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Abstract 

 

Building type classification is a critical element in building inventories, which are essential in 

earthquake losses estimation. The collapse of buildings mainly causes the death toll related to 

earthquakes. However, such inventories are frequently not available or are incomplete. To com-

pile the required building inventory data and assign relevant features to the buildings often in-

cludes detailed building-by-building assessments which require ample time and financial in-

vestment. To overcome these obstacles, remote sensing techniques have shown the potential to 

extract relevant features for characterization of buildings and subsequent vulnerability analysis. 

This study introduces a learning method for assigning the building type to a building inventory 

using features from remote sensing data and limited in situ observations. The method achieved 

an overall accuracy of 76.01% and built upon an ensemble of supplementary machine learning 

algorithms and techniques such as Random Forest, Nearest Neighbor, Gradient Boosting and 

Stacking learning. In the second stage, a new method to increase the accuracy of the model is 

proposed. The selected model was applied to a sample of 20,000 buildings. An accuracy of 72. 

32% was reached. The prediction of this model has been added as a new feature and has been a 

model relearned. With this prediction, three new features have been calculated using the majori-

ty filter concept. The model was relearned for a second time, and an accuracy of 72.75% was 

attained. 

 

Keywords: Seismic building structural type; Machine Learning; Ensemble Learning; Relearn-

ing Process; Cologne; Earthquake 
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1. Introduction 

Building type classification is a vital element in building inventories, which are essential in 

earthquake loss estimation. In fact, in 2017, worldwide economic losses from disasters were 

assessed at $337 billion (Swiss Re, 2018). During the same year, a total of 92.80 million people 

were affected by natural disasters  (Roser & Ritchie, 2018), with earthquakes causing approxi-

mately 1,012 deaths  (Below & Wallemacq, 2018).  

Earthquakes occur daily around the globe. However, the disaster risk of a system is probabilisti-

cally determined as a function of hazard, exposure, vulnerability, and capacity (United Nations 

Office for Disaster Risk Reduction, 2017). Nowadays, people are becoming more vulnerable to 

earthquakes regardless of whether they live in rich or emerging countries (Dan et al., 2014). 

Indeed, the death toll related to earthquakes is mainly caused by the collapse of buildings 

(United States Geological Survey, 2018). Therefore, it is clear that building inventory data re-

quires reliable estimation of earthquake damage. However, some countries do not have enough 

data for such estimations, and, even if they have them, there is plenty of work to do (Matsuoka 

et al., 2014). Similarly, building inventory and its vulnerability, especially for earthquake losses 

estimation, usually involve a considerable amount of time and money (Dunbar et al., 2003).  

There are different approaches to seismic vulnerability evaluation of existing buildings. The 

conventional methods are designed by structural engineers and require detailed assessments of 

each building. They are costly and sometimes unable to cope with large areas (Geiß et al., 

2015). Instead, different remote sensing techniques have proven their potential to extract rele-

vant features to assess earthquake risk (Geiß & Taubenböck, 2013). For instance, Geiß et al. 

(2015) combined scarce in situ observations, multisensory remote sensing data, and machine 

learning techniques to estimate seismic building structural types in the city of Padang (Indone-

sia). The study performed a supervised classification with the models that were built using Sup-

port Vector Machine (SVM) algorithm and Random Forest (RF) independently. It was found 

that one model performed better with some features than the other.  

Likewise, a machine learning classification of buildings was completed by Lee et al. (2017). 

The project applied four different algorithms: Decision Tree (DT), K Nearest Neighbor (KNN), 

Gaussian Naïve Bayes (GNB), and SVM. However, the study concluded that a reinforcement of 

the model is needed and that the application of other learning models should be investigated.  

A study done by Li et al. (2018) highlights the importance of machine learning techniques dur-

ing earthquake relief. It evaluated the seismic waveform recorded by 16 seismological stations 

and determined the time that vertical and horizontal waves reached a seismograph station. 
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SVM, RF, and DT algorithms were applied individually. It was settled that a combination of 

some methods can be further analyzed and the addition of new features can improve the predic-

tion results.  

The literature discussed above shows the potential of machine learning for building classifica-

tion and the importance of applying new methodologies during earthquake relief. They all agree 

that an application of other learning algorithms can be useful for improving the accuracy of the 

results. Therefore, this project intends to develop a new model to automatically classify build-

ings from the City of Cologne. This study combines different machine learning algorithms. Due 

to the time and cost of completing building inventories, this thesis proposes to increase the ac-

curacy of the model with a computation of new features on the geospatial domain and relearn-

ing processes. 
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