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International Research Network “Bright Far-Infrared Optoelectronic Sources to Field-

Matter Interaction Studies, Life Sciences and Enviromental Monitoring” (IRN FIR-LAB) was 

created in 2017 by Agreement between French (CNRS, UPD, UPMC, ENS) and Russian (MSU, 

RFBR) institutions for 2018–2021 year to coordinate scientific activities between laboratories 

making up this network falling into the scope:  

 propagation of FIR/THz beams in atmosphere; 

 high power FIR/THz sources; 

 FIR/THz field-matter interaction studies; 

 FIR/THz plasmonics, metamaterials, nanomaterials  

 applications. 

1st IRN FIR-LAB meeting was carried out in July 3-4, 2018 at École Normale Supérieure, 

Paris. 

 

 
Based on the successful organizations of preceding Russia-Japan-USA-Europe (RJUSE) 

symposia in Japan, Russia, USA and Poland the 8th RJUSE is organized in Nizhny Novgorod, 

Russia, on July 08–11, 2019. The symposium aims to bring together researchers who tackle 

“Fundamental & Applied Problems in Terahertz Devices & Technologies”, so as to stimulate 

discussions on the state-of-the-art results and promote the collaborations in the following topics:. 

THz physics  

•  Carrier transport & quantum effects in devices; 

•  Nonequilibrium carrier dynamics; 

•  2D materials & their heterostructures; 

•  Terahertz properties of Dirac matter.  

THz devices & electronic/optical components 

•  Sub-THz/THz transistors, mixers, etc.; 

•  Metamaterials, photonic crystals; 

•  Surface-plasmon-polaritons; 

•  Electronic/photonic/plasmonic devices; 

•  Nonlinear optics based devices; 

•  Superconductors, bolometers, etc. 

THz applications 

•  Wireless communications; 

•  Imaging; 

•  Spectroscopy; 

•  Astronomy. 

http://rjuse-2019.org/file/5/9e150b34/IRN+FIR-LAB+-+Signed-30-11-2017.pdf
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Abstract – THz photoluminescence (PL) spectra from QW 
HgTe/CdHgTe heterostructures are studied in the 
temperature range of 30–100 K under the excitation power 
varied from 3 mW to 300 mW. The long-wavelength lines in 
the PL spectra, whose position does not change with 
temperature, are associated with the capture of free holes on 
the states of neutral mercury vacancies. Non-monotonic 
dependence of the impurity PL signal on the power of the 
exciting source has been observed. 

Keywords – HgTe/CdHgTe heterostructures, 
photoluminescence, mercury vacancies 

I. INTRODUCTION 

Terahertz (THz) radiation due to transitions 
involving impurities and defects in bulk semiconductors 
and semiconductor quantum well (QW) structures has 
been of interest for a long time [1, 2]. The related effects 
can be useful for developing terahertz sources employing 
optical transitions between impurity states. Until recently, 
studies of impurities and defects were carried out mainly 
in the most commonly used semiconductor 
heterostructures based on Ge, GaAs and Si [3]. This work 
continues a series of work aimed at studying the 
impurity/defect centers in HgTe/CdHgTe QW 
heterostructures, in which the most common acceptor is a 
mercury vacancy. Mercury vacancies manifest themselves 
in the photoconductivity (PC) [4, 5] and 
photoluminescence (PL) spectra [6]. In this work we 
investigate the PL spectra related to the mercury vacancies. 

II. EXPERIMENTAL TECHNIQUE 

The structures under study were grown by molecular 
beam epitaxy on semi-insulating GaAs substrates in the 
(013) direction with ZnTe buffer layers (500 A thick) and 
CdTe (5 μm thick). On a CdTe buffer a 49 A thick HgTe 
QW was grown, surrounded by 300g thick Hg0.24Cd0.76Te 

barrier layers. The bandgap of the structure is about 50 meV 
at T = 4.2 K, and the residual hole density is 7 ∙ 1010 cm-2. 
The PL studies were performed using a Bruker Vertex 
80v Fourier spectrometer operating in the step-scan 
mode. The measurements were carried out in a closed-
cycle optical cryostat with temperature range of 20– 
150 K. A silicon bolometer cooled to 4.2 K was used as a 
detector. Optical excitation was carried out by a 
continuous laser with a wavelength of 808 nm. The 
maximum laser power was 300 mW. 

III. EXPERIMENT RESULTS 

Figure 1 shows the PL spectra of under study, 
measured at 30 K at different pump powers in the range 
from 3 to 300 mW. The quanta energy for interband 
transitions in such a structure at a temperature of 30 K is 
about 450 cm– 1. It can be seen that in all spectra there is a 
PL band from 50 to 400 cm-1, separated by narrow dips in 
three lines: 50–160 cm-1 (line 1), 160–250 cm-1 (line 2) 
and 250–400 cm-1 (line 3). Fig. 1 shows that at high 
excitation intensity (100 and 300 mW), the fourth PL line 
appears at 450–600 cm-1 (line 4). 
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Fig. 1. The PL spectra of sample under study 
(HgTe/Hg0.24Cd0.76Te 49 А thick QW) measured at 30 K and a 
source power from 3 to 300 mW. 
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As the power of the exciting radiation increases, the 
position of the 1–3 PL bands does not change, and the 
signal intensity changes non-monotonically. Fig. 1 shows 
that the amplitude of lines 1–3 grows as the pump power 
increases from 3 to 100 mW, but when the source 
intensity increases to 300 mW, the amplitude of the line 1 
starts to decrease. The intensity of the short-wavelength 
band 4 increases with the source power, while the 
position of the long-wave front of this band remains 
unchanged. 

Figure 2 shows the PL spectra of the studied sample, 
measured at a fixed source power (300 mW), but at 
different temperatures. As the temperature rises, the 
intensity of the PL bands decreases, while the position of 
the bands 1–3 does not change. Band 4 shifts towards 
high energy quanta suggesting that band 4 should be 
associated with interband transitions. Indeed, it is well 
known [4] that the band gap in the structure under study 
should increase with temperature. The 1–3 PL bands, 
however, do not shift with temperature, and, on the 
contrary, are associated with carrier transitions between 
states bound to a certain band. Previously, such long 
wavelength PL bands were associated with transitions 
involving mercury vacancies [4]. 

IV. INTERPRETATION 
OF THE MEASURED PL SPECTRA 

The mercury vacancy is a double acceptor and can be 
found in three charge states: a neutral A0 center with two 
holes, an A-1 center with one hole and an A-2 center 
without any holes. The PL occurs due to the radiative 
transitions of holes from the valence band to the acceptor 
states. One can think of such transitions as the capture of 
holes to the acceptor centers: either the capture of a hole 
to a A-2 center with the emission of a photon forming an 
A-1 center or the capture of a hole to an A-1 center with 
the emission of a photon forming an A0 center. A0 center, 
cannot capture the holes; therefore, such centers do not 
participate in PL. The calculation shows that the long-
wavelength PL lines 1-3 can be associated with the 
capture of free holes on the states of neutral mercury 
vacancies. Band 4, which is associated with interband 
transitions, appears when the power of the exciting source 
increases. At the same time, the signal in the long-
wavelength bands falls. This may be due to the fact that, 
under weak excitation, electrons from the conduction 
band transfer to neutral states of mercury vacancies (A0 

centers) in a nonradiative manner. The resulting A-1 

centers are contribute to PL. However, at a certain source 
power, most of the A0 centers are filled with electrons, 
i.e. the number of final states for nonradiative transitions 
from the conduction band decreases. As a result, 
electrons begin to recombine with holes from the valence 
band radiatively. With an increase in the pump power, 
such electron transitions are getting more intense, 
 

 
 
 

while the number of holes in the valence band that can be 
captured to A-1 centers decreases, and thus the signal of 
the impurity PL decreases. 

 

 
Fig. 2. The PL spectra of sample under study, measured 

under 300 mW excitation at different temperatures 

V. CONCLUSIONS 

In this work, the THz PL spectra of HgTe / CdHgTe 
QW heterostructures. The long-wavelength lines in the 
PL spectra, whose position does not change with 
temperature, are associated with the capture of free holes 
on the states of neutral mercury vacancies. Non-
monotonic dependence of the impurity PL signal on the 
power of the exciting source has been observed. It is 
shown that it is due to the saturation of the number of 
partially ionized mercury vacancies with increase in 
pumping intensity. 
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