and Galileo Service Nominal Performance

For each individual GPS and Galileo satellite, by comparing precise orbits to validated

broadcast ephemeris data, we compute the SISRE which needs to be overbounded by

the User Range Accuracy (URA) and Signal-in-Space Accuracy (SISA) value included

in the ISM. Over ten years of service history data for GPS and four years for Galileo

are computed in this analysis, showing that range error is mainly driven by satellite’s

clock performance. Results reveal that orbit and clock error distributions are non-zero

mean on a monthly basis, although biases tend to reduce as sample set size increases.

This observation provides the motivation to analyze the error correlation.

1.5.3 Determining the Time between Effective Independent Samples for
GPS and Galileo Satellite Ranging Errors

We propose a technique to determine the time between effective independent samples

based on estimation variance analysis. For GPS and Galileo satellite orbit and clock

errors we determine the time between effectively independent samples finding signif-

icant discrepancies among them. Results will show how SISRE correlation exhibits

substantial differences between GPS and Galileo satellites based on the onboard clock

type. An amplitude spectral analysis of the range error shows how orbit errors trans-

fer into user range creating 12-hour harmonic components (14 hours in the case of

Galileo).

1.5.4 Quantifying the Impact of Sample Correlation on SISRE Overbound

We derive an analytical expression of the range error CDF based on the number of

effectively independent samples. Using Bayes’ theorem with a noninformative prior

distribution of the standard deviation, we compute the factor by which the Gaussian

distribution needs to be inflated to account for the sample independence. Analytical

results will illustrate that the conditioned distribution matches the Gaussian CDF

when the number of independent samples reach approximately 350. These results will

show that the fact that Galileo SISRE presents a significantly shorter decorrelation

time than GPS will speed up the SISRE characterization based on service history to

support ARAIM.
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1.5.5 Developing a Multi-Gaussian Overbound

We leverage the knowledge of the error distribution to generate an adaptive MG range

overbound. We propose to use two weighted Gaussian distributions with different

standard deviations σ: one with smaller σc ∼ 0.2-0.4 m to bound the core of the

distribution and one with larger σt ∼ 1.2-2 m. For a given range error distribution,

the separation between core and tail sections will be given by the weighting factor

wc which ranges between 0.90-0.99. The determination of the individual standard

deviations are based on the results of the Bayesian inference analysis. Since the MG

overbound is a linear combination of two Gaussian distributions in the range domain,

the convolution in the position domain guarantees a safe overbound. The comparison

between the traditional Gaussian and MG overbounds shows that tighter and equally

safe protection levels can be achieved with a core/tail partition of the data having a

positive impact on the system availability.

1.5.6 Prototyping an ISM Generation Method for Offline ARAIM

We combine the five prior contributions into an ISM generation method which accounts

for sample correlation and core-tail error distribution. With a minor modification of

the MHSS algorithm, we propose three different methods to perform the MG over-

bound. The first one is the inclusion of the three parameters σcob, σtob, and wc. The

second option, a compromise, is to broadcast just σcob and σtob having wc hard-coded

within the user algorithm. The third one, the simplest, does not require a modification

of the user algorithm by assigning σURA = σtob and σURE = σcob. The three methods

are compared to the state of the art SG bounding showing how better availability

figures can be achieved with a slight modification of the ISM.
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2 Advanced Receiver Autonomous Integrity

Monitoring Concept

This chapter provides the basic notion of GNSS positioning under a dual constellation

scenario along with its ranging error sources. The least square estimator serves as

an introduction for the measurement redundancy and consistency idea. Then, the

original RAIM concept is introduced describing how it evolved from the initial SFSC

to today’s MFMC Advanced RAIM. In addition, this chapter includes a detailed

description of the different ARAIM architectures and how they impact the ISM design

and dissemination. Particularly, it focuses on the ground segment of the offline ARAIM

architecture setting the basis for the work developed within the following chapter of

this dissertation.

2.1 GPS-Galileo Multiconstellation Scenario

Navigation satellites are equipped with signal generators which broadcast electromag-

netic waves traveling from space to users and GNSS ground segments; the so-called

Signal-in-Space (SIS). Modernized GPS satellites disseminate four different signals for

civilian use; L1 centered on 1575.42 MHz frequency, L2 and L2C centered on 1227.60

MHz, and L5 centered on 1176.45 MHz. Respectively, Galileo Open Service (OS)

is provided through three signals for civilian use; E1 centered on 1575.42 MHz, E5a

centered on on 1176.45 MHz, and E5b centered on 1207.14 MHz. These frequency

bands are reserved and protected against interference within the Aeronautical Radio

Navigation Service (ARNS). This multi-GNSS scenario is designed for interoperability

and compatibility between GPS and Galileo constellations this being the reason why

L1/E1 and L5/E5a are transmitted in exactly the same frequency within the L-band.

These two pairs of signals form the Multi-Frequency Multi-Constellation scenarios for

GNSS-based aviation that this dissertation works with.

Satellites are equipped with precise onboard atomic clocks which enable the system

to identify the signal time of transmission. By estimating the time elapsed between

transmission and reception, users retrieve the so-called pseudorange measurements.

Satellites also provide to users navigation data which contain information regarding

satellite ephemeris, clock bias, and health status. As depicted in Figure 2.1, com-

bining ranging measurements from several satellites, users can determine their 3-D

position along with their receiver clock bias. Technically, only four satellites (five if

two constellations are used) would be necessary to calculate the position and time

solution. It is here where the autonomous integrity monitoring capability resides; the
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fact that GNSS provides more ranging measurements than strictly necessary grounds

the RAIM concept.

Position Fixed
X, Y, Z, τGPS, τGAL 

SISGAL,1

SISGAL,4

SISGAL,3

SISGAL,2

SISGPS,4

SISGPS,3
SISGPS,2

SISGPS,1

Figure 2.1: Concept of GNSS Positioning

2.1.1 Measurement Model

GNSS receivers provide two types of pseudorange measurements; code (ρ) and phase

(ϕ). Receivers obtain code measurements by aligning the received GNSS signal with

the code replica in their database and then computing the difference between reception

and transmission time of the signal. Because receiver and satellite clocks are not

synchronized, these measurements are biased. Let γ be the travel time for a given

GNSS signal received at time t measured in system time. The time in which this

signal was emitted by the satellite is te(t−γ) and tr(t) is the reception time measured

by the user’s clock. Then the pseudorange can be defined as the apparent travel time

as

ρ(t) = c [tr(t)− te(t− γ)] (2.1)

with c being the speed of light in vacuum. Since emission and reception times are

referred to satellite and user clocks, respectively, they can be commonly expressed in

GNSS system time. Accounting for the corresponding satellite (δ) and receiver (τ)

bias

ρ(t) = c [τ(t)− δ(t− γ)] + νρ(t). (2.2)
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The first term of (2.2) can be modeled as the sum of the true range R(t, t−γ), the

tropospheric delay Td(t), and the ionospheric delay Id(t) that signals experience during

their propagation through the atmosphere. True range is the geometric difference

between satellite position at emission time xs(t − γ) and user position at reception

time xr (t). In order to obtain reliable measurements, the GNSS operator must

accurately predict satellite orbit and clock states and encapsulate them within the

navigation message to be applied by users. Introducing these terms in (2.1) the code

measurement model takes the following form

ρ = R+ c [τ − δ] + Td + Id + νρ. (2.3)

Note that for simplicity, we omitted the time reference t in the previous expression.

The term νρ accounts for the set of nominal range errors that can affect the code

measurements and it is discussed in the Section 2.1.2.

GNSS receivers also provide carrier phase measurements which are inherently more

precise than code measurements. Users are able to compute the phase difference

between the GNSS carrier signal at the time of emission φs(t − γ) and the receiver

generated carrier at the time of reception φr(t). Analogous to the code definition in

(2.1), the phase difference can be written in terms of the emission and travel time as

φ(t) = φr(t)− φs(t− γ) +Nφ. (2.4)

Phase differences are intrinsically ambiguous since there is no a priori information

about the number of full cycles Nφ elapsed between emission and reception. This is

the so-called integer ambiguity. For a given GNSS signal centered in the frequency f

and with a corresponding wavelength λ, the equation above can be expressed in units

of distance as

λφ(t) = λ [φr(t)− φs(t− γ) +Nφ] = R(t, t− γ) + λNφ. (2.5)

We can now include satellite and receiver clock biases along with the tropospheric and

ionospheric delay to obtain a closed form of the carrier phase measurement equivalent

to (2.3). In order to express the phase measurements in meters, let us rename the

terms including λ in (2.5) as ϕ and η

ϕ = R+ c [τ − δ] + Td − Id + η + νϕ. (2.6)

Terms Td and Id are identical to the ones affecting code measurements in (2.3). While

the troposphere introduces the same delay in code and phase measurements, the iono-

sphere defers code but accelerates phase, this being the reason for the negative sign

in expression (2.6). The full derivation of the measurement models which this subsec-

tion is based on can be found in Chapter 5 of [34]. Section 3.3 in the next chapter

points out the challenges of using carrier phase measurements and how to apply an

Ionosphere Free Geometry Free (IFGF) linear combination to implement them in our

proposed ARAIM ground segment.
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2.1.2 GNSS Error Sources

There are several potential sources of errors that can affect GNSS signals. They have

been clustered in the corresponding terms νρ and νϕ for code and phase measurements

in Equations (2.3) and (2.6). Ultimately, aviation users (and GNSS users in general)

are more concerned about how these errors translate into their position solution accu-

racy and integrity. In ARAIM-based navigation, the knowledge and characterization

of these inaccuracies play a paramount role with this being one of the goals of this

dissertation. These GNSS error sources can be classified in four types. First, errors

related to erroneous navigation message and/or malfunctions in the control segment

including ephemeris and clock errors or unflagged maneuvers. Second, errors related to

the satellite payload behavior including signal deformation and onboard clock anoma-

lies. The third type of errors are those linked to signal propagation anomalies including

tropospheric and ionospheric delays. The fourth type are errors affecting GNSS signals

at the receiver proximity.

Orbit and clock errors are normally the ones that drive constellation performance.

Their characterization has been a vast topic of research within the GNSS integrity

literature ([35], [2], [36]). Chapters 3 and 4 provide a comprehensive analysis of how

these errors are generated and their impact on the range overbound. Results will

illustrate that modernized GPS and Galileo satellites show typical 1-σ values below

50 cm.

When GNSS signals travel through the atmosphere, the electrons and water parti-

cles contained in the ionosphere and troposphere create delays in the signal propaga-

tion that need to be modeled. Because of the large magnitude of the ionospheric delay

(2-10 m in the zenith direction, highly depending on the atmospheric activity) and

the impact that it has on the Single Frequency (SF) service, several models have been

developed through the years. The most widely applied for SF GPS is the Klobuchar

model, first introduced in [37]. The European Commission, recommends the use of the

NeQuick electron density model developed by the Abdus Salam International Center

of Theoretical Physics and the University of Graz [38]. The major advantage of dual

frequency measurements is the ability of working around the ionospheric delay by cre-

ating the so-called Ionosphere Free (IF) linear combination. Since the ionosphere is

dispersive (the delay depends on the signal frequency), ARAIM users can eliminate

the first order effects at the expense of increasing the receiver noise level.

On the contrary, troposphere is a non-dispersive media so the associated delay is

independent of the carrier frequency. Tropospheric delays are smaller and less variable

than the ionospheric ones and their models are typically more accurate. There are

unpredictable variations of atmospheric parameters that can alter the accuracy of the

models like changes in the temperature, moisture, or barometric pressure. For aviation,

a widely used tropospheric model is included in the Radio Technical Commission

for Aeronautics (RTCA) GPS/WAAS Minimum Operational Performance Standards

(MOPS) [39]. A full overview of the physics of the atmosphere can be found in Chapter

6 of [8].
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Regarding the errors that affect the signals in the receiver proximity, multipath is

the most relevant one. Multipath is the event in which a given GNSS signal reaches

the receiver antenna via two or more directions due to reflections off of surrounding

elements. The reflected signals travel a longer path than the original ones making

them delayed and weaker (depending on the reflecting surface) copies. Although

multipath impacts both code and phase pseudoranges, the effect on the former is

significantly larger. Multipath is highly dependent on the actual environment in which

the GNSS receiver operates. For aviation users, aircraft fuselage and wings are the

primary source of multipath which is fundamentally different from the environment

that surrounds a ground monitoring station. The use of modernized GNSS signals,

beamforming techniques [40], and multipath limiting antennas [41] can reduce the

effect of multipath range error to values below 30 cm. Chapter 15 in [8] provides a

full description of the physicality behind the multipath effect.

Receiver noise term refers to all the random errors generated within the receiver

hardware including antenna, amplifiers, and cables. The signal distortion can also

occur within the receiver circuitry and it is responsible for the introduction of code

and phase biases. These biases are inherently larger for code than for phase measure-

ments and have the particularity of showing the same magnitude for receivers with

the same configuration (i.e., same correlator spacing, bandwidth). The difference of

the range biases between measurements in two different frequencies is called Inter-

Frequency Bias (IFB). In the case of a non-nominal signal distortion, the so-called

signal deformation event, detection by a monitoring network is not guaranteed unless

hardware diversification is ensured through different receiver configurations. Code

carrier incoherence and look-angle-dependent errors are also less frequent sources of

error contemplated within WGC [21].

2.1.3 Range Error Models

A key aspect of SoL operations is the characterization and bounding of feared events for

GNSS. Many of the errors listed in the previous sections have consolidated models with

proved effectiveness over the years, like tropospheric and ionospheric delay. Although

accurate, these mathematical representations always leave unmodeled parts that can

be bounded in magnitude. Attending to its behavior, residual errors can be broken

down in two components: random errors and biases. This distinction is quite useful in

the frame of range overbounding since, as Rife established in [32], the error envelope

is normally generated with two biased Gaussian distributions. More details regarding

overbounding theory and how these nominal biases are bounded in magnitude are

given in Chapter 6.

In the previous section, neither code (2.3) nor phase (2.6) measurement equations

accounted for the offset related to signal generation. As supported by the Signal Qual-

ity Monitoring (SQM) analysis carried out in [42], satellite and receiver instrumental

biases are not fully independent since they are linked through the transfer function

of the emission, transmission, and reception of the signal. For the purpose of in-

tegrity monitoring, it is acceptable to follow IGS convention and break it into satellite
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(Bρ
i
f , Bϕ

i
f ) and receiver contributions (Bρj,f , Bϕj,f ) as indicated in [43]. For a given

signal from a satellite i recorded by a receiver j in a frequency f , code and phase

measurements can be expanded in the following forms

ρij,f = Rij + c
[
τj − δi

]
+ Td

i
j + Id

i
j +Bρj,f −Bρ

i
f + νρ

i
j,f (2.7)

ϕij,f = Rij + c
[
τj − δi

]
+ Td

i
j − Idij + ηij,f +Bϕj,f −Bϕ

i
f + νϕ

i
j,f . (2.8)

The phase bias and integer ambiguity terms in (2.8) need to be estimated together;

Section 3.3 discusses a method to work around this issue fitting the accuracy levels

that we need for integrity monitoring. It is important to remark that the presence of

those biases is more relevant when using receivers with different configurations. For

example, when monitoring constellation performance through a network of receivers,

an accurate estimation of satellite orbit and clock states shall account for these ef-

fects. When performing pseudorange-based single-point positioning, the term Bρj,f
will be commonly absorbed in the receiver clock estimation while the term Bϕ

i
f will

be partially modeled by the broadcast satellite clock model. The terms νρ
i
j,f and νϕ

i
j,f

account for residual errors still present in code and phase measurements. Typically,

they are modeled by zero-mean Gaussian distributions as νρ
i
j,f ∼ N

(
0,
(
σiρ,j,f

)2)
and

νϕ
i
j,f ∼ N

(
0,
(
σiϕ,j,f

)2)
where the standard deviations collect the contribution from

the listed error sources as

(σiρ,j,f )2 = (σiorb,clk)2 + (σitropo,j)
2 + (σiρ,user,j,f )2 (2.9)

(σiϕ,j,f )2 = (σiorb,clk)2 + (σitropo,j)
2 + (σiϕ,user,j,f )2 (2.10)

The term σiorb,clk provides an overbound for satellite i orbit and clock errors in the

range domain (further discussion in Annex A). Chapters 5, 6, and 7 cover the deter-

mination of this value based on GNSS service history and an associated overbounding

methodology for offline ISM generation. In the current multi-GNSS scenario, σiorb,clk
is provided within the broadcast navigation message, σiURA for GPS, and σiSISA for

Galileo. The rest of the terms in (2.9) and (2.10) are based on models provided in

Annex A along with the atmospheric delays. The value σiϕ,user,j,f accounts for the

user User Range Error (URE) budget for multipath and noise error. Multipath and

noise for phase measurements are inherently smaller than for code observations at the

expense of being ambiguous. Typically, phase multipath and noise RMS stays between

0.5-1 cm while multipath and noise RMS for SF measurements ranges between 0.5 and

1 m (1.5-2.6 m for dual frequency observations).

Because the ionospheric delay is inversely proportional to the square of the carrier

frequency f , ARAIM users leverage the multi-frequency GNSS scenario to create the

IF linear combination. For a pair of generic GNSS signals in frequencies fA and fB,

the IF code and phase linear combination can be computed as

ρij,IF =
f2
A

f2
A − f2

B

ρij,A −
f2
B

f2
A − f2

B

ρij,B

= Rij + c
[
τj − δi

]
+ Td

i
j +Bρj,AB −Bρ

i
AB + νρ

i
j,AB

(2.11)
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ϕij,IF =
f2
A

f2
A − f2

B

ϕij,A −
f2
B

f2
A − f2

B

ϕij,B

= Rij + c
[
τj − δi

]
+ Td

i
j + ηij,AB +Bϕj,AB −Bϕ

i
AB + νϕ

i
j,AB.

(2.12)

This IF linear combination has the disadvantage of enlarging the receiver noise and

multipath by a factor of almost three. This can be mitigated by using carrier phase

measurements to smooth the code noise and multipath. For SoL applications, it is

important to acknowledge that the application of carrier phase smoothing introduces

the code-carrier divergence fault in the threat space. Chapter 7 and Annex A provide

further details on how ARAIM users bound the range error nominal bias with the

introduction of the bnom term.

2.1.4 Position Velocity and Time Solution and Least Square Estimator

The estimation of a Position Velocity and Time (PVT) solution is executed by user al-

gorithms employing pseudorange measurements (code, phase, or both) and navigation

data. When this estimation is carried out with no external augmentation, it is called

standalone GNSS. PVT estimation is performed on a snapshot basis using knowledge

from prior epochs to accelerate the convergence of the solution. For a given epoch, let

a multi-GNSS user collect nA and nB pseudorange code measurements from constel-

lation A and B, the linearization of the observation model can be written in a matrix

form as (Chapter 5 of [34])

z = Gx + ν. (2.13)

Measurement equations can be separated in two blocks corresponding to each constel-

lation [
zA
zB

]
=

[
GA

GB

]
x +

[
νA
νB

]
(2.14)

where GA and GB are the geometry matrices nA ×m and nB ×m and x is the m× 1

state vector containing user position and receiver clock biases τA and τB given that

each constellation runs on its own system time. The terms νA and νB are nA × 1 and

nB × 1 measurement error vectors defined by expression (2.9).

A Weighted Least-Squares Estimator (WLSE) is used to compute the position

solution and its corresponding estimation covariance. The state estimate vector x̂ and

least-squares estimation matrix S are defined as

x̂ = Sz (2.15)

S = (GTWG)−1GTW (2.16)

where the weighting matrix W is the inverse of the covariance matrix C. This is a

diagonal matrix which contains the corresponding σiρ for each i measurement (2.9).

The estimated error vector ε is defined as the difference between the estimation x̂ and

the true state x

ε ≡ x̂− x. (2.17)
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Position error is modeled as a normal distribution based on the covariance matrix P

ε ∼ N (0,P ) where P = (GTWG)−1. (2.18)

Finally, the estimated error of the single state of interest can be obtained by extracting

the corresponding row sT of the least-squares estimation matrix S. Let us particularize

for the vertical coordinate (although it can be applied to the horizontal coordinates)

as

sTv = αTv S and αTv = [0 0 1 0 0] . (2.19)

The vertical estimation error variance σ2
v is simply obtained by selecting the cor-

responding diagonal element of the error covariance matrix. The state of interest,

vertical in this example, is obtained as follows

εv = αTv ε (2.20)

and modeled as a normal distribution

εv ∼ N
(
0, σ2

v

)
where σ2

v = αTv Pαv. (2.21)

The definitions in this section have only attended to the nominal range error in

the presence of no fault events for stand alone GNSS solution. Note that the nominal

receiver and satellite dependent biases Bρj,AB and Bρ
i
AB introduced in (2.11) are

typically absorved by the receiver clock bias estimation. This leads to an unbiased

position error as reflected in (2.18). Section 2.3 extends this approach under a generic

fault hypothesis.

2.2 Principles of Integrity Monitoring

The concept of integrity self-monitoring is grounded on the fact that GNSS users have

more measurements available than strictly necessary to obtain a position solution.

This makes the system of equations in (2.13) overdetermined. Ultimately, users need

to guarantee navigation safety evaluating the risks associated to their position solution.

The integrity risk or Probability of Hazardous Misleading Information (PHMI) is

defined as the joint probability of the estimated error εl being larger than a specified

alert limit AL while the test statistic q remains lower than a detection threshold T ,

PHMI ≡ P (|εl|>AL, |q|<T ) . (2.22)

Let Nf be the number of fault hypotheses. PHMI can be expressed considering a

set of Nf + 1 complementary, mutually exclusive hypotheses Hk (including the fault-

free hypothesis H0). Using the law of total probability, [19] establishes the criterion

for availability of integrity as

PHMI =

Nf∑
k=0

P
(∣∣∣ε(k)l

∣∣∣>AL, ∣∣∣q(k)∣∣∣<Tk|Hk) pf,k ≤ IREQ − PNM (2.23)
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where pf,k is the prior probability of fault occurrence, Hk is set of hypothesis for

k = 0, .., .Nf , PNM is the prior probability of the unmonitored events (PNM � IREQ),

and IREQ is the navigation in integrity requirement from Table 1.1. Equation (2.23)

accounts for the contribution of each fault hypothesis to the total integrity risk. The

ARAIM user algorithm in [3] describes how to determine the subset of fault hypotheses

for a given geometry and their associated probabilities.

The magnitude of the detection threshold is set by the false alarm probability

which is evenly distributed among all fault hypotheses. The probability allocation

must fulfill the continuity requirement from Table 1.1 as

Nf∑
k=0

P
(∣∣∣q(k)∣∣∣ ≥ Tk | Hk) ≤ CREQ. (2.24)

For a given position solution with an associated error and test statistic, Figure 2.2

illustrates the four situations that can be encountered. The top left area represents the

situations in which users are not warned of excessive position error. The probability

of being in that area is the integrity risk. The bottom right area contains the false

alarm cases. They refer to situations in which a position solution is flagged even if

it does not represent a threat. The top right area, detection, attends to the cases in

which a legitimate alert is raised due to excessive position error. In the bottom left

zone, nominal operations, both IREQ and CREQ are met and the approach can be

executed.
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Figure 2.2: PHMI graphical interpretation

An essential aspect of PHMI computation is the selection of the test statistic.

In the original concept, RAIM contemplated two approaches: measurement residuals

[12] and Solution Separation (SS) [17]. The first one checks the consistency among

measurements in the range domain. Based on expression (2.13), in the case of biased

or faulted measurements, the residual vector is defined as

r ≡ z −Gx̂ = (I −GS)z = (I −GS)(ε+ f) (2.25)



20 Chapter 2. Advanced Receiver Autonomous Integrity Monitoring Concept

where I is the n× n identity matrix and f is the range fault n× 1 vector associated

with a generic fault hypothesis. the residual based RAIM approach is based on the

use of the residual vector (r) magnitude as a test statistic. The residual-based test

statistic q2 is the weighted norm of r

q2 = rTWr. (2.26)

Under a fault hypothesis, the test statistic follows a non-central χ2 distribution with

(n−m) degrees of freedom and a non-centrality parameter λ:

q2 ∼ χ2 (n−m,λ2) where λ2 = fTW (I −GS)f . (2.27)

Under nominal conditions (f = 0), the test statistic follows a central χ2 distribution

(λ = 0) with (n−m) degrees of freedom q2FF ∼ χ2(n−m). Note that expressions (2.25)-

(2.27) have been written in a general form without particularizing for any hypothesis

k.

The approach based on solution separation checks the consistency among different

position solutions associated with each fault hypothesis k. For a given hk, with a set

of presumptively faulted satellites s, let x̂(k) be the fault-tolerant position solution

obtained by excluding those satellites (note that the position vector x̂(k) is part of the

state vector solution x̂(k)). This hypothesis hk is compared against the fault-free h0

in order to evaluate the test statistic for coordinate l as

q
(k)
l =

∣∣∣x̂(k)
l − x̂

(0)
l

∣∣∣ where x̂
(k)
l = αlx̂

(k). (2.28)

Looking at Equations (2.20) and (2.21) it can be deduced that the SS test statistic

follows a normal distribution

q
(k)
l ∼ N

((
s
(k)
l

)T
f ,
(
σ
(k)
ss,l

)2)
(2.29)

where (
s
(k)
l

)T
= αTl (S(k) − S(0)) and

(
σ
(k)
ss,l

)2
=
(
σ
(k)
l

)2
−
(
σ
(0)
l

)2
(2.30)

A further discussion regarding the conditions for equivalence between both ap-

proaches was done by Joerger in [20]. The MHSS topic is resumed in Chapter 7 where

a modification of the ARAIM user algorithm is proposed in order to provide tighter

integrity bounds.

2.3 Legacy RAIM

Legacy Receiver Autonomous Integrity Monitoring (RAIM) has been used for lateral

navigation since the approval of GPS for supporting oceanic navigation by the Federal

Aviation Administration (FAA) in 1995 [44]. Classic RAIM only augments GPS L1

providing error bounds of one nautical mile with high availability for global non-

precision lateral navigation service. GPS RAIM is the most extended augmentation
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system in GNSS navigation due to its implementation simplicity and autonomy from

external inputs, unlike SBAS or GBAS. Since only L1 is approved for use, no IF linear

combinations are possible and thus the ionospheric delay must be computed based on

the parameters broadcast within the GPS navigation message [45]. Generous error

bounds due to ionospheric model uncertainty along with high Dilution Of Precision

(DOP) lead to unacceptably large protection levels for vertical navigation.

A major characteristic of traditional RAIM is the omission of multiple faults hy-

pothesis and constellation fault. Looking at Equation (2.23), this is equivalent to

imposing pf,k = 0 to the corresponding constellation fault hypothesis (Pconst = 0).

According to the WGC Milestone 3 Report [3], this assumption is acceptable for GNSS

horizontal navigation but not for vertical guidance for precision approach. The next

section details how the original RAIM concept has evolved into today’s ARAIM.

2.4 Advanced RAIM Fundamentals

The modernization of GPS along with the deployment of emerging GNSS constella-

tions brings the opportunity to expand legacy RAIM to Advanced RAIM. This will

allow ARAIM to provide aircraft guidance for enroute, terminal, and approach op-

erations for civil aviation. Based on the same idea of consistency check, ARAIM

introduces three new aspects with respect to the legacy system. First, the inclusion of

multi-frequency measurements facilitates the use of IF linear combinations to mitigate

ionospheric uncertainty that at the same time allows single frequency users (L1/E1-

only or L5/E5a-only) to reduce the effect of radio frequency interference. Second, it

increases the strength of satellite geometries and consequently provides tighter pro-

tection levels. Third, the introduction of a second GNSS allows constellation fault

monitoring which is a requirement for vertical guidance.

Figure 2.3 illustrates ARAIM system architecture that comprises space segment,

ground segment, airborne segment, and Integrity Support Message [22]. The space seg-

ment includes GNSS core constellations operated by their corresponding Constellation

Service Provider (CSP). It consists of all processes and infrastructures involved in the

constellation operations such as monitoring stations, mission segment, Orbit Deter-

mination and Time Synchronization (ODTS), and performance commitments. The

ground segment includes the stations employed (exclusively or not) in the monitoring

of the constellation performance. It is in charge of collecting the data used as input for

the ISM generation. The airborne segment comprises all the aviation users equipped

with ARAIM avionics. Finally, the ISM provides the set of inputs which users need

to evaluate the performance metrics.

ISM contains satellite and constellation a priori fault probabilities along with nom-

inal error bounds for SIS errors. In legacy RAIM, GPS parameters are hard-coded

in the receiver making the architecture quite inflexible to changes in the core constel-

lation. Among others, ISM parameters reflect performance commitments guaranteed

by the CSP. It is here where the ANSP plays an essential role in the definition of

the ARAIM architecture. The differences between them wrap around three aspects:
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Figure 2.3: ARAIM system architecture

ARAIM ground monitoring segment, duties trade-off between CSP and ANSP, and

ISM structure (discussed in Section 2.5).

Depending on the navigation requirements for different phases of flight, WGC iden-

tifies two services, Horizontal ARAIM (H-ARAIM) and Vertical ARAIM (V-ARAIM).

H-ARAIM targets Required Navigation Performance (RNP) 0.1 and 0.3 for enroute,

terminal and non-precision approach operations [1]. H-ARAIM ISM is intended to be

updated only when significant changes in the constellations occur like the inclusion of

new available GNSS. One of the most relevant features of the H-ARAIM architecture

is the acceptance of Pconst = 0 for GPS constellation [3]. V-ARAIM is a significant

upgrade with respect to Horizontal ARAIM in targeted operational levels and com-

mitments that users need from both CSP and ANSP. V-ARAIM aspires to provide

world-wide LPV-200 precision approach operations through the implementation of one

of the two proposed architectures: offline and online ARAIM.

In the offline architecture, ARAIM users fully relay on the performance commit-

ments published by CSPs. In the case of GPS, current operational commitments

regarding fault rate and nominal error bounds are set by the GPS Standard Position-

ing Service Performance Standard [46]. They are based on the level of assurance that

the CSP has over its operations and system deployment for both ground and space
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segments. Due to the long service history since the publication of these commitments

in 2008, they can be substantiated by measurements as done in [24]. This enables GPS

CSP to guarantee fault probabilities of Psat = 10−5 and Psat = 10−4 in accordance

with Design Assurance Level (DAL) C as specified by RTCA-DO-178C [47].

In the offline scenario, the ANSP takes a supervisory role by verifying the perfor-

mance commitments and elaborating the ISM. This dissertation proposes a method-

ology to monitor GNSSs performance that an ANSP can implement by using already

existing ground infrastructures. Chapters 3 through 7 detail the full process from

data collection and validation to error statistical analysis and overbounding theory,

ultimately leading to the design of an offline ISM.

Online ARAIM is a significant upgrade with respect to the offline architecture.

In this case, the ANSP takes a more active role in the performance commitments by

carrying out an independent real-time ODTS process for the GNSS constellations. In

this architecture the integrity assurance is now shared between CSP and ANSP. This

process requires a dedicated ground network that ANSP uses for implementing an

SBAS-like architecture with two chains, prediction and integrity. Conceptually, online

ARAIM is a simplified version of the SBAS structure with a relaxation of the TTA

of 6 seconds due to the onboard detection capability. Online ISM conveys orbit and

clock differential corrections that users apply along with the CSP navigation message.

Further reading regarding online architecture and operations can be consulted in [22].

2.5 Integrity Support Message for Offline ARAIM

ISM encapsulates integrity parameters describing measurement errors and faults that

the ARAIM airborne algorithm uses for performing integrity, accuracy, and continuity

checks. The determination of the ISM parameters is a duty of the ARAIM ground

segment which is performed by constellation monitoring throughout a global network

of stations. ISM design and content are fully dependent on the ARAIM architecture.

At the time of writing of this thesis, both the modernized GPS and Galileo constel-

lations plan to broadcast the ISM through CNAV and I/NAV messages, respectively.

This implies a direct data connection between ANSP and CSP which would need to

be almost real-time in the case of the online architecture (update rate around 10-12

min). One of the advantages of the offline architecture is that the ISM has a latency

of one month. This allows human interaction in the generation loop facilitating the

implementation of the bounding methodology proposed in Chapters 6 and 7.

ISM parameters can be divided into two sets of values: fault probabilities and

nominal error parameters. The first set describes the probability of a satellite, Psat,

and a constellation, Pconst, being faulted at a given time. The second set character-

izes the Signal-in-Space nominal error. Three parameters are broadcast within the

ISM for the users to overbound the nominal pseudorange error: User Range Accu-

racy (URA), also called Signal-in-Space Accuracy (SISA), User Range Error (URE),

also called Signal-in-Space Error (SISE), and nominal bias for integrity bound bnom.
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σURA/σSISA is a one-sigma estimate which indicates confidence in the integrity of satel-

lite ephemeris and clock prediction [46]. Correspondingly, σURE/σSISE is a one-sigma

expected ranging accuracy bound for payload nominal ephemeris and clock errors.

These three parameters are combined in the user MHSS onboard algorithm to per-

form an integrity bound. Chapter 7 proposed a new method based on multigaussian

bounding to provide tighter integrity bounds.
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3 GNSS Ground Infrastructure to Monitor
Constellation Performance

Ground monitoring is the core of constellation performance characterization. The

concept of being able to track a full constellation at any time is the key of the offline

ISM generation. For that purpose, a worldwide network of GNSS monitoring stations

is needed. We present a methodology to make use of the currently deployed Multi-

GNSS EXperiment (MGEX) ground infrastructure to illustrate the performance of a

future ANSP ground network.

This chapter is organized in three parts. The first one provides an introduction to

the MGEX monitoring network. The second part describes a methodology for validat-

ing MGEX products before they are employed in the ISM computation. It compares

precise orbits coming from three different MGEX analysis centers and contrasts the

level of agreement among them. The validated orbits are used along with code and

phase observations collected by a set of ground stations to simultaneously estimate

receiver biases and satellite offsets. The ultimate goal of this technique is to serve as

an integrity layer between the MGEX products and ISM generation. The final part

defines the computation of orbit and clock errors for GPS and Galileo satellites and

discusses different techniques to calculate the user equivalent range error.

3.1 The Multi-GNSS EXperiment

The deployment of new GNSS constellations fostered the expansion of worldwide

ground monitoring infrastructures in the past decade. Space agencies, universities,

and institutes from all over the globe comprise a volunteer organization which aims to

provide freely available GNSS data and products for the advancement of science, the

so-called International GNSS Service (IGS). In 2011, IGS initiated the Multi-GNSS

EXperiment (MGEX) which promoted the creation of a GNSS data service for Amer-

ican GPS, Russian GLONASS, European Galileo, Chinese BeiDou, Japanese QZSS,

and Indian NAVIC along with SBAS. MGEX is organized by Analysis Centers (ACs)

which are managed by individual institutions which compute their own GNSS products

and make them publicly accessible [48].

The work in this dissertation makes use of products developed primarily by three

European ACs: Centre National d’Études Spatiales (CNES), Center for Orbit De-

termination in Europe (CODE), and GeoForschungsZentrum (GFZ). In addition,

measurement data from Australian, Japanese and Canadian IGS stations are incor-

porated into this analysis. All the inputs utilized are publicly available through the
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IGS/MGEX online repository. More details regarding the generation of these products

and their use for SoL applications are discussed in the following sections.

3.2 Using MGEX Products as Input Files

As of September 2018, the current MGEX network has over 200 MFMC GNSS stations

deployed globally and managed by over 20 different institutions [49]. As depicted in

Figure 3.1, data collected from those stations are transferred to each MGEX analysis

center to compute their GNSS products. As pointed out in [48], each AC implements

its own algorithms and models (that might differ among institutions) and creates a

diverse catalog of products. They include precise orbit and clock files, code and phase

measurement data, broadcast navigation data, tropospheric delay, Total Electron Con-

tent (TEC) maps, and Differential Code Bias (DCB) files among others. The products

of interest for our Dual Frequency (DF) ARAIM offline monitor are described in the

following subsections.

Analysis Center

Collects code and phase 
measurements through global 

monitoring network

ODTS Model
Tropo Estimation
Iono Estimation

Solar Rad. Pressure
Crustal Dynamics

Earth Rotation 
Parameters

Ambiguity resolution

MGEX Products
• Precise orbit and clock reference (sp3)
• Broadcast navigation data (brdm)
• Station Code and Phase Obs (RINEX)
• Troposphere Zenith Path Delay (zpd)
• TEC Maps (ionex)
• Stations calibrated coordinates (SINEX)
• Station & Satellite precise clock bias (clk)
• DCB and IFB (dcb)
• Antenna Phase Center offsets (antex)

Figure 3.1: MGEX analysis center architecture and products

3.2.1 Precise Reference Orbit and Clocks

Precise Reference Orbit (PRO) datasets contain accurate satellite position and clock

information considered as true reference data. Each individual MGEX analysis center

applies dynamic models in the post-processing satellite orbit determination and they

accurately account for astrophysical effects such as solar radiation pressure, variations

in the gravitational field, and solar-lunar interaction, reaching a level of agreement

on GPS and Galileo orbit products among different centers between 5-10 cm (with

exception of outliers [50]). The presence of outliers (can reach meters) in this difference

represents an integrity concern for the performance characterization since there is an

ambiguous true satellite position. The ANSP must ensure that the reference products

employed in the ISM computation are validated.
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In order to legitimize the PRO, is proposed a comparison of satellite position from

three different ACs products: GFZ (gbm files), CODE (cod files), and CNES (grm

files). They elaborate daily sp3 files available in the MGEX online repository [51].

More details about files formatting, naming convention, and sampling rate are given

in [48].

While orbit models are concordant among ACs, the same does not apply to satellite

clock estimation. Each computation center needs to synchronize their stations by the

implicit or explicit establishment of a time reference and posterior alignment to GPS

time [52]. This can be done in many ways: having access to the true system time, zero

averaging among a set of stations, taking one golden station as reference, etc. Some

ACs determine the orbit solution in a first step, estimating the clock kinematically (no

dynamic model) afterwards, whereas other ACs estimate orbit and clock in a batch.

As a consequence, clock products cannot be directly compared among institutions

without removing the common constellation bias. Based on the previous statements

and due to the inherent variability of the onboard clock, we propose to validate MGEX

clock products by estimating our own receiver and satellite clock bias.

3.2.2 Broadcast Navigation Data

BroadCast Ephemeris (BCE) datasets contain 24 hours of satellite navigation message

in Receiver INdependent EXchange (RINEX) 3 Navigation format [53]. The multi-

GNSS brdm files generated by the Technical University of Munich (TUM)/German

Aerospace Center (DLR) contain broadcast navigation data for GPS, GLONASS,

Galileo, Beidou, QZSS, SBAS, and NAVIC and are available at [54]. Despite the great

effort invested in the generation of these files, inconsistencies in their compilation can

lead to fabricated satellite faults that were never present. Along this line, previous

work has exposed inconsistencies within brdm files which do not fully correspond to the

actual message broadcast by the satellites [27]. Discrepancies mainly affected Time

of Clock (ToC), Time of Transmission of the Message (TTOM), and Issue of Data

Clock (IODC). Two institutions have developed cleaning and validation algorithms

for GPS and Galileo BCE. Stanford University provides daily sugl files in RINEX

2.11 Navigation format in [55] for GPS satellites. Correspondingly, CNES supplies

clean Galileo RINEX 3 Navigation files through its online brdc repository [56]. The

performance analysis in this dissertation uses these two validated datasets.

3.2.3 Observation Files

The third dataset required to perform our analysis is the ranging measurements. This

methodology makes use of the code and phase pseudorange observations collected by a

set of 29 MGEX ground stations. Multi-GNSS observations are provided throughout

station specific daily RINEX 3 files [53] with a sampling rate of 30 seconds [57]. Galileo

data began to be recorded by MGEX stations in early 2013. Prior to that, IGS stations
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collected GPS only (or GPS and GLONASS) observations which provided RINEX 2.11

files.

3.2.4 Tropospheric Files

For correcting the Tropospheric effects within the ranging measurements, we need

to estimate the corresponding delay. Two possibilities arise: the use of precise post-

processed tropo solutions or the use of an atmospheric model (i.e., RTCA-MOPS-229D

[39]). The first solution has mm level accuracy whereas the atmospheric model might

present centimeter level uncertainty. Precise tropo data is provided in daily Solution

INdependent EXchange (SINEX) tropo files [58] computed by the US Naval Observa-

tory (USNO) and available through its online repository [59]. Each file provides Total

Troposphere Zenith Path Delay (Tzpd) for a large number of MGEX ground stations.

By default, our software attempts to ingest SINEX products as inputs, and in case they

are not available, the atmospheric model is applied with the corresponding inflation

of the ranging error uncertainty (Annex A details the error model assumptions).

3.2.5 ANTEX and SINEX files

According to IGS convention, orbit products apply to satellite Center of Mass (CoM)

whereas precise clock states are referred to satellite Antenna Phase Center (APC).

Both orbit and clock parameters included in the navigation message are also referred

to the satellite APC. As pointed out in [35], it is a very common error to believe

that there is a unique satellite APC. Unlike CoM, APC is an adopted point by

convention which does not necessarily coincide for precise products and navigation

data. Obviating this fact might create inconsistencies in the radial and clock error

components which translate into fictitious range error biases. The offsets between

CoM and APC are provided through the ANTenna EXchage (ANTEX) files [60] for

each individual GPS and Galileo satellite.

Because there are two defined APC, two sets of files will be needed for each con-

stellation. In the case of GPS satellites, the US National Geospatial-Intelligence

Agency (NGA) provides an estimation of the offsets used in the generation of the

broadcast ephemeris [61]. For Galileo broadcast navigation APC offset, more accu-

rate data are provided by the European GNSS Agency (GSA) in the Galileo Metadata

files [62]. Galileo and GPS APC offsets used in the generation of precise orbits and

clocks are included in the IGS ANTEX files. Note that through the last decade three

conventions have been used: IGS05, IGS08, and IGS14 [63]. Depending on the moni-

toring period, the applicable file must be properly employed.

In order to execute a constellation monitoring function, precise reference locations

of ground stations are needed. This information is provided in daily SINEX for IGS

stations in [51]. Table 3.1 summarizes the set of inputs used in the monitoring of both

GPS and Galileo constellations. All files utilized here are publicly available through

the different IGS analysis center repositories.
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Table 3.1: Summary of the input data used for the constellation monitoring for GPS and
Galileo

Input Data GPS Galileo

Precise Orbit

& Clock Data

CODE

cod.sp3 files [64]

GFZ

gmb.sp3 files [64]

Clean Broadcast

Ephemeris Data

Stanford University

sulg RINEX 2.11 files [55]

CNES

brdc RINEX 3 files [56]

Navigation Data

APC Offset Files
NGA Offset Data [61]

GSA Galileo

Satellite Metadata [62]

Precise Products

APC Offset Files

AIUB University of Bern

IGS ANTEX Files [63]

Station-specific Files

Code and Phase

Measurement Data
TUM/DLR RINEX 3 observation files [57]

Tropospheric*

Zenith Path Delay
US Naval Observatory SINEX Tropo files [59]

Reference Station

Precise Position

IGS combination of AC

global solutions (SINEX files[51])

*In case missing files use RTCA-MOPS-229D Tropospheric Model [39]

3.2.6 Ground Stations

As mentioned in the previos sections, the Multi-GNSS Experiment provides daily ob-

servation data collected through more than 200 ground stations. In this work, the

selected network of 29 stations guarantees a minimum Degree of Coverage (DOC) of

4 (an average DOC 6 is provided) which is the minimum number to perform reverse

positioning. Figure 3.2 illustrates the location of the selected stations and their cor-

responding affiliation. Station WTZR located in Wettzell (Germany) and managed

by the Bundesamt für Kartographie und Geodäsie (BKG) (German Federal Agency

for Cartography and Geodesy) is equipped with external hydrogen maser providing

an excellent clock stability for our synchronization purpose. Figure 3.3 indicates the

maximum and minimum number of simultaneously tracked GPS and Galileo satellites

per ground stations. Note that these figures of merit correspond to the constellations

status in July 2017. More detailed information about MGEX stations can be found

in [65].

Despite the efforts from different analysis centers, daily RINEX observation files

are not always complete or available. Given the large number of stations, it does

not represent an issue for our analysis since we can always replace unavailable stations

with other facilities without impacting the DOC. However, from an operational ANSP

point of view, the access to the data pipe from these stations must be guaranteed for

effective monitoring. Actually, a total of 29 stations were selected in order to avoid

degradation in the accuracy of the prediction in case of data outage within the online

repository.
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Selected ground stations from MGEX network
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Figure 3.2: Selected MGEX Stations for ARAIM ground network
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Figure 3.3: Number of simultaneously observed GPS and Galileo satellites from ground sta-
tions (as of July 2017)

3.3 Measurement Model

This section formalizes the observation model used in the computation of our own

satellite clock reference. The scope of this estimation is not to redo what MGEX

analysis centers already provide (years of experience endorse their quality) but to build

an integrity layer between those products and the ISM generation. Let us depart from

the IF code (2.11) and phase (2.12) observation equations derived in Chapter 2. As

discussed, code and phase biases are defined by the transfer function between satellite

and receiver and only if two receivers have the same configuration will they experience

the same bias for the same satellite. This is not the case of our monitoring network in

which at least four different types of multi-GNSS receivers are included. Technically,

a reference receiver must be used as bias-free and the rest of the network shall be

referred to that one. For the level of accuracy that we target in this work, we split

these biases in receiver and satellite contributions and assume that for a given epoch k,
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Bif,k can be absorbed in satellite clock bias δi,k and Bkj,f can be absorbed in receiver

clock bias τkj . The non-common component remains unmodeled and consequently

affects the accuracy of our clock estimation. In order to minimize the effect of the

residual bias, the code and phase observations are carefully selected to match the GPS

ionosphere-free linear combination of L1 and L2 P(Y)-code observations [43]. We will

revise this assumption in Section 3.5 and observe how it affects the clock results.

Let us call J the total number of receivers within the network tracking a total

number of nGPS GPS and nGAL Galileo satellites. For a given epoch k the goal is

estimating a total of 2 × J receiver clock biases and nGPS + nGAL satellite clock

biases. Since each GNSS runs on its own system time and given the linearity of the

equations, GPS and Galileo clock biases can be solved independently. This option is

computationally more efficient since both processes can be parallelized. Without loss

of generality, let us write the code and phase IF combinations (frequencies A and B)

based on (2.11) and (2.12) for a receiver j tracking a satellite i at epoch k

ρi,kj,IF = Ri,kj + c
[
τkj − δi,k

]
+ Td

i,k
j + νρ

i,k
j,AB (3.1)

ϕi,kj,IF = Ri,kj + c
[
τkj − δi,k

]
+ Td

i,k
j + ηji,AB + νϕ

i,k
j,AB. (3.2)

where the geometric range Ri,kj is defined as the norm of the difference between satel-

lite position xi,k at the time of emission and user position at the time of reception

xkj . Because in this approach satellite and user positions are known and the tropo-

spheric delay is either given by the SINEX Tropo files or modeled, there are only three

unknowns in the above equations; the two clock biases and the integer ambiguity. Rel-

ativistic effects must also be accounted for when modeling the pseudorange equations.

There are two components to be added to expressions (3.1) and (3.2); the relativis-

tic clock δi,krel and path ∆i,k
relpath,j corrections. The first term accounts for sinusoidal

variation in the apparent satellite clock and it is defined by GPS Specifications [45] as

δi,krel = −2
xi,kvi,k

c2
(3.3)

where vi,k is satellite velocity. Not accounting for this effect can lead to errors up to

23 ns in the range observations. The second relativistic term is significantly smaller

and accounts for variations in the gravitational field which deviates the signal path

from a straight line. The relativistic path correction is defined as [66]

∆i,k
relpath,j =

2µg
c2

ln

[
|xi,k|+|xkj |+Ri,kj
|xi,k|+|xkj |−R

i,k
j

]
(3.4)

where µg is Earth’s standard gravitational parameter. As pointed out in [66], the

relativistic path correction is in the order or magnitude of 1-2 cm. Including these

two terms in the above equations, IF code and phase observations can be rewritten as

ρi,kj,IF = Ri,kj + c
[
τkj − δi,k − δi,krel

]
+∆i,k

relpath,j + Td
i,k
j + νρ

i,k
j,AB (3.5)
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ϕi,kj,IF = Ri,kj + c
[
τkj − δi,k − δi,krel

]
+∆i,k

relpath,j + Td
i,k
j + ηij,AB + νϕ

i,k
j,AB. (3.6)

The ambiguity resolution is a broad topic within GNSS, in particular for Precise

Point Positioning (PPP) applications using carrier phase measurements. Precise

MGEX orbit products are generated by means of carrier phase positioning which re-

quires ambiguity fixing methods. As we mentioned before, this methodology does not

aim to redo what is already achieved by MGEX but to propose a validation method

for integrity purposes. In this work we treat the ambiguity as a nuisance parameter

that needs to be accounted for. The term ηij,AB is a linear combination of the two

ambiguities in frequencies A and B. As long as no cycle slips occur in one of the fre-

quencies, ηij,AB remains constant over the tracking period. Two options to deal with

the ambiguity term arise. The first one is estimating it in a batch filter imposing its

constant behavior over time. The second option, and the one followed in this chap-

ter, is to substitute it throughout the Ionosphere Free Geometry Free (IFGF) linear

combination

IFGFi,kj = ρi,kj,IF − ϕ
i,k
j,IF = νρ

i,k
j,AB − η

i
j,AB − νϕi,kj,AB. (3.7)

As long as no cycle slip occurs, the IFGF combination provides the constant value

of the integer ambiguity linear combination ηji,AB along with time-variant multipath

and noise. The geometry-free cycle slip detector defined in [67] is implemented in this

work. The 30 second measurement interval provides enough samples to average most

of the white noise over a pass. Assuming that E[νρ
i,k
j,AB] ≈ 0 and E[νϕ

i,k
j,AB] ≈ 0, the

mean value of the IFGF combination can be written as

E
[
IFGFi,kj

]
=< ρi,kj,IF − ϕ

i,k
j,IF >= −ηij,AB − εi,kj . (3.8)

Note that at the beginning of this section, the satellite-user specific bias contribution

was included in νρ
i,k
j,AB. The constant part of these terms (there are some variations

with elevation) will be averaged out in (3.8). The term εi,kj accounts for all the

remaining errors which are satellite-position dependent and not averaged out over

a pass and will be absorbed in νρ
i,k
j,AB. Introducing (3.8) in (3.6) we arrive to the

corrected pseudorange equation zi,kj as a linear function of the two clock states to

estimate, receiver bias τkj and satellite bias δi,k,

zi,kj = ϕi,kj,IF+ < ρi,kj,IF − ϕ
i,k
j,IF > −R

i,k
j − T

i,k
j + c · δi,krel −∆

i,k
relpath,j

= c · τkj − c · δi,k + νρ
i,k
j,AB.

(3.9)

3.3.1 Corrected Pseudorange Modeling

Four terms need to be computed in order to obtain corrected pseudorange zi,kj in

(3.9). The geometric range, tropospheric delay, and relativistic clock and path delay

components are a function of satellite-user position and velocity. Since receiver stations

are static, the only time variant component is due to satellite motion. As mentioned

in Section 3.2.1, GPS and Galileo satellite precise orbits are taken from validated



3.3 Measurement Model 33

CODE and GFZ sp3 files. Orbit states are given in discrete samples every 5 or 15

min which in general will not coincide with the time of emission in which we need the

satellite position. Consequently, interpolation of sp3 files is required. There are several

methods for orbit interpolation but according to [68], nine term Lagrange polynomials

are the most suitable ones for 15 minute spaced knots. For a position vector in Earth-

Centered Earth-Fixed (ECEF) xi, given a set of n + 1 knots in ts, the interpolating

polynomial of order n can be expressed as

xi(t) =

n∑
m=0

xisls(t) where ls(t) =

n∏
s=0,s6=m

t− ts
tm − ts

. (3.10)

In addition, as indicated in (3.3), the satellite velocity vector is also needed to compute

the relativistic clock component. Although the sp3 format supports satellite velocity

data, most of the MGEX PRO only contains position information so the velocity

data can be obtained by means of the first derivate of the Lagrange polynomial. The

velocity vector in ECEF vi can be computed as

vi(t) =

n∑
m=0

xisl
′
s(t) where l′s(t) =

n∑
q=0,q 6=m

1

t− tq

n∏
s=0,s6=m

t− ts
tm − ts

. (3.11)

A second aspect of the pseudorange modeling is the CoM to APC conversion.

Precise reference positions are referred to satellite CoM whereas range observations

are measured from satellite APC. The offset between these two points are provided

by the antenna files (Table 3.1) in satellite Body-Fixed (BF) frame. Due to satellite

motion, the conversion between BF and ECEF is time dependent since the rotation

matrix Ri,k
BF,ECEF changes for each epoch k due to satellite-earth Line-Of-Sight (LOS).

The APC position for a given satellite i in an epoch k xi,kAPC is obtained by the

transformation

xi,kAPC = xi,kCoM +Ri,k
BF,ECEF∆APCiBF (3.12)

where ∆APCiBF is the satellite APC offset vector provided within the ANTEX files.

The computation of the BF to ECEF frame transformation matrix is based on the

satellite attitude model detailed in Annex B. Satellite APC also needs to account for

the rotation of the ECEF frame during the signal travel time, the so-called Sagnac

effect. xi,kAPC has to be rotated around the z-axis by an angle of ωEγ where ωE is the

earth’s rotation rate and γ is the travel time defined in (2.1).

Regarding the tropospheric delay, SINEX Tropo files also include discrete values of

the Zenith Path Delay (ZPD) for each corresponding monitor station. A simple spline

interpolation can be applied to obtain the value at the desired instant t. As mentioned,

if the daily SINEX file is not available, the RTCA-MOPS-229D tropospheric model

provides a continuous function to compute T i,kj [39]. Either way, the ZPD needs to be

mapped through the slant factor M
(
θi,kj

)
Td
i,k
j = M

(
θi,kj

)
Td
zpd,k
j (3.13)
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where θi,kj is the satellite i elevation viewed from station j at epoch k. More details

regarding models for Td
zpd,k
j and M

(
θi,kj

)
are given in Annex A.

Expressions (3.10)-(3.13) provide continuous functions of the four terms Ri,kj , Td
i,k
j ,

δi,krel , and ∆i,k
j,rel,path needed to compute the corrected pseudoranges for the observation

model in (3.9).

3.3.2 Measurement Error Model

The final term νρ
i,k
j,AB in (3.9) accounts for four residual error contributions: orbit,

troposphere, multipath, and noise for both code and phase measurements. Given that

noise and multipath effects for code are typically two orders of magnitude larger than

for phase observations, it is legitimate to disregard the phase contribution. In that

case, based on the error model from (2.9), the IF code error term can be modeled as

a zero mean Gaussian distribution with standard deviation σiρ,j,AB

νρ
i,k
j,AB ∼ N

(
0,
(
σi,kρ,j,AB

)2)
(3.14)

where the four contributions are modeled as

(σiρ,j,AB)2 = (σiorb)2 + (σitrop,j)
2 +Kuser,AB

[
(σρ

i
noise,j,AB)2 + (σρ

i
mp,j,AB)2

]
. (3.15)

Note that code error variance is satellite-user specific and changes over time due to

satellite elevation. The orbit contribution is associated with the accuracy of the sp3

files and it is provided per satellite within the header of each AC’s daily file. The

residual troposphere term depends on how the delay has been computed. In the case

of SINEX tropo file, it represents the accuracy of the estimation which is also contained

in the precise SINEX products. In the case where it has been computed through a

tropospheric model, σitrop,j refers to the inaccuracy of that model (see Annex A). The

accuracy of the precise tropo reference is typically on the order of 2-5 mm whereas the

uncertainty of the model is on the order of 15 cm in the zenith direction. Noise and

multipath contributions are highly dependent on the receiver environment. Models

for ground and airborne receivers are given in Annex A.

3.3.3 Synchronization Methodology

Let us construct the system of equations gathering each of the measurements in (3.9) in

a given epoch k. For a number of J receivers monitoring a constellation of I satellites,
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the system of equations is

z11
...

zI1
...

z1J
...

zIJ


=



1 0 . . . 0 −1 0 . . . 0
...

...
...

...
...

...

1 0 . . . 0 0 0 . . . −1
...

...
...

...
...

...

0 0 . . . 1 −1 0 . . . 0
...

...
...

...
...

...

0 0 . . . 1 0 0 . . . −1



k

c ·



τ1
...

τJ
...

δ1

...

δJ



k

+



νρ
1
2

...

νρ
I
1

...

νρ
1
J

...

νρ
I
J



k

(3.16)

which can be written in a compact way as

zk = Hkxk + νk. (3.17)

The state vector xk contains the set of receiver and satellite clock biases (expressed in

meters). The determination of these biases can only be made in a differential way so a

time reference must be implicitly established, the so-called synchronization condition.

In fact, not including this condition will result in a rank deficient observation matrix

Hk and the impossibility of solving the system. As indicated in Section 3.2.6, station

WTZR equipped with an external hydrogen maser is taken as a reference (Figure 3.2).

The synchronization condition is τWTZR = 0. Note that other possibilities exist, for

example the establishment of the zero-mean condition within the constellation where

the synchronization equations would be
∑I
i=1 δ

i = 0.

In order to improve the accuracy of the estimation, the observation system of

equations is intentionally overdetermined. For a GPS scenario, there are typically 58-

60 total unknowns depending on the number of healthy GPS satellites and whether

or not the full 29 stations are operational during that period. Applying an elevation

mask of 5 degrees, depending on the site location, each receiver tracks an average of

6-8 simultaneous satellites (Figure 3.3). Typically a total of 180-200 measurements are

available to solve 58-60 unknowns making the system overdetermined. Thus, equations

(3.17) can be solved using a WLSE approach. An estimation of the clock bias states

x̂k can be computed as

x̂k =
(
HkTW kHk

)−1

HkTW kzk (3.18)

where W k is the weighting matrix. This is a diagonal matrix whose elements contain

the squared inverse of the corresponding σiρ,j,AB for each measurement in (3.16). The

covariance matrix of the estimation P k is defined as

P k =
(
HkTW kHk

)−1

. (3.19)

Each diagonal element of P k contains the estimation variance of each clock state.

This will be used in the next section to contrast our covariance model with the actual

accuracy of this methodology.
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3.4 Products Validation Algorithm Description

The proposed ANSP products validation scheme is foreseen in three steps: precise

orbits consistency check, network synchronization, and satellite data retrieval. Figure

3.4 depicts the data flow between the three repositories and the different modules.

This process can be independently applied to GPS and Galileo constellations allowing

the parallelization of the process for time optimization.
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Figure 3.4: ARAIM ground segment architecture

Step 1: Precise Orbit Validation

The algorithm performs a consistency check of the satellite orbits position among

the three cited ACs: CODE, GFZ, and CNES. Orbits are validated when the norm

of the difference between the analysis centers does not exceed a certain threshold,

∆i
orb =

∥∥∥xi,ACs
CoM − x

i,ACp

CoM

∥∥∥ ≤ Torb. (3.20)

In case of discrepancy a majority voting criteria is applied. Based on prior studies

which compared orbit products from different ACs ([48] and [52]), 40 cm seems a

reasonable value for the validation threshold, Torb. Validation can fail under two

circumstances: lack of precise reference orbit or discrepancy between ACs. For both

cases the software acts similarly - it excludes the corresponding satellite from the

synchronization process and retrieves its position and clock states once the stations

are synchronized.

Step 2: Synchronization Process

Once the precise orbits are validated, they are taken as input to build the system

of equations (3.17). As pointed out in the previous section, discrete values from sp3

files need to be interpolated and then transformed from satellite CoM to APC using

expressions (3.10) to (3.12). As in a typical PVT process, corrected pseudoranges zk

need to be recomputed at the end of each iteration of x̂k. Once the pseudoranges are

properly corrected, the new system of equations in (3.16) is built and the new solution
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x̂k is computed. Given the large measurement redundancy, it is possible to filter some

observations by a simple residual check after the computation of each solution x̂k by

rk = zk −Hkx̂k. (3.21)

In case certain measurements exhibit large residuals, they are excluded from the syn-

chronization process and a new solution is recomputed. There must be a compromise

between exclusion and observability - the system needs to guarantee that reverse po-

sitioning (one satellite seen by four stations) is possible. Out of the 180-200 original,

10-15 measurements are excluded which typically correspond to satellites with low

elevation. For a given epoch k, the loop would stop once the difference between two

consecutive iterations reaches the required level of numerical accuracy which is set to

10−7 m. It is also important to mention that for integrity purposes only satellites

with healthy signal status are included in this computation (note that MGEX AC

disregards satellite health status). Section 3.5 provides more details regarding GPS

and Galileo clock estimation results.

Step 3: Data Retrieval

Once the full synchronization is finished, the retrieval of missing data is carried

out. Let us remember that orbits were not validated when the difference between two

ACs was larger than Torb. Given that our network guarantees a minimum DOC of

four, reverse positioning is possible. Equation (3.9) can be written as a function of

the satellite position xj,k and clock bias δj,k

z̃i,kj = ϕi,kj,IF+ < ρi,kj,IF − ϕ
i,k
j,IF > −cτ

k
j − Tdi,kj + cδi,krel −∆

i,k
relpath,j

=
∣∣∣∣∣∣xkj − xi,k∣∣∣∣∣∣− cδi,k + ν̃ρ

i,k
j,AB

(3.22)

where ν̃ρ
i,k
j,AB is a modification the ranging errors model in (3.15) to include the un-

certainty of the receiver clock estimation. It is modeled as a zero-mean Gaussian

distribution with standard deviation

σ̃i,kρ,j,AB = (σksyn,j)
2 + (σi,ktrop,j)

2 +Kuser,AB

[
(σρ

i,k
noise,j,AB)2 + (σρ

i,k
mp,j,AB)2

]
(3.23)

where (σksyn,j)
2 is the estimation variance of the reviver clock τkj provided by the

diagonal elements of the synchronization covariance matrix P k in (3.19). As done for

user PVT, expression (3.23) can be linearized and a system of equations can be built.

For those satellites excluded in Step 1, the reference orbit and clock data retrieval can

be archived by applying WLSE to the system of equations

z̃k = H̃kx̃k + ν̃k. (3.24)

In this case vector, x̃k contains satellite position and clock states for epoch k and H̃k is

the observation matrix obtained by the linearization of the observation equation. Note

that satellite PVT follows the same principle as that of traditional user PVT. The

derivation of the linearized equations will not be included here and can be consulted

in Chapter 6 of [34].
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3.5 Methodology Performance

This validation methodology for reference products is meant to be applied to mod-

ernized GPS L1/L5 and Galileo E1/E5a measurements. At the time of writing of this

thesis, only 12 out of 31 operational GPS satellites broadcast L5 signals. In order to

use the full currently operational GPS space segment, this methodology is applied to

the legacy dual frequency L1/L2 combination. In the case of Galileo, as of September

2018, 17 operational satellites comprise the current space segment. Note that the

future ARAIM space segment (Section 2.4) requires fully deployed GPS and Galileo

constellations providing L1/L5 and E1/E5a DF measurements.

This section presents the results of this methodology for GPS and Galileo satellites

in two subsections. It first illustrates the performance of the orbit validation algorithm

from 28-29 February 2016. This period has been selected to exemplify the response

of the system when orbits cannot be validated in the case of discrepancy among ACs.

The second subsection shows the accuracy of the clock state estimation. For both

GPS and Galileo satellites, data from 1-7 July 2017 are used.

3.5.1 Precise Orbit Validation and Data Unavailability Assessment

Figure 3.5 shows the output of the orbit validation process for GPS satellites during

28-29 February 2016. As can be seen, the difference between CODE and GFZ lies well

below the 40 cm threshold for all GPS satellites except for SVN43/PRN13. Note that

the comparison between CODE and CNES have not been included since they reported

similar results. The system reported invalid reference orbits for SVN43 starting at

15:00:00 GPS time on February 28 2016. As seen in Figure 3.5, the disagreement

escalates during the next 24 hours reaching a maximum difference of 4.69 m. The fact

that ACs do not coincide in their estimation indicates a possible integrity issue.
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Figure 3.5: Comparison of GPS satellite precise position estimation CODE vs. GFZ showing
large discrepancy for SVN43/PRN13
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The algorithm would reject any non-validated orbit position and try to retrieve it in

Step 3. Let us analyze the availability of the RINEX observation. Figure 3.6 displays

the timeline of PRN13 measurements recorded by ground stations during the two day

period. As can be observed, SVN43 experienced an outage at 14:30:00 GPS time on

28 February. As mentioned in previous error studies like [2] and [26], orbit position

must be accompanied with clock references. In other words, in order to obtain a valid

SISRE, both orbit and clock reference data must be available. Looking at the clock

information contained in the sp3 files, clock products were available until 14:36:30

GPS time on 28 February. In theory, satellite orbit and clock error for SVN43 could

be computed until 14:36:30 GPS time and included in the SISRE distribution. Here is

where the true potential of this methodology resides; the employment of observations

allows for monitoring the validity of the products that are used to characterize the

constellation performance. If we computed orbit and clock errors based on products

availability, we would include over six minutes of fabricated data that users never got

to see.

As mentioned earlier in this chapter, ACs apply different orbital models for deter-

mining satellite position. These estimations can be extended even when no input data

are available with its consequent degradation as seen in Figure 3.5. If these six minutes

of fictitious error are included in the SVN43 range error analysis they would enlarge

the tails of the distribution having a detrimental impact in the range overbounding.

This aspect is further addressed in Chapter 7.

SVN43/PRN13 observation measurements recorded by ground stations and stored in RINEX files
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Figure 3.6: SVN43/PRN13 Signal-in-Space outage on February 2016

3.5.2 Network synchronization and accuracy of the estimation

Prior subsection addressed the algorithm’s response in case of discrepant orbit prod-

ucts among ACs. Although extremely relevant from an integrity perspective, it does

not entail a dense computational load. This subsection addresses the outputs of the

synchronization methodology and how the assumptions made in the observation model
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in Section 3.3 affect the accuracy of our products generation. In order to have good

Galileo coverage, the selected monitoring period is 1-7 July 2017 where 13 Galileo

satellites were operational. During this period, only 27 out of the selected 29 stations

recorded RINEX observation data thus still providing still good DOC to implement

this technique. A total of 20,160 epochs were analyzed for the 31 and 12 operational

GPS and Galileo satellites reporting a total of 1,169,280 clock states in GPS sytem

time and 806,400 in Galileo system time with a 30 s sampling interval. In order to

assess the accuracy of our estimation, clock biases for both GPS and Galileo satellites

are compared to the reference products provided by CNES and GFZ sp3 files. As

mentioned before, note that the comparison cannot be made without the removal of

the constellation mean for each epoch.

Figure 3.7a plots the time difference of our internally estimated GPS satellite clock

references and the ones produced by CNES. The maximum error observed for this

period is 86 cm for SVN69/PRN03 which is associated with an RMS difference of 38

cm. The upper plot in Figure 3.9a displays the RMS of the difference between our

own clock generation and CNES products. Except for four satellites, the rest show

RMS on the order of 20 cm or below. In fact the mean RMS of the difference across

constellation is 17 cm. These results are in line with the plots provided in [29] where

a batch filter approach is implemented to estimate satellite and receiver clock biases.

An analogous comparison is done with GFZ clock products in Figure 3.7c reporting

very similar results. In order to address the level of agreement between the two ACs,

Figure 3.7c presents the time series of the difference between CNES and GFZ products.

As can be seen in the lower plot of Figure 3.9a, our model is less accurate than the ones

implemented by MGEX ACs. As foreseen in the prior section, the simplification of

the observation model leads to larger inaccuracy in our solution but for our validation

goal it is sufficient. For an integrity purpose we can be certain that the GPS products

used by the ANSP for ISM computation are validated on the order of 20 cm. The half

side-real day sinusoidal behavior is also noticeable in the time series of the estimation

difference between CNES, GFZ, and our own clock states. As seen in Figures 3.7a,

3.7b, and 3.7c there is a harmonic component that repeats every 12 hours which

coincides with the orbital period of GPS satellites.

Let us now analyze the performance of the Galileo satellite clock estimation. Fig-

ures 3.8a and 3.8b plot the time series of the difference between our estimation and

CNES and GFZ clock products correspondingly. Although the largest difference is

83 cm for E26 (same order as for GPS), the RMS is almost half for Galileo satellites

than for GPS. As inferred from the top chart of Figure 3.9b, the mean of the RMS

difference across constellations is 10 cm. Note that exactly the same algorithm is

applied for the estimation of GPS and Galileo clock biases so a plausible reason for

the better accuracy of Galileo results can be the enhanced signal quality. The E1/E5a

linear combination has significantly better noise behavior than that L1/L2 combina-

tion leading to a more accurate estimation based on Galileo measurements. At the

same time, since we are not accounting for the receiver-dependent residual code bias,

the fact that Galileo signals present smaller DCB values than GPS also justifies the

better results [69].
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(a) Own vs. CNES

(b) Own vs. GFZ

(c) CNES vs. GFZ

Figure 3.7: Comparison between GPS satellite precise clock bias estimation: CNES, GFZ
and own products
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(a) Own vs. CNES

(b) Own vs. GFZ

(c) CNES vs. GFZ

Figure 3.8: Comparison between Galileo satellite precise clock bias estimation: CNES, GFZ
and own products
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(b) Estimation accuracy: Own, CNES and GFZ

Figure 3.9: Comparison between GPS and Galileo satellite precise clock bias estimation:
CNES, GFZ and own products

It is also interesting to mention the particular case of GSAT0206/E30 during 7

July 2017. As depicted by the cyan dots in Figure 3.8c, there is a relatively large dis-

agreement between the clock estimations from CNES and GFZ reaching a mismatch

up to 61 cm. As described in the prior Section 3.4, Step 1 validates precise orbits

by majority voting. Figure 3.10 presents the time series of the orbit validation pro-

cess for GSAT0206/E30 during 7 July 2017 comparing the products from the three

selected ACs. As can be observed, CODE and GFZ results agree down to 10 cm

with thise not being this the case for CNES orbits. Starting at 8:30:00 the norm of
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the three-dimensional difference between CNES and the other two ACs crosses the 40

cm threshold established in (3.20). By majority voting, CNES orbits are rejected and

CODE and GFZ are validated. Since the selected Galileo references are GFZ products

(Table 3.1) the algorithm did not raise a flag for our selected repository and legiti-

mately computed a clock solution. Unlike the case of PRN13 in the prior subsection,

there was no satellite outage or unhealthy flag so a clock solution must be computed.

Note that using CNES products for E30 during this day represents and integrity issue

since the true satellite position cannot be validated. This explains the discrepancy for

E30 between our estimation and CNES reference products on 7 July 2017 in Figure

3.8a. Contrarily this difference is not present in the comparison between GFZ and

our estimated clocks in Figure 3.8b. This particular example exposes the relevance of

the validation of the input products before they are used in the orbit and clock error

analysis. Ultimately, fabricated errors can lead to fictitious integrity events that were

never present in the real data.
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Figure 3.10: Time series of the norm of 3D satellite position difference for GSAT0206 / E30
during 07/07/2017 between CNES, GFZ and CODE products

Let us mention one last aspect regarding the covariance of our clock estimation

included in the second plot of Figures 3.9a and 3.9b for GPS and Galileo satellites,

respectively. The code measurement error models assumed in (3.15) are in fact pes-

simistic. It can be observed that the RMS of the difference is actually better than

the covariance of our estimation. For both Galileo and GPS the estimation standard

deviation is around 30 cm while the actual estimation error is below that value. In

other words, our methodology is more accurate than expected. Note that these values

are below the target tail overbounding σ which is on the order of 1.5-1.8 m as detailed

in Chapter 7. With this method we can guarantee the integrity of the precise reference

data utilized in the generation of the ISM to a 20-25 cm level.

To corroborate this last statement, Figure 3.11 plots the navigation clock error

computed by using our internally generated clock products versus GFZ products. It

can be seen that the assessment of the navigation clock error stands on the order of
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the 20 cm 1-σ difference for both GPS and Galileo constellations.

Figure 3.11: Broadcast satellite clock error for GPS and Galileo using own reference prod-
ucts vs. GFZ

3.6 Error Computation

Once the products have been validated, the algorithm can carry out satellite Signal-in-

Space Range Error (SISRE) computation based on orbit and clock errors as depicted

in Figure 3.4.

3.6.1 Satellite Orbit and Clock Error

Throughout this work, satellite orbit and clock errors are defined as the deviations

of the instantaneous satellite APC and clock provided in the BCE from the precise

position and satellite clock bias. BCE datasets are utilized to emulate user’s calcu-

lation of satellite position and clock bias based on orbital parameters contained in

the navigation message. In a post-process analysis, estimated satellite positions are

compared to the precise reference orbits. The resulting discordance between these two

inputs is the so-called satellite orbit and clock error vector.

As discussed through this chapter, although satellite positions provided in BCE

and PRO are expressed in the same coordinate system ECEF, they refer to two dif-

ferent points: precise orbit products provide the ECEF coordinates of satellite CoM

while broadcast ephemerides datasets are meant to supply satellite’s APC ECEF co-

ordinates along with the satellite bias estimation. Clock solutions provided in PRO

datasets are also referred to satellite APC. However, as discussed in [35], there is no



46 Chapter 3. GNSS Ground Infrastructure to Monitor Constellation Performance

reason to assume that both APCs (the one applied by the GNSS ground segment and

the one used by the MGEX network) are in fact the same point. In order to compare

broadcast and reference data, satellite position and clock bias need to be converted

to a common reference. For that purpose, two sets of satellite APC offsets need to be

used as reflected in Table 3.1, ∆APCBCE and ∆APCPRO. For a given satellite i at

epoch k , BCE position xi,k,BCE
APC,ECEF needs to be converted to CoM by

xi,k,BCE
CoM,ECEF = xi,k,BCE

APC,ECEF −R
i,k
BF,ECEF∆APCiBCE (3.25)

where the rotation matrix Ri,k
BF,ECEF is defined based on the satellite attitude model

described in Annex B and depicted in Figure 3.12.

Orbit

Earth

ex,BF

ey,BF

ez,BF

xsv
CoMOrthogonal to 

Sun

xsun
ECEF

Figure 3.12: Satellite Body Fixed frame determination as a function of Earth and Sun po-
sition

Then, satellite orbit error vector εi,korb,ECEF can be defined as

εi,korb,ECEF = xi,k,BCE
CoM,ECEF − x

i,k,PRO
CoM,ECEF. (3.26)

For illustrative purposes, it is typical to transform the ECEF error vector into

Radial, Along-Track, Cross-Track (RAC) frame. This transformation is depicted in

Figure 3.13 and the corresponding rotation matrixRi,k
ECEF,RAC is also defined in Annex

B. The orbit error can be converted to RAC frame by

εi,korb,RAC = Ri,k
ECEF,RACε

i,k
orb,ECEF. (3.27)

Analogously, satellite clock error needs to be referred to the common CoM point.

In this case, it is sufficient to take the nadir component of ∆APCBCE and ∆APCPRO

so the clock error can be defined as

ε̃i,kclk =
[
c δi,kBCE + ∆APCBCE,z

]
−
[
c δi,kPRO + ∆APCPRO,z

]
. (3.28)
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Because of the different realization of the reference time (different synchronization),

apparent clock error ε̃i,kclk needs to be corrected by removing the constellation mean for

each epoch k so that

εi,kclk = ε̃i,kclk −
1

I

I∑
i=1

ε̃i,kclk (3.29)

with being I the total number of satellites belonging to the corresponding constellation.

eC

eA eR

ey,BF

ex,BF

ez,BF

xsvCoM

Orbit
Earth

Figure 3.13: Satellite Radial, Along-Track and Cross-Track frame definition

3.6.2 SISRE Definition

ISM must include parameters to safely and tightly overbound satellite ranging errors.

Ultimately, users are interested in how orbit and clock errors project into their LOS.

Every user located at a point within the satellite’s coverage footprint possesses a

different LOS vector es and will consequently experience a different Instantaneous User

Range Error (IURE). There are three definitions of the range error: Global Average

SISREGA, Worst User Location SISREWUL, and Instantenoeus User Projection

SISREIUP . The first option is defined by the GPS Standard Positioning Service

Performance Standard (GPS-SPS-PS) as the average contribution over all the IURE

values of users located within a satellite’s visibility cone [46]. This does not serve our

integrity purpose since the averaged value would not cover the worst case.

The second option proposes a different interpretation of SISRE. For any given

satellite orbit error vector, instead of averaging, we define SISRE as the worst user

projection of the error within satellite’s footprint. In other words, it accounts for the

maximum absolute value of IURE. The determination of the WUL is originally three-

dimensional although due to the axial symmetry, it can be reduced to a 2D problem in

the worst case plane (W). For the following derivation, a spherical Earth is assumed.

Plane W is defined by the satellite orbit error vector εiorb,ECEF and radial unit

vector eR (pointing from the Earth’s center to satellite CoM). Note that any plane

which is not the worst case plane will contain a projection of the original orbit error
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εi,korb,ECEF with a consequent reduction of its norm. Let eV be a unit vector, contained

in W and orthogonal to eR so that {eR, eV } is an orthonormal basis of W. As shown

in Figure 3.14, W-cone section defines an arc of a circle on Earth’s surface where the

WUL should be contained.

The projection of the orbit error vector into the candidate worst user location’s

LOS can be parametrized with β. Each angle βi defines a LOS vector eis into which

εiECEF,orb is projected

IUREis,orb = eis
T
εiorb,ECEF (3.30)

where

eis = −cosβseR − sinβseV and βs ∈ [−ξ, ξ] . (3.31)

As represented in Figure 3.14 the semi-angle of the visibility cone ξ is unique for

each constellation and depends on the semi-major axis of the satellite orbit: ξGPS =

13.9◦ and ξGAL = 12.4◦. Satellite clock error εiclk equally influences all user range

measurements and its effect shall be subtracted in the final IURE computation as

follows

IUREis = IUREis,orb − εiclk. (3.32)

Finally, SISRE evaluation selects the worst case from the IUREis set,

SISREWUL
i = max(|IUREis|)sgn(IUREis). (3.33)

Note that for simplicity of notation, the epoch index k has been dropped and the

above expressions apply to a generic time t.

 

    
 

         
 

         
 

Figure 3.14: Illustration of the worst user location projection

The main difference between this last expression and the one obtained by averaging

is the preservation of the actual sign of IURE in SISRE (second term of the right-hand

part of (3.33)). An important aspect of this definition shall be pointed out. SISRE

distribution cannot present zero values given that the maximum IURE is taken for each

given orbit error. Unless satellite orbit and clock errors are numerically zero, there

will always be a non-zero IURE. As a consequence, SISRE will present a bimodal

distribution. In addition, the inherent definition of SISRE as the worst case IURE

makes it intrinsically conservative, but integrity bounds must apply for all the cases.
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In order to avoid the bimodality of SISREWUL, the third option projects satellite

orbit vector εiorb,ECEF over a grid of users located under the satellite’s footprint as

depicted in Figure 3.15. The user locations are based on a 642-vertexes icosahedron

in order to guarantee that the area between grid points remains constant. For each

user point s which sees the satellite i above a 5◦ elevation mask, the orbit component

of the range error SISREIUP
i
s,orb is defined as

SISREIUP
i
s,orb = eis

T
εiorb,ECEF. (3.34)

Unlike expression (3.30), the advantage of the above definition is that it preserves the

unimodality of the orbit error distribution. This is particularly convenient for range

overbounding (as Chapter 6 will point out) since one of the major assumptions is

that distributions are ‘Gaussian overboundable.’ Subtracting satellite clock error, the

range error can be written as

SISREIUP
i
s = SISREIUP

i
s,orb − εiclk. (3.35)

  
 

              
 

         
 

Figure 3.15: Illustration of SISRE projection over a grid of users

It is relevant to acknowledge that expression (3.33) reports one value per satellite

per epoch where as definition (3.35) reports several replicas of the same error providing

a better representation of the error over users. With an elevation mask of 5 degrees,

typically one satellite has 205-210 users under its visibility cone. This implies higher

granularity adding more samples to the error distribution but it does not affect the

number of effectively independent samples as Chapter 5 will discuss.





51

4 GPS and Galileo Service History

This chapter presents a quantitative characterization of nominal orbit and clock errors

across GPS and Galileo satellites. For each individual spacecraft, by comparing precise

orbits to validated broadcast ephemeris data introduced in Chapter 3, we compute

the corresponding satellite range error. These distributions are analyzed attending to

spacecraft diversity with the onboard clock being the driver of satellite’s performance.

The work here presented targets the characterization of the unfaulted error bounds

for GPS and Galileo meaning that the identified faulty events are listed but excluded

from this study. The first part of this chapter justifies the selection of the monitoring

period for GPS and Galileo constellations and the pertinent satellites to be included.

It also compares the different methods to compute SISRE introduced in Chapter 3

and their suitability for analyzing the distribution’s core and tail.

The second and third parts provide a thorough description of GPS and Galileo

constellation performance. The novelty introduced in this work is the analysis of orbit

and clock errors over time. Breaking service history down into monthly, biannual and

annual datasets let us address the changes in biases and standard deviations. Results

will reveal major differences between the stationary analysis (as in [70] and [2]) and

the time-dependent approach, revisiting the assumption of zero mean distributions

over a short time frame.

4.1 Time Frame and Monitored Satellites

The selection of the service period under analysis and the choice of satellites that will

be included in this study have been done with special care. Three factors are taken

into account when selecting the proper data sample from all the available service his-

tory: major updates in the Operational Control Segment (OCS) ground infrastructure,

publication of written performance commitments, and decommission of old satellites.

GPS was declared operational in 1995 and since then a series of enhancements

in both control and space segments have improved the constellation performance. In

particular, the addition of eleven NGA monitor stations by the end of 2006 provided

triple visibility to the ODTS process enhancing ranging accuracy [71]. The current

GPS commitments were published in 2008 within the GPS-SPS-PS [46]. For integrity

purposes, data prior to this declaration might not be representative of the current

and/or future constellation performance.

Unlike GPS, the European constellation has not reached its full Full Operational

Capability (FOC) yet. Since the large system upgrade implemented during February-



52 Chapter 4. GPS and Galileo Service History

March 2015 with a full-scale hardware and software reconfiguration, Galileo ranging

and positioning accuracy has dramatically increased. As shown in [25], the 1-σ SISRE

reduced over 50% between March 2015 and June 2016. The European Commission

declared Galileo Initial Services (GIS) on 15 December 2016. Although no commit-

ments are published at the time of writing this thesis, it seems more adequate to base

the performance characterization on service history after the GIS declaration.

With respect to decommissioned satellites, this work does not analyze orbit and

clock errors corresponding to satellites that were retired from duty before Decem-

ber 2017. Results will expose substantial differences among GPS blocks which will

reinforce the idea of only analyzing currently operational satellites to assess future

performance. On those grounds, only block IIR and IIF GPS satellites are included

in this study, discarding already decommissioned block IIA. For Galileo satellites,

as of June 2018, fourteen operational satellites are transmitting healthy SIS. Data

from satellites GSAT0201 and GSAT0202 inserted in a highly elliptical orbit are not

included in this study since they were never incorporated into the constellation. Ac-

cording to Galileo status in [72], in December 2017 GSAT0204 was retired from active

duty for constellation management purposes, however this particular satellite has been

kept in our analysis.

This work has been careful to keep track of SVN/PRN changes during the course of

this analysis. PRN/SVN information can be found in the Notice Advisory to Navstar

Users (NANU) files provided by the US Coast Guard Navigation Center [73]. In the

case of Galileo, although also taken into account, no PRN changes have been applied

in the current constellation history.

4.2 Nominal Performance Characterization

As described in Chapter 2, the ISM contains two sets of parameters; the ones that

model the nominal error bounds, σURA, σURE, and bnom and the ones that model

the a priori fault probabilities, Psat and Pconst. According to GPS-SPS-PS [46], a

satellite is considered to present a major fault if its average projected error over its

visibility cone is greater than 4.42 σURA. The goal of this thesis is the analysis of

the nominal error for providing efficient and safe overbounds which lead to better

ARAIM service availability. Although satellite fault detection and characterization

is an essential task to asses GNSS integrity, the identification of faulty events falls

outside the scope of this study. Exhaustive and documented work has been presented

by Walter in [2] where five major GPS faults were identified since 2008. The error

computation in this dissertation has consequently suppressed the samples coming from

those five corresponding periods listed in Table 4.1.

A methodology for the determination of fault probabilities for ARAIM was pre-

sented by Walter in [24]. The analyzed data indicated that the GPS commitments

have been met through the past decade and that in fact they were quite conservative

relative to the actual GPS operation. The lack of performance commitments (as of

September 2018) for the Galileo constellation makes the frontier between nominal and
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Table 4.1: Identified GPS fault events occurred between 2008 and 2017 (Taken from [2])

PRN SVN Date Cause

25 25 26 June 2009 Clock error

08 38 5 November 2009 Clock error

30 30 22 February 2010 Clock error

09 39 25 April 2010 Ephemeris error

19 59 17 June 2012 Ephemeris error

faulty operation diffuse. A recent publication by the European Space Agency (ESA)

has included a list of three faulty events for Galileo satellites since the declaration

of initial services [36]. This list has recently been updated for H-ARAIM by the

European Commission (EC) in [74]. These faulty events have been included in Table

4.2 with their corresponding justification. Attending to the nominality of the error

distribution and tail behavior, two additional events were observed in GSAT0204 (de-

commissioned) and GSAT0203. In both cases, an excessive clock error (ramp or step)

created an anomaly in the error distribution. Note that there is no official confirmation

via Notice Advisory to Galileo Users (NAGU) files or written statement of these two

errors. Since the scope in this dissertation is the study of the unfaulted error bounds,

we can safely exclude them until the institutional corroboration or invalidation.

Table 4.2: Identified Galileo fault events occurred between December 2016 and June 2018

PRN GSAT Date Cause

30* 0206 7 March 2017 SIS health flag

02*,

08, 12

0211,

0208, 0102
9-10 May 2017 Unspecified

All* All 14-15 May 2017
Navigation Message

not refreshed

26* 0203 6 June 2017
Incorrect SIS Health

during clock maintenance

22** 0204 2 August 2017
Clock Error

(not confirmed)

24* 0205 28 November 2017 Clock Error

11* 0101 25 December 2017 Clock Error

26 0203 17 April 2018
Clock Error

(not confirmed)

All* All 7 May 2018 Unspecified

*Events confirmed by European Commission in [74]

** Satellite removed from active service on 8 December 2017
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4.3 Ephemeris and Clock Results Representation

The scope of error characterization is to model a continuous random process x based

on a series of realizations measured in instants xk conforming a dataset X. In order

words, we are interested in modeling the error population through a series of error

samples collected in time. As defined in Chapter 3 of [75], the probability distribution

of a random variable x is a description of the probabilities associated with the possible

values of x. The statistical characterization of random error processes are presented

in this work in three different formats: Relative Frequency Histogram (RFH), Cumu-

lative Distribution Function (CDF), and tables of statistics. An RFH is a normalized

frequency histogram by the number of total samples. It provides a good estimation of

the population Probability Density Function (PDF). The CDF is a discrete integration

(sum) of the RFH by

F (x) = Pr (X ≤ x) =
∑
xi≤x

f(xi) where f(xi) =
Number of Samples in bin i

Total Number of Samples
. (4.1)

Further reading on random sampling and bin selection techniques can be found in

Chapter 6 of [75]. A peculiar type of CDF is applied in this dissertation; the so-

called Folded Cumulative Distribution Function (FCDF) or mountain plot [76]. This

technique folds the second half of the CDF plot by representing 1 − y for values of

X ∈ [mx,∞), with mx being the median of the distribution. Contrary to traditional

CDF curves, mountain plots ease the visualization of the tails of both sides of the

distribution as well as the evaluation of the distribution symmetry.

The estimated population mean µ̂x, standard deviation σ̂x, and Root Mean Square

(RMS) based on a given sample set are defined as

µ̂x = x̄ =
1

N

N∑
k=1

x(k) (4.2)

σ̂x =

√√√√ 1

N

N∑
k=1

(x(k)− x̄)2. (4.3)

RMS =

√√√√ 1

N

N∑
k=1

x(k)2. (4.4)

Note that through this chapter µ̂x, σ̂x, and RMS will be estimated for different error

data partitions based on monthly, biannually and annually datasets.

4.3.1 Mapping Ephemeris and Clock Errors into User Range

Section 3.6 introduced the different frames in which orbit error could be expressed.

ISM parameters are meant to provide bounds in the range domain for each satellite

measurement. These bounds must be safe for any user within the satellite’s footprint;
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that it is why the worst user location was defined in Figure 3.14. SISREWUL will

always conservatively account for the distribution tails at the expense of introducing

bimodality in the error distribution. A second range error projection technique was

described in Figure 3.15 where a given orbit error was projected into a grid of users

equally distributed over the satellite’s visibility cone. Here a third option to describe

satellite range error is introduced, the so-called Radial-Minus-Clock (RMC) distribu-

tion. As defined in Equation (3.27), satellite orbit error can be expressed in the RAC

frame where the radial direction is defined by the vector between Earth’s center and

satellite’s CoM (Figure 3.13). Depending on the location, the scaling factor of the

radial error into user’s LOS would range between 1 and cos ξ. Since cos ξ ' 0.98 for

both Galileo and GPS orbits, it seems clear that RMC error would be a good estimate

of the range error distribution.

In order to compare the three SISRE estimators, Figure 4.1 presents the time series

of the satellite range error for GSAT0208/E08 during January 2018. Note that both

RMC and SISREWUL include one value per epoch k whereas SISREIUP presents a

total of ∼ 210 values (one per user within a satellite’s footprint). In terms of error

representation, one could say that the more granularity, the better the true distribution

can be characterized. This statement is true as long as we acknowledge the fact that

samples are highly correlated and we account for it. Chapter 5 is fully dedicated

to understanding how correlation for orbit and clock error works. As expected, for

each epoch k, SISREWUL (black triangles) always takes the largest possible value of

the projection whereas RMC takes an intermediate value. Even more interesting is

the RFH and CDF plots included in Figure 4.2 for data collected between January

and June 2018. As introduced before, RFH clearly shows the bimodality and high

asymmetry of the SISREWUL distribution.

Figure 4.1: Time series for comparison of SISRE methods for January 2018 for GSAT0208
/ E08
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Figure 4.2: Relative Frequency Histogram and Folded CDF for comparison of SISRE meth-
ods for January-June 2018 for GSAT0208 / E08

As can be seen in the FCDF plot, RMC distribution perfectly fits the core of

the SISREIUP . In fact, Table 4.3 indicates that µ̂x, σ̂x, and RMS almost match

for both distributions. As expected, σ̂x is more conservative for SISREWUL where

given the bimodality, µ̂x is not a representative value. According to expression (3.30),

this bimodality is a consequence of the orbit projection since the clock error adds

linearly to all users. Let us name SISREWUL,orb to the orbit contribution so that

SISREWUL
i = SISREWUL,orb

i−εiclk. Both SISREWUL,orb and clock error statistics

are included in Table 4.3 for comparison.

Table 4.3: Statistics for comparison of SISRE methods for January-June 2018 for
GSAT0208/E08 (in cm)

Distribution µ̂x σ̂x RMS

SISREIUP -2.9 12.0 12.4

RMC -2.8 11.5 11.8

SISREWUL 6.3* 15.3 16.6

SISREWUL,orb 1.7* 13.6 13.7

Clock Error -3.4 11.4 12.0

*Mean values of bimodal distributions are not representative

In this Chapter we admit that SISREIUP is the best representation available of the

true distribution but due to the large amount of data that is handled in this analysis,

it becomes impractical to deal with SISREIUP . For 10 years of GPS data, we have a
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total of over 8 million data points for a SISREWUL distribution. Using SISREIUP for

characterizing service history would imply over 1.6 billion data points. Consequently,

the RMS of the SISREWUL distribution will be used to characterize constellation

nominal performance in this chapter. The other distribution, SISREIUP , will be

taken for the overbounding methodology in Chapter 6.

4.4 GPS Service History

This section presents the results of the GPS performance analysis carried out between

1/1/2008 and 12/31/2017 for LNAV ephemeris and clock data applied to the DF

L1/L2 combination. As discussed in Chapter 3, Table 3.1 summarizes the input data

utilized and Section 3.6 details how orbit and clock errors are computed. Apart from

the traditional methodology where all data are condensed in a unique set for the

full monitoring period, this section introduces a new way of partitioning the data:

we analyze the time-variant component of the error. This paves the ground for the

correlation analysis done in Chapter 5.

4.4.1 GPS Full Constellation Performance

A total of 31 GPS satellites have been analyzed during ten years reporting a total of

8,184,071 orbit and clock nominal error samples. Figure 4.3 includes the RFH and

FCDF plots merging all GPS samples in a single error distribution. SISREWUL bi-

modality again becomes clear in the RFH plot in Figure 4.3. It can also be observed

that the satellite along-track direction presents the largest error magnitude and dis-

persion. This trend repeats over all the analyzed satellites and it can be attributed to

poor observability of the ODTS equations in that direction. Cross-track ranks second

in error magnitude and dispersion. This error presents a peculiar half-sidereal day

periodicity (relevant for the error correlation analysis) which can be explained by the

harmonic component of the satellite’s equations of motion [77]. The radial direction

typically exhibits the smallest error magnitude and dispersion although as seen in the

previous section, its contribution plots almost directly into the range error. In order

to compare the performance among GPS blocks, Figure 4.4 includes the FCDF for

each error contribution. These data are further detailed in Table 4.4 where mean and

standard deviation are given for each individual RAC and clock component along with

RMS for SISREWUL,orb and SISREWUL,orb.

In order to compare the differences among blocks, it is important to remember that

precise orbit and clock accuracy stands between 3-4 cm for GPS. Over a long term

period of several years, orbit and clock error distributions are nearly zero mean. That

is reflected in both Figures 4.3 and 4.4 and Table 4.4 where the mean values of the

distributions are on the order of the reference truth orbit accuracy. Along-track error

is an exception to the previous statement which can be explained by the observability

issue mentioned above. Note that for the block categorization, SVN65 and SVN72

have been included in a separate group. These two block IIF satellites operate an
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onboard Cesium (Cs) clock whereas the the rest of the block IIF and IIR satellites

function with Rubidium (Rb) clocks.
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Figure 4.3: GPS orbit and clock error RFH and FCDF from 1/1/2008 to 12/31/2017
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Figure 4.4: GPS orbit error component at WUL and clock error FCDF from 1/1/2008 to
12/31/2017 by block type

Orbit errors are not significantly different among blocks. Radial, along-track, and

cross-track errors (and consequently SISREWUL,orb) show a similar performance for

blocks IIR-M and block IIF(Rb) with a marginal improvement for block IIR. However
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σ̂clk exhibits an enormous contrast among blocks which directly impacts the SISRE

RMS. Table 4.4 shows that σ̂IIR
clk ' σ̂IIR−M

clk � σ̂
IIF(Rb)
clk and σ̂

IIF(Cs)
clk � σ̂IIR

clk which

indicates that SISRE performance is driven by satellite clock error. The domineering

trend of the clock is also visible in the RMC error distribution where σ̂IIR
rmc ' σ̂IIR−M

rmc �
σ̂
IIF(Rb)
rmc . As can be extracted from Table 4.4, for blocks IIR, IIR-M, and IIF(Cs)

satellites, clock preeminence over radial is so pronounced that σ̂rmc w σ̂clk. In the

case of block IIF(Rb), as the clock performance improves, leverage is shared between

radial and clock error. This trend of the clock has also been pointed out in [26] and

[35].

Table 4.4: Statistics for orbit and clock errors by GPS satellite block (in cm)

Satellite Radial Along-Track Cross-Track SISRE Orb

Block µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ RMS

IIR(Rb) 0.4 12.3 -15.5 118.9 -0 48.6 40

IIR-M(Rb) 0.7 13.3 -9.8 129 -0 47.7 43

IIF(Rb) -0.6 19.9 -9.5 124.9 -0.1 40.2 46.6

IIF(Cs) -0.2 24.9 -11.6 138.4 -0.3 39.5 54

All 0.3 14.6 -12.7 123.6 -0.1 46.8 42.5

Satellite Clock Rad-Clock SISRE WUL Number of

Block µ̂ σ̂ µ̂ σ̂ RMS Samples

IIR(Rb) -0.3 53.7 0.7 56.4 75.9 4199065

IIR-M(Rb) -4.6 49.9 5.3 53.4 75.1 2385535

IIF(Rb) 8.3 28.3 -8.9 34.7 59.7 1335968

IIF(Cs) -1.3 110.2 1.1 113.3 137.6 263503

All -0.2 52.4 0.5 55.6 76.1 8184071

It is of particular interest analyzing the clock error performance of block IIF satel-

lites. Figure 4.5 presents the clock error FCDF for the 12 block IIF operational

satellites as of December 2017. Cesium-equipped SVN72 and SVN65 show distinctive

distributions (solid and dashed red lines) with respect to the Rb-equipped ones. As

pointed out in [78], Cesium clock satellites have a better long term stability but higher

noise level implying a less accurate prediction through the navigation message. As dis-

cussed in [26], block IIF(Cs) satellites present σ̂
IIF(Cs)
clk ∼ 110 cm which is comparable

to the 1996-launched block IIA SVN40 that is also equipped with a Cesium clock.

However, due to its stability, error distributions show a reliable Gaussian behavior.

For block IIF(Rb) satellites SVN62 and SVN63, distribution cores are significantly

narrower but large tails appear. Section 4.4.3 indicates that many of these large val-

ues occur during the first weeks of operation. Chapter 5 will show that the onboard

clock type is crucial in the error correlation study and will be used in the time between

effective independent samples.
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Figure 4.5: GPS clock error FCDF from 1/1/2008 to 12/31/2017 for Block IIF satellites

4.4.2 GPS Stationarity Analysis

The characterization of satellite orbit and clock errors by merging all the service history

data (as done in the previous section) does not provide sufficient information about

the behavior of the error in a short-term frame. This work revisits the stationarity

assumption and addresses the evolution of orbit and clock error biases and standard

deviations over time. Satellite’s service history is divided in monthly, biannual and

yearly datasets. For each GPS satellite, Tables 4.6, 4.7 and 4.8 compare the two

approaches: stationarity versus time-dependence. The columns of each table respec-

tively show maximum values of mean and standard deviation reached in a monthly,

biannually and yearly error analysis. Table 4.6 includes the mean values µ̂m , µ̂b, and

µ̂y for RAC, clock and RMC distributions for each timely dataset and compares it to

values obtained by merging all available service history data µ̂all. Analogously Table

4.7 includes the corresponding σ̂ . Finally Table 4.8 includes the maximum RMS values

in a monthly, biannual and yearly basis for both SISREWUL,orb and SISREWUL.

In order to analyze the time-variant component of the error, let us introduce the

waterfall diagrams. They are three-dimensional plots which concatenate each FCDF

for every individual dataset. For illustrative purposes, SVN67/PRN06 has been taken

as example. In order to separately study the behavior of orbit and clock components

over time, Figures 4.6 through 4.8 include the waterfall diagrams for SISREWUL,orb

and clock error for monthly, biannual and yearly datasets.
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Figure 4.6: Monthly waterfall Folded CDF for SVN67/PRN06 orbit and clock errors (Rb)
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Figure 4.7: Biannual waterfall Folded CDF for SVN67/PRN06 orbit and clock errors (Rb)

10-4

Jan-2017

Jan-2016

10-3

Jan-2015

O
bs

er
ve

d 
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty

4

10-2

32

Error [m]

Jan-2014
10-1

Annual Waterfall Plot - Folded CDF
SVN67 / PRN06 Orbit error component

10-1

-2-3-4

100

10-4

Jan-2017

Jan-2016

10-3

Jan-2015

O
bs

er
ve

d 
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty

4

10-2

32

Error [m]

Jan-2014
10-1

Annual Waterfall Plot - Folded CDF
SVN67 / PRN06 Clock error component

10-1

-2-3-4

100

Figure 4.8: Annual waterfall Folded CDF for SVN67/PRN06 orbit and clock errors (Rb)
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As can be inferred from the monthly waterfall diagrams in Figure 4.6, clock er-

ror mean tends to be more erratic than the orbit. This is a characteristic typically

observed in all GPS satellites; orbits predictions tend to be more accurate than clock

predictions themselves given the inherent lack of robustness of atomic clock models.

As a consequence, clock errors are more inclined to show larger means over time. In

general it can be stated that range errors are not zero mean in a short-term frame. As

the observation period increases up to six months, error distributions tend to homog-

enize. In the case of clock error, mean values oscillate between 4-5 times the reference

truth accuracy (as seen in Table 4.6, µ̂SVN67
clk,b =20 cm), still too large to be considered

negligible. However, by the time datasets increase to a year period (Figure 4.8), statis-

tics are close to the stationary case when all the available data is merged together.

By looking at Tables 4.6 and 4.7, one can realize that in general µ̂m > µ̂q � µ̂y ' µ̂all

and σ̂m > σ̂b � σ̂y ' σ̂all where µ̂all is on the order of magnitude of the precise orbit

accuracy.

In order to analyze the temporal evolution of the range error mean, Figure 4.9

includes the monthly range error mean value for each GPS satellite from January 2008

to December 2017. The upper plot represents the bias of the range error distribution

for each individual monthly dataset whereas the lower plot represents the cumulative

mean value using a sliding window. As can be observed, on a monthly basis, range

error distributions are not zero-mean and some satellites even show half meter biases

(corroborated by Walter in [23]). Particularly eye-catching are the cases of SVN63

and SVN65 where biases over 80 cm are observed. The common denominator of these

large values is that they occurred right at the beginning of satellite operation. This

abnormal behavior has been named the initialization period which is further analyzed

in Section 4.4.3.
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Figure 4.9: Monthly mean values of GPS satellite range errors

Analogously, Figure 4.9 presents the monthly RMS value for each GPS satellite
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from January 2008 to December 2017. As observed for distribution means, RMS

and standard deviation values undergo large variations on a monthly basis and a

stationary behavior cannot be assumed. Again, large values are displayed by some

satellites during their first months of operation.
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Figure 4.10: Monthly RMS values of GPS satellite range errors

4.4.3 Initialization Period

We define the satellite initialization as the period during the first weeks of operation

in which an abnormal behavior is exhibited (as introduced by Figures 4.9 and 4.10).

Note that during this period GPS SIS status is set to healthy within the navigation

message. Let us analyze the time series of SVN63/PRN01 satellite clock error between

October and December 2011, right after the SIS was first declared healthy. Figure 4.11

shows how clock error presents unusual ramps during its first two weeks of operation.

Note that these ramps reset with the application of a new navigation dataset. Judging

from the shape of the error, the ground segment was having issues in estimating the

linear drift of the true clock behavior. This ended on 2 November 2011 when the clock

error reduced over 60%. The time series of the clock error normalized by broadcast

URA is also included. As can be seen, the transmitted URA was not increased to

account for this effect.

Similar to PRN63 case, Figure 4.12 plots the clock error time series for SVN64

/ PRN30. Again, anomalously large errors are showed in the first two months of

operations. This initialization period also creates big errors in the first weeks of

operations for SVN48, SVN50, SVN57, SVN62, SVN68, SVN69, SVN70, SVN71, and

SVN72. Given this typical behavior, it does not seem irrational to wait a couple

months until new satellites are incorporated within the ISM for ARAIM users.
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Figure 4.11: GPS SVN63 / PRN01 absolute and normalized clock error time series from
10/14/2011 to 12/13/2011
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Figure 4.12: GPS SVN64 / PRN30 absolute and normalized clock error time series from
05/31/2014 to 07/30/2014

4.4.4 Rubidium vs Cesium Onboard Clocks

Results presented through this chapter have shown that error performance is driven

by the onboard clock type. Satellites equipped with Cs clocks show significantly larger

error magnitude than the ones operating Rb clocks. As seen in Table 4.4, block IIF(Cs)

satellites show an error RMS of 138 cm whereas IIF(Rb) satellites have an error RMS

half that value. However, the differences between Cs and Rb do not only attend to

error magnitude but also to time variability. Figures 4.13-4.15 present the monthly,

biannual and yearly waterfall diagrams for SNV65 / PRN24. One can see that already

on a monthly basis both clock and orbit contributions stay almost immutable. In fact,

a quasi Gaussian distribution is shown for each individual dataset.
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Figure 4.13: Monthly waterfall Folded CDF for SVN65/PRN24 orbit and clock errors (Cs)
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Figure 4.14: Monthly waterfall Folded CDF for SVN65/PRN24 orbit and clock errors (Cs)
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Figure 4.15: Monthly waterfall Folded CDF for SVN65/PRN24 orbit and clock errors (Cs)
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The fact that over short periods an error distribution shows variability which tends

to dissipate as more data are incorporated suggests data correlation. We can already

anticipate that the fact that Cs-equipped satellites show less time variation than Rb-

equipped spacecraft indicates that correlation is more dominant in the second ones.

Chapter 5 formalizes these observations and derives a methodology to calculate the

number of effectively independent samples.

4.5 Galileo Service History

From the five Open Services that the Galileo system offers [79], this work focuses on

the Dual Frequency E1/E5a since it is the one used by civil aviation and consequently

by ARAIM users. This section evaluates the performance of Galileo FNAV ephemeris

and clock error since the declaration of initial services on 15 December 2016 until June

2018. One major difference between Galileo and GPS performance monitoring is the

sampling rate. In the case of GPS, taking samples every 15 minutes is sufficient since

the navigation message is typically refreshed every 2 hours. However, Galileo satellites

send new data packages every 8-12 minutes. Having a 15 minute sampling interval

might imply overlooking certain FNAV datasets thus jeopardizing the integrity of the

study. As a consequence, a five minute sampling interval is selected for orbit and clock

monitoring. As discussed at the beginning of this chapter, having more samples does

not mean a deeper probability coverage. Table 3.1 summarizes the input data utilized

and Section 3.6 details how orbit and clock error is computed. A similar approach to

the one used in the GPS analysis is followed here: full constellation performance and

stationarity analysis.

4.5.1 Galileo Full Constellation Performance

A total of 15 Galileo satellites have been analyzed during 19 months reporting a total

of 2,092,785 orbit and clock nominal error samples (GSAT0204 was decommissioned

in December 2017). Note that the anomalous events listed in Table 4.2 have been

excluded from the nominal characterization. Figure 4.16 includes RFH and FCDF

plots when merging all Galileo samples in a single error distribution. Instead of clas-

sifying Galileo satellites based on In Orbit Validation (IOV) and FOC blocks, we opt

for clustering them by clock type in Table 4.5: Passive Hydrogen Maser (PHM) and

Rubidium Atomic Frequency Standard (RAFS) clocks.

The qualitative distribution of RAC errors follows a similar trend to GPS with

σ̂aln > σ̂crs > σ̂rad. It is also observed that clock error dominates the RMC distribution

σ̂rmc ' σ̂clk. Unlike GPS, no distinctive behavior can be detected base on clock type.

However it can be seen that orbits are significantly more accurate for Galileo. In

particular, SISREWUL,orb for Galileo shows an RMS of 22 cm whereas it was 42 cm

in the GPS case. Even for the newest block IIF(Rb) satellites, Galileo presents a 50%

reduction with respect to GPS orbit errors. In addition, comparing Tables 4.4 and 4.5

it can be inferred that nominal Galileo clock errors present a 40% smaller σ̂clk than



4.5 Galileo Service History 67

GPS’ newest IIF(Rb) satellites. Based on data after the initial service declaration, it

can be stated that Galileo nominal ranging accuracy almost doubles GPS.

Table 4.5: Statistics for orbit and clock errors by Galileo satellite block (in cm)

Satellite Radial Along-Track Cross-Track SISRE Orb

Block µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ RMS

PHM 2.1 16.9 -5.6 34.5 -1.7 19.2 23.5

RAFS 0.5 15.7 -6.5 34.7 0.9 19.1 22.1

All 0.7 15.8 -6.4 34.7 0.6 19.2 22.3

Satellite Clock Rad-Clock SISRE WUL Number of

Block µ̂ σ̂ µ̂ σ̂ RMS Samples

PHM 2.4 19.1 -0.3 19 37.2 258301

RAFS 0.1 17.1 0.4 17.4 34.1 1834490

All 0.3 17.4 0.3 17.6 34.5 2092791

In order to individually compare the performance of the 15 operational Galileo

satellites, Figure 4.17 includes the FCDF plots for orbit and clock errors. The left

chart shows that no significant differences in the orbit error can be spotted among

Galileo satellites. In the case of clock errors, although σ̂clk are very similar over the

full constellation, tails are not. It can be seen that clock error distribution tails present

more diversity among satellites than in case of orbit errors. Tables included in Section

4.6 provide orbit and clock statistics for each individual satellite.
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Figure 4.16: Galileo orbit and clock error RFH and FCDF from 12/15/2016 to 06/30/2018
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Figure 4.17: Galileo orbit error component at WUL and clock error FCDF from 1/1/2008
to 12/15/2016 to 06/30/2018

4.5.2 Galileo Stationarity Analysis

As was done in the GPS case, each satellite’s service history is divided into monthly,

biannual and yearly datasets. For each Galileo satellite, Tables 4.9, 4.10, and 4.11

compare the two approaches: stationarity versus time-dependence. The columns of

each table respectively show maximum values of mean and standard deviation reached

in a monthly, biannual and yearly error analysis. Table 4.6 presents the means value

µ̂m, µ̂b, and µ̂y for RAC, clock and RMC distributions for each timed dataset and

compares it to values obtained by merging all available service history data µ̂all. Anal-

ogously Table 4.7 includes the corresponding σ̂ . Finally, Table 4.11 shows the max-

imum RMS values on a monthly, biannual and yearly basis for both SISREWUL,orb

and SISREWUL.

To illustrate the temporal variation of orbit and clock components, GSAT0205 /

E24 is taken as an example. Figures 4.18 to 4.20 include the waterfall diagrams for

SISREWUL,orb and clock error for monthly, biannual and yearly datasets. FCDF

distributions do not vary as much as they do for GPS on a monthly basis. In fact,

besides the flat tail occurring in April 2017, the error distribution does not vary

significantly among monthly datasets. This can be corroborated by inspecting column

σ̂clk,m in Table 4.7 where (for most of the Galileo satellites) the variations are smaller

than in the GPS case. Similar results can be extracted by comparing RMSwul,m for

GPS and Galileo in the corresponding Tables 4.8 and 4.11. It can be seen that monthly

variations are smaller for Galileo than for GPS satellites.
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Figure 4.18: Monthly waterfall Folded CDF for GSAT0205/E24 orbit and clock errors
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Figure 4.19: Biannual waterfall Folded CDF for GSAT0205/E24 orbit and clock errors
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Figure 4.20: Annual waterfall Folded CDF for GSAT0205/E24 orbit and clock errors
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In order to analyze the temporal evolution of the range error mean, as was done for

GPS data, Figure 4.21 includes the monthly average value for each GPS satellite from

December 2016 to June 2018. The upper plot represents the bias of the range error

distribution for each individual monthly dataset whereas the lower plot represents

the cumulative mean value using a sliding window. During the first months of 2018 a

certain bias is observed in the range error for GSAT0203. A similar effect was reported

by Galluzzo in [36] where a 20 cm bias in the radial component is exposed. Let us

remember that according to Section 3.6.1 a permanent bias in the range error can be

attributed to a misalignment in the APCs (BCE and/or PRO). Due to the ongoing

deployment of the Galileo ground segment, the bias observed can be a consequence

of the misuse of the APC offset linear combination between BCE and PRO. Further

confirmation from the Galileo operator regarding the APC linear combination to which

FNAV ephemeris and clock data are referred is expected. In any case, the biases are

small compared to the ones observed on a monthly basis for GPS and they stay well

below 12 cm.
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Figure 4.21: Monthly mean values of Galileo satellite range errors

Regarding monthly range errors RMS, the variations over time are less remarkable

than in the GPS case. With the exception of January and March 2018 (confirmed in

the Galileo quarterly performance reports [80]), the variations in RMS do not exceed

8-10 cm. Comparing Figures 4.10 and 4.22 it becomes clear that variations in GPS

monthly datasets are more pronounced than in the case of Galileo. Since we presumed

that correlation was behind the monthly variations, the fact that Galileo nominal error

is more steady than GPS implies that the range error is less correlated. As mentioned,

Chapter 5 mathematically demonstrates this last statement. Unlike in the case of GPS,

no particularly abnormal behavior has been observed after the inclusion of new Galileo

satellites. It is fair to admit that because Galileo ground and space segment have not
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yet reached their FOC, it would not be surprising to encounter abnormal error events

due to the tunning of the constellation.
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Figure 4.22: Monthly RMS values of Galileo satellite range errors

4.6 Individual Satellite Analysis

This section is dedicated to a detailed description of orbit and clock errors for each

individual GPS and Galileo satellite. Each of the following tables combines mean,

standard deviation, and RMS values for monthly, biannual, yearly and full datasets

for each of the radial (rad), along-track (aln), cross-track (crs), clock (clk), RMC,

SISREWUL,orb, and SISREWUL distributions. Let us take the following example

as an illustration on how to read the tables. For a given satellite, µ̂rad,m reports

the maximum observed mean value for radial error (either positive or negative) on a

monthly basis. Similarly, σ̂rad,m denotes the largest standard deviation for radial error

on a monthly basis. Subindexes b and y correspond to the maximum observed values

on a biannual and annual basis. Finally, subindex ‘all’ corresponds to values obtained

when the full monitoring period is combined in a single dataset. All values included

in the following tables are expressed in cm.
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Table 4.6: GPS satellite orbit and clock error means (in cm): monthly, biannual and yearly datasets analysis

Satellite Block Radial Along-Track Cross-Track Clock Rad-Clock

SVN (Clock) µ̂rad,m µ̂rad,b µ̂rad,y µ̂rad,all µ̂aln,m µ̂aln,b µ̂aln,y µ̂aln,all µ̂crs,m µ̂crs,b µ̂crs,y µ̂crs,all µ̂clk,m µ̂clk,b µ̂clk,y µ̂clk,all µ̂rmc,m µ̂rmc,b µ̂rmc,y µ̂rmc,all

SVN41 IIR(Rb) -5.3 3.6 3.6 -1.7 -136.1 -73.8 -73.8 -12.6 10.3 10.3 10.3 0.9 -21.6 12.9 12.9 1.7 22.5 -11.4 -9.3 -3.4

SVN43 IIR(Rb) 6.5 1.3 1.1 0.8 -121.5 -55 -51.4 -36.5 6.3 3.3 3.3 0.5 26.2 9.6 -4 -0.3 -25.8 -8.9 5.1 1.1

SVN44 IIR(Rb) 13.3 4.7 -1.5 -0.3 -193.3 -66.9 20.6 3 2.9 2.6 1.2 0.4 39.8 18.9 5.2 0.4 -26.5 -14.2 -4.5 -0.6

SVN45 IIR(Rb) 6.4 -2.5 -1.4 -1.3 -95.7 -35 -7.2 -5.8 17.5 4.7 0.8 0.5 -22.5 -9.8 6.6 0.8 27.5 9.2 -7.7 -2.1

SVN46 IIR(Rb) 19.9 19.9 19.9 -0.6 -237.4 -237.4 -237.4 -4.9 12.7 12.7 12.7 0.6 60.2 32 22 2.6 -58.8 -34.3 27.5 -3.2

SVN47 IIR(Rb) -6.7 -1.2 -1.2 -0.5 60.7 14.1 12.5 -0.3 -12.6 -5.1 -5.1 -0.6 30.1 10.3 10.3 -0.2 -36.7 -11.5 -11.5 -0.4

SVN48 IIR-M(Rb) 12.5 2.4 2.1 0.5 -178.4 -51.4 -50.3 -19.6 -31.1 -31.1 -3.4 -0.7 25.9 14.9 4.8 0.5 -28.9 -13.6 -5.4 0

SVN50 IIR-M(Rb) 9 9 0.8 0.4 -149.2 -149.2 -21.6 -11.3 3.8 -1.6 1.2 0.2 22.1 -9.7 -7.6 0.7 -25.6 -10.2 8 -0.3

SVN51 IIR(Rb) -35.7 -3.1 -1.5 -0.6 128.7 53.2 -31.9 0 -16 -4.1 -4.1 -0.6 51.3 21.3 15 -0 -80.6 -24.4 -16.5 -0.6

SVN52 IIR-M(Rb) -4.3 -1.6 -1 -0.5 95.7 39.1 26.7 22.2 -12.3 -1.2 -0.7 -0.3 30.2 7 3.2 0.7 -34.4 -8.5 -4.2 -1.2

SVN53 IIR-M(Rb) -6.2 -4.1 -1.8 -0.8 -127.7 -81.8 -68.7 -32.4 -8.3 2.6 2.6 -0.1 80.7 25.4 25.4 0.3 -83 -27.1 -27.1 -1.1

SVN54 IIR(Rb) -9.5 -2.7 -2.7 -1.2 138.3 -37.6 -33.4 -10 7.1 3.1 3.1 -0.3 30 13.8 13.8 1.2 -29 -16.5 -16.5 -2.4

SVN55 IIR-M(Rb) 7 3.7 2 0.3 -75.3 -41.1 -17.5 -4.1 14.2 4.8 0.7 0.2 79.2 -11.4 -7.4 -0.3 -84.3 15.1 9.4 0.6

SVN56 IIR(Rb) 7.3 5.2 2.9 1.6 -96.6 -54.6 -33.3 -16.6 13.1 3.2 0.7 0.3 19.8 13.3 8.6 0.4 -18.9 -12.2 6.1 1.2

SVN57 IIR-M(Rb) 7.6 3 2.3 0.5 -91.4 -70.4 -62.9 -24 -14.1 4.4 -0.9 -0.3 -25.9 -16.4 -14.5 0.9 28.6 17.9 16.7 -0.5

SVN58 IIR-M(Rb) 6.8 3.1 2.7 0.9 -134 -54.4 -40.4 -8.5 -8 -3.8 -0.6 -0.3 28.9 18.1 -11.8 -0.5 -30.3 -15.6 12 1.4

SVN59 IIR(Rb) 9.5 7.1 4.8 1.1 190.7 -67.8 -42.8 -0.1 -11.9 -4.9 -0.6 -0.2 48.4 -17.5 -11.7 -1.6 -51.1 24.6 16.5 2.7

SVN60 IIR(Rb) 6.2 2.8 2.5 0.3 -96 -43.1 -25.3 -14.3 6.9 3.7 0.7 0.4 -30.2 -18.9 -15.5 0.1 32.3 21.5 18 0.2

SVN61 IIR(Rb) 12.3 4.1 2.9 0.4 -158.9 -69.6 -57.7 -21.6 12.9 -4.4 -1 -0.4 -31.8 -15 -9.9 -1.3 44.1 19.1 12.5 1.7

SVN62 IIF(Rb) 7 3.5 1.8 0.1 -114.7 -49.7 -42 -4.3 -12.2 3.8 0.6 0.1 27.6 8.9 6.1 0.4 -29.2 -9.7 -5.5 -0.3

SVN63 IIF(Rb) 18.9 5.6 3.7 0.5 -193 -76.4 -50 -7.2 13.5 4.9 0.9 0.2 -46.1 -20 -12.7 -0.3 55.6 25.6 16.4 0.8

SVN64 IIF(Rb) -8.1 3.9 3.3 0.7 136.6 -48 -30.9 -4.7 7.6 -4.1 0.6 0.2 24.5 5.3 4.1 0.5 -23.2 -6.2 -4.6 0.3

SVN65 IIF(Cs) 6.3 3.1 2.3 0.6 -124.9 -65.9 -51.6 -34 15.6 -4.2 -1.1 -0.3 -22.3 -17.9 -15.3 0.2 24.4 19.9 17.6 0.4

SVN66 IIF(Rb) -18.2 -7.4 -7.4 0.2 146.4 -36.5 32 -12 -15.8 -4.3 2 -0.3 30.6 -15.3 -15.1 -0.4 -47.3 18.9 17.6 0.7

SVN67 IIF(Rb) -9.1 3.7 3.1 1 -136.7 -57.3 -43.6 -15.1 8.2 4.5 -0.9 0.5 79.6 20.7 7.1 0.6 -73.3 -23 7.3 0.5

SVN68 IIF(Rb) 6.8 3 2.5 0.7 106.5 -44.9 -39.2 -13.3 -16.8 -4.7 -0.7 -0.3 40.1 -12.9 -10.2 -1.9 -37.8 15.9 12.7 2.6

SVN69 IIF(Rb) -11.4 -3.8 -2.5 -1.6 151.7 42.5 26.6 -8.4 -17.9 -5.8 -0.7 -0.3 -39.1 10.3 -6.9 0.4 46.9 -10.9 -8.2 -2.1

SVN70 IIF(Rb) 11.8 3.4 2 0.4 -132.9 -58.2 -25.4 -13.8 -14.4 5.3 -0.7 -0.1 -29.1 -24 -19.2 -0.5 30.5 25.5 20 0.8

SVN71 IIF(Rb) 9.4 5 2.7 1.2 -104.2 -61.8 -47.4 -27.7 -10.8 -5 -0.7 -0.1 -22.4 -9.6 -8.5 -0.5 22.2 10.2 9.2 1.6

SVN72 IIF(Cs) 7.8 3.1 2.2 0.4 -90.2 -55.3 -39.3 -19.3 -14.4 -5.1 0.6 0.1 -23.2 14.2 11.8 0.5 21 -14 -12 -0.1

SVN73 IIF(Rb) -10.5 -2.8 2.1 0.3 176.1 92.2 74.9 -6.7 13.7 -4.9 -0.4 -0.2 -31.1 9.6 4.9 -0.2 29.9 -10.3 -5.8 0.5
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Table 4.7: GPS satellite orbit and clock error standard deviations (in cm): monthly, biannual and yearly datasets analysis

Satellite Block Radial Along-Track Cross-Track Clock Rad-Clock

SVN (Clock) σ̂rad,m σ̂rad,b σ̂rad,y σ̂rad,all σ̂aln,m σ̂aln,b σ̂aln,y σ̂aln,all σ̂crs,m σ̂crs,b σ̂crs,y σ̂crs,all σ̂clk,m σ̂clk,b σ̂clk,y σ̂clk,all σ̂rmc,m σ̂rmc,b σ̂rmc,y σ̂rmc,all

SVN41 IIR(Rb) 19.4 14.1 13.4 11.8 189.3 144.4 137.9 124.5 68.7 56.7 53.9 43.8 112.5 57.6 50.3 38.1 119.4 61.9 53.8 41.2

SVN43 IIR(Rb) 27.1 15.3 13.7 11.6 161.9 136.5 127 112.9 79.2 61.2 54.6 45.4 84 51 48.2 43.8 87.1 55 50.5 46.2

SVN44 IIR(Rb) 21 15.8 14.2 13 236.3 143.4 137.3 121.4 69 51 48.1 41.9 137.1 123.9 122.6 113 139.3 126 124.8 114.8

SVN45 IIR(Rb) 33.5 18.3 16.6 13.5 206.7 155.2 148.5 127.1 85.8 67.5 59.6 54 86.6 53 44.1 35.1 89.9 56.7 47.7 39.1

SVN46 IIR(Rb) 24.6 17.1 16 14.8 172.6 155.6 147.4 129.3 79.5 58.6 54.8 43.2 89 74.1 70.3 64.7 95.1 79.1 75.2 69

SVN47 IIR(Rb) 23.4 15.5 14.3 12.3 207.5 150.5 142.1 123.8 112.8 95.2 87.2 57.7 103.3 92.8 91.9 78.9 106.5 95.8 94.6 81.4

SVN48 IIR-M(Rb) 49.8 20.9 17.4 13.5 312.3 179.7 156.6 116 84.9 72.7 63 55.3 77.5 57.7 53.2 43.7 89.4 62.4 57.4 46.9

SVN50 IIR-M(Rb) 69.3 25.9 25.9 13.1 235.9 183.4 183.4 111.1 61.3 46.1 43.6 36.4 77.2 45.6 45.6 29.8 105 56.6 56.6 34.9

SVN51 IIR(Rb) 26.8 14.7 13.5 11.1 173.5 136.2 129.2 118 98.1 60.4 54.9 47.9 65.8 44.1 38 30.5 68.6 46.7 41.3 33.6

SVN52 IIR-M(Rb) 17.1 13.8 13.5 12.6 149.3 140.8 133.5 123.4 83.7 61.2 52.6 44.6 102.9 79.2 74.8 58.2 108.5 82.6 78.3 61.1

SVN53 IIR-M(Rb) 21.3 15.6 15.6 13.1 240.2 166.7 160.9 140.3 111.4 82.1 75.7 55.8 97.2 84.1 80 70.4 100.4 86.3 82.3 73.6

SVN54 IIR(Rb) 31.1 17.5 16.2 12.8 162.3 140.7 135.8 119 83.8 64.5 60.9 49 87.5 58.1 47 39.5 90 63.2 50.8 43.3

SVN55 IIR-M(Rb) 18.5 13.4 12.4 11.8 172.3 149 135 122.7 85.7 66.3 56.9 45.7 39.1 32.2 30.1 26 44 36.9 34.2 30.3

SVN56 IIR(Rb) 45.3 22.1 17.7 13.2 159.7 129.8 129.7 112.5 82.6 65.4 62.5 46.7 38.2 35.9 32.6 27.8 52.7 40 36.2 33.1

SVN57 IIR-M(Rb) 32.1 20.4 17.9 14.9 247.6 175.2 169.9 151.2 99.9 70.6 62.6 49 96.5 83.4 82 63.6 107 89.2 86.8 67.5

SVN58 IIR-M(Rb) 24.1 16.5 16.3 13.9 212.5 152.1 139.4 129.4 73.6 55.9 51.2 42.4 64.9 37.1 33.5 29.9 69.2 41.8 38.8 35.6

SVN59 IIR(Rb) 17.5 12.2 12 10.7 171.3 143.9 133.7 112.9 103.8 81.9 73.4 56.8 42.1 38.6 37.1 31.9 45.3 41.3 39.7 34.8

SVN60 IIR(Rb) 15.3 13 11.8 10.8 141.8 122 120.2 108.8 76 60.7 54.4 45.4 39.4 30.9 30.3 26.7 41.9 33 32.9 29.2

SVN61 IIR(Rb) 22.2 14.3 12.6 11 148.3 133.4 130.8 109.9 80.4 60.2 54.8 48.6 86.6 56 47.3 35.3 86.7 59.2 50.2 38

SVN62 IIF(Rb) 34.9 26.9 23 19.1 191 144.8 144.8 119.5 59.4 45.5 45.3 38.2 36.8 28.7 26.3 23.4 46.2 34.8 34.8 29.6

SVN63 IIF(Rb) 29.7 21.4 20.1 16.8 172.5 158.2 158.2 126.5 64.5 54 48.9 41.9 72 59.8 59.8 30.2 75.4 63.6 63.6 34.4

SVN64 IIF(Rb) 44.3 25.2 23.3 19.7 238.6 143.8 137 115 80.4 48.2 43.9 38.1 93.5 91.7 44.9 28.9 98.1 96.3 50.5 36

SVN65 IIF(Cs) 38.8 28.3 27.4 25 187.4 155.8 148.4 137.9 61.7 43.8 40.2 39 137 128.7 123.5 116.6 143.3 131.7 126.9 119.6

SVN66 IIF(Rb) 39.2 39.2 23.7 18.2 240.5 157.2 147.9 125.5 66.1 43.8 36.9 33.6 40.6 30.3 27.5 22.6 49.2 42 33.4 28.4

SVN67 IIF(Rb) 43.7 39.4 28.7 20.4 179.3 140 129 121 68 68 46.7 42.1 33.6 33.6 26.3 22.9 53.8 51.3 39 30.8

SVN68 IIF(Rb) 44.7 34.4 34.4 20.4 215.5 159.2 159.2 114.5 58.1 44.7 42.8 38.3 59.4 35.5 35.5 27.8 63.9 51.6 51.6 35

SVN69 IIF(Rb) 51 30 25.6 20.8 222 214.6 214.6 132.5 59.9 59.9 59.9 40.4 57.7 48.8 46 39.4 71.6 52 50 45.2

SVN70 IIF(Rb) 64.9 48.7 33.1 26 248.9 191.6 156.9 146.8 52.7 46.5 41.2 40.8 57.4 42.6 37.6 30.8 83.4 65.3 50.5 40.8

SVN71 IIF(Rb) 44.4 33.6 27 23.5 211.2 151 136.5 122.7 62.1 39.2 35.6 34.3 41.2 38.4 29.5 23.9 57.8 49.3 39.3 33.2

SVN72 IIF(Cs) 45.7 33.1 33.1 24.7 223.5 150.1 150.1 136.2 56 43 41.7 40.5 118.3 100.8 97 95 120.9 102.5 99.8 98.3

SVN73 IIF(Rb) 56.2 31.8 25 20.4 258.1 151.3 134.6 131 85.9 75.1 67 60.1 41.8 35 35 25.3 75.5 44.1 36.8 32.8
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Table 4.8: GPS satellite SISREWUL,orb and SISREWUL RMS (in cm): monthly, biannual and yearly datasets analysis

Satellite Block SISREWUL,orb SISREWUL

Name (Clock) RMSorb,m RMSorb,b RMSorb,y RMSorb,all RMSwul,m RMSwul,b RMSwul,y RMSwul,all

SVN41 IIR(Rb) 71.4 50.4 45 40.5 147.6 83.9 75.9 63.4

SVN43 IIR(Rb) 52.2 43.2 41 37.9 104 74.3 73.6 67.3

SVN44 IIR(Rb) 73.3 48.2 46.5 41 163.6 150.8 148.3 135.6

SVN45 IIR(Rb) 79 52.5 49.5 43.1 108.8 83.9 74.3 63.1

SVN46 IIR(Rb) 65.6 52 49.5 44.1 116.4 102.4 96.4 88.3

SVN47 IIR(Rb) 72.3 51.7 49.7 42.1 131.3 118.5 117.3 104.2

SVN48 IIR-M(Rb) 119 62.1 54.9 41 198.1 99.6 88.1 69.3

SVN50 IIR-M(Rb) 106.8 66.3 66.3 37.9 138 84.3 84.3 53.1

SVN51 IIR(Rb) 56.9 44.2 42.5 39.6 84.1 69.2 64.8 56.8

SVN52 IIR-M(Rb) 51.2 45.5 43.9 40.8 119.9 101.6 98.7 82.1

SVN53 IIR-M(Rb) 100.9 60.9 56.6 46.3 151.5 119.8 111.6 97

SVN54 IIR(Rb) 54.5 47.4 45.9 40.1 107.1 84.5 73.8 63.2

SVN55 IIR-M(Rb) 61 47.8 44.3 40.6 85.3 71.9 65.3 56.2

SVN56 IIR(Rb) 59.7 44.4 43 38.8 79.4 64.9 61.9 52.3

SVN57 IIR-M(Rb) 82.1 56.9 54.6 49.2 134 114.7 112.1 93.8

SVN58 IIR-M(Rb) 72.2 50.3 46.1 43 90.6 65.3 61.3 57

SVN59 IIR(Rb) 57.9 48.8 44.4 38.7 79 72.9 70.1 58.9

SVN60 IIR(Rb) 50.1 41.8 40.7 36.5 67.8 58.1 58 52.2

SVN61 IIR(Rb) 49.9 42.3 42.2 36.7 135.4 80.3 73 58.5

SVN62 IIF(Rb) 73.7 55.3 52.9 44.9 80.6 66.8 66.8 56.4

SVN63 IIF(Rb) 80.2 56.1 56.1 45.7 134.1 97.4 97.4 60.7

SVN64 IIF(Rb) 90.7 54.7 52.3 44.7 112.5 110.7 68 56.9

SVN65 IIF(Cs) 76.1 61.2 57.9 53.9 173.4 161.2 153.1 143.7

SVN66 IIF(Rb) 85.8 85.6 54.4 45.3 99.5 99.5 67.8 55.5

SVN67 IIF(Rb) 74.9 71.9 57.4 46.3 85.2 85.2 65.8 55.6

SVN68 IIF(Rb) 88.6 66.7 66.7 43.8 99.4 77.9 77.9 55.8

SVN69 IIF(Rb) 100.3 100.3 100.3 48.7 123 113.8 113.8 74.8

SVN70 IIF(Rb) 107.8 87.5 64.7 56 133.9 102.2 80.2 68.1

SVN71 IIF(Rb) 105.1 67.2 55.1 49.5 141.2 90.2 67.8 58.6

SVN72 IIF(Cs) 90.1 64.7 64.7 54.2 144.2 128.4 124.3 123.7

SVN73 IIF(Rb) 107.4 63.6 54 49.8 116.1 79.9 79.9 63.5
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Table 4.9: Galileo satellite orbit and clock error means (in cm): monthly, biannual and yearly datasets analysis

Satellite Clock Radial Along-Track Cross-Track Clock Rad-Clock

Number Type µ̂rad,m µ̂rad,b µ̂rad,y µ̂rad,all µ̂aln,m µ̂aln,b µ̂aln,y µ̂aln,all µ̂crs,m µ̂crs,b µ̂crs,y µ̂crs,all µ̂clk,m µ̂clk,b µ̂clk,y µ̂clk,all µ̂rmc,m µ̂rmc,b µ̂rmc,y µ̂rmc,all

GSAT0214 PHM 7.8 4.3 3.8 3.6 -15.9 -6.4 -4.6 -4.5 -15.4 -7.7 -6.5 -2.2 8.5 5 3.5 2.7 8.3 -3.6 1.7 0.8

GSAT0213 PHM 5.6 4.2 3.4 3.1 -20.2 -16 -11.4 -11.1 20.1 10.6 -7.2 -1.9 7.5 3.7 2.3 1.6 -8.2 2.6 2 1.5

GSAT0212 PHM 4.5 3.4 2.8 1.8 -32.7 -10.6 -8 -6 -19 6.6 4.5 2.1 13.3 6.4 3.6 3.4 13.6 -6.2 -2.3 -1.5

GSAT0211 PHM -5.7 -3.1 -1.2 -0.6 -19.1 -14.9 -11.4 -8.5 -13.2 -7.2 -5.7 -2.4 -9.5 -6.8 -5.6 -4.6 -6.4 7.5 5.7 4

GSAT0210 PHM -6.6 4.9 4.9 -0.1 -28.3 -28.3 -28.3 -7.3 -14.6 -9.9 7.5 -1.1 4.1 4.1 4.1 0.9 3.8 -3.6 -1.1 -1.1

GSAT0209 PHM 2.7 1.3 0.9 0.3 -15.2 -5.2 -4.9 -3.7 -13.5 7.4 6.4 2.5 5.6 -5.5 -2.9 -2.2 -4.5 4.4 3.9 2.5

GSAT0208 PHM -7 -3.2 1.5 -0.1 -15.4 -9.9 -8.5 -7.1 12.9 7.9 5.2 1.4 -7.9 -5.1 -2.8 -1.7 5.4 4.3 4.3 1.5

GSAT0207 PHM 3 1.6 1.2 0.4 -17.1 -15.7 -11.2 -9.4 -12.9 -8.4 -2 -0.4 -4.1 -1.9 1.3 0.6 -3.4 2.4 -0.2 -0.2

GSAT0206 PHM -7.7 -3.9 -1.8 -0.8 -16 -10.7 -9.1 -9 10.4 3.1 1.5 0.1 -7.5 -3.8 -2.5 -1.6 -5.9 3.8 0.9 0.8

GSAT0205 PHM -9.3 -4.9 -2.6 -1.6 -13.3 -4.2 -4.1 -1.8 18.2 5.1 2.6 0.8 -7.5 -4.2 -2.3 -1.3 -7.1 -4.6 -0.3 -0.3

GSAT0204 RAFS 2.9 1.7 1.3 1.2 -17.1 -11.2 -10.7 -8.7 14.5 6 5.9 2.7 10 7.8 6.5 3.3 -5.5 -6.1 -5.2 -2.1

GSAT0203 PHM 2.2 -1.4 0.8 0.8 -8.6 -4 -2.9 -2.3 14 7.7 6 2 -7.8 3.1 1.7 1.2 5.4 -2.5 -0.9 -0.4

GSAT0103 PHM 2.4 -1.6 0.5 0.5 -10.4 -6.1 -6.1 -4.9 12.7 0.9 0.9 0.9 5.2 2.7 -0.9 -0.4 -5.6 -4.2 1.4 0.9

GSAT0102 PHM 2.3 -1.7 1 0.8 -13.4 -9.7 -8.4 -6.3 17.1 3.7 2.9 2.4 5.9 -0.8 -0.7 0.1 -6.2 1.7 1.7 0.7

GSAT0101 RAFS 2.8 -2 0.6 0.2 -19.4 -10.5 -8.4 -5.8 16.9 2.7 2.4 1.9 5.3 -1.4 -1 -0.5 -4.9 -2.6 0.8 0.7

Table 4.10: Galileo satellite orbit and clock error standard deviations (in cm): monthly, biannual and yearly datasets analysis

Satellite Clock Radial Along-Track Cross-Track Clock Rad-Clock

SVN Type σ̂rad,m σ̂rad,b σ̂rad,y σ̂rad,all σ̂aln,m σ̂aln,b σ̂aln,y σ̂aln,all σ̂crs,m σ̂crs,b σ̂crs,y σ̂crs,all σ̂clk,m σ̂clk,b σ̂clk,y σ̂clk,all σ̂rmc,m σ̂rmc,b σ̂rmc,y σ̂rmc,all

GSAT0214 PHM 30.6 17.7 17.3 17 110.8 52 49 42.4 25.4 20.3 19.5 18.9 39.7 21 19.8 17.4 35.6 20.1 19 18.4

GSAT0213 PHM 29.9 19.1 19.1 17.5 103.2 49.4 46.7 43 24 19.4 19.4 18.8 29.6 17.9 17.1 16.2 29.5 18.7 18.7 18

GSAT0212 PHM 19.9 17.8 17.8 15 42.6 36.6 36.6 31.8 19.3 18.6 18.6 18 20.3 16 15.3 15.3 24.1 18.6 18.6 16.8

GSAT0211 PHM 21.8 17.9 15.9 15.7 45.1 35 32.1 31.3 18.7 18 17 16.9 20.1 17.3 16.2 15.8 24.3 19.4 17.3 17

GSAT0210 PHM 21.8 18.3 16.1 15.7 41.2 34.8 33 32.3 22.3 19.4 18.7 18 19.9 18.1 17.2 16.8 20.3 17.5 16 16.1

GSAT0209 PHM 20.9 15.9 15.3 14.6 74.5 40.6 38.4 34.4 21 20.1 19.5 18.8 20.1 14.5 14.1 14.1 19.7 17.4 15.8 15

GSAT0208 PHM 33.2 17.4 16.4 15 63.5 35.7 34.2 32.6 21.4 19.6 19.3 18.4 31.9 17.9 17 15.7 21.2 17.6 15.7 14.8

GSAT0207 PHM 18.9 14.6 14.6 13.4 35.5 29.3 29.3 27.9 20.9 19.8 19.8 18.4 18.5 15.1 14.6 14.6 20.1 15 14.9 14.4

GSAT0206 PHM 22.9 20 16.5 16.4 46.5 46.5 35.2 33.7 21.8 20.7 19.4 18.6 34.8 21.8 21.5 18 36.8 20 19.1 17.4

GSAT0205 PHM 23.6 17.6 16.2 16 38.1 33.4 31.5 31.4 21.3 19 18.5 18 18.5 15.9 15.5 14.6 21.8 18 16.5 16.2

GSAT0204 RAFS 23.2 23.2 23.2 16 36.9 34 32.5 32.6 18.2 17.7 18.8 18.7 23.5 23.1 23.1 18.5 26.3 26.3 26.3 19

GSAT0203 PHM 26.1 18.1 15.9 16 57 36.9 36.9 34.9 24.2 21.6 19.9 19.3 25.3 20 19 18.6 21.1 18.3 16.4 16.2

GSAT0103 PHM 19.6 17.7 16.1 14.5 54.4 45.3 41.7 39.1 25.4 24.5 24.6 22.7 22.4 17 16.4 16.1 19.1 17.9 17 16.1

GSAT0102 PHM 24.4 18.2 16.8 16.3 42.4 40.5 37.4 35.6 24.3 21.6 22.7 21.3 24 17.9 16.6 16.4 24.4 20.3 17.1 16.3

GSAT0101 RAFS 25.2 19.4 18 17.4 52.7 41.7 36.6 35.6 23 19.4 20.4 19.5 26.3 19.6 18.9 17.8 22.9 19.9 17.3 17.3
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Table 4.11: Galileo satellite SISREWUL,orb and SISREWUL RMS (in cm): monthly, biannual and yearly datasets analysis

Satellite Clock SISREWUL,orb SISREWUL

Name Type RMSorb,m RMSorb,b RMSorb,y RMSorb,all RMSwul,m RMSwul,b RMSwul,y RMSwul,all

GSAT0214 PHM 50 26.9 25.4 24.4 81.6 42.9 40.4 36.8

GSAT0213 PHM 46.4 25.8 25.4 24.8 68.8 38.9 36.8 36

GSAT0212 PHM 27.6 24.4 24.4 20.9 38.3 34.1 34.1 31.2

GSAT0211 PHM 28.4 24.1 21.7 21.3 42.4 36.4 32.5 32.5

GSAT0210 PHM 29.7 24.9 22.5 21.8 46 46 37.1 35.7

GSAT0209 PHM 33.8 23.2 21.7 21.2 48.5 32.2 30.9 30.8

GSAT0208 PHM 45.7 24.4 23.1 21.4 75.1 39.4 37.3 33

GSAT0207 PHM 24.7 20.4 20.3 19 36.3 30.7 30.6 29.6

GSAT0206 PHM 31.9 27.9 23.1 22.7 53 45.8 39.5 35.7

GSAT0205 PHM 30.7 23.9 22 21.9 43.1 34 33 32

GSAT0204 RAFS 30.8 30.8 30.8 22.1 47.1 47.1 47.1 35

GSAT0203 PHM 36.9 25.8 22.9 22.7 57.6 41.9 38.7 37.9

GSAT0103 PHM 28.3 26.1 24 22.1 40.5 37.7 35.9 34.8

GSAT0102 PHM 32.8 26.4 24.4 23.5 43 37.9 35.9 35.9

GSAT0101 RAFS 35 27.1 24.6 24.3 53.5 42.8 41.6 38.5
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5 Error Correlation and Sample Independence

Chapter 4 exposed evidence of time correlation in range error data for both GPS

and Galileo satellites. This chapter takes a step further and investigates the origin

of this correlation and the consequences that it directly has for satellite range error

overbounding. The first part of this chapter focuses on the dynamic process behind

the error correlation in order to understand where the fundamental differences be-

tween GPS and Galileo errors lie. By performing an error autocovariance study along

with a spectral density analysis, this chapter reveals the influence of onboard clock on

error correlation it being the major driver for data independence. The second part

presents a methodology to determine the time between effectively independent sam-

ples. Based on an estimation variance analysis, this work computes the fraction of

independent samples for a given orbit and clock error dataset. Results show that the

time between effective independent samples is highly dependent on the constellation

and onboard clock type. This ultimately justifies the different levels of variation when

clustering satellite error data in monthly, biannual and yearly datasets along with the

implications that it has on the range overbound for ARAIM.

5.1 Mapping Ephemeris and Clock errors for Correlation Analysis

When it comes to analyzing the correlation characteristic to satellite range error,

some discussion is needed regarding how to map the three orbit error components

and the clock into the range domain. Unlike the study carried out in Chapter 4, this

chapter does not focus on the projection of the error over different users within the

footprint but instead it analyzes the error from a satellite payload perspective. As

discussed in Section 4.3.1, three options for representing the range error are available:

SISREWUL, SISREIUP , and Radial-Minus-Clock (RMC). The first option does not

provide a continuous function in the sense that for each epoch k the worst user pro-

jection corresponds to different locations; a correlation analysis of this dataset has no

physical meaning. The second option, SISREIUP , is not a continuous function either.

Each individual user (a total of 642) can only unceasingly track a given satellite during

5-6 hours, limiting the correlation study. The best alternative to create a continuous

function of the satellite payload range error is the RMC distribution. As shown in

Figures 4.1 and 4.2 and Table 4.3, RMC error provides an excellent representation of

the core of real error distribution. Although distribution tails are extremely relevant

for the integrity analysis (as discussed in Section 4.2), they do not have a large impact

on the correlation study outcome since they represent just a few values of the full

distribution. Finally, it is important to remark that RMC is a continuous function
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across ephemeris changeovers or uploads being this a key aspect for time-dependent

analysis.

5.2 Data Autocorrelation and Autocovariance

The determination of the number of independent samples is paramount for error over-

bounding. Inferring properties of the underlying distribution from a given dataset is

always challenging. As pointed out in Sections 4.4 and 4.5, satellite range error is emi-

nently correlated over time creating high variability of the distribution core parameters

(µ̂x and σ̂x) on a monthly basis. In order to perform safe and efficient (preventing

availability risk) SISRE overbounds, the error autocorrelation needs to be addressed

within ISM generation [81].

For a given random process x(t), let us define the autocorrelation Rxx and auto-

covariance Cxx functions as

Rxx(τ) = E [x(t) x(t+ τ)] (5.1)

Cxx(τ) = Rxx − µ2
x (5.2)

where µx = E [x(t)] is the mean value of the random variable x(t).

Let us assume that over the interval of data collection 0 < t < T , our error data

x(t) comes from a stationary, ergodic random process with mean µx, variance σ2
x,

autocorrelation function Rxx, and autocovariance Cxx. Because the process is ergodic,

those parameters can be estimated using the following expressions (following Chapter

5 in [82]):

µ̂x =
1

T

∫ T

0

x(t)dt (5.3)

σ̂2
x =

1

T

∫ T

0

x2(t)dt− µ̂2
x (5.4)

R̂xx(τ) =
1

T − τ

∫ T−τ

0

x(t)x(t+ τ)dt (5.5)

Ĉxx(τ) = R̂xx(τ)− µ̂2
x. (5.6)

Since the error data is collected in discrete time x(k), let us write the expressions

above in discrete form as

µ̂x =
1

N

N−1∑
k=0

x(k) (5.7)

σ̂2
x =

1

N

N−1∑
k=0

x2(k)− µ̂2
x (5.8)
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R̂xx(k) =
1

N − k

N−k−1∑
i=−N+k+1

x(i)x(i+ k) (5.9)

Ĉxx(k) = R̂xx(k)− µ̂2
x. (5.10)

The autocovariance provides a temporal representation of the correlation between

the error and a delayed copy of itself. Typically, the autocovariance function is normal-

ized by the sample variance so that lag zero is equal to one. Doing this is useful because

the correlation is a scale-free measure of the statistical independence of the error. Let

us define the normalized estimated autocovariance matrix as C̄xx(k) = Ĉxx(k)/σ̂2
x.

As exposed in Chapter 4, SISRE distribution is mainly driven by the onboard clock

type. Consequently, in this chapter, error data are clustered in four different groups:

GPS-Rb, GPS-Cs, Galileo-RAFS, and Galileo-PHM. For each of the four groups, a

representative satellite is taken to generate the autocovariance and spectral density

plots in Figures 5.1-5.5: SVN67 / PRN06 (Rb), SVN65 / PRN24 (Cs), GSAT0101 /

E11 (RAFS), and GSAT0205 / E24 (PHM).

Figure 5.1 illustrates the large differences in the clock autocovariance for Rubidium

clock-equipped GPS satellites versus Cesium. Orbit error components (radial, along,

and cross-track error) show no significant disparity between satellite types having a 12-

hour harmonic component which remains over several days. This sinusoidal behavior

is attributed to the inherent dynamics of the satellite throughout its orbital motion.

In particular, it is due to the limitation of the 15 quasi-Kleperian parameters used to

model the satellite motion [77]. Apart form this half-sidereal day harmonic component,

the along-track error also shows a 2-hour sinusoidal behavior which coincides with the

nominal update rate of the GPS navigation message.
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Figure 5.1: Sample autocovariance for GPS orbit and clock (Cs and Rb) errors

Unlike orbit components, clock error (purple lines in Figure 5.1) shows considerable
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contrast between satellite types not only in the harmonic element but also in the

convergence time. This suggests that within the ODTS process the estimation of the

satellite clock prediction gets ‘contaminated’ by the residuals of orbital model fitting.

Since orbit and clock states are jointly estimated using code and phase observations

(ODTS models in [77]), their computation are highly coupled and hence the correlation

of the orbit prediction error maps into the clock prediction error. In order to better

understand these effects, let us analyze the error correlation in the frequency domain.

For a given signal x(t), the Wiener-Khinchin relation defines the link between its

autocorrelation function Rxx(τ), in the time domain, and its power spectral density

Sxx(f), in the frequency domain, as follows

Sxx(f) =

∫ ∞
−∞

Rxx(τ) e−j2πfτdτ. (5.11)

Figure 5.2 includes the Singled-Sided Amplitude Spectrum (SSAS) for orbit and

clock errors for both GPS satellite types. The dominant harmonic component for orbit

error corresponds to the 12-hour frequency (2.31×10−5Hz) showing also several n×12-

hour components. As pointed out above, there is no significant contrast in the orbit

error between the two satellite types. However, the difference lies in the relative power

density between the orbit elements and clock noise level. One can be misled by results

shown in Figure 5.1 thinking that Rb clocks induce larger range errors than Cs clocks

- this is actually not true. The normalized autocovariance does not indicate anything

about the distribution variance but about its correlation. In fact, as shown in Table

4.8, Cs-equipped SISRE RMS is typically twice as big as Rb-equipped satellite values

(80-100 cm vs. 40-50 cm) due to better short term stability [78]. In Figure 5.2, it can

be observed that the error noise level in Cs clocks is significantly higher than in Rb

clocks. On the left side, it is illustrated that the power level of clock error noise (yellow

line) is above the power level of the harmonic components of the orbit error. As a

consequence the orbit correlation has a larger impact on range error for Rb-equipped

satellites than for Cs-equipped.
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Figure 5.2: Single-Sided Amplitude Spectrum of orbit and clock error contribution to range
error for GPS satellites
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A similar analysis is carried out for Galileo satellites in Figure 5.3. Unlike in the

GPS case, the onboard clock does not create substantial differences in the normalized

autocovariance between clock types. Figure 5.4 includes the orbit and clock compo-

nent SSAS for RAFS and PHM Galileo satellites. A 14-hour harmonic component

is observed for orbit error in both cases which is compliant with the Galileo orbital

period (1.98×10−5Hz). However no significant contrast can be detected among clock

types. In particular, both yellow lines in Figure 5.4 indicate similar noise level for PHM

and RAFS clocks. The next section will prove that in fact there is a slight difference

between the two satellite types impacting the time between effectively independent

samples.
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Figure 5.3: Sample autocovariance for Galileo orbit and clock (RAFS and PHM) errors
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Figure 5.4: Single-Sided Amplitude Spectrum of orbit and clock error contribution to range
error for Galileo satellites
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A comparison between Figures 5.1 and 5.3 exposes the differences in error correla-

tion between GPS and Galileo satellites. The Galileo orbit error sinusoidal component

decays significantly faster than GPS. This is corroborated by the range error spectral

density depicted in Figure 5.5. Unlike GPS, Galileo only shows one harmonic compo-

nent corresponding to the 14 hour orbital period. However the power associated with

this component is lower relative to lag zero ultimately leading to a less dominant orbit

correlation for Galileo range error than for GPS.
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Figure 5.5: Single-Sided Amplitude Spectrum of range error for GPS (Cs and Rb clocks)
and Galileo (RAFS and PHM clocks)

5.3 Covariance Analysis for Effectively Independent Samples
Determination

The error temporal correlation shown in the prior section only provides a qualitative

notion of sample independence. Figures 5.1, 5.3, and 5.5 exposed the differences be-

tween constellations and satellite type showing that range errors for GPS Rb clock

satellites are significantly more correlated than GPS Cs clock and Galileo errors. How-

ever, it does not bring a specific procedure to determine the number of effectively

independent samples given a certain dataset. This section takes a step further and

proposes a method based on estimation variances for sample mean and standard de-

viation.

Let us assume again that error data x(t) comes from a stationary, ergodic random

process with mean µx, variance σ2
x, autocorrelation function Rxx, and autocovariance

Cxx (defined in expressions (5.3)-(5.6)). Given a monitoring period for which we intend

to characterize the satellite range error, confidence in the estimation of µ̂x and σ̂2
x will

be given by their variances Var[µ̂x] and Var[σ̂2
x]. While the first variance term is easy

to obtain, the variance of the estimated sample variance does not have a simple form.
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In this regard, we define the mean square value of x(t) as ψ2
x = E[x2(t)] which can be

estimated by

ψ̂2
x =

1

T

∫ T

0

x2(t)dt. (5.12)

Using expression (5.12) in (5.4), the estimated sample variance can be written as

σ̂2
x = ψ̂2

x − µ̂2
x. (5.13)

Chapter 8 in [82] provides a closed-form expressions for both Var[µ̂x] and Var[ψ̂2
x],

Var[µ̂x] =
1

T

∫ T

−T

(
1− |τ |

T

)
Cxx(τ)dτ (5.14)

Var[ψ̂2
x] =

2

T

∫ T

−T

(
1− |τ |

T

)(
C2

xx(τ) + 2µ2
xCxx(τ)

)
dτ. (5.15)

Again, since our error data is collected in discrete time x(k), expressions (5.12), (5.14),

and (5.15) can be written as

ψ̂x =
1

N

N−1∑
k=0

x2(k) (5.16)

Var[µ̂x] =
1

N

N∑
−N

(
1− |k|

N

)
Ĉxx(k) (5.17)

Var[ψ̂2
x] =

2

N

N∑
−N

(
1− |k|

N

)(
Ĉ2

xx(k) + 2µ̂2
xĈxx(k)

)
. (5.18)

Note that Equations (5.14) and (5.15) require the true values of the error auto-

covariance Cxx(k), which is unknown. They have been substituted by its estimated

value obtained using expression (5.10). This is an important step that needs further

motivation. Technically, the true values shall be substituted with a range of values

around the sampled ones given by confidence interval. According to the Central Limit

Theorem (CLT), the observed Ĉxx will be close to the true one if the number of in-

dependent samples is big enough (typically larger than 30). Since the estimation of

the autocovariance function is carried out based on several years of SISRE data, the

use of (5.10) is legitimized. The scope of this derivation is to determine how many of

those N samples are effectively independent N∗. It is important to clarify that we will

use as many samples as available in our dataset X to compute µ̂x and σ̂2
x, but their

variances will be driven by the number of independent samples.

Consider the special case where x(k) is a white noise process with mean µx and

variance σ2
x. By definition, the autocovariance is Cxx = σ2

xδ(k) (where δ(k) is the

Kronecker delta function) implying that all samples contained in the dataset are in-

dependent, N = N∗. Then, variances in (5.17) and (5.18) reduce to

Var[µ̂x] =
σ̂2
x

N∗
(5.19)
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Var[ψ̂2
x] =

2(σ̂4
x + 2µ̂2

xσ̂
2
x)

N∗
. (5.20)

The underlying idea is to compare the white noise results with the general case

(colored noise) and determine the number of samples N that will result in parameter

estimate error variances equal to those in (5.19) and (5.20). The ratio N∗/N will then

be the fraction of the N∗ samples that are effectively independent for the estimation

of µx and σ2
x out of the total N (colored). Setting expression (5.17) equal to (5.19) and

expression (5.18) equal to (5.20) the ratio N∗/N can be obtained from the variance

in the estimation of µx and ψ2
x as

N∗

N

∣∣∣
µ̂x

=
σ̂2
x∑N

−N

(
1− |k|

N

)
Ĉxx(k)

(5.21)

N∗

N

∣∣∣
ψ̂2
x

=
σ̂4
x + 2µ̂2

xσ̂
2
x∑N

−N

(
1− |k|

N

)(
Ĉ2

xx(k) + 2µ̂2
xĈxx(k)

) . (5.22)

Note that the fractions identified in the previous expressions will not be identical since

they are conditioned to the variance of the estimation of two different parameters. In

general, for a given dataset, Var[µ̂x] and Var[ψ̂2
x] will not be equal and hence (5.21)

and (5.22) will report different values depending on how much confidence we can place

on the estimation of each parameter. Since in order to obtain σ̂2
x we need both µ̂x and

ψ̂2
x, the limiting factor will be the smallest ratio between N∗/Nµ̂x and N∗/Nψ̂2

x
.

Let us assume that over the period of data collection 0 < t < T , we have a sampling

interval ∆T (time which elapses between two samples) so that the total number of

collected samples is N = T/∆T . The selection of the sampling interval only affects

the number of colored samples but not the number of effectively independent samples

contained in the dataset X. One might be tempted to assume that the ratio N∗/N

shall be independent of the sampling interval; however let us look at the following

example. Let us assume that two processing facilities monitor the same satellite range

error during 10 days. Monitor A has a sampling interval of 5 minutes while monitor B

has a sampling interval of 15 minutes. After the full period, monitor A has collected

a total NA = 2880 correlated samples while monitor B gathered NB = 960 correlated

samples. Since A and B have different sampling intervals, NA and NB are different,

however they must contain the same number of effectively independent samples (same

monitoring period) so N∗A = N∗B. That yields to

N∗A
NA

=
∆TA

∆TB
· N
∗
B

NB
. (5.23)

For performance characterization and error overbound, our goal is to determine

the time between effective independent samples ∆Tind. It is formally defined as the

time elapsed between two consecutive effectively independent samples. The determi-

nation of ∆Tind is relevant since it allows us to discern how many independent samples

we can collect in a given monitoring time. Let us assume that in our example the true

∆Tind is 15 min. In that case, N∗B = NB and according to (5.23) the ratio of effectively
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independent samples for the dataset collect by monitor A is N∗A/NA = 1/3. In the

general case, we do not know the actual ∆Tind and the only way to estimate it is

through the computed values of N∗/N . Let us call NJ the total samples of the data

set XJ collected by a generic monitor J with a sampling interval ∆TJ. We want to

compare our monitor J with the monitor whose sampling interval is the actual ∆Tind

so that N∗/N = 1. Using expression (5.23), the time between effectively independent

samples can be estimated as:

∆Tind =
∆TJ

N∗
N

∣∣∣
J

. (5.24)

Figure 5.6 presents the values of N∗/Nµ̂x and N∗/Nψ̂2
x

for GPS satellite range error

for both Cs and Rb clock types as a function of the sampling interval. As pointed

out before, both (5.21) and (5.22) are built under the assumption that Cxx can be

substituted by its estimated value Ĉxx if a large number of independent samples are

included in the dataset. In particular, SISRE data from January 2015 to December

2017 is taken for the GPS and Galileo correlation analysis. Although we have not

defined yet the technique to determine the number of effective independent samples

in a given set, results from GPS and Galileo stationary analysis in Sections 4.4.2 and

4.5.2 indicate that several years of SISRE data contain enough independent points to

support the CLT. This assumption will be revisited after the determination of the

time between independent samples.

As presented in Figure 5.6, both N∗/Nµ̂x and N∗/Nψ̂2
x

are monotonous functions

(ideally linear) of the sampling interval. According to expression (5.24), the ∆Tind

can be estimated as the inverse of the slope of these functions. Note that choosing a

different sampling interval does not imply a modification of the total monitoring period

(three years with sufficiently large number of independent samples) but different time

elapsed between the collected measurements. As mentioned above, the confidence in

the estimation of σ̂2
x will be limited by the smallest N∗/N ratio. In other words,

the time between effective independent samples ∆Tind will be determined by longest

∆Tind,µ̂x or ∆Tind,ψ̂2
x
.

As expected, for a given sampling interval, the number of effectively independent

samples for Rb clock satellites are approximately ten times smaller than for Cs clock

satellites. For example, if we choose a sampling interval of 2 hours, the ratio of

effectively independent samples for Cs clock satellites is 0.5 while it is just 0.05 for Rb

clock satellites. Table 5.1 provides an average range of values for ∆Tind,µ̂x and ∆Tind,ψ̂2
x

applying expression (5.24) for each point of Figure 5.6. Note that the shaded cells

indicate the limiting parameters. The time between effectively independent samples

for Rb clock GPS satellites ranges between 50-60 hours whereas it is ten times shorter,

5-6 hours, for Cs clock satellites.

Figure 5.7 includes the results of a similar analysis for Galileo satellites (RAFS

and PHM onboard clocks). Although not as pronounced as in the GPS case, there is a

difference in the number of independent samples between PHM and RAFS-equipped
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spacecraft. For example, for a sampling interval of one hour, the ratio of effectively

independent samples for PHM clock satellites is 0.5 while it is 0.4 for RAFS clock

satellites. Table 5.1 indicates that the time between effectively independent samples

for PHM clock satellites ranges between 2.5-3.5 hours while it is a a few hours longer

for RAFS clock satellites, around 4-5 hours. Note that as of June 2018, there is

only one Galileo satellite in active service which operates with a RAFS onboard clock

(GSAT0101).
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Figure 5.6: Ratio of correlated versus independent samples for GPS range error (Cs clock
and Rb clock) as a function of the sampling interval. Note the different scale.
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Figure 5.7: Ratio of correlated versus independent samples for Galileo range error (RAFS
and PHM clock) as a function of the sampling interval.
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Table 5.1: Time between effectively independent samples for GPS and Galileo Satellites
based on clock type

Constellation Clock Type ∆Tindµ̂x
[h] ∆Tindψ̂x

[h]

GPS Cesium 4-5 5-6

GPS Rubidium 50-60 24-32

Galileo RAFS 4-5 3-4

Galileo PHM 2.5-3.5 2-3

Shaded cells correspond to limiting parameter, µ̂x or ψ̂2
x

It is worth pointing out again the inherent differences determined by the onboard

clock type. Cs clock-equipped GPS satellites are the only cases in which the estima-

tion of ψ̂2
x is the limiting factor to determine the time between effective independent

samples. In the rest of the satellites under study (both Rubidium and passive Hydro-

gen masers), µ̂x is the limiting factor instead. Although not significantly relevant for

the integrity analysis carried out here, a plausible explanation to this behavior is the

short term versus long term clock stability. As illustrated in the Allan deviation plots

in [78], Cs atomic clocks present a better long term stability whereas Rb and passive

Hydrogen maser clocks show an extremely stable short term behavior.
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Figure 5.8: Range error normalized autocovariance for GPS and Galileo satellites for each
clock type

The initial correlation analysis that was performed in [26] was based on autoco-

variance plots. Those figures provided a notion of the error temporal behavior but it is

actually quite complex to extract anything more than qualitative conclusions. Look-

ing at the range error autocovariance in Figure 5.8, one could, for example, fix a 0.5

threshold value from which we can expect the data to be uncorrelated. However this

criteria is not sufficiently motivated. Looking at the Rb GPS satellites autocovariance



88 Chapter 5. Error Correlation and Sample Independence

plot (blue line in Figure 5.8), it is quite hard to extract any conclusion about ∆Tind

from that sinusoidal behavior. Even more challenging is to infer the time between

effectively independent samples in the Galileo case. The green and brown lines in

Figure 5.8 show very similar trends but in fact, as shown in Table 5.1, they do not

have the same ∆Tind. The methodology here presented overcomes this problem by

defining the N∗/N ratio.

5.4 Assertions about Range Error Time Dependence

After having determined the time between effectively independent samples, the con-

clusions empirically stated in Sections 4.4.2 and 4.5.2 regarding error variability over

months for GPS and Galileo can be mathematically seconded. In the previous chap-

ter, the waterfall diagram in Figure 4.6 exposed the broad variability in error CDF

over months for Rb-equipped GPS satellites whereas in the case of Cs clocks, the

errors were quite stable over time. With the results obtained in this chapter, we

can now state that in the case of Rb clocks only 14-16 samples collected in a month

are independent. Trying to characterize a population with only 16 independent data

points is certainly adventurous leading to discordant results on a monthly basis. As

the monitoring time increases to biannual and yearly datasets (Figures 4.7 and 4.8,

respectively) the number of independent samples grows providing more confident es-

timations of the true distributions. In the case of Cs-equipped satellites, one month

of data contains around 120 independent samples, making the monthly estimations

less changeable as displayed in the waterfall diagrams in Figure 4.13. Similar grounds

can be given to explain the smaller variability observed for Galileo waterfall diagrams

(after initial service declaration) shown in Figures 4.18 and 4.19.

A discussion regarding whether or not satellite range error distributions are biased

is herein addressed. The final section the in WGC Milestone 3 Report (published by

Walter in [24]) collects a series of assertions related to the ARAIM system architec-

ture. Among others, they state that the ANSP will implement a ground-based offline

monitoring of satellite measurements to compute a safe overbound using the distribu-

tions N (−bnom, σob) and N (bnom, σob). Both parameters bnom and σob account for:

a) Repeatable or persistent biases in receiver observed SIS errors, for example signal

deformation or interfrequency biases; b) Statistical uncertainty due to limited sample

sizes available to the offline monitor function. This work asserts that orbit and clock

errors do not create permanent bias in SISRE so they should not be accounted in bnom.

This statement has also been supported by Walter in [83]. In case permanent biases

are observed in the range error due to clock and ephemeris error, it can be attributed

to a misalignment in the reference APCs (BCE and/or PRO as specified in Section

3.6.1). Our allegations are based on the findings in Chapters 4 and 5 of this thesis:

• GPS: SISRE distributions for Rb-equipped satellites do not exhibit a signifi-

cant bias after 6-8 months of data collection (see Figure 4.9). Since only 14-16

independent samples can be collected in a month it would take at least 10-12

months to have a reliable estimation of the mean. Once enough significant data
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have been collected the distribution mean is on the order of reference products

accuracy (2-3 cm) as shown in Table 4.6.

• Galileo: Due to the short time between independent samples, Galileo SISRE has

around 180 independent samples a month. This explains why no significant bias

(on the order of the products accuracy 4-5 cm) was observed in the monthly

error CDFs for Galileo. In the case of the European constellation, one must

acknowledge that ground segment ODTS is subject to updates. As displayed

in the time line of the SISRE RMS in Figure 4.22, certain ground segment

modifications can violate the stationarity of the error (March 2018). Since they

do not belong to the nominality of the distribution, these events do not invalidate

the results from this chapter which apply to unfaulted error distributions.

Finally we can validate the assumptions made when Cxx was substituted by its

estimated value Ĉxx in expressions (5.21) and (5.22). As indicated, three years of

SISRE data have been included in this analysis which implies that over 500 indepen-

dent samples for GPS-Rb satellites have been utilized and the CLT is legitimately

applied.
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6 Bayesian Inference for Multi Gaussian Overbound

The previous chapter has provided a statistical method to determine the number of

independent samples for a given dataset. Ultimately, the statistical independence of

the data needs to be accounted for in the satellite ranging error overbound within ISM

generation. Using a Bayesian inference approach, this chapter obtains an analytical

expression of the range error CDF as a function of sample standard deviation and the

number of independent samples. Then, it analyzes the inflation factor that needs to

be applied to a Gaussian bound in order to safely account for the error variability.

The second part of this chapter proposes the replacement of the traditional Single

Gaussian (SG) overbound by a Multi Gaussian (MG) distribution. Leveraging the

fact that error distributions have two distinct partitions, core and tail, Section 6.4

formalizes this new approach. The underlying idea is to compute two separate distri-

butions, one for the core and one for the tail, which are weighted to create a tighter

and equally safe range overbound.

6.1 Existing overbounding methods

Range error overbounding plays a pivotal role in GNSS Safety-of-Life (SoL) appli-

cations. The high integrity requirement demanded by GBAS, SBAS, and ARAIM

necessitates a thorough analysis of the GNSS range errors that lead to a safe over-

bound. In the GNSS integrity literature two extensively used bounding methods can

be found: DeCleene’s Gaussian CDF bounding [31] and Rife’s Gaussian pair over-

bounding [32] (see Annex C). Both methodologies replace the unknown true error

distribution by a Gaussian with standard deviation σob which preserve its bounding

properties after convolution in the position domain. In order to account for arbitrary

(non-symmetric, non-zero mean) error distributions, the pair overbounding introduced

the so-called nominal bias bnom. This term is also meant to overbound other errors

that are not always observable in the sample data (i.e. nominal signal deformation

biases) and whose distributions might be unknown. Among others, σob and bnom are

encapsulated within the ISM and transmitted to the ARAIM users. Based on these

inputs users evaluate whether or not the integrity requirement is fulfilled [3]. The pair

overbounding theorem has been recently revisited in [33] (Blanch’s two step Gaussian

bounding) where a relaxation of the bounding premises is proposed leading to a less

conservative bound.

The three previous overbounding methodologies have one common denominator;

they assume that the observed distribution is the actual and they do not need to be
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concerned with correlation and independence. As demonstrated in Chapters 4 and

5, given the high correlation of the data, the characterization of the SISRE based

on service history gets more cumbersome for new constellations where less data is

available. Pervan introduced in [84] the use of Bayesian inference as a mean to account

for the statistical uncertainties in the knowledge of error standard deviation and the

correlation across the multiple reference receivers to be used in the GBAS ground

segment. The work presented in this chapter takes a step forward and analyzes the

effect of error correlation in the SISRE bounding for GPS and Galileo.

6.2 Effect of Sample Correlation on Range Overbound

Gaussian distributions are typically used in estimation theory to model error bounds.

Their simplicity along with their desirable mathematical properties make them con-

venient for creating error envelopes in the range domain. The major hypothesis of

this section is accepting that the sampled error derives from a zero mean Gaussian

population. The empirical evidences and the assertions to support this hypothesis

were discussed in Section 5.4. Correspondingly, Section 6.3 proves that this assump-

tion is not far from reality and that a Gaussian function is a good approximation for

the major part of the true error distribution. This section interprets the correlation

results obtained in Chapter 5 and applies them to the estimation process of Gaussian

distributions.

6.2.1 Ranging Error CDF based on Sample Independence

Given a range error dataset, our scope is to obtain a CDF of the ranging error Fε as a

function of the sample standard deviation s and the number of independent samples

n. Let us define the following probability functions

• fε: Marginal Probability Density Function of the ranging error

• fσ: A priori Marginal Probability Density Function of the distribution standard

deviation

• fε|σ: Conditional Probability Density Function of the ranging error to σ

• Fε: Marginal CDF of the ranging error.

The marginal probability of the ranging error is written as

fε =

∫ ∞
0

fε,σ(ε, σ)dσ. (6.1)

Marginalizing out σ variable, Equation (6.1) can be expressed as

fε =

∫ ∞
0

fε|σ(ε|σ)fσ(σ)dσ. (6.2)
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Integrating the range error pdf to obtain the cdf and rearranging terms, we can write

Fε(x) =

∫ x

−∞
fε(ε)dε =

∫ ∞
0

∫ x

−∞
fε|σ(ε|σ)dεfσ(σ)dσ. (6.3)

Note that the integral over dε can be expressed in terms of the error function (erf) as

follows: ∫ x

−∞
fε|σ(ε|σ)dε = P (ε ≤ x) =

1

2
+

1

2
erf

(
−x√
2σ

)
. (6.4)

A suitable posterior distribution fσ derived from a non informative prior coming

from a Gaussian population is given in Section 2.3 of [85]

fσ = p(σ|s, n) =

[
1

2
Γ
(n

2

)]−1(
ns2

2

)n
2

σ−(n+1) exp

(
−ns

2

2σ2

)
(6.5)

where s is the sample standard distribution and n the number of effective independent

samples. The expression above represents the PDF of the error standard deviation

conditioned to n and s based on the assumption that the actual error derives from

a zero-mean Gaussian distribution (discussed in Section 5.4). For simplicity, let us

rename the constants

c =

[
1

2
Γ
(n

2

)]−1(
ns2

2

)n
2

and b =

√
ns2

2
.

Introducing (6.4) and (6.5) in (6.3), we can write the range error CDF as

Fε =
1

2
c

∫ ∞
0

σ−(n+1) exp

(
− b

2

σ2

)
dσ +

1

2
c

∫ ∞
0

σ−(n+1) exp

(
− b

2

σ2

)
erf

(
x√
2σ

)
dσ.

(6.6)

For the sake of clarity, let us rewrite expression (6.6) as Fε = 1
2
c(I1 + I2). Applying

the variable change u = 1/σ, substituting dσ = −σ2du and correspondingly changing

the integration limits, the two terms of expression (6.6) can be expressed as

I1 =

∫ ∞
0

un−1 exp(−b2u2) (6.7)

I2 =

∫ ∞
0

un−1 exp
(
−b2u2) erf (au) du. (6.8)

Using the table of integrals provided in [86], both terms I1 and I2 have analytical

solutions

I1 =
1

2
b−nΓ

(n
2

)
(6.9)

I2 =
x√
2π
b(−n−1)Γ

(
n+ 1

2

)
2F1

(
1

2
,
n+ 1

2
;

3

2
;− x2

2b2

)
(6.10)

where Γ(n) is the Gamma function and 2F1 (a1, a2, a3; a4) is the Gaussian hyperge-

ometric function. Introducing (6.9) and (6.10) in (6.6) the range error CDF can be

expressed as an explicit function of the number of effective independent samples n,

the sample standard deviation s, and the error magnitude x as

Fε(x|s, n) =
1

2
+

x

s
√
n

1√
π

Γ
(
n+1
2

)
Γ
(
n
2

) 2F1

(
1

2
,
n+ 1

2
;

3

2
;− x2

ns2

)
. (6.11)
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6.2.2 Overbound Inflation Factor to Account for Sample Independence

According to the CDF overbound theorem [31] (detailed in Annex C), a given random

variable A(x) with CDF FA(x), is bounded by a second distribution O(x) with CDF

FO(x) if {
FO(x) ≥ FA(x) ∀ x ≤ 0

FO(x) < FA(x) ∀ x > 0.
(6.12)

Given the measurement-dependent Fε in (6.11), our goal is to find an FO that

fulfills the bounding conditions in (6.12). Figure 6.1 depicts the normalized Folded

CDF and Quantile-Quantile (QQ) plot of Fε for different values of n and compares

them to the normal Gaussian distribution (no sample correlation). As can be seen,

for a given error dataset with n independent samples and sample standard deviation

s, the distribution derived from N (0, s) will not bound the ranging error. In order to

find a safe overbounding σob that accounts for the uncertainty due to the finite number

of independent samples, the estimated sample standard deviation shall be inflated by

factor Kuncer ≥ 1 so that σob = Kuncer s.
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Figure 6.1: Range error Folded CDF and quantile-quantile plot for Gaussian distribution
against measurement conditioned distribution as a function on the independent
samples n

For the sake of generality, the error term x in (6.11) can be normalized by the

sample standard deviation as x∗ = x/s leading to a measurement-dependent Fε as a

function of number of samples

Fε(x
∗|n) =

1

2
+

x∗√
n

1√
π

Γ
(
n+1
2

)
Γ
(
n
2

) 2F1

(
1

2
,
n+ 1

2
;

3

2
;−x∗2

n

)
. (6.13)

Figure 6.1 plots the above CDF expression for different numbers of independent sam-

ples. As can be inferred, Kuncer must be an inversely proportional function of the
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number of independent samples contained in the error dataset which, in the limit

case, will reach Kuncer ≈ 1. Of course we do not want to unnecessarily inflate σob

so that it leads to availability risk. However we need to confidently overbound at

least down to the Psat committed by the CSP [3]. For a given error dataset X with

n independent samples and estimated standard deviation s, Kuncer is the factor that

fulfills: 
Fε(x

∗
Psat
|n) = Psat

x∗Psat
= φ−1

(
Psat
2
, 0, σ∗ob

)
σ∗ob = σob/s = Kuncer.

(6.14)

where φ−1(P, µ, σ) is the inverse CDF of a Gaussian distribution N (µ, σ). Expres-

sion (6.14) provides an implicit function Kuncer = f(n, Psat) that needs to be solved

iteratively. The computed CDF FO derived from N (0, σ∗ob) will guarantee a CDF

bounding as {
FO(x∗) ≥ Fε (x∗|n) ∀ x∗ ∈ [−x∗Psat

, 0]

FO(x∗) < Fε (x∗|n) ∀ x∗ ∈ (0, x∗Psat
].

(6.15)

Figure 6.2 shows the folded CDF and QQ plots of the inflated Gaussian distribu-

tion that fulfills bounding conditions in (6.15) for a given Psat = 10−5. Figure 6.3

summarizes the values of the inflation factors Kuncer for different values of Psat and n.

The represented Kuncer is the inflation factor that provides the tightest safe overbound

and, as can be seen in Figure 6.2, decreases as the number of independent samples

grows. As shown in Figure 6.3, the inflation factor is close to 1 (data uncertainty

does not play a role) once the dataset contains around 150-200 independent samples.

According to the results from the correlation study in Chapter 5, this means around

1-1.5 months of Galileo SISRE data and 10-12 months of GPS (Rb) data.
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bounding distribution against measurement conditioned distribution as a func-
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6.3 Motivation for Data Partitioning: Empirical Evidences

Through the past chapters it has been mentioned that the core of the distribution

controls the nominal performance of the error. In particular, Section 5.2 argued that

the correlation properties (time between effectively independent samples) are domi-

nated by the core, leaving almost no influence to the tails. The stationarity analysis

for both GPS and Galileo in Chapter 4 showed that once enough independent samples

are collected, the core of the distribution settles and only differences in the tails are

observed. Given these facts, it might be of interest to analyze whether or not the error

distribution can be partitioned in two components: a quasi-Gaussian core containing

most of the data and a flat tail distribution with just a few data points.

Figures 6.4 and 6.5 include the SISREIUP (orbit and clock error projected over

a grid of 642 global users, defined in (3.35)) FCDF and QQ plots for SVN67 and

GSAT0207 correspondingly. They are both compared to the Gaussian fit generated

by the sample standard deviation s. As shown on the right plot of both figures,

the core of both distributions (blue lines) match the Gaussian reference (red line)

following a straight line in the QQ plots. It has been observed in the analyzed data

(both GPS and Galileo) that this Gaussianity is typically lost for quantiles larger

than two, corresponding to two sigmas or the 95-percentile bound. Further discussion

regarding the partition percentile is addressed in the next sections.

This 95-percentile bound is a typical measure of the range error accuracy. As

illustrated in Figures 6.4 and 6.5, the sample estimated σ̂GAL is approximately half of

the value of σ̂GPS, more precisely, the 2-sigma bound for Galileo is 30 cm whereas it is

68 cm for the GPS sample. However, in this specific example, we can already see that

Galileo errors have similar magnitudes to GPS for low probabilities. Ultimately, the

integrity bound must safely account for the tails since large range errors can conspire to

create large position errors with no integrity warning. This is a limitation of the Single

Gaussian (SG) bounding; if only one distribution must be used to overbound the range

error, despite the accuracy of the core, tails will always drive the overbounding value.
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In this particular example, although Galileo is approximately 50% more accurate than

GPS, similar bounding sigmas could be applied.

-4 -3 -2 -1 0 1 2 3 4
Error [m]

10-8

10-6

10-4

10-2

100

O
bs

er
ve

d 
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty

Folded CDF Instantaneous User Projected SISRE
SVN67/PRN06 from 01/2016 to 12/2017

Data
Gaussian Fit
s = 34 cm

-8 -6 -4 -2 0 2 4 6 8
Quantiles of sample distribution

-6

-4

-2

0

2

4

6

S
ta

nd
ar

d 
no

rm
al

 q
ua

nt
ile

s

QQ Plot Instantaneous User Projected SISRE
SVN67/PRN06 from 01/2016 to 12/2017

Data
Gaussian Fit

Figure 6.4: Empirical CDF and QQ plot of instantaneous user projection SISRE for SVN67
/ PRN06 during 2016-2017
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Figure 6.5: Empirical CDF and QQ plot of instantaneous user projection SISRE for
GSAT0207 / E07 during 2018

The Bayesian analysis carried out in Section 6.2 assumed that range error dis-

tribution derived from a Gaussian population. As shown here, this is only valid for

the core of the distribution and certainly not for the tails. These findings lead to the

following concept: core and tail overbounds can be computed individually and later

combined in a weighted function. This chapter proposes a Multi Gaussian bounding
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distribution which leverages this idea ultimately leading to tighter protection levels

and higher availability.

6.4 Multi Gaussian Overbound

6.4.1 Bounding Distribution Definition

Traditional integrity bounds used in SoL applications (Section 6.1) are based on SG

distributions defined by a standard deviation σob. As detailed in Annex C, pair over-

bound is an extension of the CDF theorem using two symmetric Gaussian distributions

shifted by bnom. The common characteristic of both theories is that a single distribu-

tion O(x) is used to overbound the full error dataset A(x)

FOSG(x) ≥ FA(x) ∀ FA < 1/2

FOSG(x) ≤ FA(x) ∀ FA ≥ 1/2
(6.16)

with FOSG and FA being the corresponding CDFs. The limitation of the SG bounding

is the constraint to use only one function disregarding the fact that true distributions

have two distinctive parts. As empirically supported by Figures 6.4 and 6.5, let us

define a couple of complementary weighting factors wc and wt = 1−wc that split the

empirical dataset into core C(x) and tail T (x) distributions. The quantiles xL and

xR that define the border between core and tail distributions are determined by the

weighting factor wt as

Pr (X ≤ xL) =
wt
2

and Pr (X ≤ xR) = 1− wt
2
. (6.17)

Each individual distribution is formally defined as

C(x) = x : {∈ [xL, xR]} (6.18)

T (x) = x : {∈ (−∞, xL) ∪ (xR,∞)} (6.19)

where C ∩ T = ∅ (disjoint) and C ∪ T = A. The MG CDF overbounding distribution

is computed as the weighted sum of the individual SG overbound for core and tail

FOMG(x) = wc FOc
SG

(x) + wt FOt
SG

(x) (6.20)

where FOc
SG

and FOt
SG

are individual CDF bounds of C(x) and T (x). Let FC(x)

and FT (x) be the corresponding CDF of random variables C(x) and T (x), then the

determination of the CDF bounds for core and tail distributions must simultaneously

guarantee

FOc
SG

(x) ≥ FC(x) ∀ x ∈ [xL,mx)

FOc
SG

(x) ≤ FC(x) ∀ x ∈ [m, xR]
and

FOt
SG

(x) ≥ FT (x) ∀ x < xL

FOt
SG

(x) ≤ FT (x) ∀ x > xR.
(6.21)

Note that the formal bounding conditions (6.21) introduced the distribution median

mx which, as discussed in Chapters 4 and 5, is empirically zero.
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6.4.2 Determination of Individual Single Gaussian Bounds

As stated in expression (6.20), there is one key parameter in the Multi Gaussian

formulation that drives the determination of the individual overbounds; the core-

tail weighting factor wc. The determination of σcob and σtob not only must ensure the

individual overbound of core and tail distributions but the combination of them (6.20)

must also bound the full error distribution A(x). Empirical distributions (like the ones

in Figures 6.4 and 6.5) show that the core contains 95-99% of the data. Section 6.4.5

will explore how the selection of wc influences the final FOMG bound.

Once the distributions C(x) and T (x) are determined, the individual SG bounding

distributions must be found. Note that in this case the pair bounding can be taken to

its limit where both left and right distributions overlap (single CDF bound) without

violation of the bounding conditions. For sake of generality, the following notation

will keep the median term mx in the derivation although it can be assumed to be

empirically zero. This point will be further elaborated in Section 6.4.6 when the

integrity proof is discussed.

The corresponding core and tail overbounds are defined as

OcSG(x) ∼ N (mx, σ
c
ob) and OtSG(x) ∼ N

(
mx, σ

t
ob

)
. (6.22)

This methodology leverages the fact that core and tail have distinctive behavior.

Note that the fact that both distributions are overbounded by Gaussians does not

mean that we presume Gaussian behavior of the true tail distribution. What we

actually assume is that it is possible to overbound that distribution with a Gaussian

down to Psat probability.

Core Single Gaussian Bound: For a finite dataset C(x) defined in [xL, xR], its sample

CDF FC(x) can be computed as indicated in (4.1) by clustering the data in nb total

bins. Let us define an intermediate normal distribution Õc(x) ∼ N (m, σ̃c) which

fulfills
FÕc(x) ≥ FC(x) ∀ x ∈ [xL,mx)

FÕc(x) < FC(x) ∀ x ∈ [mx, xR] .
(6.23)

Finding a σ̃c that meets the above condition can be done by interval search over the nb
bins. Once the intermediate distribution FÕc is defined, the number of independent

samples contained in the dataset needs to be considered. The Gaussianity assump-

tions on which the Bayesian analysis in Section 6.2 are based are valid for the core

distribution. This implies that in order to account for the data dependence due to

correlation, σ̃c needs to be inflated by Kc
uncer factor defined in (6.14).

To illustrate this process let us take SISREIUP data from SVN67 during 2016.

Figure 6.6 presents the Folded CDF and QQ plots of the core distribution C along

with the intermediate distribution Õc and core bound OcSG. As indicated by the blue

dots, the core (95% data) follows a quasi-Gaussian distribution being corroborated

by the fact that intermediate bounding Õc and core samples have approximately the
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same standard deviation (sc = 34 cm, σ̃c = 36 cm). Since on a monthly basis only 16

independent samples can be collected (Section 5.4), the intermediate bound needs to

be inflated by Kc
uncer = 1.41 to account for data correlation.
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Figure 6.6: Empirical CDF and QQ plot for Single Gaussian overbound of instantaneous
user projection SISRE for SVN67 during January 2016 (sc = 34 cm, σ̃c = 36
cm, σcob = 50 cm, Kc

uncer = 1.41)
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Figure 6.7: Empirical CDF and QQ plot for Single Gaussian overbound of instantaneous
user projection SISRE for SVN67 during January-December 2016 (sc = 28 cm,
σ̃c = 29 cm, σcob = 30 cm, Kc

uncer = 1.03)

Similar plots are included in Figure 6.7 where the monitoring time is increased

to twelve months. Since a total of ∼ 190 samples can be considered in a year for
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Rb-clock GPS satellites, the inflation factor drastically reduced to Kc
uncer = 1.03 and

hence sc ' σ̃c ' σcob ' 30 cm. This is confirmed by the QQ where the normalized

slopes for the three distributions are almost 1. Note that the core bound σcob has been

reduced as the monitoring period has increased and more confidence in the estimation

has been acquired.

Tail Single Gaussian Bound: The good Gaussian properties of the core allowed us to

apply the Bayesian inference analysis results for inflating the intermediate distribu-

tion; in the case of tails it is not so simple. From an operational point of view, tails

are created by abnormal events which were corrected before they crossed the error

threshold (4.42 σURA in the case of GPS). Their random behavior makes them inher-

ently unpredictable and hard to infer based on historical data. Ultimately, the GNSS

operator adjusts the broadcast σURA/σSISA values so unexpected tails are bounded

according to their operational commitments. In this line the determination of the

broadcast sigma values are driven by two aspects: design requirements and confidence

in the operation.

As done in [32] and [33], it is not complicated to create a tight bound for a

given sample distribution, the so-called intermediate Õ. The complexity resides in the

computation of the inflation factor Kt
uncer to account for uncertainty. The potential

of the MG is that it is able to create a tighter bound by weighting tail distribution

bounds without sacrificing the accuracy of the core.

We first need to find an intermediate distribution Õt(x) ∼ N
(
m, σ̃t

)
which bounds

the tails as
FÕt(x) ≥ FT (x) ∀ x < xL

FÕt(x) ≤ FT (x) ∀ x > xR.
(6.24)

An inflation Kt
uncer factor needs to be defined for the tails so that σtob = Kt

uncer σ̃
t

creating the SG tail bound as defined in (6.22). One possibility is to use the same

factor defined in (6.14) by inputing the fraction of independent samples contained by

the tails. From an operational perspective, if necessary, the ISM provider can increase

the inflation of the tail bounding without affecting the core. This will have particular

benefits in the MHSS algorithm (covered in Chapter 7) since the EMT and accuracy

navigation requirements (defined in Table 1.1) depend on σcob.

6.4.3 Multi Gaussian Overbound Results for GPS

After detailing the individual computation of C(x) and T (x), let us take SVN67 and

GSAT0207 range error distributions to illustrate the performance of the Multi Gaus-

sian overbound.

GPS Range Error SVN67 is a GPS Block IIF satellite which operates a Rubidium

clock. In order to exemplify the effect of the number of effective independent samples n,

three different monitoring periods have been selected: January 2016 (n = 16), full year

2016 (n = 192), and full period 2016 and 2017 (n = 384) depicted in Figures 6.8, 6.9,



102 Chapter 6. Bayesian Inference for Multi Gaussian Overbound

and 6.10 respectively. A fixed weighting factor of wc = 0.95 has been selected based

on the error empirical CDF. The corresponding values of sample standard deviation

s, core overbound σcob, tail overbound σcob, core distribution inflation Kc
uncer, and

tail distribution inflation factor Kt
uncer are collected in Table 6.1 for each monitoring

period. Two different effects can be appreciated; the first and most obvious one is the

reduction in the inflation factor as the monitoring period increases. As depicted in

Figure 6.8 due to the small number of samples, the bounds are intentionally inflated

to account for data uncertainty. It is interesting to point out that after a year of data

collection, core bounding does not suffer a large variation (28 cm and 33 cm for one

and two years of data monitoring). However the uncertainty in the tail estimation

still makes a difference between the tail bounding in Figures 6.9 and 6.10.

The second effect is the dispersion of the tails. Figure 6.10 shows slightly larger

right tail than Figure 6.9 but since the number of independent samples is double, the

final tail overbound is smaller for two years of monitoring data. As mentioned above,

the tail behavior does not respond to any predictable statistical behavior but to an

operational aspect. Ultimately it will be the ISM provider’s duty to select the inflation

factor in their internal message generation process.

Table 6.1: Individual parameters for core and tail bounds for MG distributions for SVN67

Monitoring Period s [cm] σcob [cm] σtob [cm] Kc
uncer Kt

uncer

Jan 2016 35 50 163 1.45 3.70

Jan-Dec 2016 29 28 98 1.03 1.79

Jan 2016-Dec 2017 34 33 74 1 1.33
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Figure 6.8: Empirical CDF and QQ plot for Single Gaussian overbound of instantaneous
user projection SISRE for SVN67 during January 2016. Core-Tail weighting
factor 0.95
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Figure 6.9: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN67 during January-December 2016. Core-Tail
weighting factor 0.95
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Figure 6.10: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN67 during 2016-2017. Core-Tail weighting factor
0.95

Galileo Range Error GSAT0207 is a Galileo FOC satellite which operates a PHM

clock. Similar to the previous section, three different monitoring periods have been

selected: January 2018 (n = 180), January to March 2018 (n = 540), and January to

June 2018 (n = 1080) depicted in Figures 6.11, 6.12, and 6.13 respectively. A fixed

weighting factor of wc = 0.95 has also been selected based on the error empirical CDF.

The corresponding values of the individual distributions are collected in Table 6.2 for

each monitoring period.
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Let us examine the main differences between GPS and Galileo overbounds. The

first one is the variability of the error CDF itself. This is not a surprise and has been

predicted in Chapter 5; Galileo nominal error is significantly less correlated than GPS

and consequently less variable on a monthly basis. As shown in Table 6.2, the sample

standard deviation takes the same value for the three monitoring periods. In this

sense, this ratifies the statement made in the previous chapter; a month of Galileo

range error data is a good representation of the underlying nominal distribution. This

is reflected by the values of the core overbound which are already fixed by a month of

data. As the monitoring period increases, tail distribution collects more independent

samples and its inflation factor decreases.

A final consideration regarding Galileo tail overbounding might be added. Unlike

GPS, the Galileo constellation has not reached its full operational capability yet and

no performance commitments have been made public. Although the data shown here

suggest that tight overbounds can be selected for Galileo range error, from an opera-

tional perspective, it will ultimately be up to the CSP and ANSP to fix the inflation

values for integrity.

Table 6.2: Individual parameters for core and tail bounds for MG distributions for
GSAT0207

Monitoring Period s [cm] σcob [cm] σtob [cm] Kc
uncer Kt

uncer

Jan 2018 13 11 97 1.03 1.92

Jan-Mar 2018 15 12 87 1 1.22

Jan-Jun 2018 15 12 75 1 1.1
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Figure 6.11: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN67 during January 2018. Core-Tail weighting
factor 0.95
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Figure 6.12: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for GSAT0207 during January-March 2018. Core-Tail
weighting factor 0.95
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Figure 6.13: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for GSAT0207 during January-June 2018. Core-Tail
weighting factor 0.95

6.4.4 Particular Case: Cesium-equipped GPS Satellites

The Multi Gaussian overbound is motivated by the distinctive behavior exhibited be-

tween core and tail of error distributions. Empirical evidence supported this partition

for GPS Rb-equipped and Galileo satellites. However, there is a particular case in

which this division becomes vague; Cs-equipped GPS satellites. As observed in the
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monthly waterfall diagrams for SVN65 in Figure 4.13, the full CDF presents a quasi-

Gaussian behavior, not having particularly pronounced tails. In MG terms, ‘the entire

distribution is core.’ Figure 6.14 implements the core bounding to the full dataset.

Because a month of GPS Cs range error contains 120 independent samples, for two

years of data Kuncer = 1 making σ̃ = σcob = 127 cm. As seen in the figure below, the

Gaussianity of the distribution does not recommend core and tail partition.

From an operational perspective in which a hypothetical Multi Gaussian ISM

contains the three parameters wc, σ
c
ob, and σtob, this design provides the flexibility

to perform a Single Gaussian (legacy) overbound. By simply setting wc = 1, the

MG range overbound in (6.20) turns to FOMG(x) = FOc
SG

(x). Chapter 7 will discuss

the different ISM architecture options to accommodate the MG bounding and the

corresponding dissemination strategies.
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Figure 6.14: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN65 (Cs Clock) during 2016-2017 (s = 117 cm,
σ̃ = 127 cm, σcob = 127 cm, Kuncer = 1)

6.4.5 Influence of the Weighting Factor

The partition of error distributions in two datasets is highly influenced by the weighting

factor wc. As detailed in Section 6.3, range error empirical CDFs suggest the use of

weighting factors between 0.90 and 0.99. Due to the variability of the tail error

distribution, the optimal wc might vary among satellites. Tables 6.3 and 6.4 include the

individual SG parameters for GPS and Galileo satellites as a function of the weighting

factor. For a monitoring period of two years (over 300 independent samples), Table

6.3 shows the variability of the σtob depending on the weighting factor for different

GPS satellites. Finding the optimal combination is not always obvious; a larger wc
deweights the influence of the tail bound (as reflected in (6.20)) but it normally entails

larger σtob. Due to the unpredictability of the tails, certain satellites might be optimally



6.4 Multi Gaussian Overbound 107

partitioned at the 90% whereas others might be at the 95%. Note that in the case of

Cs-clock equipped GPS satellites in Table 6.3, the partition is not applied and the full

distribution is assumed to be core.

Analyzing Tables 6.3 and 6.4, it can be observed that core values do not undergo

significant variations when selecting values between 0.9-0.95 (third and fifth column

of both tables). However, when a limit value of 0.99 is chosen, the seventh column

reveals larger changes in the σcob. By increasing wc we are including portions of the

tail into the core distribution, ‘corrupting’ its Gaussianity. At the same time, fewer

independent samples are left for the tail distribution making the uncertainty factor

Kt
uncer larger and ultimately increasing σtob. The optimal combinations are as diverse

as the range error itself. Note that any selection (optimal or not) of the wc, σ
c
ob,

and σtob must always provide a safe bound that satisfies Equation (6.25). Chapter

7 elaborates further on the trade-off between wc and tail probability along with the

operational aspects of the ISM generation.

Table 6.3: Core and tail bounds for MG distributions under different weighting factors for
GPS satellites (in cm)

Satellite Block wc = 0.90 wc = 0.95 wc = 0.99

SVN (Clock) σcob σtob σcob σtob σcob σtob

41 IIR(Rb) 32 88 34 100 38 158

43 IIR(Rb) 37 115 40 128 47 202

44 IIR(Rb) 116 203 124 191 126 261

45 IIR(Rb) 34 123 36 133 40 213

46 IIR(Rb) 62 211 72 243 86 375

47 IIR(Rb) 28 140 29 159 31 254

48 IIR-M(Rb) 47 91 51 94 54 140

50 IIR-M(Rb) 28 98 30 110 32 176

51 IIR(Rb) 30 54 31 61 34 97

52 IIR-M(Rb) 50 99 53 117 59 168

53 IIR-M(Rb) 63 173 74 197 88 227

54 IIR(Rb) 41 124 47 150 59 205

55 IIR-M(Rb) 26 77 27 89 30 143

56 IIR(Rb) 26 126 27 145 29 231

57 IIR-M(Rb) 57 187 71 209 89 231

58 IIR-M(Rb) 30 140 33 161 39 257

59 IIR(Rb) 29 68 31 79 33 124

60 IIR(Rb) 29 44 30 50 31 75

61 IIR(Rb) 31 154 34 174 38 277

62 IIF(Rb) 34 63 35 73 35 116

63 IIF(Rb) 33 165 36 186 43 353

64 IIF(Rb) 30 67 30 76 32 123

65 IIF(Cs) 131 N/A 131 N/A 131 N/A

66 IIF(Rb) 30 54 31 62 32 98

67 IIF(Rb) 34 64 36 74 38 114

68 IIF(Rb) 29 103 31 114 37 221

69 IIF(Rb) 45 132 47 147 51 233

70 IIF(Rb) 32 130 35 152 48 274

71 IIF(Rb) 33 61 35 71 35 113

72 IIF(Cs) 107 N/A 107 N/A 107 N/A

73 IIF(Rb) 31 138 34 159 40 255

For Cs clock satellites no core-tail partition is applied as detailed in

Section 6.4.4
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Table 6.4: Core and tail bounds for MG distributions under different weighting factors for
Galileo satellites (in cm)

Satellite Clock wc = 0.90 wc = 0.95 wc = 0.99

Name Type σcob σtob σcob σtob σcob σtob

GSAT0214 PHM 15 121 16 132 30 243

GSAT0213 PHM 14 106 14 114 25 167

GSAT0212 PHM 16 63 16 64 23 116

GSAT0211 PHM 14 76 14 88 23 115

GSAT0210 PHM 20 73 21 77 22 183

GSAT0209 PHM 13 79 13 87 19 139

GSAT0208 PHM 13 71 13 78 18 142

GSAT0207 PHM 12 64 12 74 18 121

GSAT0206 PHM 11 115 12 121 36 343

GSAT0205 PHM 12 82 13 82 21 123

GSAT0203 PHM 15 80 16 91 20 123

GSAT0103 PHM 31 48 31 50 32 70

GSAT0102 PHM 25 77 26 80 26 110

GSAT0101 RAFS 34 77 36 81 36 127

In order to graphically illustrate the effect of the weighting factor in the MG

bounding, Figures 6.15 and 6.16 include individual core and tail bounds for SVN47

range error during 2016-2017 for wc = 0.95 and wc = 0.99, respectively. As already

mentioned, smaller weights do normally imply larger tail standard deviations since

less independent data can be accounted for the tails. As shown in the fifth row of

Table 6.3, the core bound does not get affected by the selection of wc (around 30 cm)

unlike the tail bound which does change significantly from 159 cm to 254 cm.
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Figure 6.15: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN47 during 2016-2017. Core-Tail weighting factor
0.95
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Figure 6.16: Empirical CDF and QQ plot for Single Gaussian Overbound of instantaneous
user projection SISRE for SVN47 during 2016-2017. Core-Tail weighting factor
0.99

The potential of the MG bounding resides in the difference in the tail probabilities

between the green and black lines in the QQ plots. As will be shown in the MG VPL

equation (7.13), this new technique makes the bounds more efficient in the sense that

their tail probabilities consume less integrity budget.

6.4.6 Integrity Proof

The Multi Gaussian approach provides a safe bound of individual satellite range errors.

Safety-of-Life applications ultimately need to compute protection levels in the position

domain obtained through the convolution of individual ranging error bounds. The

scope of this section is to prove that the convolution of two MGs that individually

bound two error distributions in the range domain, also bound the convolution of

the error in the position domain. As indicated in expression (6.22) the individual

overbounds were defined as Gaussian distributions both shifted by the sample median

mx. As service history data have empirically proved, satellite range error data do not

show significant medians or mean values once enough independent samples have been

collected. Therefore it is acceptable to assume m = 0. Consequently, the MG CDF

bound can be expressed as

FOMG(x) ≥ FA(x) ∀ x < 0

FOMG(x) < FA(x) ∀ x ≥ 0.
(6.25)

As detailed in Annex C, for two given error distributions A(x) and B(x), the
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convolution of OMG,A and OMG,B is also safe if

FOMG,A+OMG,B (z) ≥ FA+B(z) ∀ z ≤ 0

FOMG,A+OMG,B (z) < FA+B(z) ∀ z > 0.
(6.26)

DeCleene proved that in order for the expression above to hold, two sets of condi-

tions need to be fulfilled. First, OMG,A and OMG,B must be symmetric and unimodal;

these conditions are met by MG definition (6.20) as the weighted sum of two zero

mean Gaussian Distributions (6.22). Second, the actual error distributions must be

unimodal and symmetric. GPS and Galileo service history data included in Chapter

4 empirically proved that satellite orbit and clock errors are unimodal with a quasi-

Gaussian core with zero mean and median.

It is import to remark that these assumptions only apply to range errors due

to orbit and clock. As introduced in Section 2.1.2, there are a complete catalog of

feared events for which the assumption of zero mean and median does not apply. In

particular, errors like nominal signal deformation and APC variations severely violate

these assumptions. Rife’s pair overbounding introduced the bnom to account for those

types of errors (non-orbit and clock related). The introduction of the nominal bias in

the MG bounding is discussed in the following chapter.
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7 Integrity Support Message Design

Chapter 6 introduced the Multi Gaussian overbound concept and detailed the method-

ology to compute the individual values for core and tail bounds. Ultimately, these pa-

rameters need to be encapsulated within the ISM and broadcast to the ARAIM users

in order to evaluate integrity, continuity, and accuracy requirements. This chapter

unifies the analysis carried out through this dissertation and proposes an ISM design

compatible with the MG overbound. The first part adjusts the baseline MHSS in order

to accommodate the MG bounding methodology. Using availability simulations based

on covariance analysis, it reveals the significant enhancement in service availability

brought by the modified MG MHSS. The second part exposes the limitations of the

current ISM structure. By a small modification, this chapter proposes three candidate

ISM designs to include the MG bounding. Results show that a slight modification

of the ISM and user algorithm boosts ARAIM service availability particularly in the

case of weak geometries.

7.1 Inclusion of Nominal Bias with Multi Gaussian Bounding

The Multi Gaussian overbound theory developed in the previous chapter is based on

two empirically proven facts regarding satellite ephemeris and clock errors: distribu-

tions have two noticeable core and tail parts and they do not show a significant bias

once enough independent samples are collected. This last statement was mathemat-

ically proved in Chapter 5 through the determination of the time between effective

independent samples for both GPS and Galileo satellites. Since it was designed for

orbit and clock error overbounds, the MG bounding described in expression (6.25)

does not account for error sources that introduce biases in the distributions.

Although ephemeris and clock errors are the main source of integrity events, the

overbound transmitted through the ISM must also account for nominal signal defor-

mation errors. These events nominally shift the SISRE distribution from the origin

introducing a non-zero median value which violates the CDF overbound. For integrity

purposes, Rife’s pair bounding introduced the bnom term to create a symmetric error

envelope formed by two equally shifted Gaussian distributions (see Annex C). The

Multi Gaussian bound can easily incorporate the same principle by redefining the MG

CDF bounding function as

FOMG =


FOMG,L(x) = wc FOc

SG,L
(x) + wt FOt

SG,L
(x) ∀ FOMG,L < 1/2

1/2

FOMG,R(x) = wc FOc
SG,R

(x) + wt FOt
SG,R

(x) ∀ FOMG,R > 1/2.

(7.1)
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The individual core and tail bounding distributions are defined following pair-bounding’s

approach by introducing bnom

OcSG,L(x) ∼ N (−bnom, σcob)

OcSG,R(x) ∼ N (bnom, σ
c
ob)

and
OtSG,L(x) ∼ N

(
−bnom, σtob

)
OtSG,R(x) ∼ N

(
bnom, σ

t
ob

)
.

(7.2)

It is important to remark that the introduction of bnom does not violate the in-

tegrity proof presented in Section 6.4.6. The modification of the bounding functions

by a constant bias simply creates larger margins for the error distributions to present

a non-zero mean due to signal deformation event. The proof of safety for the MG pair

bound is included in Annex C.

Blanch’s two-step Gaussian overbound modifies the pair bounding approach by

introducing a symmetric and unimodal intermediate distribution. As discussed in

[33], the trade-off between σob and bnom can be optimized by creating a pair-bound

which minimizes the values of the bias term bnom. It is left for future work to explore

the synergies between two-steps Gaussian overbound and Multi Gaussian overbound.

7.2 MHSS algorithm for Multi Gaussian Bounding

The ARAIM user algorithm evaluates whether or not navigation requirements are

met and an airport approach can be executed. The baseline algorithm recommended

by WGC follows the Multiple Hypothesis Solution Separation (MHSS) method which

checks the consistency among different position solutions associated with each fault

hypothesis. The latest version of this ARAIM user algorithm was published by WGC

in [4]. Annex D provides a succinct description of the algorithm where only the steps

necessary to follow the Multi Gaussian derivation are taken.

The current MHSS algorithm uses two single Gaussian distributions to perform

the range error integrity and accuracy overbounds defined in expressions (A.11) and

(A.13) (see Annex A). The MG approach suggests two modifications of these bounds.

The first one is related to the accuracy bound. As detailed in Figures 6.6 and 6.7,

the accuracy of the distribution is dominated by the core, with σc,iob being a suitable

representation of the so-called σiURE. Note that this statement is tailored to the

selection of a weighting factor between 0.9 and 0.99. The second change suggests the

implementation of two weighted Gaussian distributions for the integrity bound based

on the theory presented in Chapter 6. The ranging accuracy and integrity bounds can

be redefined per satellite i and user j as

Accuracy:

{
N
(

0,
(
σ̄iacc,j

)2)(
σ̄iacc,j

)2
=
(
σc,iob

)2
+
(
σitropo,j

)2
+
(
σiρ,user,j,IF

)2 (7.3)

Integrity:


wic N

(
binom,

(
σc,iint,j

)2)
+ (1− wic) N

(
binom,

(
σt,iint,j

)2)(
σc,iint,j

)2
=
(
σc,iob

)2
+
(
σitropo,j

)2
+
(
σiρ,user,j,IF

)2(
σt,iint,j

)2
=
(
σt,iob

)2
+
(
σitropo,j

)2
+
(
σiρ,user,j,IF

)2
.

(7.4)
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Since two weighted Gaussian distributions are used for overbounding the ranging

error, the position estimate shall reflect this modification. Let us go back to the basic

definition of the least-squares estimation matrix S in Equation (2.16). In the MG

case, the weighting matrix W shall account for core WC and tail distribution errors

WT so that the S is redefined as

S = wcSC + wtST where

{
SC = (GTWCG)−1GTWC

ST = (GTWTG)−1GTWC .
(7.5)

Accordingly, the state estimate vector x̂ for MG bounding is rewritten as

x̂ = Sz = (wcSC + wtST )z = wcx̂c + wtx̂t, (7.6)

and the error vector estimate is redefined from (2.17) as

ε ≡ x̂− x = wcx̂c + wtx̂t − wcxc − wtxt = wcεc + wtεt. (7.7)

As introduced in Section 2.2, the solution separation test statistic is built as the

difference between the position solution for hypothesis hk and the all-in-view h0 in

expression (2.28). The SS test statistic f is then redefined for Multi Gaussian MHSS

for coordinate l as

q
(k)
l =

∣∣∣x̂(k)
l − x̂

(0)
l

∣∣∣ = w(k)
c

∣∣∣x̂(k)
l,c − x̂

(0)
l,c

∣∣∣+ w
(k)
t

∣∣∣x̂(k)
l,t − x̂

(0)
l,t

∣∣∣ . (7.8)

Following the MHSS algorithm steps (Annex D), for a user j with a given geometry

G let Hk be the set of Nf + 1 mutually exclusive fault hypotheses determined by

expression (D.3). MG bounding introduces a major difference with respect to the

baseline MHSS; each core-tail combination must be accounted for in the convolution to

the position domain. For each fault hypothesis (k) where position solution is obtained

through Nk ranging measurements, a total of S = 2Nk different core-tail combinations

need to be taken into account. The associated PHMI for each fault hypothesis can be

expressed as the weighted sum of each individual convolution P
(k)
HMI,s as

P
(k)
HMI =

S∑
s=1

w(k)
s P

(k)
HMI,s. (7.9)

Each combination s convolves the cores from measurements d with the tails of mea-

surements r out of the total Nk measurements included in the fault tolerant solution

(k). As indicated in (7.4), note that each range measurement i can have different core

and tail weights so that the weighting factor of the combination s is defined as

w(k)
s =

Nk∏
d=1
d6=r

wdc

Nk∏
r=1
r 6=d

wrt . (7.10)

Using the total law of probabilities in (D.13), the total PHMI can be computed as the

sum of each individual hypothesis

PHMI =

Nf∑
k=0

P
(k)
HMI . (7.11)
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Introducing (7.9) in (7.11), the criterion for availability of integrity for MG bound-

ing can be written as

S∑
s=1

w(0)
s P

(0)
HMI,s +

Nf∑
k=1

{
S∑
s=1

w(k)
s P

(k)
HMI,s

}
≤ IREQ − PNM . (7.12)

Given the linearity, the derivation of the protection level equations departing from

the above expression is similar to the one followed in [87] to obtain the baseline VPL

and HPL equations in (D.14) and (D.15). Accommodating the MG method within

the protection level equations is uncomplicated and yields

S∑
s=1

2w(0)
s Q̄

(
V PL− b(0)3,s

σ
(0)
3,s

)
+

Nf∑
k=1

{
S∑
s=1

w(k)
s pf,kQ̄

(
V PL− Tk,3,s − b(k)3,s

σ
(k)
3,s

)}

= IREQ,V

(
1− PNM

IREQ,V + IREQ,H

)
.

(7.13)

For a typical GPS-Galileo scenario, one user can see up to 18 simultaneous satel-

lites which implies a total of over 200,000 different core-tail combinations for each

fault hypothesis. Computing each one of the terms in the expression above can be

prohibitive for the onboard algorithm. Let us find an upper bound that reduces the

number of core-tail combinations to be monitored at the expense of obtaining more

generous protection levels. As described in (2.23), each term in (7.13) represents the

tail probabilities in the position domain of each fault tolerant hypothesis for each

core-tail combination s. Let s = 1 be the combination of all cores C, s = S = 2Nk the

combination of all tails T , and 2 ≤ s ≤ S − 1 all the intermediate combinations. The

fault-free hypothesis (0) term can then be expressed as

S∑
s=1

2w(0)
s Q̄

(
V PL− b(0)3,s

σ
(0)
3,s

)
= 2w

(0)
C Q̄

(
V PL− b(0)3,C

σ
(0)
3,C

)

+

S−1∑
s=2

2w(0)
s Q̄

(
V PL− b(0)3,s

σ
(0)
3,s

)
+ 2w

(0)
T Q̄

(
V PL− b(0)3,T

σ
(0)
3,T

) (7.14)

where the weighting factors for combinations C and T can be computed according to

the definition in (7.10) as

w
(k)
C =

Nk∏
i=1

wic and w
(k)
T =

Nk∏
i=1

wit. (7.15)

According to expression (D.4) it is true that σ
(k)
3,T ≥ σ

(k)
3,s for all s given that

σt,iint ≥ σc,iint for all measurements i. In other words, the standard deviation of the

position solution error for the combination of all tails is larger than for the rest of s

combinations. Consequently the following bound can be established

Q̄

(
V PL− b(0)3,T

σ
(0)
3,T

)
≥ Q̄

(
V PL− b(0)3,s

σ
(0)
3,s

)
∀ s. (7.16)
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Introducing the expression above in (7.14), the following inequality can be found

S∑
s=1

2w(0)
s Q̄

(
V PL− b(0)3,s

σ
(0)
3,s

)
≤2w

(0)
C Q̄

(
V PL− b(0)3,C

σ
(0)
3,C

)

+ 2

S∑
s=2

w(0)
s Q̄

(
V PL− b(0)3,T

σ
(0)
3,T

)
.

(7.17)

A similar expression can be found for the fault-tolerant cases (k) leading to an

analogous upper bound

S∑
s=1

w(k)
s Q̄

(
V PL− Tk,3,s − b(k)3,s

σ
(k)
3,s

)
≤w(k)

C Q̄

(
V PL− Tk,3,C − b(k)3,C

σ
(k)
3,C

)

+

S∑
s=2

w(k)
s Q̄

(
V PL− Tk,3,T − b(k)3,T

σ
(k)
3,T

)
.

(7.18)

Since for a given ranging measurement core and weighting factors are complemen-

tary (wic +wit = 1 ∀ i), it is not necessary to compute the corresponding w
(k)
s term for

each combination s. Given that
∑S
s=1 w

(k)
s = 1, the summation term in expressions

(7.17) and (7.18) can be written as

w
(k)
CT =

S∑
s=2

w(k)
s = 1− w(k)

C = 1−
Nk∏
i=1

wic. (7.19)

Finally, introducing the upper bounds from (7.17) and (7.18) into (7.13), VPL

equations for MG overbounding can be expressed as

2w
(0)
C Q̄

(
V PL− b(0)3,C

σ
(0)
3,C

)
+ 2w

(0)
CT Q̄

(
V PL− b(0)3,T

σ
(0)
3,T

)

+

Nf∑
k=1

pf,k

{
w

(k)
C Q̄

(
V PL− Tk,3,C − b(k)3,C

σ
(k)
3,C

)
+ w

(k)
CT Q̄

(
V PL− Tk,3,T − b(k)3,T

σ
(k)
3,T

)}

= IREQ,V

(
1− PNM

IREQ,V + IREQ,H

)
.

(7.20)
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Analogously, the HPL equation for MG overbound can be written as

2w
(0)
C Q̄

(
HPLl − b(0)l,C

σ
(0)
l,C

)
+ 2w

(0)
CT Q̄

(
HPLl − b(0)l,T

σ
(0)
l,T

)

+

Nf∑
k=1

pf,k

{
w

(k)
C Q̄

(
HPLl − Tk,l,C − b(k)l,C

σ
(k)
l,C

)
+ w

(k)
CT Q̄

(
HPLl − Tk,l,T − b(k)l,T

σ
(k)
l,T

)}

=
1

2
IREQ,H

(
1− PNM

IREQ,V + IREQ,H

)
.

(7.21)

Comparing the modified protection level equations above to the SG baseline MHSS

in (D.14) and (D.15), one can see that the new ones consist of a set of fault hypotheses

with associated complementary prior probability of occurrence of w
(k)
C pf,k and w

(k)
CT pf,k

where w
(k)
C +w

(k)
CT = 1. Regarding the computational effort, the number of evaluations

gets increased by a factor of two, not presenting a prohibitive burden to the user

algorithm.

As was done in the SG MHSS case, the protection level equations can be solved

iteratively as indicated in Appendix B of [10]. The corresponding core and tail LSE

matrices for all-in-view (S
(0)
C , S

(0)
T ) and fault-tolerant solutions (S

(k)
C , S

(k)
T ) can be

determined as indicated by expressions (D.4) and (D.5). Note that the corresponding

weighting matrices WC and WT are based on each individual integrity bound σc,iint,j

and σt,iint,j defined by (7.4)

W
(k)
C (i, i) =

{
0 if i ∈ hk(
1/σc,i

int,j

)2
otherwise

W
(k)
T (i, i) =

{
0 if i ∈ hk(
1/σt,i

int,j

)2
otherwise.

(7.22)

Respectively, the covariance associated with the all-in-view (σ
(0)
l,C , σ

(0)
l,T ) and fault-

tolerant solutions (σ
(k)
l,C , σ

(k)
l,T ) are given by Equation (D.7) inserting the corresponding

W
(k)
C and W

(k)
T matrices. The test statistics standard deviations σ

(k)
ss,l,C and σ

(k)
ss,l,T

are computed as indicated by Equation (D.9). Note that the covariance matrix for

accuracy Cacc is defined by σ̄iacc,j in (7.4).

The solution separation detection threshold is calculated for each fault hypothesis

as done in (D.8)

Tk,l,C = Kfa,lσ
(k)
ss,l,C and Tk,l,T = Kfa,lσ

(k)
ss,l,T . (7.23)

Each core and tail contribution of the nominal bias can be computed similarly to

(D.10). For each coordinate l they are projected into the position domain as

b
(k)
l,C =

Nsat∑
i=1

∣∣∣S(k)
C,l,i

∣∣∣ binom and b
(k)
l,T =

Nsat∑
i=1

∣∣∣S(k)
T,l,i

∣∣∣ binom. (7.24)
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There are still two metrics that need to be modified with respect the baseline algo-

rithm; fault-free accuracy and EMT. The first one is based on the accuracy overbound

σ̄iacc,j defined in (7.4) and is computed as

σv,acc =

√
αT3 S

(0)
C CaccS

(0)T

C α3. (7.25)

Out of all the vertical detection thresholds for core and tail, the EMT is computed as

EMT = maxk|pk,f≥PEMT
{Tk,3,C , Tk,3,T } . (7.26)

Note that as long as the core bounding sigma values are significantly smaller than

the tail ones, Tk,3,T will be larger than Tk,3,C . Finally, the evaluation of the navigation

requirements for the modified Multi Gaussian MHSS algorithm can be done through

expressions (7.20), (7.21), (7.25), and (7.26). To complement this derivation, Annex E

provides a definition of the design parameters along with the integrity and continuity

allocation for horizontal and vertical coordinates.

7.3 ARAIM Availability Simulations

Once the MHSS algorithm has been modified to accommodate the Multi Gaussian

bounding, service volume simulations are carried out to evaluate the effect of the

new bounding methodology on ARAIM service availability. The implementation of

the algorithm has followed the baseline description and recommendations indicated

by the WGC in the ARAIM Milestone 3 Report [3] (including its latest update [4]).

Annex A provides further information regarding error models for covariance analysis

needed in this section. In addition, Annex E details the simulation configuration

parameters such as user grid, time step, and constellation almanacs. These have been

intentionally aligned to the MHSS reference algorithm parameters in order to make

a fair comparison between single and Multi Gaussian approaches. The probability

allocations for horizontal and vertical components are detailed in Table E.1.

Table 7.1: Single and Multi Gaussian Simulation Parameters Reciprocity

Parameter Single Gaussian Multi Gaussian

Integrity Bound σURA = σtob σcob, σ
t
ob, wc

Accuracy Bound σURE = 2/3 σtob σcob
bnom 75 cm 75cm

Psat 10−5 10−5

Pconst 10−4 10−4

The ultimate scope is to illustrate how a small modification in the offline ISM

entails a large improvement in the ARAIM service availability. In the case of MG

MHSS, three parameters are modified in each simulation scenario, σcob, σtob, and wc.
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As illustrated in Section 6.4, the fact that only one single parameter is used for the

integrity bound in the current MHSS obliges us to broadcast the most conservative

one; that implies σURA = σtob. Table 7.1 expresses the reciprocity between SG and

MG parameters to be compared in the simulations. Note that the accuracy bound for

SG follows WGC’s recommended σURE = 2/3 σtob.

Before analyzing the results, it is worth defining the following metrics:

• Availability: Percentage of time that a given user location meets the navigation

requirements (or one requirement in particular) during the full simulation period.

• 99.5% Coverage: Percentage of users in latitudes between 70◦ N and 70◦ S

that have an availability larger or equal to 99.5%. It is understood as a global

representation of the service availability.

• 99.5% VPL: For a given location, 99.5-percentile of the VPL distribution during

the full simulation period. This definition also applies to 99.5% HPL.

Seven sets of values for σcob, σtob, and wc have been selected in order to reflect

empirical data values from Tables 6.3 and 6.4. Each set has been simulated under

two scenarios: nominal 24/24 and depleted 23/23 satellites per constellation (further

details in Annex E). Tables 7.2 and 7.3 collect the 99.5% coverage values for each

scenario. Additional columns have been added to illustrate the coverage associated

with each of the four LPV-200 navigation requirements from Table 1.1. There are two

different ways of looking at these tables; horizontally and vertically.

In the first case we are comparing availability results provided by the SG versus

MG approaches. Note that in the SG side of the tables some values are repeated;

this is intentionally done so that each row allows a direct comparison between the two

methods for a given simulation scenario. When comparing MG scenarios vertically,

we are examining the influence of each of the three bounding parameters (σcob, σtob,

and wc) on the service availability. Scenarios 1 to 4 have been selected to compare the

influence of the weighting factors of 0.9 and 0.95. Scenarios 5 and 6 have been chosen

to show how two different sets of bounding parameters can report similar availability

figures. Scenario 7 has been selected to analyze the benefit of the MG versus SG when

large values of σURA are demanded.

Figures 7.1 and 7.2 compare the availability results between SG and MG for sim-

ulation scenario 3 for nominal 24/24 constellations. As reflected in Table 7.2, MG

bounding provides a 99.26% coverage whereas the SG method constrains it to 95.16%.

As seen in the maps, it is the VPL requirement that limits the performance. This dif-

ference is more accentuated for simulation scenario 5 where the σURA is increased to

1.5 m plotted in Figures 7.3 and 7.4. Traditional SG bounding cannot meet the target

coverage value of 90% whereas it is loosely fulfilled by the new approach. The weighted

MG bounds consume significantly less integrity budget leading to smaller protection

levels. As the σURA grows to 1.8 m, coverage drops down to 35.82% whereas it is

maintained at 94.58% using MG bounds. In this particular case, one can see that the

new methodology not only enhances the VPL values but also provides a more accu-

rate fault-free solution and EMT. As discussed in Chapter 6, the fact that the core is
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significantly narrower than the tails can be leveraged in the creation of accuracy and

continuity bounds generating smaller σv,acc and EMTs. Even more accentuated is the

difference between SG and MG approaches under depleted scenarios as depicted in

Table 7.3.

Let us resume the discussion regarding the influence of the weighting factor on

service availability. As reflected in Tables 6.3 and 6.4, the wc value that optimizes σcob
and σtob might vary among satellites. Typically, lower values of tail weighting factor

translate into larger tail bounds at the same time that they have less influence in the

protection level computation (7.20). Figures 7.5 and 7.6 compare the availability and

VPL maps for scenarios 5 and 6 under nominal constellations. These values intend to

represent a typical wc, σ
c
ob, and σtob combination extracted from data in Tables 6.3 and

6.4. It can be seen that the individual coverage values in Table 7.2 are quite similar

for both scenarios despite having different core and tail overbounds. This supports

the fact that in order to optimize the MG bounding potential, the ISM generator shall

have the freedom to modify these three parameters. One of the advantages of the

offline architecture is the one month ISM latency. This allows human interaction in

the generation loop facilitating the implementation of the bounding methodology here

proposed.
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Table 7.2: 99.5% Coverage values for Single and Multi Gaussian bounding under nominal 24/24 satellites scenario

Sim Single Gaussian Multi Gaussian

ID σURA
Cov

LPV-200

Cov

VPL

Cov

HPL

Cov

EMT

Cov

Acc
σcob σtob wc

Cov

LPV-200

Cov

VPL

Cov

HPL

Cov

EMT

Cov

Acc

1 100 98.71 98.71 100 99.86 100 40 100 0.9 99.5 99.5 100 100 100

2 100 98.71 98.71 100 99.86 100 40 100 0.95 99.57 99.57 100 100 100

3 120 95.16 95.16 100 98.66 100 40 120 0.95 99.26 99.26 100 100 100

4 120 95.16 95.16 100 98.66 100 40 120 0.9 98.78 98.78 100 100 100

5 150 86.12 86.3 100 91.73 98.97 30 150 0.95 98.71 98.71 100 100 100

6 180 35.82 58.89 100 68.54 41.92 50 180 0.99 97.49 97.49 100 100 100

7 180 35.82 58.89 100 68.54 41.92 50 180 0.95 94.57 94.57 100 100 100

Table 7.3: 99.5% Coverage values for Single and Multi Gaussian bounding under depleted 23/23 satellites scenario

Sim Single Gaussian Multi Gaussian

ID σURA
Cov

LPV-200

Cov

VPL

Cov

HPL

Cov

EMT

Cov

Acc
σcob σtob wc

Cov

LPV-200

Cov

VPL

Cov

HPL

Cov

EMT

Cov

Acc

1 100 79.66 79.78 98.16 84.8 100 40 100 0.9 84.29 84.34 98.31 88.22 100

2 100 79.66 79.78 98.16 84.8 100 40 100 0.95 84.59 84.64 98.36 88.22 100

3 120 69.67 70.11 98 79.64 100 40 120 0.95 82.9 83.69 97.38 88.14 100

4 120 69.67 70.11 98 79.64 100 40 120 0.9 81.61 82.61 97.18 88.14 100

5 150 27.12 39.63 92.93 54.47 72.47 30 150 0.95 75.72 78.7 94.98 90.03 100

6 180 0.08 2.02 88.92 5.67 2.59 50 180 0.99 71.86 76.28 92.3 86.93 100

7 180 0.08 2.02 88.92 5.67 2.59 50 180 0.95 56.33 61.03 90.95 86.73 100

σ values are given in cm, 99.5% coverage values are given in % and wc are non-dimensional.

The 99.5% coverage values are provided individually for each requirement and for the combination of them.
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Single Gaussian Overbound Availability Map under LPV-200 Requirements

 135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 45° S  

  0°  

 45° N  

97.5 97.75 98 98.25 98.5 98.75 99 99.25 99.5 99.75 100
(a) Availability map for SG overbounding

Multi Gaussian Overbound Availability Map under LPV-200 Requirements

 135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 45° S  

  0°  

 45° N  

97.5 97.75 98 98.25 98.5 98.75 99 99.25 99.5 99.75 100
(b) Availability map for MG overbounding

Figure 7.1: Comparison between Single and Multi Gaussian VPL for simulation scenario 3
under 24/24 nominal constellations. Availability maps
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Single Gaussian Overbound 99.5-percentile VPL Map

 135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 45° S  

  0°  

 45° N  

22 23 24 25 26 27 28 29 30 31 32 33 34 35 >35
(a) 99.5-Percentile VPL map for SG overbounding

Multi Gaussian Overbound 99.5-percentile VPL Map

 135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 45° S  

  0°  

 45° N  

22 23 24 25 26 27 28 29 30 31 32 33 34 35 >35
(b) 99.5-Percentile VPL map for MG overbounding

Figure 7.2: Comparison between Single and Multi Gaussian VPL for simulation scenario 3
under 24/24 nominal constellations. 99.5%-Percentile VPL maps
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Single Gaussian Overbound Availability Map under LPV-200 Requirements
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(a) Availability map for SG overbounding

Multi Gaussian Overbound Availability Map under LPV-200 Requirements
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Figure 7.3: Comparison between Single and Multi Gaussian bounding for simulation scenario
5 under 24/24 nominal constellations. Availability maps
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Single Gaussian Overbound 99.5-percentile VPL Map
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Figure 7.4: Comparison between Single and Multi Gaussian bounding for simulation scenario
5 under 24/24 nominal constellations. 99.5%-Percentile VPL maps
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Multi Gaussian Overbound Availability Map under LPV-200 Requirements
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(a) Availability map for MG overbounding

Multi Gaussian Overbound Availability Map under LPV-200 Requirements
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(b) Availability map for MG overbounding

Figure 7.5: Effect of the weighting factor in MG bounding: Comparison between simulation
scenarios 5 and 6 under 24/24 nominal constellations. 99.5%-Percentile VPL
maps
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Multi Gaussian Overbound 99.5-percentile VPL Map
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Multi Gaussian Overbound 99.5-percentile VPL Map
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Figure 7.6: Effect of the weighting factor in MG bounding: Comparison between simulation
scenarios 5 and 6 under 24/24 nominal constellations. 99.5%-Percentile VPL
maps
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7.4 Offline ISM for MultiGaussian Bounding

As shown in previous sections, the modified MHSS algorithm needs extra inputs with

respect to those of baseline. This section suggests different dissemination options for

adapting the current offline ISM format in order to fill the needs of the MG MHSS

algorithm.

7.4.1 Current Offline ISM Design

The offline ISM structure defined by WGC is based on Single Gaussian pair-bounding.

Fore each satellite within a GNSS constellation, Table 7.4 details the five main bound-

ing parameters that ARAIM users combine to create integrity and accuracy bounds

(see Annex A).

Table 7.4: List of parameters derived from current offline ISM [3]

Parameter Definition

σiURA|σiSISA standard deviation of the clock and ephemeris error of

satellite i used for integrity

σiURE|σiSISE standard deviation of the clock and ephemeris error of

satellite i used for accuracy and continuity

binom maximum nominal bias for satellite i used for integrity

P isat prior probability of fault in satellite i per approach

P gconst prior probability of fault in satellite g per approach

This ISM design is tailored to the current MHSS algorithm where one value of σiob
is used to create the integrity bound. In order for ARAIM users to apply the Multi

Gaussian overbound, σc,iob , σt,iob , and wic need to be included in the new ISM format.

7.4.2 ISM Dissemination Options and Backwards Compatibility

The implementation of the Multi Gaussian overbound for ARAIM users comes at the

price of a slight modification in the ISM design. The derivation carried out in Section

7.2 indicated that three parameters are needed for each satellite: σc,iob , σt,iob , and wic.

Note that, as proposed in Equation (7.3), the σiURE will be substituted by σc,iob for

creating the accuracy bound and σiURA will be substituted by σt,iob , so technically only

one extra parameter would be demanded.

As shown in the coverage results in the previous section, the ideal option would

be to broadcast an individual weighting factor for each satellite. By doing this, the

ISM generator would have the flexibility to compute the three parameters that better

fit each individual error distribution.
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According to a recent FAA-EC join publication [88], for offline ARAIM, it is

foreseen that each GNSS constellation will broadcast its own ISM through their cor-

responding navigation message. The proposed message type 38 for GPS ISM would

in principle allow the inclusion of the extra two parameters that the MG bounding

requires. However, since some restrictions in terms of data capacity can be faced by

the ANSP, this chapter proposes three different dissemination options.

Option A - Modified ISM structure with Modified Algorithm: This is

the optimal dissemination solution giving the flexibility to create individual weights

for each core-tail distribution. The current ISM would only have to incorporate an

extra parameter, wic. One of the advantages of this option is that the backwards

compatibility is fully guaranteed. As indicated in Section 6.4.4, Cs-equipped GPS

empirical data does not suggest a core-tail partition. In these cases, the corresponding

weighting parameters can be set to 1 making MG protection level equations (7.20) and

(7.21) mathematically equivalent to the Single Gaussian (D.14) and (D.15). A second

operational option to guarantee backwards compatibility is the complementary use of

wic as a flag. In case wic = 1 users must utilize the legacy MHSS mode taking core

values for accuracy and tail for integrity.

Option B - Unmodified ISM structure with Modified Algorithm: This

one is a compromise solution. It does not require the modification of the ISM structure

at the expense of hard-coding the weighting factor. Of course this option reduces the

flexibility of the MG bounds since a given value of wic is in general not optimal for all

satellites (as seen in Section 6.4.5). In fact, as shown in the previous coverage Table

7.2, there are multiple combinations of the overbounding set (σc,iob , σt,iob , and wic) that

yield similar availability results. A compromise value for wc could be 0.95. In this case,

the backwards compatibility is also guaranteed for the Cs-equipped GPS satellites. By

simply establishing σc,iob = σt,iob = σiURA, the MG integrity bound described in (7.4) is

mathematically equivalent to the SG integrity bound in (A.13).

Option C - Unmodified ISM structure with Unmodified Algorithm: Al-

though the simplest to implement, it does not exploit all the potential of the MG

bound. In this case, no modifications in the ISM structure or onboard MHSS al-

gorithm are required. It is a simple setting of σURE = σcob instead of fixing it to

σURE = 2/3 σURA as recommended in Milestone 3 Report. The guarantee of the

backwards compatibility is straightforward given that no modification in the onboard

algorithm is implemented.

7.4.3 ISM Dissemination Options Comparison

In order to compare the performance of each dissemination option with respect to the

baseline MHSS let us analyze the VPL and HPL time series for a given location. We

select σURA = 180 cm for the baseline ISM, which according to WGC recommenda-

tions, entails a σURE = 2/3 σURA = 120 cm. As shown in Chapter 6, a fixed value of
2/3 is actually quite conservative for the accuracy bounding. Based on results from

Table 6.3, option C relaxes the σURE to a more realistic value of 50 cm. For a fair
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comparison, MG options A and B use the same σURA and σURE values as option C

for tail (σcob = 180 cm) and core (σcob = 50 cm) bounding. Then, different core-tail

weighting factors are used: wA
c = 0.99 and wB

c = 0.95. For the simulations, the same

values of Psat = 10−5, Pconst = 10−4, and bnom = 75 cm have been selected from both

GPS and Galileo constellations.

Figures 7.7 and 7.8 represent VPL and HPL time series during 24 hours for a

user located at Seville airport in south Spain (37.42◦N, 5.89◦W). The benefits of MG

bounding against baseline ISM are indisputable. The average VPL reduction of option

A and B relative to baseline ISM are ∼ 25% and ∼ 20% correspondingly. It can be

seen that slight change in the MHSS algorithm can significantly impact the protection

levels at no extra computational effort. Comparing VPL equations for MG (7.20) and

SG (D.14), the number of Q̄ evaluations only increases by a factor of two, providing

an affordable change in terms of user computational load.

The benefits of the Multi Gaussian MHSS are even more interesting in the case of

depleted scenarios. As illustrated in the lower plot of Figure 7.7, by using the baseline

ISM design, VPL target of 35 m is exceeded during several hours leading to service

unavailability. Conversely, MG options A and B guarantee that protection levels stay

below the limits for almost the full period (100% and 99.75% correspondingly). One

can also see that option B is a good compromise in case no modification in the ISM

structure is wanted. Although having full flexibility (option A) to individually adjust

σcob, σtob, and wc is desired, the compromise solution by fixing wc to 0.95 also provides

excellent availability results. Both options A and B have a direct impact on the CSP

performance commitments; for the same ARAIM service availability target, GNSS will

be required to commit to more relaxed integrity bounds reducing the burden on the

operations.
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Figure 7.7: Vertical Protection Level time series at Seville Airport, Spain (37.42◦N, 5.89◦W)
for the three proposed ISM design versus baseline ISM
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Figure 7.8: HPL time series at Seville Airport, Spain (37.42◦N, 5.89◦W) for the three pro-
posed ISM design versus baseline ISM
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8 Conclusions

Both the US Federal Aviation Administration and European Commission are invest-

ing large amounts of effort and resources to make ARAIM a reality in the coming

years. The full deployment of Galileo along with the modernization of GPS will soon

provide sufficient GNSS ranging measurements to enable ARAIM global coverage. In

this context, constellation ground monitoring and Integrity Support Message gener-

ation acquire a paramount relevance for ARAIM operations. This dissertation has

addressed key points related to performance characterization and error overbound

which directly led to a new ISM design. By tailoring the bounds to an empirically

suggested Multi Gaussian distribution, this new methodology provides tighter and

equally safe protection levels. A small modification in the onboard MHSS user al-

gorithm to accommodate this new ISM design significantly enhances ARAIM service

availability for LPV-200 requirements with respect to the current model.

8.1 Summary of Achievements

This dissertation has covered three major aspects in the ISM generation. It has

addressed the integrity and availability of service history data, the GPS and Galileo

constellation performance characterization, and the temporal correlation of the range

error. It all has been combined in the design of a new bounding methodology which

led to a redefinition of the ISM structure along with a reshaped user algorithm. Areas

of contributions are described in the following subsections.

8.1.1 Ephemeris and Clock Reference Products Monitor

By using a set of 29 ground monitor stations, this dissertation has designed a validation

method to guarantee integrity and availability of the reference products used in the

GNSS ephemeris and clock error characterization. One of the novelties that this

method introduced is the satellite availability check based on ranging measurements.

In the case of satellite outages, fictitious and largely degraded orbit and clock errors can

be introduced in the distributions if the broadcast ephemeris are used independently

of the observation measurements. Using code and phase observations collected by

a global network of receivers, it is possible to internally generate continuous clock

reference products. As shown, the accuracy of these clock estimates is on the order

of 20 cm for GPS and 14 cm for Galileo satellites. In the case of data gaps in the

sp3 repositories, this methodology allows the retrieval of satellite orbit and clock

reference data by using ranging measurements. This validation method ensures two
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essential aspects for integrity monitoring; first, it guarantees that no fabricated errors

are introduced in the distributions, and second, that no integrity events are overlooked

due to reference data unavailability.

8.1.2 GNSS Performance Assessment

This dissertation has carried out a detailed analysis of the unfaulted orbit and clock

errors for both GPS and Galileo constellations. Orbit and clock components have been

individually characterized showing that the onboard clock type is the main driver of

the range error distribution. It was shown that the current Galileo SISRE nominal

performance is twice as accurate as GPS. One of the novelties introduced in this study

is the temporal breakdown into monthly, biannual and yearly datasets using folded

CDF waterfall diagrams. It exposed that distributions are highly variable on a monthly

basis, especially for Rb-equipped GPS satellites. As the monitoring period increases,

the sample size grows, more independent data is collected and thus the variability

observed among datasets decreases. This is an indicator of the high correlation among

samples. We also showed that this correlation greatly depends on the onboard clock

type. In this respect, the so-called initialization period has been identified. During

the first weeks of operation, GPS satellites show abnormally large errors that are

not representative of the satellite’s performance after that period. Consequently, it is

advised that ANSP waits a couple months after including new satellites for SoL use.

8.1.3 Correlation Analysis Methodology

An innovation brought by this dissertation is the error correlation study based on the

variance of the estimator of the distribution mean and standard deviation. Unlike

prior correlation analyses where only a qualitative assessment based on autocorrela-

tion plots was carried out, this work provides an analytical method to quantitatively

determine the time between effectively independent samples. As illustrated through

this dissertation, this time varies between GPS and Galileo satellites being mostly

driven by the onboard clock type. Range errors from GPS Rb-equipped satellites ex-

hibit a time between independent samples of 50-60 hours, or in other words, only 16

independent samples per month. Conversely, Cs-equipped satellites present a decor-

relation time of around 5-6 hours. As pointed out through this dissertation, Rb clock

predictions are significantly more accurate than Cs ones but their errors are ten times

longer correlated. This is due to the typically higher noise floor for Cs clocks that

overshadows the orbit correlation effects. In the case of Galileo, due to the more

frequent navigation data updates, correlation is significantly reduced to 2.5-3.5 hours

for PHM clocks and 4-5 hours for RAFS-equipped satellites. In terms of number of

independent error samples, it has been established that approximately 150-180 data

points can be collected in a month of Galileo monitoring, depending on the clock type.
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8.1.4 Impact of Sample Correlation on SISRE Overbound

This dissertation derives a methodology to compute error integrity bounds accounting

for the limited number of independent samples for a given dataset. Based on Bayesian

inference, this work derives an explicit expression of error CDF as a function of the

number of independent data points and the sample standard deviation. It has been

shown that in order for a Gaussian distribution to account for data independence, the

sample standard deviation must be inflated by the so-called uncertainty factor. This

factor is inversely proportional to the number of independent samples representing the

higher confidence that can be placed in the estimation as more independent data are

collected. It takes values below 1.1 as the dataset contains more than 150-180 inde-

pendent data points. In terms of monitoring period, it implies that only 1.5 months of

Galileo data is enough to characterize nominal range error mean and standard devia-

tion. In the case of GPS Rb, due to the high correlation of the data, one would have

to wait up to 10-12 months to confidently characterize the error nominal distribution.

This Bayesian analysis has been corroborated by the GPS and Galileo service history

data.

8.1.5 Multi Gaussian Distribution for Integrity Overbound

This work leverages the fact that empirical error CDFs have two distinctive parts;

narrow quasi-Gaussian core and flat highly non-Gaussian tail distribution. In order

to create tighter overbounds, this dissertation designs an integrity bound made up of

two weighted Gaussian distributions. Current integrity bounds are driven by tail dis-

persion sacrificing the well-behaved core distribution. By choosing a proper weighting

factor that ranges between 0.9 and 0.99, this work shows that a tighter and equally

safe integrity bound can be applied. Correspondingly, the number of independent

samples contained in each distribution is also accounted for in the determination of

each individual bound. Typical sigma values for core bounds range between 30-40 cm

for GPS and 15-25 cm for Galileo. In the case of tail overbounding, values show larger

diversity across satellites. This is one of the advantages of this methodology; it allows

flexibility between core and tail bounding.

8.1.6 Modification of the Baseline MHSS Algorithm

This dissertation proposes a modification of the baseline Multiple Hypothesis Solution

Separation algorithm to accommodate the MG approach. The original URA sigma

bound for integrity is now divided in two weighted distributions that individually

bound each error partition. Respectively, it is been shown that the accuracy bound is

determined by the core of the distribution. Availability results exposed the benefits

of the MG MHSS in meeting LPV-200 requirements. Since each individual MG range

bound is tailored to the actual behavior of the error, the convolution of the weighted

Gaussians provide tighter protection levels and smaller fault-free accuracy values which
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ultimately lead to better availability figures. This is particularly advantageous in the

case of depleted constellation scenarios.

8.1.7 ISM Design for Optimal Integrity and Accuracy Bounds

This work proposes three prospective ISM designs to accommodate the three bound-

ing parameters per satellite that MG MHSS needs. Option A, the ideal one, consists

of the dissemination of these three parameters. In this case, the ISM generator would

have full flexibility to optimize core and tail partitions depending on the actual distri-

bution shape. Option B, the compromise solution, proposes a fixed weighting factor of

0.95 where only the individual one sigma bounds for core and tail are broadcast. This

option would only imply a slight modification of the user ARAIM algorithm keeping

the current ISM structure. Option C does not entail any changes in the user algo-

rithm or ISM structure. It simply proposes a different setting of the accuracy bound

based on empirical evidence. The options have been compared against the current

baseline ISM showing that options A and B can decrease the VPL values up to 30%

guaranteeing backwards compatibility to the current algorithm. Ultimately, without

decreasing ARAIM service availability, the target URA value demanded from CSP

can be significantly relaxed imposing less stringent requirements on GPS and Galileo

ground segments.

8.2 Recommendations for Future Research Topics

A number of recommendations regarding data monitoring and ISM generations are

provided in the following subsections.

8.2.1 Ground Stations Observation Model Refinements

The aim of the ground monitoring function is to validate reference orbit and clock

products. With the current design this can be achieved down to the 20 cm level

which is sufficient for our purpose. However, the observation model applied by the

monitoring stations can be enhanced to obtain more accurate estimations of satellite

clock biases. A more sophisticated tropospheric model can be applied keeping the

residual tropospheric error as part of the state estimation. A second aspect to be

improved is the inclusion of receiver-dependent biases within satellite and receiver

clock estimation. MGEX analysis centers do account for the fact that each monitoring

station introduces a receiver dependent code bias that can only be obviated if all

stations have the same receiver configuration [89]. Accounting for these biases can

significantly improve the accuracy of clock solutions at the expense of having a more

complex estimation process.
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8.2.2 Autoregressive Models for Ephemeris and Clock Error

This aspect acquires more relevance in the case of online ARAIM where the ISM is in

charge of providing ephemeris and clock corrections for the navigation message. An-

alyzing the historical data with an AutoRegressive–Moving-Average (ARMA) model

in order to predict the error behavior is a promising idea which has already been in-

vestigated in the field of SBAS [90]. One of the benefits of using ARMA models can

be the relaxation of the online ISM dissemination latency.

8.2.3 Alternatives for Tail Bounding

The major difficulty that the Multi Gaussian bound faces is the determination of

the tail overbound. The few available independent data points along with the un-

predictability of the error magnitude itself makes it cumbersome. Previous work has

analyzed the use of Extreme Value Theory (EVT) to overbound distributions tails

[91][92] with no particular focus on the fact that data samples are highly correlated in

time. Those analyses assumed that the observed error distribution is the actual one

and hence no correlation effects are accounted for. The problem of the EVT is that

more than one parameter would be needed to elaborate the tail integrity bound and

hence further data capacity would be requested from the ISM. One of the open points

for future research is the combination of the EVT for determining the SG tail bound

that this dissertation proposes.

8.2.4 Optimization of Core and Tail Bounds and Nominal Bias

An open point that was left for future research is the optimization between the one

sigma bound for integrity and the nominal bias. As analyzed by Blanch in [33],

there is a trade-off between the σURA and bnom that can be exploited in order to

obtain more efficient integrity bounds. A more elaborated trade-off worth investigating

is the optimization between wc, σ
c
ob, σtob, and bnom. The benefits of the core-tail

partition can be further exploited by including the value of the nominal bias in the

determination of MG bounds. By doing so, ISM provider would have a forth degree

of freedom to optimize the MG pair bound. For this purpose, a further consolidation

of a bnom determination methodology is needed. Previous works have addressed bias

budgeting and impact on the user performance in [83] and [93]. However an overbound

determination methodology based on data monitoring still remains an open point for

ISM generation.

8.3 Closing

The novel ISM design presented in this dissertation can significantly enhance ARAIM

services availability with a slight modification of the current user algorithm. With a

very small increase to computational load, the target LPV-200 global coverage can be

achieved even in the case of depleted constellations.
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A Ranging Error Models for Dual Frequency

This annex provides a mathematical model for the different ranging error sources

detailed in Section 2.1.2. For a given pair of Ionosphere Free code and phase measure-

ments from satellite i recorded by receiver j in frequencies, Section 2.1.3 defined the

corresponding error terms as νϕ
i
j,IF and νρ

i
j,IF. Models in this annex are particularized

for frequencies L1/L2 and L1/L5 for GPS and E1/E5a for Galileo, respectively. They

include orbit and clock error, residual tropospheric delay, receiver noise, and multipath

error. In addition, the signal deformation error is accounted by the bias term. They

are modeled as Gaussian distributions

νρ
i
j,IF ∼ N

(
µρ,
(
σiρ,j,AB

)2)
and νϕ

i
j,IF ∼ N

(
µφ,
(
σiϕ,j,AB

)2)
(A.1)

where the standard deviations account for each individual error contribution

(σiρ,j,IF)2 = (σiorb,clk)2 + (σitropo,j)
2 + (σiρ,j,user,AB)2 (A.2)

(σiϕ,j,IF)2 = (σiorb,clk)2 + (σitropo,j)
2 + (σiϕ,j,user,IF)2. (A.3)

The residual tropospheric uncertainty provided by the RTCA-MOPS-229D [39] is

common to all frequencies and signals (non-dispersive media)

σitropo,j(θ
i
j) = 0.12[m]

1.001√
0.002001 + sin(θij [rad]2)

(A.4)

where θij is the satellite i elevation with respect to receiver j.

Because code noise and multipath errors are typically two orders of magnitude

larger than phase errors, for the applications in this dissertation only the first ones

are given. Note that these errors highly depend on the environment and vary between

GPS and Galileo. Chapter 3 utilizes L1/L2 and E1/E5a measurements from ground

stations whereas Chapter 7 simulates L1/L5 and E1/E5a airborne measurements.

Models for L1L5 GPS error overbound after carrier smoothing suggested by WGC are

provided by

• GPS Airborne Receiver ([94] and [95])

σinoise,j(θ
i
j) = 0.15[m] + 0.43[m] exp

[
−
θij [deg]

6.9

]
(A.5)

σimp,j(θ
i
j) = 0.13[m] + 0.53[m] exp

[
−
θij [deg]

10

]
(A.6)

σiuser,j =

√
f4
L1 + f4

L5

(f2
L1 − f2

L5)2

√(
σinoise,j

)2
+
(
σimp,j

)2
(A.7)



138 Annex A. Ranging Error Models for Dual Frequency

• Galileo Airborne Receiver [22]

Table A.1: Galileo elevation dependent SIS user error contribution

θij [deg] σiuser,j [m] θij [deg] σiuser,j [m]

5 0.4529 50 0.2359

10 0.3553 55 0.2339

15 0.3063 60 0.2302

20 0.2638 65 0.2295

25 0.2593 70 0.2278

30 0.2555 75 0.2297

35 0.2504 80 0.231

40 0.2438 85 0.2274

45 0.2396 90 0.2277

This model has also been used for Galileo noise and multipath errors in Chapter

3 (subject to be updated when new Galileo error models become available).

• GPS and Galileo Ground Receiver [96]

σinoise,j(θ
i
j) = 0.06[m] + 0.19[m] exp

[
−
θij [deg]

15

]
(A.8)

σimp,j(θ
i
j) = 0.12[m] + 0.52[m] exp

[
−
θij [deg]

30

]
(A.9)

σiuser,j =

√
f4
L1 + f4

L2

(f2
L1 − f2

L2)2

√(
σinoise,j

)2
+
(
σimp,j

)2
(A.10)

A.1 Range Error Models for MHSS algorithm

The MHSS algorithm assumes two different error models, one for integrity and one

for accuracy.

• Accuracy and Continuity: The orbit and clock error bounding is modeled by

σiURE and σiSISE and the nominal bias for continuity is assumed zero.
N
(
µiacc,

(
σiacc,j

)2)
(σiacc,j)

2 = (σiURE,SISE)2 + (σitropo,j)
2 + (σiρ,j,user,IF)2

µiacc = 0

(A.11)

The covariance matrix for accuracy is defined as

Cacc(i, i) = (σiacc,j)
2. (A.12)
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• Integrity: The orbit and clock error bounding is modeled by σiURA and σiSISA
and the nominal bias for integrity is assumed bnom.

N
(
µiint,

(
σiint,j

)2)
(σiint,j)

2 = (σiURA,SISA)2 + (σitropo,j)
2 + (σiρ,j,user,IF)2∣∣µiint∣∣ ≤ binom.

(A.13)

The covariance matrix for integrity is defined as

Cint(i, i) = (σiint,j)
2. (A.14)

The models for GPS and Galileo airborne receivers are detailed in (A.5)-(A.7) and

Table A.1.
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B Satellite attitude model

This annex defines the two coordinate transformation matricesRi,k
ECEF,BF andRi,k

ECEF,RAC

needed in Section 3.6 to compute satellite orbit and clock error. The information here

included has been extracted from [97]. For a given satellite i at an epoch k, CoM

position and velocity vector expressed in ECEF can be rewritten as (let us drop the

indexes in order to simplify the notation)

xsv = xi,k,BCE
CoM,ECEF and vsv = vi,k,BCE

CoM,ECEF (B.1)

A generic vector is defined as e =
[
e(1), e(2), e(3)

]T
and ‖e‖ = 1.

ECEF to BF Rotation As shown in Figure 3.12, GNSS satellite attitude is governed

by the position of Earth and Sun. Consequently, in order to transform from ECEF

to BF (or vice-versa) the position of the Sun in the ECEF frame is needed. The

description of the formulation to determine the Sun position as a function of time

xsun = f(t) is fully contained in Chapter 5 of [77] and has not been included in this

annex for conciseness. Let us define the satellite-Sun euclidean vector as

xsvsun = xsun − xsv (B.2)

The row vectors of the rotation matrix are computed as
ez,BF = xsv

‖xsv‖

ey,BF =
xsv
sun×xsv

‖xsv
sun×xsv‖

ex,BF = ey,BF × ez,BF .

(B.3)

Finally, the ECEF to BF rotation matrix is defined as

RECEF,BF =

e
(1)
x,BF e

(2)
x,BF e

(3)
x,BF

e
(1)
y,BF e

(2)
y,BF e

(3)
y,BF

e
(1)
z,BF e

(2)
z,BF e

(3)
z,BF .

 (B.4)

Because of the properties of the rotation matrices, it can be stated that RBF,ECEF =

[RECEF,BF ]T .
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ECEF to RAC Rotation The Radial, Along-Track, Cross-Track frame is defined by

Earth’s position and satellite’s velocity as
eR = − xsv

‖xsv‖

eC = xsv×vsv
‖xsv×vsv‖

eA = eC × eR

(B.5)

and the rotation matrix

RECEF,RAC =

e
(1)
R e

(2)
R e

(3)
R

e
(1)
A e

(2)
A e

(3)
A

e
(1)
C e

(2)
C e

(3)
C .

 (B.6)

Analogously, because of the properties of the rotation matrices, it can be stated that

RRAC,ECEF = [RECEF,RAC ]T .
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C Methodologies for Gaussian Bounding

The CDF bounding, formalized by DeCleene in [31], is stated as follows. Let us define

a random error variable A(x) with an empirical PDF fA(x) and CDF FA(x). Let

OA(x) be the bounding distribution with a PDF fOA(x) and CDF FOA(x). A(x) is

bounded by O(x) if

FOA(x) ≥ FA(x) ∀ x ≤ 0

FOA(x) < FA(x) ∀ x > 0.
(C.1)

The previous expression only attends to the overbound of individual range measure-

ments. Ultimately, augmentation systems need to provide safe overbounds in the

position domain. For that purpose, it has to be proved that the convolution of in-

dividual ranging overbounds also delimits the convolution of individual range errors.

Given a second random error variable B(y) with an empirical PDF fB(y) and CDF

FB(y), bounded by a distribution OB(y) with a PDF fOB (y) and CDF FOB (y), the

convolution of A(x) and B(y) is defined as

fA+B(z) =

∫ ∞
−∞

fA(x)fB(z− x)dx (C.2)

and its corresponding CDF is defined as

FA+B(z) =

∫ z

−∞

∫ ∞
−∞

fA(x)fB(z− x)dxdz (C.3)

Analogously, the convolution of OA(x) and OB(y)is defined as

fOA+OB (z) =

∫ ∞
−∞

fOA(x)fOB (z− x)dx (C.4)

and its corresponding CDF is defined as

FOA+OB (z) =

∫ z

−∞

∫ ∞
−∞

fOA(x)fOB (z− x)dxdz. (C.5)

DeCleene proved that the convolution of the individual range overbounds is also safe

in the position domain

FOA+OB (z) ≥ FA+B(z) ∀ z ≤ 0

FOA+OB (z) < FA+B(z) ∀ z > 0
(C.6)

under the following conditions:

• A(x) is symmetric and unimodal
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• B(y) is symmetric and unimodal

• OA(x) is symmetric and unimodal

• OB(y) is symmetric and unimodal

The last two conditions can be met by simply choosing Gaussian distributions to

create overbounds. However the two first points are quite restrictive in the case of

signal deformation biases or other events that shift distribution median. In order to

account for these effects, pair overbound [32] introduced the so-called nominal bias

bnom. Rife proposed a set of two symmetrically shifted distributions around the origin

L(x) and R(x) so that the CDF of the bounding function O(x) is defined as

FO(x) =


FL(x) ∀ FL < 1/2

1/2

FR(x) ∀ FR > 1/2.

(C.7)

Given two arbitrary independent CDF functions FA(x) and FB(y) individually

bounded by
FLA(x) ≥ FA(x) ∀ x

FRA(x) ≤ FA(x) ∀ x
and

FLB (y) ≥ FB(y) ∀ y

FRB (y) ≤ FB(y) ∀ y
(C.8)

then, the convolution of FA(x) and FB(y) is bounded by the distributions FLA+LB (z)

and FRA+RB (z)
FLA+LB (z) ≥ FA+B(z) ∀ z

FRA+RB (z) ≤ FA+B(z) ∀ z.
(C.9)

Unlike CDF-bounding, pair-bounding does not require the empirical distribution

to be unimodal nor symmetric. As shown in [32], the pair overbounding requires FL
and FR to be monotonic and fulfill conditions (C.8).

Proof of safety of Multi Gaussian pair bounding The Multi Gaussian pair bound

is an extension of the MG bounding described in Chapter 6 with the addition of the

bnom term introduced by Rife. Note that in order to maintain the symmetry and

unimodality of the bound, left and right distributions for core and tail are shifted

by the same bnom value. Individual MG range envelopes in (7.2) must guarantee the

overbound of the error convolutions in the position domain as expressed in (C.9).

As indicated in the above paragraph, FOMG,L(x) and FOMG,R must be monotonic

and fulfill conditions (C.8) in order to ensure integrity in the position domain. The

monotonic condition is straightforward to prove for MG bounds. FOMG,L and FOMG,R

are defined as

FOMG,L(x) = wc

[
1

2
+

1

2
erf

(
x + bnom

σcob
√

2

)]
+ wt

[
1

2
+

1

2
erf

(
x + bnom

σtob
√

2

)]
(C.10)

FOMG,R(x) = wc

[
1

2
+

1

2
erf

(
x− bnom
σcob
√

2

)]
+ wt

[
1

2
+

1

2
erf

(
x− bnom
σtob
√

2

)]
(C.11)

where the error function erf(x) = 2√
π

∫ x

0
e−v

2

dv is a monotonic function.
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D Baseline Multiple Hypothesis Solution Separation

Algorithm for Fault Detection

This annex provides a succinct (not full) description of the ARAIM reference airborne

algorithm developed by the ARAIM Technical Subgroup of the WGC in [3]. An

updated version of the algorithm was published by WGC in November 2017 [4] (latest

version at the time of writing of this dissertation). Note that only the steps necessary to

follow the Multi Gaussian derivation in Chapter 7 are given. Further details regarding

the Multiple Hypothesis Solution Separation methodology can be found in Blanch’s

work in [18] and [10].

D.1 Definitions

The following definitions have been taken from the ARAIM algorithm definition in

[4].

Q is the tail probability function of a zero mean unit normal distribution

Q(u) =
1√
2π

∫ +∞

u

e−
t2

2 dt. (D.1)

Q̄ is the modified tail probability function defined as

Q̄(u) =

{
Q(u) for u > 0

1 for u ≤ 0.
(D.2)

For a given geometry with Nsat number of satellites in view belonging to Nconst
constellations, the individual Psat and Pconst are provided thorough the Integrity

Support Message (Table 7.4). Users shall determine the set of Nf + 1 complementary,

mutually exclusive hypotheses Hk (including the fault-free hypothesis H0). In addition

they shall compute their associated a priori probability pf,k and the non-monitored

probability PNM as indicated in Annex A.VIII in [3] using the following expression

pf,k =

Nevents∏
i=1

P
Bi,k

event,i (1− Pevent,i)1−Bi,k . (D.3)
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D.2 Definition of the test statistic and biases

The Multiple Hypothesis Solution Separation algorithm checks the consistency among

different position solutions associated with each fault hypothesis x̂(k) and the all-

in-view position solution x̂(0). Expressions (2.13)-(2.21) defined the state vector x,

geometry matrixG, covariance matrixC, weighting matrixW Least Square Estimator

(LSE) matrices S, and P . The all-in-view state vector solution is defined as

x̂(0) = S(0)z where S(0) = (GTW (0)G)−1GTW (0). (D.4)

Under hypothesis hk where s satellites are presumptively faulted, the fault-tolerant

state vector solution is computed by excluding the measurements from those satellites

as

x̂(k) = S(k)z where (k)(GTW (k)G)−1GTW (k). (D.5)

where the fault tolerant weighting matrix is defined as (see A.1)

W (k)(i, i) =

{
0 if i ∈ hk
C−1
int(i, i) otherwise.

(D.6)

In the case of dual GPS-Galileo ARAIM, the East North Up selectors are α1 =

[1 0 0 0 0]T , α2 = [0 1 0 0 0]T and α3 = [0 0 1 0 0]T , and the individual coordi-

nate position solution is obtained by x̂
(k)
l = αlx̂

(k). The corresponding covariance

associated with each solution is given by(
σ
(k)
l

)2
= αTl Pαl = (GTW (k)G)−1

l,l . (D.7)

The solution separation test statistic is then computed as the difference

q
(k)
l =

∣∣∣x̂(k)l − x̂
(0)
l

∣∣∣ (D.8)

and its corresponding variance is(
σ
(k)
ss,l

)2
= αTl

(
S(k) − S(0)

)
Cacc

(
S(k) − S(0)

)T
αl. (D.9)

The MHSS algorithm assumes the worst case combination of the nominal bias by

projecting each bnom,i into the position domain through the absolute value of the LSE

matrix. Under a given fault hypothesis hk, the contribution of the nominal bias to

each coordinate l is computed as

b
(k)
l =

Nsat∑
i=1

∣∣∣S(k)
l,i

∣∣∣ bnom,i. (D.10)
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D.3 Solution Separation Detection Thresholds

The computation of the threshold (fault-free detection probabilities) is based on the

continuity requirement. For each fault mode k and coordinate l

Tk,l = Kfa,lσ
(k)
ss,l (D.11)

where

Kfa,1 = Kfa,2 = Q−1

(
PFA,V
4Nf

)
and Kfa,2 = Q−1

(
PFA,H
2Nf

)
. (D.12)

The vertical PFA,V and horizontal PFA,H probabilities of False Alarm are based on

the continuity requirement from Table 1.1 and allocated according to Annex E.

D.4 Protection Level Equations

Using the law of total probability, the total PHMI can be used as criterion for avail-

ability of integrity as

PHMI =

Nf∑
k=0

P (| ε | >AL, | q | <T |Hk)pfk ≤ IREQ − PNM (D.13)

where PHk is the prior probability of fault occurrence, Hk is set of hypothesis for

k = 0, .., .h, PNM is the prior probability of the unmonitored events (PNM � IREQ),

and IREQ is the navigation in integrity requirement from Table 1.1.

It is convenient to express (D.13) in terms of vertical and horizontal protection

levels as

2Q̄

(
V PL− b(0)3

σ
(0)
3

)
+

Nf∑
k=1

pf,kQ̄

(
V PL− Tk,3 − b(k)3

σ
(k)
3

)
=

IREQ,V

(
1− PNM

IREQ,V + IREQ,H

) (D.14)

2Q̄

(
HPLl − b(0)l

σ
(0)
l

)
+

Nf∑
k=1

pf,kQ̄

(
HPL− Tk,l − b(k)l

σ
(k)
l

)
=

1

2
IREQ,H

(
1− PNM

IREQ,V + IREQ,H

)
.

(D.15)

The derivation of VPL and HPL equations is detailed in [18] and a method to

solve them is presented in Appendix B of [10]. Note that the term IREQ has been

conveniently reassigned to vertical IREQ,V and horizontal IREQ,H components. The

probability allocations are detailed in Annex E.
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D.5 Accuracy and Effective Monitoring Threshold

The last two LPV-200 navigation requirements established by ICAO (Table 1.1) are

evaluated through the computation of the following metrics

σv,acc =

√
αT3 S

(0)CaccS(0)Tα3 (D.16)

EMT = maxk|pk,f≥PEMT
Tk,3. (D.17)

More details regarding the interpretation of the accuracy and EMT requirements can

be found in [10].

D.6 Simulation Tool

The implementation of the MHSS algorithm has followed the description given in

latest version of the WGC document [4]. The MatLab Algorithm Availability Simula-

tion Tool (MAAST), developed by the Stanford University GPS Lab and made freely

available at [98], is the software utilized to elaborate the availability plots within

WGC reports. Although in this dissertations the MHSS has been independently de-

veloped, three functions from this tool have been used: determine_subsets_v4.m,

compute_adjusted_position_1D.m, and compute_protection_level_v4.m. The first

one determines the set of monitored fault hypotheses (solution to Equation (D.3));

the second one provides an optimized subset for weak geometries (Section 4.11 of [4]);

the third one finds a solution to the vertical and horizontal protection level equations

(D.14) and (D.15).
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E ARAIM Service Volume Simulation Parameters

This annex provides the necessary information regarding the ARAIM Service Volume

Simulations (SVSs) in Chapter 7.

E.1 ARAIM Design Parameters

The allocation between horizontal and vertical coordinates of LPV-200 integrity and

continuity requirements (Table 1.1) has taken the values recommended in the latest

version of the ARAIM algorithm description published by WGC in [4]. The table below

also includes some key parameters for the determination of the monitored subset, the

solution of the protection level equations, and the computation of the EMT.

Table E.1: List of design parameters for ARAIM Simulations [4]

Parameter Description Value

IREQ,V integrity budget for the vertical component 9.8×10−8

IREQ,H integrity budget for the horizontal compo-

nent

2×10−9

PFA,V continuity budget allocated to the vertical

mode

3.9×10−6

PFA,H continuity budget allocated to the horizon-

tal mode

9×10−8

PTHRES threshold for the integrity risk coming from

unmonitored faults

8×10−8

NMAX
ITER maximum number of iterations to compute

the PL

10

TOLPL tolerance for the computation of the Pro-

tection Level

5 cm

PEMT probability used for the calculation of the

Effective Monitor Threshold

10−5

E.2 Simulation Scenarios and Setup

Two scenarios have been selected for the SVS:
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• Baseline Scenario: Nominal 24 GPS SV constellation distributed in 6 orbital

planes and Nominal 24 Galileo satellites distributed in 3 orbital planes.

• Depleted Scenario: Nominal 24-1 GPS SV constellation distributed in 6 orbital

planes and Nominal 24-1 Galileo satellites distributed in 3 orbital planes.

The almanacs for the above scenarios are available in yuma format in the Stanford

GPS Lab repository [98].

Regarding grid, mask angle, and time for the simulations the following parameters

have been chosen

• Rectangular grid of 5◦

• 10 sidereal days

• 900 sec time step
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