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Abstract 

The urban areas around the world are growing and constantly changing. One of the 

developments that can be observed alongside, especially in the Global North, is the formation of 

several densification patterns, so-called (sub-)centers, in addition to the traditional center. This 

phenomenon, known under the scientific term polycentricity, has so far mainly been analysed based 

on socioeconomic data on employees, population or human activity data, to name a few. These 

approaches, however, are reaching their limits. Due to data heterogeneity, limited data availability 

and diverse methodological strategies to identify center structures, comparisons between cities or 

regions are difficult. Since remote sensing enables to compute the urban morphology on large 

scale, it has the potential to support the social sciences.               

Against this background, within this thesis I used remotely sensed data to calculate urban mass 

concentrations, defined as volume per processing unit, in four German cities and four cities in 

the USA. The outcome is a morphological 3D characterization of the urban structure. In the 

scope of this thesis the approach used to generate these urban mass concentrations is applied for 

the first time to cities in the USA. Originating from the results, in a next step, high urban mass 

concentrations interpreted as (sub-)centers are identified by applying a threshold method. Based 

on the identified (sub-)centers a polycentricity analysis is finally carried out to compare the 

distribution of (sub-)centers within Germany and the USA as well as between Germany and the 

USA.               

Concluding, the thesis investigates the phenomenon of polycentricity from a morphological 

perspective in order to contribute to the understanding of the changes happening in today’s 

urban environments of the Global North. At the same time, it is a contribution to the further 

development of polycentricity analyses. 
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1 Introduction 

Urban settlement structures in the Global North are undergoing an evolution from formerly 

‚mono-centered‘ to ‚poly-centered‘ cities with several densification patterns in addition to the 

Central Business District (CBD; e.g. Greene 1980, 29; Vasanen 2012, 3628; McDonald & Prather 

1994, 201; Anas et al. 1998, 1427; Krehl 2018, 79). The monocentric model pictures a continuing 

decrease of density away from the center. But this well-known trend doesn’t seem to reflect 

today’s urban structure properly any more (Taubenböck et al. 2017aa, 42). Dispersion and sprawl 

of population and activities have led to fundamental changes in the last two centuries and 

consequently to a modification of the traditional theoretic monocentric city model. But the 

transition seen in today’s urban structure can also not clearly assigned only to these two 

development patterns alone (Krehl 2018, 79f.; Zhong et al. 2015, 438; Riguelle et al. 2007, 194). 

The shift is rather a complete rearrangement of urban spatial structure existing of 

deconcentration processes - dispersion and sprawl - on the one hand and concentration 

processes - subcenter formation and reurbanization - on the other hand (Krehl 2018, 80). This 

overlap then leads to the spatial configuration of ‘polycentricity’ with a diminishing regional 

primacy of the CBD and several co-existing subcenters (Taubenböck et al. 2017a, 42).     

One central element used in literature for the identification and description of CBDs and (sub-

)centers is employment densification, which is in mutual influence with the density of built 

structures. Morphological compactness is a precondition for spatial proximity of individuals and 

actors such as residents, employees or entrepreneurs and this gathering on the other hand has an 

impact on economic and social interactions like face to face contacts or sharing of resources 

(Krehl 2018, 80; Krehl et al. 2016a, 1; Agarwal et al. 2012, 435). Therefore, polycentricity is 

assessable by means of different spatial and socioeconomic indicators. A common approach is 

the use of (socio-) economic variables such as employee-, population- or firm-counts to identify 

centers of densification of those quantities in the urban area (e.g. Greene 1980, McDonald 1987, 

Giuliano & Small 1991, Roca Cladera 2009, Agarwal et al. 2012). Besides, there are also attempts 

to use the built environment as an indicator for (sub-)centers (e.g. Schneider et al. 2015; 

Taubenböck et al. 2013). Two-dimensional approaches employ the build-up area (e.g. Yue et al. 

2010) whereas three-dimensional efforts include the build-up volume as well to detect center 

structures (e.g. Wurm et al. 2014; Geiß et al. 2017). In addition, polycentricity was examined in 

the context of urban geography and planning with studies mainly focused on North America 

(Krehl 2018, 80). However, polycentric development is not limited to that geographic region but 

can also be observed in Europe (Taubenböck et al. 2017a, 42; Garcia-López & Muñiz 2010, 3051; 

Riguelle et al. 2007, 211).                  
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1.1 Scientific discourse of polycentricity  

Although ‘polycentric development’ has been a much discussed topic in the academic and 

political literature for the last two decades, ‘polycentricity’ itself still remains a ‘fuzzy’ concept 

(Burger & Meijers 2011, 1127). In general, it can be understood as “phenomenon or process which 

possesses two or more alternative meanings and thus cannot be reliably identified or applied by different readers or 

scholars” (Markusen 1999, 870). But this results in a fundamental problem. Whereupon should a 

well-founded polycentricity analysis be based on, if the theoretical foundation depends on the 

researcher’s perspective (Vasanen 2012, 3628, Riguelle et al. 2007, 195)?     

From a morphological point of view polycentricity refers to the distribution of objects (here 

buildings) within a given area. If there is a significant spatial horizontal and vertical densification 

of those objects in comparison to their surroundings, they get treated as centers (Taubenböck et 

al. 2017a, 43). Therefore, a polycentric city is an urban region with several compression clusters 

of buildings (Kloosterman & Lambregts 2001, 718f). The morphology describes the size and 

spatial distribution of those clusters. The functional dimension in contrast deals with connections 

between them like commuting flows or economic and social network linkages (Zhong et al. 2015, 

438). Hence, functional polycentricity can be seen as network of places (Taubenböck et al. 2017a, 

43), whose individual connections contribute to the entire polycentric urban system (Vasanen 

2012, 3628f.).                                    

The linkages, regardless of whether they are morphological or functional, can occur between 

subcenters or several cities and they may be a major component of the wellbeing of the urban 

system as a whole (Burger & Meijers 2011, 1128). Therefore, polycentricity can appear at 

different dimensions and subsequently is of multi-scalar nature. The first one is called ‘intra-

urban’ polycentricity dealing with centers within individual cities like Los Angeles or London. 

Another option is the ‘inter-urban’ pattern of clustering, examples are urban hubs with larger 

regional spatial entities as the Dutch Randstad or the Rhine-Main region in Germany (for an 

overview of inter-urban polycentric development in Europe see Hall & Pain 2006; Krehl et al. 

2016b, 3f.; Riguelle et al. 2007, 195). Moreover, exists the ‘inter-regional’ or ‘inter-national’ 

interdependency among urban nodes, an example is the so called ‘Pentagon’, used by the EU to 

identify a polycentric region that includes Paris, Milan, Hamburg, Munich and London (Veneri & 

Burgalassi 2012, 1019f.)                 

The confusion is exacerbated by the chosen reference parameter (e.g. employment or population) 

and its discrimination value differentiating between (sub-)centers and surroundings. These are 

determined by the scientist and thus cannot be regarded as objective. Moreover, the identification 

of polycentricity is highly scale-dependent in the context of the size of the research area. A city 
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which may indicate a polycentric development on one scale may show monocentrism when 

evaluated at another, even when the same value is applied to separate (sub-)centers from other 

city structures (Vasanen 2012, 3628; Zhong et al. 2015, 438f.).          

These different characteristics make it possible to determine polycentric development as a spatial 

process, but a quantitative measurement still remains inconsistent. Even after many years of 

research, there are no exact values indicating when a city is polycentric or only shows tendencies 

towards it. 

Historically, the theory of polycentricity grew out of a monocentric city model. The latter finds its 

origin in the work of Alonso (1964), Mills (1967) and Muth (1969), whom founded the scientific 

field of urban economics. They have been the first to combine city transport, land use and 

population issues under the term ‘monocentricity’. This relatively simple model claims that 

production and consumption only take place in the dense core city (CBD; Duranton & Puga 

2015, 472f. & 484) surrounded by a less dense hinterland. The highest land value occurs in the 

CBD and originating from it results a concentric distance-based negative rent gradient 

(Taubenböck et al. 2017a, 43; Anas & Kim 1999, 251). This primacy occurs due to so called 

agglomeration economies, advantages because of an enormous concentration of values, 

infrastructure, employment and money flows, which give an explanation why cities form in the 

first place (Taubenböck et al. 2013, 386; Duranton & Puga 2014, 807ff.). Over time costs for 

housing and commuting rise, the agglomeration economies turn into diseconomies and people 

tend to migrate into the less dense hinterland (Duranton & Puga 2014, 807ff.). This migration 

will either lead to a densified extended core or to a formation of new centers in the area 

surrounding the CBD. In this case, a polycentric development has started (Taubenböck et al. 

2017a, 43).                                                         

In addition, however, it must also be noted that polycentric development can also be tracked 

back to urban planning events. Since the 1960s many cities have adopted urban containment 

policies (UCPs) to manage urban growth pressures and urban sprawl as well as to protect open 

space (Siedentop et al. 2016, 71; Begngston & Youn 2006, 1f.; Anthony 2004, 378). Research on 

this topic has already been carried out in America, Europe and Asia (e.g. Siedentop et al. 2016; 

Landis 2006; Bengston & Youn 2006, Dieleman et al. 1999) and some results show, that state-

wide management strategies can promote a polycentric spatial urban structure while preventing 

urban sprawl (Woo & Guldman 2014, 6). UCPs such as growth boundaries or greenbelts (for a 

deeper definition and explanation see e.g. Siedentop et al. 2016 or Woo & Guldman 2014) often 

result in a spatial concentration of development in CBDs and surrounding higher density patterns 

(Siedentop et al. 2016, 72.).                   

Taking these approaches into account, it can be said, that polycentricity refers to a spatial 
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configuration between monocentrism and urban sprawl. It can develop by reasons of 

agglomeration economies turning into diseconomies or as physical manifestation of UCPs. As a 

consequence, polycentricity must be seen as both. It is the historical legacy of urban planning 

events as well as the outcome of economic migration movements away from the CBD 

(Taubenböck et al. 2017a, 43). 

As already briefly mentioned above, for the identification and examination of morphological 

polycentricity traditional approaches mostly use employees as parameter of interest (e.g. Roca 

Cladera 2009, McDonald 1987, Gordon et al. 1986). These are linked to agglomeration 

economies (Taubenböck et al. 2017a, 43), as it is assumed that the CBD holds the highest density 

of employment due to the described advantages (Krehl 2018, 83). In the wake of emerging 

benefits in the forming centers in the hinterland like less rent/traffic and at the same time density 

of economics as well as face-to-face contacts, which lets them become alternatives to the CBD 

(Riguelle et al. 2007, 195), employees seem the most obvious variable to analyze polycentricity 

(Taubenböck et al. 2017a, 43). Meanwhile the relationship between physical shapes and 

socioeconomic activities is better understood and therefore morphological characteristics like 

built-up height and density gain importance. As a result, morphological variables are now 

included in addition to socioeconomic parameters, or the latter are even omitted and analyses are 

only carried out using the physical structure (e.g. Schneider et al. 2015, Taubenböck et al. 2013, 

Yue et al. 2010; Taubenböck et al. 2017a, 43; Krehl 2018, 1). 

In the course of attempting to find a definition, ‘polycentricity’ is seen as a number of co-existing 

centers in one urban region (Klosterman & Lambregts 2001, 718f.) developing through a spatial 

process where socioeconomic functions of traditional CBDs diffuse from one major center to an 

undefined number of subcenters (Zhong et al. 2015, 438f.). Through influences on land values, 

housing prices and travel patterns, this evolving spatial structure has a large influence on people’s 

daily life, the economic growth, the social equity and the sustainable urban development (Zhong 

et al. 2015, 438; McDonald 1987, 242). For the implementation of adequate planning strategies, it 

is therefore a crucial task to understand this polycentric evolution in urban organization forms. 

Thus, it is not surprising that in recent years the quantitative characterization of urban structure 

has gained much attention in a wide range of scientific fields like e.g. urban geography, urban 

economics or spatial planning (Zhong et al. 2015, 438). 
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1.2 State of research 

To exemplify how polycentricity is investigated, the following explanations display how 

morphological urban characterization and/or subcenter detection has been addressed in the 

literature so far. Starting with more conventional approaches, the main focus is on newer 

analyses, which tend to use the physical appearance as parameter of investigation. In order to also 

show the differences in America and Europe, scientific findings in the field of spatial urban 

development are outlined later on. 

1.2.1 Means of subcenter identification and the role of remote sensing in urban 

investigation 

A first step in evaluating the effects of subcenters on urban spatial structures is their 

identification (McMillen 2001, 448). Throughout the last decades a broad spectrum of different 

methodologies, using diverse parameters of interest, to identify the local spatial densification 

patterns has evolved in the research community (Krehl 2018, 80).         

Morphological polycentricity is related to the spatial distribution of economic activity. Therefore, 

as briefly described above, employment is the most frequently used variable to identify center 

structures. But also, population or firm counts have been used in the past (e.g. Garcia-López & 

Muñiz 2010; Riguelle et al. 2007; Redfearn 2007; Craig & Ng 2000; McDonald 1987).         

In order to measure the degree of functional polycentricity the research community uses mostly 

flow data. Hence, commuting or shopping trips are deployed as analyzing parameters (e.g. Burger 

& Meijers 2012; Veneri & Burgalassi 2012, 1022f.). However, this data is not sufficient to capture 

the actual use of urban space. Employees or students working from home and not in offices or 

libraries are not recorded at all amongst others. Therefore, newer approaches also include human 

activity data (Zhong et al. 2015, 439). Roth et al. (2011) for example use the electronical subway 

ticket system in London, which stores the individual person’s movements, to identify 

polycentricity in the city (Roth et al. 2011, 1) or Zhong et al. (2015), whom use travel survey data 

with direct information on human activities to quantify the centrality of a given location (Zhong 

et al. 2015, 440f.).                                    

In summary, there is not a typical parameter with which polycentricity, whether of morphological 

or functional nature, can be quantitatively investigated – different approaches use different 

parameters. In addition, the data used are not collected by applying one universal method and no 

area-wide availability is guaranteed. Therefore, the objective of comparability is already 

fundamentally undermined. In terms of morphological polycentricity for example, census data, 

where the survey was subject to the individual countries, are mostly deployed (e.g. Lv et al. 2017; 

Redfearn 2007; Hall & Pain 2006). Moreover, the data basis consists frequently only of 
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aggregated numbers added up to investigation units, rather than actual truths (e.g. Giuliano & 

Small 1991). Since the location of these units is also influenced by the data collection method, 

they differ from city to city and also over time. This influences the number of identified (sub-

)centers considerably (e.g. Redfearn 2007; Lee 2007; Giuliano & Small 1991).             

Similarly, the examination on different analysis schemes contributes to the fuzziness of 

polycentricity. Already mentioned in the previous section, the range goes from one individual city 

to trans-national urban connections, whereby polycentricity is always understood to mean 

something different in context of the analysis entity (e.g. Garcia-López & Muñiz 2010; Hall & 

Pain 2006; Kloosterman & Lambregts 2001; Waterhout et al. 2005).        

The application of various methods for the investigation of polycentricity must also be 

considered. The approaches range from comparatively simple techniques like density maps or 

gradients to discover employment densifications (e.g. Gordon et al. 1986, Anas & Kim 1996, 

Kim 2007; Krehl 2018, 80) to cutoff (‘threshold’) methods, where a priori defined density values 

differentiate (sub-)centers from their surroundings (e.g. Green 1980, Giuliano & Small 1991, 

Anderson & Bogart 2001, Gaschet 2002, García-López & Muñiz 2007, Kim et al. 2014; Krehl 

2018, 82). Additionally, advanced analytical procedures like exploratory methods working with 

indices (e.g. Riguelle et al. 2007, Guillain & Le Gallo 2010, Krehl 2015a; Krehl 2018, 82; Riguelle 

et al. 2007, 199), regression-based parametric analyses (e.g. McDonald 1987, McDonald & 

McMillen 1990, McDonald & Prather 1994, Roca Cladera et al. 2009) and non-parametric locally-

weighted regression concepts (LWR) are often deployed (e.g. McMillen 2001, Craig & Ng 2001, 

Readfearn 2007, Krehl 2018; for a good summarized overview, see Roca Cladera et al. 2009). 

This demonstrates how diverse the approaches in polycentricity analysis are and how this feature 

indicates how difficult it is to compare the results. Even detected (sub-)centers within one area of 

investigation, which were calculated with the same approach and parameter, vary in number, size 

and location within the study region (Taubenböck et al. 2017a, 44; Agarwal et al. 2012, 441). This 

is also due to the fact that the data basis, analysis unit and the underlying definition of a center - 

‘When is a center a center?’ - have a considerable influence on the outcome. Agarwal et al. (2012) 

exemplify this for the city of Los Angeles, USA. Through the comparison of six studies using 

either different threshold approaches (4) or LWR (2), they address this problem scientifically. 

Giuliano et al. (2007) are with 13 identified centers in 1990 at the lowest end of the spectrum. In 

contrast Forestall and Greene (1997) score the highest number by identifying 120 centers for the 

same year, while the remaining results of the compared studies are somewhere in between. This 

exemplifies that the outcomes vary significantly depending on the method used and the 

discrimination value between (sub-)centers and surroundings (Agarwal et al. 2012, 441). All in all 

there is a unity throughout the research community about the existence of polycentricity. But at 
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the same time the fuzziness of the concept means that traditional methods and parameters 

discussed above are no longer satisfying for comparable research approaches (Taubenböck et al. 

2017a, 44; Maktav et al. 2005, 655). In order to attain comparability between different regions, 

reproductivity and the ability to investigate large areas instead of being restricted by data 

availability and its units of analysis the scientific community has to refer to other techniques 

(Maktav et al.2005, 655) and parameters of investigation.  

Earth Observation (EO) as well as Geographic Information Systems (GIS) can help to solve 

problems encountered with conventional methods (Maktav et al. 2005, 655). Even though 

remotely sensed data cannot completely solve the mathematical problems, they form a uniform, 

timely and spatially continuous data basis (Geiß et al. 2017, 1).       

With the advent of third generation commercial satellite programs with very high resolution such 

as IKONOS (4m resolution), Quickbird (2.4m resolution) or WorldView (1.85m resolution) - 

multispectral data (ca. 5 to 10 bands with approximately 70-400nm each) - Remote Sensing 

applications are now suitable for urban analyses as well (Geiß et al.2017, 1; Klotz et al. 2015, 35; 

Shafri et al. 2012, 1557; Ehlers 2006, 357f.; Maktav et al. 2005, 656). Besides, also hyperspectral 

data (100 to 200 bands with approximately 5-10nm each) have a great potential to contribute to 

the analysis of the urban environment, although the applications are still rare (e.g. Heiden et al. 

2012; Fauvel et al. 2007). The data is acquired mostly exclusively from airborne platforms and the 

best results for urban applications such as roof type mapping or urban heat islands are given in 

combination with different sensors like Light Detection and Ranging (LiDAR; Shafri et al. 2012, 

1557ff.). However, the future spaceborne hyperspectral satellite mission EnMAP (launch planned 

for 2020; DLR 2019) is expected, although limited to a resolution of 30m, to advance urban 

analysis (Heldens et al. 2011 1831ff.). First researches have already been carried out with 

simulated EnMap recordings (e.g. Rosentreter et al. 2017).                    

In general, currently available geometric resolutions enable to distinguish comparable small 

objects like buildings. The radiometric resolution further allows to discriminate the urban areas 

thematically and the temporal resolution to detect their changes throughout time (Maktav et al. 

2005, 656). But it still remains a complex challenge due to the different materials present in urban 

features and its variety in size and shape, which can lead to several forms within one pixel 

(Schneider et al. 2015, 48). Already common applications such as the derivation of spatial extent 

and location of urban areas, land use classifications and their spatial distribution, detection of 

infrastructure networks and the monitoring of change in land cover and use over time 

predominantly represent the cityscape in horizontal-space and over time (Klotz et al. 2015, 34.; 

De Paul 2007, 2268).                

But only by including the third dimension - the height - a far-reaching physiognomic analysis can 
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be achieved. The combination of building heights, derived for example from Digital Surface 

Models (DSM; e.g. Wurm et al. 2014), with an extensive landcover classification allows to 

investigate the structural framework of urban space in addition to a detailed characterization in 

thematic classes (Klotz et al. 2015, 34ff.). Possible applications are vulnerability assessments (e.g. 

Geiß et al. 2015a) or a detailed building topology through different spectral signatures of the roof 

materials (e.g. Heiden et al. 2007). Furthermore, an interdisciplinary intersection with 

socioeconomic or demographic data allows recognizing spatial patterns of distribution of e.g. 

population or employees (e.g. Krehl 2015b).                      

Urban Remote Sensing is therefore already being used in a wide variety of areas, including the 

analysis of densification patterns. Compared to traditional methods for the detection of (sub-

)centers to analyze polycentricity, the use of remotely sensed data in this research interest is a 

relatively new concept and only a few approaches, as the following will show, exist so far. 

Schneider et al. (2015) for example use a combined approach based on satellite (land cover 

change maps) and socioeconomic (total population) data. They assess e.g. the changes visible 

during different periods in the amount of built-up land and the ratio of urban land to population. 

Their study shows a transition from a monocentric to polycentric urban form in their study 

region in Western China (Schneider et al. 2015, 47ff.). A similar approach has been conducted by 

Yue et al. (2010), who also implemented an urban-rural gradient analysis to understand the 

development of polycentricity over time in their study area Hangzhou in China (Yue et al. 2010, 

565ff.). A further example, exploiting large-area intra-polycentric structures, is deducted by 

Taubenböck et al. (2017b). Through the use of EO data they identified so-called ‘urban nodes’ in 

Europe as well as their degree of connectivity (Taubenböck et al. 2017b, 1 & 10ff.).       

The described examples display typical two-dimensional as well as mostly regional attempts. 

Moreover, socioeconomic data is often part of the analyses. Taubenböck et al. (2017a) see the 

reason for this development in the elusive conceptual differentiation of built densities as well as 

in a lack of very high resolution data with the needed spatial detail (Taubenböck et al. 2017a, 44). 

Availability, data costs and processing requirements of very high resolution images prevent 

spatially continuous and consistent approaches for very large areas (Geiß et al. 2017, 1). But that 

is exactly what a comprehensive analysis of the morphology of urban settlements and following 

derivation of polycentric structures would require for better understanding the ‘polycentricity’ 

construct, to establish comparability as well as to be reproducable and thus draw wide-ranging 

conclusions. Especially in areas where necessary statistics on employment are not available or 

only partially, the solely use of Remote Sensing data can serve as an alternative indicator for the 

analysis of polycentric development (Yue et al. 2010, 575).            

To overcome the abovementioned constraints, newer approaches to characterize urban structures 
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morphologically build a trade-off between quite high spatial resolution and large-area coverage 

and also include the third dimension to achieve the goal of a far-reaching physiognomic analysis. 

Examples in European cities have been performed by Taubenböck et al. (2013), Wurm et al. 

(2014) and Geiß et al. (2017). Their studies overcome the limitations by using Cartosat-1 and 

TanDEM-X DSMs, which build a trade-off between large-scale analysis and very high spatial 

resolution. Comparable less resolution enables them to cover a larger area. The inclusion of the 

height allows them to create a three-dimensional classification in urban mass concentrations 

(UMCs). They are defined as accumulated built-up volume (m3) per reference unit (m2) (Geiß et 

al. 2017, 1ff.; Wurm et al.2014, 4139; Taubenböck et al. 2013, 387ff.). Beyond that, the newest 

attempt from Geiß et al. (2017) does not include prior knowledge, which makes a more objective 

statistical description possible, as they make sure that the characterization is not based on 

previous accepted classes such as e.g. residents, firms, etc. (Geiß et al. 2017, 1).  Using the 

resulting consistent and large area 3D building models with high geometrical accuracies from 

Wurm et al. (2014), Taubenböck et al. (2017a) carry out the latest approach to polycentric 

analysis. They apply different threshold approaches and identify (sub-)centers as high urban mass 

concentrations (hUMC) in four German city regions. Therefore, it is the first approach using 

solely built-up volume as object of investigation instead of socioeconomic parameters like 

employees (Taubenböck et al. 2017a, 44). They try to evaluate a suitable method in order to 

identify (sub-)centers and therefore analyze polycentricity more objectively. They can prove that 

UMCs are a good approximation for economic activity in urban regions, but the question of 

comparability and reproducibility between and in different regions still remains (Taubenböck et 

al. 2017a, 44 & 47ff.; Krehl et al. 2016a, 16f.).           

1.2.2 Urban configurations in Germany and the USA 

“With its limited reach, it is fair to say that US urban policy cannot even faintly ‘Europeanize’ the shape of 

American cities” (Nivola 1999, 52). 

Although this quotation suggests a different shape for European and North-American cities, 

previous research has also revealed common developments such as polycentricity (see section 

1.2.1). It should also be noted that form is not only influenced by political planning policies, of 

course. Historical situations and land use patterns amongst others are also reflected in today’s 

settlement structures (Krehl 2018, 83).                        

Gordon & Cox (2012) conducted a comparison between cities in Western Europe and the United 

States by examining different variables. They found both similarities as well as differences. But 

especially for the development of city structures related trends seem to occur (keyword ‘urban 

sprawl’; Gordon & Cox 2012, 7ff.). Richardson & Bae (2016) and Bruegmann (2005) as well 
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come to similar conclusions. They state that cities and suburbs in Western Europe and the US 

show an increasing convergence in their development since the 1970s (Richardson & Bae 2016, 

1; Bruegmann 2005, 92). Although various initial conditions such as amount of space for 

settlement expansion have led to more compact and dense urban environments in Germany 

compared to US metro regions, resulting in lower average densities, the cities seem to be 

embracing the same development trends (Krehl 2018, 84; Nivola 1998, 18). This can be partly 

explained by a contrary movement. An increasing number of US cities are becoming comparably 

denser, while in Europe dispersion is continuing (Bruegmann 2005, 92). But even though the 

polycentric development trend is present in both (see e.g. Knapp & Volgmann 2011, Roca 

Cladera et al. 2009), the urban spatial structure in Germany (or in general Europe) and North-

America is not the same. Centers and subcenters differ in terms of size and location, their 

functional meaning as well as their significance for the urban spatial network, even within 

countries (see e.g. Krehl 2018, Krehl 2015a, Shearmur & Coffey 2002; Krehl 2018, 83).  

To this day there are only a few studies that compare polycentricity in different regions. If they 

do, then they exist within countries with a large surface area or within a nation (e.g. Shearmur & 

Coffey 2002) and not between area-poor and area-rich countries. Krehl (2018) makes a first 

attempt to compare polycentricity in Germany with cities in the USA. The data for the latter is 

calculated via LWR, while North-America’s is literature-based and originates from previous 

studies. She finds out what is already described above: (sub-)centers exist, but there is a spatial 

difference between the dense urban structures of both countries. In her work Krehl (2018) 

discusses several reasons for this result but argues that they are still hypothetical and further in-

depth research need to be done to make reliable statements (Krehl 2018, 84 & 99ff.).  

1.3 Aim of work  

Be it the definition of the concept, possible parameters of investigation as well as the diverse 

methods to identify (sub-)centers or the pursuit of using region-independent data, the previous 

sections have shown that a lot of challenges remain in polycentric research. Especially the use of 

remotely sensed data in the context of urban structural characterization and subsequent 

polycentricity analysis is a quite new concept offering a lot of room for further investigations (see 

1.2.1). There is also still a major gap in the research of polycentricity in the transcontinental 

context in order to compare polycentric developments of the most diverse regions. So far only 

one study has been carried out in this relation (see 1.2.2).               

Against this background, a large scale processing and validation of UMCs (urban mass 

concentrations) as well as a subsequent analysis of polycentricity of different urban areas in 

North America (USA) and Europe (Germany) is performed in the scope of this thesis.         
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In a first step, a generation of UMCs in the study regions is carried out. The approach relies on the 

methodology developed by Geiß et al. (2015c, 2017) for large-scale physical classification of 

urban regions in terms of building density and height, based on TanDEM-X and Sentinel-2 

satellite data. This method has already been successfully applied and validated for selected 

German metro regions (Geiß et al. 2017, 1ff.). In the context of this thesis, the method is 

implemented for the first time to urban structures in the USA to review cross-continental 

transferability.                   

Based on the assumption that the UMCs are correct for the German cities (see Geiß et al. 2017), 

a validation exclusively for the UMCs in the USA follows. For this purpose, existing 3D models of 

the investigated North-American urban regions are used. Thus, the resulting morphological 

classifications of step one can be compared with high detailed building information to validate 

the outcome.                                  

In the third part of the study follows a polycentricity analysis based on the approach developed by 

Taubenböck et al. (2017a). The UMCs serve as input, from which 3D city models can be created. 

A threshold analysis is then used to identify (sub-)centers. Finally, the results of the identification 

of the individual urban regions in America and Germany are compared in order to present 

morphological polycentricity transcontinental.                

The aim of this thesis is to further investigate the potential of the morphological classification 

developed by Geiß et al. (2017) for the analysis of morphological polycentricity. Furthermore, the 

thesis seeks to identify differences and similarities in urban morphologies with particular focus on 

urban centers in Germany and the USA. The corresponding research questions that are going to 

be answered in the scope of this thesis are listed in Table 1. 

The remainder of this thesis is organized as follows. Section 2 begins with the presentation of the 

data used for the morphological characterization and the following validation of the resulting 

UMC classification. Subsequently the study regions are described in detail by categorizing them 

geographically and presenting the criteria for their selection. The third part of this section gives a 

detailed description of the methods used for the generation of the UMCs, the validation and the 

following polycentricity analysis. The results are presented in chapter 3 before they get 

interpreted and critically discussed in section 4. Chapter 5 completes the thesis with answering 

the research questions and outlook on needed future work. 
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Table 1: Summary of the research questions that are going to be answered in the scope of the 
thesis. They are listed according to their affiliation to the individual sections of the study (own 
Table). 

STUDY SECTION RESEARCH QUESTIONS 

MORPHOLOGICAL CHARACTERIZATION 
Do the UMCs derived from TanDEM-X data by using 

the approach developed by Geiß et al. (2015c, 2017) 

render the urban morphology of cities in the USA? 

POLYCENTRICITY ANALYSIS 
Which differences and similarities in urban center 

distributions based on UMCs can be found between US 

and German cities? 

POLYCENTRICITY ANALYSIS 
Can the assumptions about similar development of 

urban structures in US and German cities (see chapter 

1.2.2) be confirmed? 
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2 Material and Methods 

In this part of the work, the areas of investigation (2.1) and the data used (2.2) are presented. 

Subsequently, the methodical procedure (2.3) of the morphological characterization, the 

validation of the UMC classification and the polycentricity analysis will be explained in detail. 

2.1 Study regions 

This thesis is a contribution to the project ‘Where are the jobs? Stadtregionale Zentrenstrukturen im 

internationalen Vergleich’ (engl. ‘Where are the jobs? International comparison of urban-regional 

center structures’) of the Deutsche Forschungsgemeinschaft (DFG), which has been funded since 2018 

(for more information see DFG 2019). The selection of the cities to be examined in the context 

of this thesis was made by the project committee based on the following criteria: 

1. monocentric region (focus on intra-polycentricity) 

2. different governance structures and planning policies 

3. no strongly shrinking region: moderate to strong growth. 

In line with these criteria Portland, Oregon, Austin, Texas, Atlanta, Georgia and Philadelphia, 

Pennsylvania in the USA (location of each city is presented in Figure 2a in chapter 2.2) and 

Hamburg, Hanover, Berlin and Nuremberg in Germany (location of each city is presented in 

Figure 2b in chapter 2.2) were selected as study regions. 

Portland, Oregon covers an area of 337km2 (2017) 68km west of the pacific coast in the Willamette 

River valley between two mountain ranges, the Cascade Range to the east and the lower Coast 

Range to the west. The Willamette River flows through the city and merges into the Columbia 

River at the northern edge of the city. The marine air keeps temperatures moderate with mild 

summers and mild, very rainy winters. Precipitation in general is comparatively high with an 

average annual total of 890mm. The city has a population count of 667,589, a density value of 

1,980/km2 (2019) and a growth rate of +1.40% (Advameg, Inc. 2019a; Socrata 2019a; World 

Population Review 2018a; US Climate Data 2019a; Klimatabelle.Info 2019). With these numbers 

Portland is the largest city of the state Oregon and the second largest after Seattle, Washington in 

the Pacific North-West area of the USA (World Population Review 2018a & b). The city is also 

showing continuous growth in its economy. At +2.69% (2018), the increase in employment is 

higher than the national average (+1.6%; Sperling’s Best Places 2019; Portland State University et 

al. 2018, 10). According to a ranking conducted by the finance website WalletHub, which makes a 

statement about the speed of growth of cities in the USA, Portland is on 24th place in the year 

2018, considering the cities with more than 300,000 inhabitants (= total comparison of 66 cities). 



14 

 

The ranking was created under consideration of 15 different metrics such as job and population 

growth, poverty rate decrease as well as the number of business startups (McCann 2018). 

Austin, Texas, the capital of Texas in the middle south of the United States, is located in south 

central Texas and spreads over an area of 669km2. The Colorado River crossing the city separates 

the Texas Hill Country (also known as Edwards Plateau) in the west (hilly grassland) from the 

black-land prairies in the east (once a tallgrass prairie, now replaced by agriculture). The climate is 

subtropical with hot summers and mild winters. Most precipitation occurs in the form of rain in 

late spring and early autumn with an average annual total of 863mm (Advameg, Inc. 2019b & c; 

Texas Parks & Wildlife Foundation 2019; US Climate Data 2019b). The city has a population 

count of 1,001,104, a density value of 1,205 people per square kilometer and a population growth 

rate of +1.80%. After Houston, San Antonio and Dallas, Austin is the fourth biggest urban 

agglomeration in the state (World Population Review 2018a & c). In addition, Austin has been 

rated as the No. 1 fastest growing large city (more than 300,000 people) in the country in the year 

2018 in the ranking of WalletHub. Solely the economic growth rate from 2011 to 2016 is rated at 

6.1%, which is more than double the national as a whole (Patch Media 2019; McCann 2018). 

When considering the increase in jobs in 2018 alone, Austin almost ranks first in national 

comparison. With a growth rate of +3.9%, only Orlando, Florida recorded a higher score (Salazar 

2018). 

Atlanta, Georgia is the capital and the largest city of the state Georgia spreading over an area of 

342km2. Located in the foothills of the southern Appalachians in the north-central part of 

Georgia, the city is relatively close to the Gulf of Mexico and the Atlantic Ocean. The 

geographical location of the city leads to a mild climate with moderate summers and mild winters. 

Precipitation falls during the whole year. The average annual total with 1,244mm is very high 

(Advameg, Inc. 2019d & e; US Climate Data 2019c). In the year 2018 501,178 people lived in 

Atlanta. The density value is 1,450/km2 and the population growth rate is +1.94% (World 

Population Review 2018a). According to the fastest growing large city ranking by WalletHub 

Atlanta is in 10th place (McCann 2018). At +2.9%, the recent job growth rate is higher than the 

national average (+1.6%; Sperling’s Best Places 2019). 

Philadelphia, Pennsylvania, located at the confluence of the Delaware River and Schuylkill River in 

the east of the state, has been in the nation’s forefront for more than 300 years in regard to 

intellectual and economic as well as humanitarian development. With the Appalachian Mountains 

to the west and the Atlantic Ocean to the east the climate is not marked by extremes with mild 

and humid summers and moderate winters. Precipitation falls all year round and the average 

annual total is very high with 1,041mm. The city of 1,579,596 inhabitants spreads over an area of 
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350km2, making it the most densely populated town (4,537 people per square kilometer) of the 

four American cities under investigation. The growth rate, on the other hand, with +0.18% is 

comparatively low (Advameg, Inc. 2019f & g; US Climate Data 2019d; World Population Review 

2018a). Philadelphia is the biggest city of the state Pennsylvania and the only one with population 

numbers exceeding 1 million. Moreover, it is the sixth largest city in the whole USA (World 

Population Review 2018d). In the WalletHub ranking the city only is in 51st place out of the total 

66 cities with more than 300,000 inhabitants (McCann 2018). Compared to the other study 

regions in the US the job growth rate is the lowest, even though it has risen with +1.5% in the 

year 2018. Nevertheless, this count is lower than the national average (+1.6%; U.S. Bureau of 

Labor Statistics 2019). 

Hamburg, Hanover, Berlin and Nuremberg are four out of eleven metropolitan regions in 

Germany that were defined by the ministerial conference on spatial planning. These are growth 

and innovation centers with an international or large-scale impact (Marketingverein der 

Europäischen Metropolregion Nürnberg e.V. 2019, 1f.). 

Nuremberg, Bavaria is the cultural as well as the economic center of Northern Bavaria. The urban 

area, comprising 186.4km², is located in the middle Franconian basin. The region features a warm 

temperate climate. Characteristic are four seasons and precipitation occurs during the whole year 

(on average 644mm). Compared to the rest of the region, however, there is less because the 

pronounced basin location keeps the moist air masses away (Wetter.de 2019; Climate-Data.org 

2019a; Stadt Nürnberg 2019a; Bayerisches Landesamt für Umwelt 2011). With 532,194 (2017) 

inhabitants Nuremberg is the second largest city in Bavaria. The population is constantly 

increasing. From 2013 to 2018 the growth rate was +4.6%. The city’s density value is 2,862 

inhabitants per square kilometer (Stadt Nürnberg 2019b; Catcomm Kommunikation 2018). The 

city is also recording positive economic growth. From 2017 to 2018 the growth rate was +3.2%. 

This is above the national average of +1.5%. With a gross domestic product (GDP) of 27 billion 

euros, Nuremberg is also among the top ten of the twenty largest German cities (Stadt Nürnberg 

2019c; Statistisches Bundesamt 2019; Catcomm Kommunikation 2018). 

Berlin, Berlin is the capital of the Federal Republic of Germany and at the same time a city-state, 

i.e. one of the 16 federal states of Germany. The city is also the center of the Berlin/Brandenburg 

metropolitan region in the east of Germany. Moreover, with 891,1km², Berlin is the largest 

municipality in Germany (Amt für Statistik Berlin-Brandenburg 2019a; Astinus 2016, n.pag.). In 

the northeast the urban agglomeration lies on the plateau of the Barnim and in the southwest on 

the plateau of the Teltow, both glacial remains. The Spree flows through the city in an east-west 

direction and culminates into the Havel in the district of Spandau (Berlinstadtservice 2019, 
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Naturpark Barnim 2019, Astinus 2016, n.pag.). The climate is warm temperate in the transition 

zone from maritime to continental climate and is characterized by four seasons. Precipitation falls 

throughout the year with an average total of 591mm (Climate-Data.org 2019b; Climate Data 

2019; Astinus 2016, n.pag.). The population of 3,634,069 million makes Berlin the most 

populated city in Germany and the numbers are constantly increasing. With 4,071 people per km² 

it is very dense at the same time. The growth rate in 2017 was +1.1% (compared to the previous 

year). The economy is also growing steadily. In 2017 the GDP, worth 136.6 billion euros, grew by 

+3.1%, surpassing the national average of +2.2%. In general, the economy grew by an average of 

+2.1% per year over the last ten years (Amt für Statistik Berlin-Brandenburg 2019a & b; 

Senatsverwaltung für Wirtschaft, Energie und Betriebe 2019). 

Hanover, Lower Saxony is the state capital of Lower Saxony and at the same time a centrally located 

industrial and trade fair city in the center of Europe. The city with an area of 204,12km² is 

situated on the River Leine in the transition area between the North German lowlands and the 

Lower Saxon highlands. The climate is warm temperate with four seasons and high precipitation 

rates (total of 666mm; Hannover 2019a & b; Climate-Data.org 2019c). Hanover is located at the 

intersection of the traditionally highly frequented North-South and East-West axes. This 

transport advantage favoured the development into a modern big city (Hannover.de 2019a). 

Currently it has a population of 558,799 (2018) inhabitants, which has increased by +6.3% from 

2007 to 2017 and a density value of 2,737 people per km². The growth rate has only slowed 

somewhat in the last two years. Statistics show a lower increase than in previous years, but 

growth can still be recorded (Hannover.de 2019c; Landeshauptstadt Hannover 2018, 1f.). In the 

economic sector, the Hanover region can also record growth. Compared to other densely 

populated areas, however, it shows slightly below-average growth, but still steady. In 2016, the 

GDP was 33 billion euros. And since 2010 an average of 10.000 new jobs has been created every 

year, which corresponds to an average growth of +2.2% (Hannover.de 2019d; Hannover.de 

2016). 

Hamburg, Hamburg is after Berlin the second largest city in Germany and at the same time, like 

Berlin, a city-state, i.e. one of the 16 federal states of Germany. The city is located in the North 

German lowlands at the confluence of the Alster River and the Bille River into the Elbe River. 

The latter culminates 104km west into the North Sea. Besides, Hamburg has one of the largest 

and busiest ports in Europe (Statista GmbH 2019a; Encyclopaedia Britannica 2019; Reinthaler 

2019). The climate is classified as warm temperate. Due to the maritime influences, winters are 

milder, and summers are cooler compared to the regions east of the town. The precipitation rates 

are high with a total of 738mm and in winter storms are frequent (Climate-Data.org 2019d; 
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Encyclopaedia Britannica 2019). The city occupies an area of 755.1km² and has 1,830,669 (2017) 

inhabitants with a density value of 2,424 people per square kilometer. Since 1987 the number of 

inhabitants is steadily increasing (Hamburg.de GmbH & Co.KG 2019; Handelskammer 

Hamburg 2019). Growth can also be recorded in the economic sector. The GDP amounted in 

2017 117.6 billion euros and increased in comparison to the previous year by +2.4%, which is 

higher than the national average of +2.2% (Dumrath & Fassnacht KG GmbH & Co. 2019; 

Statista GmbH 2019b; Senatsverwaltung für Wirtschaft, Energie und Betriebe 2019). 

2.2 Data 

In total, four different data sources are used to create the UMCs (urban mass concentrations) in 

the first part of this study and the subsequent validation of those. To produce the morphological 

characterization DSM tiles generated by the TanDEM-X mission, the Global Urban Footprint 

(GUF) and Sentinel-2 images are employed. As reference data for the validation LoD1 (‘Level of 

Detail 1’) building footprints (BF) from several data sources are integrated. The polycentricity 

analysis in part three in turn is based on the results of the morphological characterization with the 

resulting UMCs. For an initial overview, the data sources are summarized in Table 2. 

Table 2: Summary of the data sources used in this thesis: TanDEM-X DSMs (Digital Surface Models) form 
the basis for the UMC (urban mass concentration) generation. Besides, the Global Urban Footprint and 
optical Sentinel-2 images are included in the algorithm. The Microsoft Building Footprint, the Portland 
Building Footprint, the Austin Building Footprint and the Philadelphia Building Footprint are used to 
validate the processed UMCs (own Table). 

 
STUDY SECTION DATA SOURCE 

MORPHOLOGICAL CHARACTERIZATION OF 

URBAN AREAS 

DSM tiles (generated by the TanDEM-X 

mission) 

Global Urban Footprint 

Sentinel-2 images 

VALIDATION 

Microsoft Building Footprint (Release 2017) 

Portland Building Footprint 

Austin Building Footprint 

Philadelphia Building Footprint 

 

Morphological Characterization 

The first data source to be mentioned is the TanDEM-X (TerraSAR-X add-on for Digital 

Elevation Measurement) mission (TDX) operating since 2010. It provides the basic data for the 

derivation of the UMCs (see chapter 2.3.3). While acting as a large single-pas Synthetic Aperture 
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Radar (SAR) interferometer, TDX flies in a close orbit configuration with TerraSAR-X (TSX), 

launched in 2007. They reach a height of 514.8km above the equator and have an orbit repeat 

cycle of 11 days. SAR interferometry is a further development of conventional radar systems and 

has the ability to map an area from two different positions without an impact of temporal 

decorrelation and atmospheric disturbances (AIRBUS 2015, 3; Zink et al. 2014, 10; Deutsches 

Zentrum für Luft- und Raumfahrt (DLR) e.V. 2009, 8; Krieger et al. 2007, 3317; Moreira et al. 

2004, 1). Configuration-wise, TDX and TSX fly in the Helix satellite formation shown in Figure 1 

on the right side. It combines a horizontal orbital displacement above the equator with a vertical 

separation above the poles. Thereby the satellite tracks never cross each other (Zink et al. 2014, 

8ff.; DLR e.V. 2009, 8) and typical baseline values lie between 100m and 500m (Wessel 2018, 6). 

The primary goal of the mission, the generation of a global, consistent, timely and high precision 

Digital Elevation Model (DEM) has been concluded, with a horizontal accuracy of 10m and a 

vertical accuracy of 2m, in January 2015 (Wessel 2018, 6 & 12; Zink et al. 2014, 8). The TDX 

DEM products, however, primarily present a DSM (Digital Surface Model), because elevated 

objects are indeed included, but the outcome might be affected by SAR inherent effects (of 

particular importance in forests, dry snow and ice, where the scattering center lies below the 

surface; Wessel 2018, 11; Krieger et al. 2007, 3317).                      

The bistatic InSAR Stripmap mode is used as standard mode for the generation of DEM 

products. Shown in Figure 1 on the left side, this mode uses either TSX or TDX as a transmitter 

to illuminate the Earth’s surface and the scattered signal is then recorded by both satellites at the 

same time (for further explanation of other possible operational modes of the TDX mission see 

Krieger et al. 2007; Krieger et al. 2007, 3317f.). The standard scene size in this mode is 30km x 

50km (width and length), but the acquisition length is extendable (AIRBUS 2015, 4ff.).      

The unprecedented pixel spacing of 0.4 arcseconds (~12m) allows resolving objects in urban 

environments above ground such as buildings. Therefore, DEM tiles are used to include 3-D 

characteristics of the investigated urban areas into the spatial analysis in the frame of this thesis 

(Geiß et al. 2015c, 4348).                              

The tiles for the calculation of the UMCs have been created within the framework of the global 

DEM acquisition phase from December 2010 to January 2015 (Wessel 2018, 6). Thus, no 

information about the exact date of admission is available. Figure 2 shows the footprints of the 

tiles used for the four US (Philadelphia, Atlanta, Austin, Portland) and four German (Hamburg, 

Hanover, Berlin, Nuremberg) urban regions under investigation. Based on Figure 2 it becomes 

clear that the number of tiles used per city differs depending on the size and the location of the 

urban region in the global TDX tile coverage.   

 



19 

 

bistatic InSAR stripmode          

 

Helix formation 

 

Figure 1: LEFT: Schematic representation of the bistatic InSAR stripmode used for the acquisition of DSM 
(Digital Surface Model) generation. The reflecting signal from the Earth’s surface, either transmitted by 
TSX (TerraSAR-X) or TDX (TanDEM-X), is recorded by TSX and TDX (Krieger et al. 2007, 3318). 
RIGHT: Schematic representation of the Helix satellite formation used by TSX and TDX. Horizontal 
orbital displacement above the equator (=horizontal baseline) and vertical orbital displacement above the 
poles (= vertical baseline; Zink et al. 2014, 10). 

 

In addition, as the second, the TDX and TSX also provide the data for the derivation of a 

settlement layer with global coverage: The Global Urban Footprint (GUF; Felbier et al. 2014, 4816). 

To discriminate urban from non-urban areas very high resolution SAR data from the first global 

coverage between 2011 and 2013 was used. (Esch et al. 2013, 1618). About 180,000 scenes, 

covering 90% of the world land surface, feed the so-called ‘Urban Footprint Processor’, a fully 

automated image classification procedure developed by the German Aerospace Center (Geiß et 

al. 2017, 2; Esch et al. 2013, 1621). The outcome is a binary built-up/non built-up layer with a 

spatial resolution of 12m (Klotz et al. 2016, 198). High classification accuracies between 65% and 

90% could be obtained as tested for different case study areas (e.g. Klotz et al. 2016; Esch et al. 

2013; Taubenböck et al. 2011). Therefore, a reliable separation between built-up/non built-up is 

assumed (Geiß et al. 2017, 2; Klotz et al. 2016, 198).         

Third and last, optical Sentinel-2 images are included in the generation of the UMCs. The mission is 

part of the European Earth Observation program Copernicus. It consists of two polar-orbiting 

satellites, Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017, phased at 180° to each 

other and placed in the same sun-synchronous orbit at a height of 786km (European Space 

Agency 2019c; Gascon et al. 2014, 1f.). The unique satellite constellation has a high temporal 

(five days at the equator under the same viewing conditions), a high spatial (10, 20 or 60m with 

regards to the band) and radiometric resolution (13 bands in the visible, near-infrared (NIR) and 

short-wave infrared (SWIR)) as well as a swath width of 290km. This allows optimal coverage 

and data delivery and therefore delivers unprecedented views of the Earth (European Space 

Agency 2019d; Gascon et al. 2014, 1f.). The main mission goal is to provide information for 

agricultural and forestry practices in form of land-cover maps or change-detection as well as for 

management of food security through the derivation of various plant indices (European Space 
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Agency 2019d, e) like the Normalized Different Vegetation Index (NDVI; Geiß et al. 2017, 3).                

In the scope of this thesis images have been selected depending on cloud cover (less than 30%) 

and date of admission (winter half year). The latter has special significance in this study. The data 

is used to calculate the NDVI to exclude urban vegetation (see chapter 2.3.3) and by including 

only winter images effects of photosynthetically active vegetation can be reduced (Geiß et al. 

2017, 3).           

 

 

Figure 2: TDX DSM (TanDEM-X Digital Surface Model) tiles used in the United States (a) and Germany 
(b) to derive UMCs (urban mass concentrations) in the first part of this thesis. Depending on the size and 
location of the investigation area (four cities each in Germany and the USA), the number of tiles needed to 
cover the urban region varies: 9 tiles in Portland, 8 tiles each in Atlanta and Austin, 6 tiles in Philadelphia 
as well as 2 tiles per German city under investigation (own Figure). 

a 

b 
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Table 3 lists the images, downloaded via USGS Earth Explorer, used for each study region (full 

coverage of each area is only possible by using several images) as well as their dates of recording. 

In order to adapt the data to TDX/TSX data used in this study, as far as possible in terms of 

time, mainly recordings from October 2015 to March 2016 have been selected. If no image could 

be selected due to cloud coverage higher than 30%, records from October 2016 to March 2017 

or even October 2017 to March 2018 had to be exploited.  

Table 3: List of Sentinel-2 images used in this thesis to calculate the NDVI. The images, downloaded via 
UCGS Earth Explorer, are listed by study region and date of admission (own Table). 

 

STUDY REGION DATE OF ADMISSION  

ATLANTA, GEORGIA, USA 

20/10/2015: 3 images 

23/10/2015: 1 image 

10/02/2016: 1 image 

28/03/2016: 1 image 

26/11/2016: 4 images 

PHILADELPHIA, PENNSYLVANIA, USA 

21/10/2015: 1 image 

13/11/2015: 2 images 

23/11/2015: 2 images 

10/12/2015: 1 image 

20/12/2015: 1 image 

02/01/2016: 1 image 

02/03/2016: 1 image 

12/03/2016: 2 images 

17/11/2016: 1 image 

AUSTIN, TEXAS, USA 
04/12/2015: 3 images 

17/12/2015: 5 images 

PORTLAND, OREGON, USA 
08/02/2016: 6 images 

08/12/2016: 1 image 

HANOVER, GERMANY 16/11/2018: 2 images 

HAMBURG, GERMANY 

09/03/2016: 1 image 

26/03/2016: 1 image 

09/02/2018: 1 image 

BERLIN, GERMANY 28/03/2017: 4 images 

NUREMBERG, GERMANY 28/03/2017: 2 images 
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Validation  

Four different data sources are used to validate the calculated UMCs in the scope of this thesis. 

The first one is the Microsoft Building Footprint (MBF) licensed by Microsoft under the Open Data 

Commons Open Database License to support the OpenStreetMap community. The company released 

two different data sets; important for the validation of the generated UMC is the first release 

from 2017. The dataset contains approximately 9.8 million LoD1 building footprintss including 

the building height in meters for parts of metro regions in 44 US states. The data has been 

digitized based on very high resolution aerial images captured by Microsoft in 2014 and 2015. To 

interpolate the height a DTM has been derived from the same data. The footprints are freely 

available for download and are shared through Microsoft OneDrive (link: OpenStreetMap Wiki 

2018). The LoD1 data is provided in the coordinate system WGS84 (OpenStrretMap Wiki 2018). 

In the context of this thesis the MBF for the city of Atlanta covering an area of approximately 

13km x 12km is used to validate the 3D UMCs processed for this city.              

Second, for Austin, the Austin Building Footprint (ABF) from the year 2013 is included in the 

validation procedure. The basis for the digitalization has been Orthoimagery from 2012 and 2013 

as well as LiDAR data from 2012. The open source data can be downloaded from the official City of 

Austin open data portal (City of Austin 2019) in the projection WGS84. The LoD1 data contains 

the building height (City of Austin 2019), making it ideal for validating the calculated UMCs in 

Austin. With an area of ca. 75km x 65km the ABF allows an extensive validation of the urban 

region.                   

As the third, the Portland Building Footprint (PBF) generated by the Bureau of Planning and 

Sustainability is used to validate the generated UMCs for the city of Portland. Originally digitized 

from aerial images between 1987 and 1994, the data has been gradually extended and updated by 

using land-use review case information, 3D-Sketchup files provided by architects, aerial images 

between 1996 and 2007 as well as LiDAR data between 2004 and 2007 to include height 

information in feet. The data is freely available and can be downloaded from Koordinates (open 

data portal for geospatial applications; Koordinates 2019). The LoD1 data, projected in 

WGS84/Pseudo-Mercator, offers an almost area-wide coverage (ca. 139km x 70km) of Portland’s 

urban region (Koordinates 2019).             

Fourth and last, for Philadelphia, the Philadelphia Building Footprint (PHBF) from the year 2014 is 

used. It has been created by the city itself from the department ‘Office of Innovation & Technology’. 

The LoD1 data can be downloaded from the city’s open data portal called OpenDataPhilly 

(OpenDataPhilly 2019) in the projection WGS84 (OpenDataPhilly 2019) covering an area of 

approximately 18.5km x 40km. Information regarding the underlying data sources and the 

method of compiling the PHBF are not available. 
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2.3 Method 

As already described above, the methodology used in the scope of this thesis is divided into three 

parts. Figure 3 schematically shows this three-step process. First, the urban regions are 

morphologically characterized by calculating the so-called urban mass concentrations ‘UMC’ (see 

chapter 2.3.3). The urban areas of interest are covered with 1km x 1km single grid units and in 

the context of this thesis, the UMCs represent the building volume per processing unit. To 

estimate the quality of these calculations, the UMCs are validated subsequently for the USA (see 

chapter 2.3.4). As explained above, the generation methodology of the UMCs has already been 

validated for Germany. Finally, the polycentric structure of the case study cities is investigated 

based on the previously calculated UMCs and a concluding transcontinental comparison between 

the USA and Germany is drawn (see 2.3.5). 

 

 

Figure 3: Workflow in the scope of this thesis, consisting of an Urban Mass Concentration generation, a 
subsequent validation and a concluding polycentricity analysis with an attached transcontinental 
comparison between the USA and Germany (own Figure). 

 

2.3.1 Scale of investigation 

Depending on the characteristics of the individual steps in the method (Figure 3), the extent of 

the study area varies in size. The different outlines of the examination units are presented in the 

following. 

Morphological Characterization 

For the outline of the individual survey area per city, the so-called ‘Urban Area’ (UA), defined by 

the United States Census Bureau, is applied to the cities in the USA (example in Figure 4a; United 

States Census Bureau 2018). Simultaneously, the study region is defined in the German cities. 

Here, however, the definition of the European Environment Agency for ‘Urban Morphological Zones’ 

(UMZ) is used to delimit the area of the German cities (example in Figure 4b; European 

Environment Agency 2018).                           

As the UAs differ from each other in terms of size as well as in relation to the UMZs, since the 

cities do not have the same extent of expansion, it is harder to make national or transcontinental 

comparisons based on these outlines. In addition, the boundaries of the UAs and UMZs are 

Derivation of Urban 
Mass Concentrations 

Validation 

Polycentricity 
Analysis  

& 
 Transcontinental 

Comparison 

1. 2. 3. 
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subjectively defined by administrative instances, which may not reflect the reality. Furthermore, 

the available validation may reach in parts beyond the UAs. Therefore, starting from the center, a 

buffer with a radius of 100km for the USA (example in Figure 4a for the city of Atlanta) and 

40km for Germany (example in Figure 4b for the city of Berlin) is additionally drawn around the 

cities. The center is uniformly determined by the coordinates representing the cities’ midpoints in 

open source GIS like Open Street Map or Google Maps. The choice of the buffer size gets influenced 

by two characteristics. It must be chosen so that the UAs/UMZs lie within the buffer to ensure 

that the entire urban regions are included in the calculations. At the same time, due to the 

difference in the spatial extent of the cities between the USA and Germany, it is not possible to 

use the same radius for both countries. A radius of 100km in Germany would far exceed the city 

boundaries.                            

As both, the official border of the metropolitan regions and the area that goes beyond them are 

processed, it is possible to recreate the entire urban morphology as realistically as possible using 

this approach.                       

Within this extension the UMCs are calculated on a grid of 1km x 1km pixel size. This is done in 

coordination with the poylcentricity analysis approach based on Taubenböck et al. (2017a). 

Validation 

The areal extent of the validation depends on the availability of validation data. Therefore, only a 

small part of the UA can be validated in Atlanta (Figure 5a). Data availability for Philadelphia is 

already better, but still not enough to cover large amounts of the UA (Figure 5b). In the case of 

Austin and Portland, data availability is very good. As Figures 5c & d show, the data even exceeds 

the UA. In conclusion, the data quality is best for Austin and Portland. 

Polycentricity Analysis 

The polycentricity analysis is carried out based on the method of Taubenböck et al. (2017a). 

Therefore, the adjustment of the area-related expansion of this analysis is based on the designs of 

their approach, which is a 1km x 1km grid covering the underlying data to be analysed (USA: 

100km radius around the city center; Germany: 40km radius around the city center). This size is 

in accordance with the European grid INSPIRE (Infrastructure for Spatial Information in the European 

Community), which is the reason why this unit size was chosen in the first place (Taubenböck et al. 

2017a, 45). 
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Figure 4: Illustrative presentation of the buffer zone with a radius of 100km around the city center of 
Atlanta, Georgia, USA and the outline of the Urban Area within (a) as well as of the buffer zone with a 
radius of 40km around the city center of Berlin, Germany and the outline of the Urban Morphological Zone 
within (b; own Figure). 
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Figure 5: Coverage of the cities under investigation with validation data. In Atlanta (a) and Philadelphia (b) 
only a small part of the Urban Area is covered, whereas in Portland (c) and Austin (d) the data exceeds the 
Urban Area (own Figure). 

 

2.3.2 Data preprocessing 

Before the data can be utilized in the algorithm framework introduced by Geiß et al. (2015c, 

2017) and used in the scope of this thesis, several preprocessing steps must be applied. This 

section provides information about necessary working steps that need to be carried out before 

the actual generation of UMCs (preprocessing Input data) and the validation (preprocessing 

reference data). 

Data for UMC calculation 

The extent of the investigation outline of the cities included in the survey cannot be covered with 

one TDX-Tile. Depending on the location within the global TDX-Tile coverage and the size of 
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the urban region, several tiles are required per city (see Figure 2). Therefore, they are mosaicked 

into one layer in order to obtain a consistent data set for each city as the basis for the 

investigation. The same applies to the Sentinel-2 images and the GUF, which are also tailored to 

the size of the urban regions of the different case study cities. Furthermore, the data is 

transformed from WGS84 into WGS 84 UTM with the respective corresponding zone (see Table 

4). 

Table 4: List of the used projection of each urban region in the scope of this thesis (own Table). 

URBAN REGION PROJECTION 

                                     PORTLAND WGS84 UTM Zone 10N 

                                     AUSTIN WGS84 UTM Zone 14N 

                                     ATLANTA WGS84 UTM Zone 16N 

                                    PHILADELPHIA WGS84 UTM Zone 18N 

                                     HAMBURG WGS84 UTM Zone 32N 

                                     HANOVER WGS84 UTM Zone 32N 

                                     BERLIN WGS84 UTM Zone 33N 

                                     NUREMBERG WGS84 UTM Zone 32N 

 

The TDX data and the GUF represent finished data products - DSM and ‘Built-up’/’non Built-

up’ layer -, which is why no further preprocessing steps are required. The Senintel-2 data, on the 

other hand, are subjected to an atmospheric correction within the Sentinel Application Platform 

(European Space Agency (ESA) 2019a) using the Sen2Cor module (ESA 2019b). This step is 

necessary to obtain level 2A products that contain the Bottom of Atmosphere- instead of the 

Top of Atmosphere - reflectance (Louis 2017, 10). After that, the NDVI is calculated. As 

described in 2.2, this index is used to exclude urban vegetation in the UMC generation. This is 

possible because the NDVI is an indicator for photosynthetically active vegetation (Meera 

Gandhi et al. 2015, 1201) and is defined as (Rouse et al. 1973, 43) 

 
𝑁𝐷𝑉𝐼 =  

𝑛 − 𝑟

𝑛 + 𝑟
  , 

(Eq. 1) 

 
where n is NIR reflectance in the wavelength range 750nm - 1300nm and r is visible red 

reflectance in the wavelength range 600nm - 700nm. Green vegetation has a strong absorption in 

the red band as well as a high reflectance in the near infrared. Therefore, the ratio of these two 

bands provides an indicator for green vegetation (Rouse et al. 1973, 43; Alatorre & Begueria 

2010, 8). Values of the NDVI range from -1 to +1, where negative values represent water bodies, 
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values of 0.1 and below correspond to barren areas of rock, sand or snow, values between 0.2 

and 0.3 are considered as moderate and indicate e.g. grassland and NDVI values above 0.3 are 

considered as indicator for active vegetation (Meera Gandhi et al. 2015, 1202). 

Data for UMC validation 

In general, like it is the case for the input data, the reference data’s projection is transformed into 

UTM with the respective zone (see Table 4). Afterwards, the area of the building polygons of the 

LoD1 building footprints needs to be calculated in order to generate the volume per reference 

unit for the subsequent comparison with the generated UMCs based on TDX DSM data (area of 

the TDX DSM = pixel size). Moreover, in the case of the PBF the height indication must also be 

converted into the unit meter to use it for the comparison with the calculated UMC for Portland. 

2.3.3 Morphological Characterization 

Previous EO studies mainly analysed urban environments based on adequate and properly 

encoded prior knowledge (e.g. Geiß et al. 2015c, 2016; Wurm et al. 2016). Geiß et al. (2017) 

introduced an approach to quantitatively characterize urban environments without the 

incorporation of previous knowledge (Geiß et al. 2017, 1). Based on this method the workflow to 

generate the UMCs in the scope of this thesis is introduced in Figure 6. The procedure, which is 

displayed simplified in the illustration will be explained in the following in more detail.  

2.3.3.1 Normalized Digital Surface Model generation 

To generate the nDSM (Figure 6 methodological step one) a Digital Terrain Model (DTM) must 

be derived from the TDX-DSM in the first place. The DTM contains elevation measurements of 

the Bare Earth (BE) without including natural and artificial objects above ground. In the next 

step, the elevation of the terrain (height of the DTM) must be removed from the elevation of the 

surface containing all objects above ground (height of the DSM) to calculate the nDSM (Geiß et 

al. 2015c, 4349): 

 𝑛𝐷𝑆𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀.  (Eq. 2) 

 

Before the actual procedure to derive the DTM in this thesis, which is created using a Selective 

Object-Based & Region-Growing-Based Progressive Morphological Filter (RPMF-SOBV) approach 

introduced by Geiß et al. (2015c), basic clarifications regarding morphological filter procedures - 

Classic Morphological Filtering & Progressive Morphological Filtering - are made. They are necessary to 

understand the RPMF-SOBV approach as they are also part of it. 
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Figure 6: Schematic representation of the UMC (urban mass concentration) generation workflow. First an 
nDSM (normalised Digital Surface Model) indicating the height of features above ground is derived 
(methodological step 1). The nDSM is masked with the GUF (Global urban Footprint) and the NDVI in 
the following to only obtain urban building pixels (methodological step 2 & 3). The outcome is clipped 
with a 1km x 1km grid to calculate the UMC per processing unit (methodological step 4 & 5; own Figure). 
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The lower spatial resolution of the TDX-DSMs compared to DSMs conducted from 

stereoscopic optical acquisitions, interferometric SAR measurements or laser scanning (e.g. 

Sirmacek et al. 2012; Wurm et al. 2011; Gamba & Houshmand 2000) limits the use of many of 

the existing approaches to generate a DTM. Unlike with very high resolution DSMs, it is for 

example not possible to use the profound difference between the slope of terrain and that of 

nonground objects like buildings to derive the DTM (e.g. Vosselman 2000; Sithole 2001). 

Furthermore, the elevation measures of the TDX mission are converted into regular grayscale 

grid images. Therefore, only approaches that are also suitable for this type of images can be 

considered (Geiß et al. 2015c, 4348). 

Classic Morphological Filtering 

Due to the above-mentioned characteristics mathematical morphology-based filters - Morphological 

Filters (MF) - are suited for the DTM derivation. Mathematical morphology stems from set theory 

and in the case of image processing sets represent the spatial structures in the image, which are 

manifested as subgraph in grayscale or object in binary images. The use of these filters is 

relatively simple in accordance with good performance (Geiß et al. 2015c, 4348; Soille 2004, 1 & 

66). For a MF a structuring element (SE) is needed in addition to the initial image, in the scope of 

this thesis the TDX DSM. In the case of an underlying grayscale image (here the DSM) the SE is 

a small grayscale image, and shape as well as size must be adopted to the geometric properties of 

the spatial structures in the image that is to be processed, e.g. hexagonal, diamond or square grids 

(for further explanations see Soille 2004). In the framework of this thesis the SE is a square 

window of size a x a (Geiß et al. 2015c, 4349; Ravi & Khan 2013, 17; Soille 2004, 64f.). By 

moving the SE over the entire DSM dataset, placing the origin/center of the SE at each pixel in 

the dataset, the values underlying the center of the SE get transformed (Erhardt 2008, 163). In 

dependence of the MF operation (e.g. erosion, dilation) this leads to shrinking or growing of 

image features such as removing bridges or to the filling of gaps and holes. In scientific terms this 

is donated as noise reduction and edge detection (Soille 2004, 4). In the scope of this thesis by 

using a MF BE pixels (corresponding to lower values = darker pixels = non-elevated) in the 

DSM get identified and potential nonground objects (OBJ) removed as the stay unclassified 

(corresponding to higher values = brighter pixels = elevated; Zhang et al. 2003, 873).              

The primary morphological operations are dilation and erosion. Erosion 𝜀 causes an image object to 

decrease in size (Ravi & Khan 2013, 18) and the transformation of the DSM Z by the SE B is 

defined as the minimum of the translations of Z by the vectors –b of B (Soille 2004, 66ff.): 

𝜀𝐵 (𝑍) = ⋀  𝑍−𝑏.

𝑏 ∈𝐵

 

  

(Eq. 3) 
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Analogously, dilation 𝛿 causes image objects to increase in size (Ravi & Khan 2013, 18) and is 

defined as the maximum of the translations of Z by the vectors –b of B (Soille 2004, 66ff.): 

𝛿𝐵 (𝑍) = ⋁  𝑍−𝑏.

𝑏 ∈𝐵

 

  

(Eq. 4) 

 

Originating from basic erosion and dilation operations more complex variations can be carried 

out (Amalorpavam et al. 2013, 146). Amongst them is the morphological opening 𝛾. Applied on each 

measurement of the DSM it is possible to derive a DTM with this operation (e.g. Harlick et al. 

1987; Weidner & Förstner 1995), which is created by a dilation executed on the result of an 

erosion (Soille 2004, 66ff.): 

     𝛾𝐵 (𝑍) =  𝛿𝐵 ° 𝜀𝐵 (𝑍).   (Eq. 5) 

 

To fully eliminate the objects of interest (in the scope of this thesis: buildings) with an opening 

operation, the size of the SE must exceed the outline of the object of interest in every instance. 

Therefore, it is defined as 2 x dmax + 1, where dmax is the largest distance from the center of a 

building to the nearest BE point within the investigated area (Geiß et al. 2015c, 4349; Zhang et al. 

2003, 875). The determination of dmax is carried out empirically by visual inspection of satellite 

images, e.g. in Google Earth. It is essential to understand that the largest distance between the 

center of a building and the next BE point can be found at the largest building within a scene, but 

it does not necessarily have to be found there. For a better understanding, this method is shown 

in Figure 7 exemplarily for one TDX DSM tile in the 100km radius extent of Atlanta.  

In general, in the case of very high resolution DSMs (≠ TDX DSMs), the selection of a filtering 

window and the distribution of buildings and trees in a certain area are critical for the 

performance of the MF. In the case of a small SE most of the ground points will be preserved, 

but only small OBJ like cars or trees will be removed. A big SE calculated with dmax, on the other 

hand, leads to an overestimation in the final nDSM, because BE pixels get mistakenly treated as 

OBJ. At the same time, it is difficult to detect all OBJ of various sizes using only one fixed 

filtering window size as it is the case with Classic Morphological Filtering. Errors occur especially in 

steep terrains (e.g. Maguya et al. 2013; Meng et al. 2010; Geiß et al. 2015c, 4349f.; Zhang et al. 

2003, 873f.). 
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Figure 7: Derivation of the SE (structuring element) exemplarily shown for one TDX DSM (TanDEM-X 
Digital Surface Model) tile in the 100km radius extent of Atlanta. The length of the measurement (yellow 
line in the optical satellite image) is divided by ‘2’ to derive the distance from the center of the building to 
the nearest BE (bare earth) point (top right). Subsequently the result is divided by the pixel size of the 
DSM (deviating from standard 12m depending on the position in the global TDX grid) to generate dmax 

(middle right). The last step is the calculation of SE by inserting dmax in the equation 2 x dmx +1 (bottom 
right; own Figure; image from Google Earth 2018). 

 

Progressive Morphological Filtering 

To overcome drawbacks related to MF another similar method - Progressive Morphological Filter 

(PMF) - has been introduced in the scientific community. BE pixels get separated from OBJ in a 

progressive procedure, where the size of different features above ground is considered. Figure 8 

shows this advanced process of separating BE pixels schematically. An initial filtered surface is 

derived through an opening operation with an initial window size of the SE B. Thereby OBJ 

smaller than the SE are removed while large nonground features are preserved. The next step is 

the calculation of a preliminary nDSM (pnDSM; ΔZ) with the derived DTM. An elevation 

difference threshold θ is applied afterwards to identify the final OBJ pixel of this round. In a next 

iteration the opening operation is applied, with an increased size of the SE B, to the filtered 

surface of the previous round. This results in a further smoothed surface and identification of 

additional OBJ. The threshold can be varied in dependence of the size of the SE to identify 

features of differing magnitudes, e.g. low thresholds for small sizes of the SE to eliminate small 

objects like bushes or cars (note: this is the case for very high resolution DSMs, but mentioned 

here to explain the PMF in general) and larger thresholds for bigger sizes of the SE to remove 

Length of measurement divided by two to derive 

the largest distance ‘building center - BE’: 
  
215.51m / 2 = 107.755m 

d
max

 = result divided by the pixel size of the 

DSM: 

  
107.755m / 11.5431m = 9.335 pixels 

SE = 2 x d
max

 +1: 

  
2 x 9.335 pixels +1 = 18.67 pixels  

≈ 19 pixels 
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buildings. This procedure is reiterated until the maximum size of the moving window with dmax is 

reached. Subsequently all unclassified pixels (≠ OBJ) get considered as BE and will be used for 

the interpolation of a final DTM (Geiß et al. 2015c, 4350; Zhang et al. 2003, 874f.).  

 

Figure 8: Schematic representation of the PMF (Progressive Morphological Filter) approach. In a 
progressive way OBJ pixels (nonground objects) get identified in a step by step procedure through 
adapting the SE B (structuring element) and the threshold θ to the size of features above ground. All 
unclassified pixels at the end (= iteration with maximum size of the SE B = SE calculated with dmax) will be 
considered as BE pixels (bare earth) and will be interpolated to a DTM (Digital Terrain Model; own 
Figure). 

 

However, the spatial resolution of the TDX DSM prevents the usage of this progressive 

procedure. Even the smallest size of the SE B (= 3 x 3 pixels ≈ 12m x 12m in the TDX DSM: 

smallest possible SE with a center pixel) can easily exceed the size of a building. In consequence 

the advancement of a PMF approach cannot be utilised as in previous studies (e.g. Pingel et al. 

2013; Chen et al. 2007; Zhang et al. 2003). Furthermore, similar to the MF the PMF shows a 

comparable good performance in flat terrains but is prone to errors in steep terrains. The 

occurring errors belong to two basic groups: error of commission (false positives), where pixels are 

mistakenly classified as BE, and error of omission (false negatives), where pixels are mistakenly 

classifies as OBJ. The influence of these mistakes on the final nDSM differs regarding terrain 

characteristics. In a perfectly flat terrain, a high omission error has no great influence on the 

quality of the nDSM. Only a few correct classified BE pixels can give an adequate representation 

of the ground. Whereas in steep terrains, where distinctive differences in the elevation with 

respect to surrounding areas are present, a high omission error leads to an overestimation of 

objects and their height in the final nDSM (Geiß et al. 2015c, 4350). 
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Region-Growing-Based Progressive Morphological Filtering with Selective Object-Based Voting 

To overcome these problems especially associated with nonflat terrain, Geiß et al. (2015c) have 

developed a strategy to reduce omission errors. This approach has been developed specifically to 

allow for DTM generation from moderate resolution images like the TDX DSMs, as well. 

Therefore, this method is applied in the scope of this thesis. Figure 9 shows the process of the 

algorithm. It is composed of MF, PMF and further steps and will be explained in detail in the 

following.                      

The algorithm shown in Figure 9 can be separated into four main steps:  

1) Morphological Filter Operation with Bmax (different depending on the region under investigation) and 

subsequently identification of BE pixels by applying an elevation difference threshold θ  

2) Application of a Progressive Morphological Filter Operation based on region growing on the remaining 

pixels to identify OBJ pixels  

3) Postclassification process to identify additional OBJ and BE pixels 

4) Interpolation of all BE pixels from step 1) and BE pixels from step 3) to generate a DTM and finally 

calculate the nDSM 

Due to size issues in the software environment eCognition, which is used to apply step 1) to step 3) 

of the algorithm shown in Figure 9 to the TDX DSM of each city, the dataset of each urban area 

cannot be processed in one. Instead only one part of the data within the buffer-zone (100km for 

the USA; 40km for Germany), separated by the outline of the respective TDX DSM tile, is 

processed per eCognition run. An example for this separation process is given in Figure 10, 

representing Portland and the city’s separate TDX DSM parts of processing. The results are 

mosaicked again after the BE extraction (Figure 9 step 3)) and before the DTM generation 

(Figure 9 step 4)). 
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Figure 9: Flowchart of the RPMF (Region-Growing-Based Progressive Morphological Filter) approach with SOBV 
(Selective Object-Based Voting) used in this thesis to generate the nDSM (normalised Digital Surface Model) for 
each city under investigation. The method has been developed by Geiß et al. (2015c) and consists of four main 
steps: 1) identification of BE pixels (bare earth) with a MF (Morphological Filter), 2) identification of OBJ pixels 
(nonground objects) with a region growing PMF (Progressive Morphological Filter), 3) postclassification to select 
additional OBJ pixels and 4) interpolation of a DTM (Digital Terrain Model), which enables the calculation of an 
nDSM (own Figure after Geiß et al. 2015c, 4351). 
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Figure 10:  Mosaicked DSM (Digital Surface Model) of Portland corresponding to the area within a 100km 
radius around the city center. Due to size issues in eCognition the DSM cannot be processed in one run. It 
is separated into nine parts by the outlines of the respective TDX (TanDEM-X) DSM tile. Each part is 
processed separately (own Figure). 

 

Step 1: Identification of BE pixels 

Within step 1), Figure 9, a MF is applied to the TDX DSM. Therefore, the maximum size of the 

SE is calculated for each processing part in each urban region by determining dmax through visual 

inspection of optical satellite images in Google Earth. A separate dmax value is determined for each 

processing part of the respective urban region under investigation and subsequently one SE is 

calculated per processing part (e.g. in Portland, shown in Figure 10, nine separate dmax values are 

determined and thus nine separate SEs are calculated). As explained above, it is important that 

the SE always exceeds an object’s outline to fully eliminate them. Exemplarily, the determined 

dmax values for the nine processing parts in Portland and their corresponding subsequent 

calculated SEs are listed in Table 5.                             

In contrast to a classic MF BE pixels get identified by applying an elevation difference threshold 

consecutively (< θ = BE). The threshold used in the scope of this thesis is 2.6m. With the 

threshold being quite small it is ensured that also small and low buildings get recognized. The 

value has been set by Geiß et al. (2015c), who tested different variations in order to identify the 

most fitting one to represent the lowest possible building height. For further explanations of the 

determination see Zhang et al. (2003) and Geiß et al. (2015c). BE pixels identified this way can be 
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regarded as reliable (low commission error), but at the same time not as complete (high omission 

error; Geiß et al. 2015c, 4350 & 4356f.). 

Table 5: dmax values used in this thesis to calculate the SEs (structuring elements) for Portland: B = 2 x dmax 
+ 1. Identification of dmax through visual inspection of optical satellite images. The titles of the individual 
mosaic parts refer to the arrangement in Figure 10. In the case of the processing parts ‘bottom right’ and 
‘top right’ the calculated SEs are smaller than the smallest possible SE (=3). In this case a SE with the size 
3 (=Bmin) is used (approach by Geiß et al. 2015c). 

PORTLAND MOSAIC PART DMAX  [PIXEL] SE [PIXEL] 

          1) TOP LEFT 5.5722 12 

          2) TOP MIDDLE 8.2414 18 

          3) TOP RIGHT 0.9696 3 

          4) MIDDLE LEFT 5.0577 11 

          5) MIDDLE MIDDLE 10.8549 23 

          6) MIDDLE RIGHT 6.6369 14 

          7) BOTTOM LEFT 7.7808 17 

          8) BOTTOM MIDDLE 6.8159 15 

          9) BOTTOM RIGHT 0.7197 3 

 

Step 2a: Identification of initial OBJ 

Carrying on, all still unclassified pixels (≠ BE) from step one form the basis for the RPMF 

approach to progressively identify OBJ pixels (see Figure 9 step 2)), which leads to a further 

separation of BE pixels and objects above ground.                         

First, initial OBJ pixels get identified through a two-step procedure with a SE corresponding to 

Bmin (= 3 x 3 pixel). As shown schematically in Figure 11 different strategies are used for objects 

smaller and objects larger than Bmin. To identify buildings smaller than Bmin (see Figure 11a) a PMF 

is applied to the surface to calculate a pnDSM (process described in Figure 8). Subsequently the 

elevation difference threshold (θ = 2.6m) is applied to identify OBJ pixel (> θ = OBJ; Geiß et al. 

2015c, 4350).                  

For objects larger than the minimum size of the SE an alternative strategy (Figure 11b) is 

exercised. These features are fully preserved in the surface obtained with the opening operation 

for objects smaller than the SE (Figure 11a) and thus are not part of the pnDSM. By subtracting 

the result of the erosion (= first step of the opening) from the result of the opening operation the 

border pixels of an elevated object get identified (see Figure 11b middle image). To classify them 

ultimately as OBJ or non-OBJ a combination of an edge extraction filter (Lee-sigma) and contrast 

segmentation is applied on the resulting surface of the subtraction (Geiß et al. 2015c, 4350).    

The Lee-Sigma filter is a local smoothing scheme. It uses the sigma probability of the Gaussian 

distribution to smooth noise (any random clutter of three or less pixels) near edge areas. This is 

done by replacing these pixels values with the average of only those neighbourhood pixels values 
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which have their intensity within two standard deviations of the mean grey value of the pixel to 

be smoothed. Any pixel outside this range is most likely from a different population and should 

be excluded from the average. By doing so, edges get extracted. They ideally represent boarder 

pixels of building objects (Geiß et al. 2015c, 4351; Lee 1983, 255ff.). In the following the 

extracted pixels, most likely representing buildings, are getting finally classified as OBJ or non-

OBJ (pixels stay unclassified) by deploying a contrast segmentation algorithm. It divides the 

filtered image into dark (here: non-elevated) and bright (here: elevated) pixels. To maximise this 

contrast the segmentation iteratively adapts a threshold, whereby different pixel values from low 

to high as well as intermediate values are considered as potential thresholds. The contrast 

between bright (b) and dark (d) to evaluate the threshold delivering the best outcome is calculated 

as follows (Geiß et al. 2015c, 4351; Wurm et al. 2011, 128f.): 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝑏 − 𝑑

𝑏 + 𝑑
 . 

 

(Eq.6) 

 

 
a)  Objects < Bmin 

 
b)  Objecty > Bmin 

 

   

Figure 11: Schematically illustrated identification process of initial OBJ pixels (nonground object). They 
form the basis for the RPMF (Region-Growing-Based Progressive Morphological Filter) approach (see first 
part of step 2) in Figure 9). First, an opening operation is executed with the smallest possible SE B 
(structuring element; =3). In the case of objects being smaller than Bmin (a) a pnDSM (preliminary 
normalised Digital Surface Model) is calculated after the opening and pixels get classified as OBJ by the 
elevation difference threshold (=2.6m) subsequently. In the case of objects being larger than Bmin (b) the 
result of the erosion (= first part of the opening operation) is subtracted from the result of the opening 
operation. By this, border pixels of potential elevated objects are identified. Potential OBJ are finally 
classified as OBJ or BE (bare earth) by applying an edge extraction filter and a contrast segmentation (own 
Figure recreated after Geiß et al. 2015c, 4351). 
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Step 2b: Identification of OBJ 

The filtered surface with initial OBJ pixels (= result Step 2a: Identification of initial OBJ) serves as 

input to identify additional OBJ pixels in Step 2b. A morphological opening procedure is applied 

(see Figure 9 step 2)), where the size of B is increased linearly by (Geiß et al. 2015c, 4351) 

𝐵𝑑 = 2 𝑥 𝑑 + 1  

 

(Eq.7) 

 

where d = 3, 5, 7,…., dmax, with dmax representing the largest number of pixels between an OBJ 

pixel and the next BE pixel (see Figure 7 for the derivation). Depending on dmax the parts of the 

urban regions under investigation undergo a different number of iterations, where the filtered 

surface from the previous opening process is subject to a next opening operation with an 

increased size of B. At each iteration a pnDSM gets calculated (see Figure 8 for this process) and 

the threshold (θ = 2.6m) gets applied to identify potential OBJ pixels (potOBJ; = pixels 

exceeding the threshold). To get classified as final OBJ pixel they then must fulfil a similarity 

constraint with respect to already classified neighbouring OBJ pixels, which share a common 

border. The similarity gets examined by (Geiß et al. 2015c, 4351) 

𝑠𝑖𝑚(𝑝𝑜𝑡𝑂𝐵𝐽, 𝑂𝐵𝐽) =  {
1, |𝜇(∆𝑍𝑂𝐵𝐽) −  ∆𝑍𝑝𝑜𝑡𝑂𝐵𝐽| ≤  𝜂

  0, 𝑒𝑙𝑠𝑒                                               
 

 

(Eq.8) 

 

where ΔZ represents the pnDSM, µ the mean value of neighbouring pixels, and η a threshold 

separating OBJ from unclassified pixels. In this thesis, the threshold has been taken over from 

Geiß et al. (2015c) and is defined as the range [-10; +10]. This means that all pixels differing 

more than +/- 10 from the mean value of the neighbouring pixels stay unclassified and all pixels 

within this range get classified as OBJ. The process of assessing similarity gets repeated during 

each iteration until a stable situation is reached, where no more potOBJ get classified as OBJ 

pixels.                           

In a normal RMPF approach, all remaining unclassified pixels get labelled as BE pixels. But this 

method most likely delivers insufficient results. If building objects have irregular roof surfaces or 

local variations of elevation occur, the RPMF may not capture all OBJ pixels. This happens 

especially with low thresholds for the similarity constraint (equation 8), which leads to potOBJ 

not getting recognized as OBJ but instead getting classified as BE pixels (=error of commission). 

This outcome will lead to partially eliminated building features in the final nDSM (Geiß et al. 

2015c, 4351ff.). 
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Step 3: Postclassification with selective object-based voting 

To lower these errors Geiß et al. (2015) introduced a postclassification processing scheme based 

on the concept of object-based image analysis referred to as OBIA. This method builds on older 

segmentation, edge-extraction, feature extraction and classification concepts that have been used 

in image analysis based on remotely sensed data for decades (e.g. Ketting & Landgrebe 1976; Pal 

& Pal 1993; Baltsavias 2004). Instead of analysing the image pixel-by-pixel (as it is the case in step 

1) and 2) of Figure 9), OBIA works with image segmentation, which provides the building blocks 

(possible are also fuzzy objects or fields). These segments are regions generated by one or more 

criteria of homogeneity. They have additional spectral information compared to single pixels (e.g. 

mean values per band) and additional spatial information for objects (Blaschke 2010, 2f.). Geiß et 

al. (2015c) refer to this concept as RPMF with selective object-based voting (RPMF-SOBV). The OBIA 

method is used as a postclassification procedure (Figure 9 step 3)) for the output of the RPMF 

(Figure 9 step 2); Geiß et al. 2015c, 4352).                 

The postclassification process is schematically shown in Figure 12. First the pnDSM generated 

with Bmax (= resulting surface of the RPMF in step 2)) gets divided into homogeneous image 

segments. Out of these segments, only the ones containing OBJ and unclassified pixels are 

selected. Finally, all pixels in the selected segments get labelled according to the maximum class 

probability in the specific segment (Geiß et al. 2015c, 4352).  

 

Figure 12: Schematic representation of the postclassification procedure. First step is the segmentation of 
the preliminary nDSM (normalised Digital Surface Model) into homogeneous segments. Consequently, 
only segments containing OBJ (nonground object) pixels and unclassified pixels are selected. According to 
the maximum class probability the unclassified pixels get classified as OBJ or BE (bare earth; own Figure 
recreated after Geiß et al. 2015c, 4352). 
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To ensure that all objects are included, the surface generated with Bmax is used for the 

segmentation process (see step 1) in Figure 9: opening operation with Bmax only excludes BE 

pixels). The goal of this procedure is the delineation of the building footprints, which are 

homogeneous regarding their response in the pnDSM surface. This analysis, a multiresolution 

segmentation algorithm implemented in the software environment eCognition is applied to the 

filtered surface to delineate the building footprints. Similar to many other region-growing 

algorithms, it is necessary to define control parameters. They are set by the user regarding 

spectral and geometrical characteristics to achieve maximum allowable heterogeneity between 

segments. Therefore, a scale factor, which is composed of grayscale-value and shape 

heterogeneity (shape consisting of smoothness and compactness of the segment boundaries), is 

utilised, with values between zero and one: hcolour ∈ [0, ..., 1] and hshape ∈ [0, …, 1], where hshape = 1 - 

hcolour consisting of hsmooth and hcpmpact, where hsmooth = 1 - hcpmpact (Geiß et al. 2015c, 4352f.).                

In this thesis, more emphasis is placed on shape heterogeneity when selecting the parameters 

(according to the recommendation of Geiß et al. 2015c). Man-made features like buildings show 

expressive shape and size properties compared to natural features. It is therefore necessary to 

define a higher weight for shape and thus a lower weight for grayscale-value: hshape = 1 - hcolour leads 

to hshape = 0.7 when hcolour is set with 0.3. The higher the shape value, the lower the influence of 

colour on the segmentation. To maintain the influence of shape, hcompact and hshape both get set equal 

with 0.5 (Geiß et al. 2015c, 4353; Geiß & Taubenböck 2015, 2338). These parameters lead to a 

scale factor of 7.             

Based on the previously defined threshold, the algorithm first compares neighbouring pixels and 

merges them, if similarity is found, into one segment. Iteratively, parts of the resulting areas are 

merged, as well (Geiß et al. 2015c, 4352f.; Espindola et al. 2006, 3).           

In general, low values for this threshold lead to small segments because the fusion of adjacent 

pixels/segments is very strict with a small scale parameter. In contrast, larger values result in 

bigger segments because the merging is less restrictive (Geiß et al. 2015c, 4352f.; Espindola et al. 

2006, 3). When developing this approach Geiß et al. (2015c) tested different scale factors and 

have identified 7 as the value leading to optimal segmentation. To determine this value, they 

applied the segmentation algorithm to the pnDSM with different scale parameters creating 

different segmentation layers. To identify the optimal segmentation layer, which maximizes 

intrasegment homogeneity and intersegment heterogeneity, an objective function recommended 

by Epindola et al. (2006) has been calculated based on the intrasegment variance  𝜎2 and Moran’s I. 

The measure for internal homogeneity (= intrasegment variance  𝜎2) is defined as (Epindola et al. 

2006, 3) 
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𝜎2 =  
∑ 𝑎𝑖𝜎

2𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

 

  

(Eq.9) 

 

where ai corresponds to area and  𝜎2
i   to the intrasegment variance of segment i. This measure 

represents the weighted average with the areas of each region being the weights. Low values for 

the intrasegment variance indicate homogeneity for each region. To measure the heterogeneity 

between segments Moran’s I autocorrelation index has been utilised. Spatial autocorrelation, a 

property of spatial data, is represented in the data as similar values for a variable occur in nearby 

locations, which leads to spatial clusters. The algorithm calculates the mean gray value in each 

region and specifies all neighbouring regions. The index is defined as (Epindola et al. 2006, 3; 

Geiß et al. 2015c, 4353) 

𝐼 =  
𝑛 ∑ ∑ 𝑤𝑖𝑗 (𝜇𝑠𝑒𝑔(∆𝑍)𝑖 −  𝜇(∆𝑍)) (𝜇𝑠𝑒𝑔(∆𝑍)𝑗 −  𝜇(∆𝑍))𝑛

𝑗=1
𝑛
𝑖=1

(∑ (𝜇𝑠𝑒𝑔(∆𝑍)𝑖 −  𝜇(∆𝑍))
2

𝑛
𝑖=1 ) (∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗

𝑛
𝑖 )

 

  

(Eq.10) 

 

where n is the number of segments indexed by i and j, 𝜇𝑠𝑒𝑔(∆𝑍) represents the mean pnDSM 

value of one segment and 𝜇(∆𝑍) the mean pnDSM value for all segments. Spatial adjacency 

between segment i and j gets measured by the weight wij : adjacent regions wij  = 1, otherwise wij = 

0. Small values for Moran’s I suggest a low spatial autocorrelation, meaning the adjacent segments 

are statistically different and thus representing heterogeneity. Both parameters, intrasegment variance 

and Moran’s I, have been combined in the objective function (Geiß et al. 2015c, 4353) 

𝐹(𝜎2, 𝐼) =  
𝜎2

𝑚𝑎𝑥 −  𝜎2

𝜎2
𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
+

𝐼𝑚𝑎𝑥 − 𝐼

𝐼𝑚𝑎𝑥 −  𝐼𝑚𝑖𝑛
 , 

  

(Eq.11) 

 

which sums up normalized values of 𝜎2 and I to calculate the statistical indicator for optimal 

segmentation represented by the maximum value of F (Geiß et al. 2015c, 4353). Based on the 

calculations of Geiß et al. (2015c) the value for optimal segmentation is taken over in the context 

of this thesis for the segmentation of the pnDSM with Bmax. Out of all segments, only those 

containing OBJ and unclassified pixels are selected for further classification (see Figure 12). In 

order to finally classify the former as OBJ or BE, a probability function is maximized (Geiß et al. 

2015c, 4353): 

𝐿(𝑝) = arg max
𝑣 ∈𝐿

(𝑃𝑝,𝑣) 

  

(Eq.12) 

 

where L represents the labelling space for pixels either ‘OBJ’ or ‘BE’ and L(p) the final label of 

pixel p. Pp, v returns the probability with which pixel p belongs to class v. This is based on the 

segment probability (Geiß et al. 2015c, 4353): 
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𝑃𝑠,𝑣 =  
1

𝑁𝑠
∑ 𝜏 (𝐶(𝑏) = 𝑣)

𝑏 ∈𝑠

 

  

(Eq.13) 

 

where 𝜏 acts as indicator representing the number of times that the pixels b within a segment s 

feature the class label v. Ns represents the number of pixels in the segment s (Geiß et al. 2015c, 

4353). To conclude, depending on the probability of one segment determined by the number of 

pixels in the different classes (low elevation = BE, high elevation = OBJ), the unclassified pixels 

get categorized as OBJ or BE. All remaining unclassified pixels after the postclassification 

procedure get labelled as BE. 

Step 4: Interpolation of the DTM and nDSM calculation 

In the last step shown in Figure 9 the nDSM is created. In the first instance after the final 

classification in BE and OBJ pixels, all BE pixels (classified in step 1) and 3) in Figure 9) get 

extracted and all individual parts of each city are merged into a mosaic again in order to contain 

one coherent layer per urban region. Consequently, the interpolation of the DTM is carried out. 

Interpolation refers to the prediction of data values at locations where no samples are available 

(Burrough et al. 2015, 147). In this thesis, the aim is the prediction of the bare earth altitude for 

any pixel classified as OBJ. In order not to change the height values of the classified BE pixels, 

an interpolation method, which estimates a value that is equal to the actual value at a sampled 

location, is used. In addition, interpolation should only take place between values of sampled 

locations (Geiß et al. 2015c, 4352). For these reasons, the inverse distance weighting (IDW) is 

selected, a mechanical, deterministic interpolation method (Hengl 2009, 11). It assumes that the 

value of an unsampled point is a distance-weighted average of the data points within the 

neighbourhood of the point with unknown value (Burrough et al. 2015, 163). Thereby the value 

of a target variable h at a location s0 (= unknown BE altitude values in a 100km radius around the 

city center for the USA and a 40km radius around the city center for Germany) is determined as 

the weighted average of the samples (= classified BE pixels) in the neighbourhood (Hengl 2009, 

12): 

ℎ(𝑠0) =  ∑ 𝜆𝑖

𝑛

𝑖=1

(𝑠0) ∗ ℎ(𝑠𝑖) 

  

(Eq.14) 

 

where h(s0) is the unknown altitude value for the target variable, λi the weighting of a sampled 

variable (= known altitude value), h(si) a known altitude value in the neighbourhood of s0 and n 

represents the number of adjacent sampled variables (Hengl 2009, 12). The weighting λi for the 

neighbour i is determined by the following relationship (Webster & Oliver 2014, 40): 
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𝜆𝑖 =  
1

|𝑠𝑖 −  𝑠0|𝛽
  

  

(Eq.15) 

 

where si is a known altitude value and s0 an unknown altitude value. 𝛽 is a coefficient for 

adjusting the weighting and is always larger than zero (Webster & Oliver 2014, 40). The name of 

the method is derived from this equation. The inverse distances from all known altitude values to 

new altitude values (si-s0) are of central importance for IDW. The coefficient is chosen arbitrarily 

and is used to adjust the weighting. Known height values close to the target value receive a higher 

weighting than those at a greater distance (Hengl 2009, 13; Webster & Oliver 2007, 40). A 

common value for 𝛽 is ‘2’, so that the data is inversely weighted over the square of the distance si-

so (Webster & Oliver 2007, 40). This value is also used in this thesis. The difference between 

smaller 𝛽 values, e.g. ‘0.5’, and larger 𝛽 values, e.g. ‘10’, is defined as the height of consideration 

of data points at a greater distance from the target variable, which is less pronounced with larger 

𝛽 values than with smaller 𝛽 values (Hengl 2009, 13).              

The result of the interpolation is the DTM, which is generated for each city under investigation. 

It shows the height of the bare earth without objects above ground. Subsequently the DTM is 

subtracted from the TDX DSM, which shows the height with objects above ground. The result is 

the final nDSM showing only the height of the objects above ground (see Figure 9 step 4)). 

Exemplarily the final nDSM is shown for Portland, Oregon (a) and Hanover (b) in Figure 13. 
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Figure 13: Final nDSM (normalised Digital Surface Model) of Portland (a) and Hanover (b). The nDSM 
solely reflects the height of objects above ground (own Figure). 

 

 

 

a 

b 
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2.3.3.2 Urban Mass Concentration generation 

All methodological explanations under 2.3.3.2 refer to steps 2-5 in Figure 6, which follow the 

nDSM processing. After the final nDSMs are calculated (see chapter 2.3.3.1) for each study 

region, the next step is the intersection of the nDSM with the GUF (see Figure 6 step 2)). This is 

necessary to exclude all non-urban pixels. In the GUF-layer all non-urban pixels have the value 

‘0’ and all urban pixels the value ‘1’. A multiplication with this layer therefore leads to the desired 

exclusion. Figure 14 shows the result of this intersection exemplary for the cities of Portland (a) 

and Hanover (b). In comparison with Figure 13, it becomes clear that the approach led to the 

urban structures now being clearly recognisable.  

After that, the urban structures, i.e. the nDSM masked with the GUF, are blended with the 

NDVI-layer to exclude urban vegetation (see Figure 6 step 3)). All pixels with an NDVI value 

above 0.3 (= threshold between active and non-active vegetation) are considered as zero in the 

further calculations. In addition, during this step the spatial resolution is reduced from originally 

12m (depending on the position in the global TDX DSM coverage) to 10m. This can be 

explained by the spatial resolution of the Sentinel-2 images, the basic data for the index, which is 

10m. By blending the two layers - nDSM-layer containing only urban structures and NDVI-layer 

- the pixel size is reduced to 10m. Therefore, the area of one pixel corresponds to 100m2 in the 

following steps. Figure 15 shows the intersection with the NDVI exemplarily for Portland (a) and 

Hanover (b). The vegetation areas are still included (grey background) to illustrate the effect of 

the NDVI-nDSM-masking. The chart reveals that many additional pixels get excluded.  

The outcome is further overlaid with a grid of 1km x 1km size of the individual grid units (see 

Figure 6 step 4)). The single cells represent the units for the processing of the UMCs, as already 

explained in chapter 2.3.1. Figure 16 displays the grid coverage exemplarily for Portland (a) and 

Hanover (b).  

Finally, the volume within each grid cell, which corresponds to the UMC, is calculated (see Figure 

6 step 5)). In order to generate the volume per grid unit, the volume per pixel must be calculated 

in a previous step. This is done by multiplying the height of the nDSM [m] with the area of one 

pixel [m²]. By summing up the volume of each pixel within a grid cell, the volume per grid cell is 

calculated subsequently. Thus, the result of this calculation corresponds to the UMCs per grid 

cell. They represent the outcome of the first part of this thesis and are presented in chapter 3.1. 

 

 



47 

 

 

 

Figure 14: Result of the intersection of the nDSM (normalised Digital Surface Model) with the GUF-layer 
(Global Urban Footprint) displayed for Portland (a) and Hanover (b). Only urban structures are included 
(own Figure). 
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Figure 15: Result of the intersection of the nDSM (normalised Digital Surface Model), already only 
containing urban structures, with the NDVI. The outcome, here exemplarily shown for Portland (a) and 
Hanover (b), reveals that the NDVI-masking leads to the exclusion of many additional pixels compared to 
the GUF-masking (Global Urban Footprint) shown in Figure 14 (own Figure). 
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Figure 16: nDSM (normalised Digital Surface Model) containing only building features overlaid by the 
processing grid with a 1km x 1km size of the single grid unit.  Here exemplarily shown for Portland (a) and 
Hanover (b; own Figure). 
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2.3.4 Validation 

In order to validate the UMC estimates based on the TDX DSMs, the data is analysed spatially 

and non-spatially. First, a non-spatial simple linear regression is calculated to determine the 

functional relationship between the estimated UMCs and the validation data. In the following a 

validation approach with a spatial reference, in which the UMCs are examined more closely as a 

function of the distance to the city center, is carried out.  

Before the individual validation steps can be carried out, the UMC based on the reference data, 

corresponding to the LoD1 building footprints, must be calculated. Unlike the volume 

calculation based on the TDX DSM data (see chapter 2.3.3.2), the generation of the UMCs based 

on the LoD1 building footprints (see chapter 2.3.2) uses the actual area of the building footprint 

polygons and not the size of the individual pixels. In addition, only those areas of the urban 

regions covered with reference data are validated. Therefore, only parts of the generated UMCs 

based on the TDX DSMs according to the described method in chapter 2.3.3.2 can be validated. 

Simple linear regression 

A simple linear regression analysis is a trend visualisation between two characteristics using a 

straight line, namely the regression straight line. By this, the functional relationship between a 

dependent variable (TDX DSM - UMC) and an independent variable (LoD1 - UMC) is described 

(Zimmermann-Janschitz 2014, 247f.; McKillup & Darby Dyar 2010, 205).                

Regression is mathematically explained by the least squares method. The focus of this 

consideration is the sum of the distances between the data points and the searched straight line in 

the direction of the ordinate (y-axis). If the distances are minimized by squaring, the straight line 

adapts optimally to the data distribution and the relationship is represented in the best way 

possible. The distances between the straight line and the data points in the direction of the 

ordinate are regarded as errors, so-called residuals. According to this, the sum of all residuals is 

minimized by the least squares method (Zimmermann-Janschitz 2014, 248f.).         

To describe the course of the regression straight line, only two statistics are needed. Parameter ‘a’ 

is the value of the dependent variable Y when the independent variable X = 0 and parameter ‘b’ 

presents the slope of the line (McKillup & Darby Dyar 2010, 205). In this process, the sum of the 

squared residuals serves as a measure of quality (Wollschläger 2017, 197). Formally the regression 

straight line is defined as (Zimmermann-Janschitz 2014, 252) 

Y = 𝑏𝑋 + 𝑎. 

  

(Eq.16) 

 
With increasing slope, the relationship between the dependent and independent variable becomes 

stronger (Zimmermann-Janschitz 2014, 254).                  
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On the basis of linear regression, it is not yet possible to assess the approximation quality, even if 

an optical assessment provides a first clue. Therefore, the quality criterion of linear regression, the 

coefficient of determination (R2), is additionally used. It is defined as (Zimmermann-Janschitz 2014, 

260f.) 

𝑅2 =  

∑ (ŷ𝑖 −  ȳ)2𝑛
𝑖=1

𝑛
∑ (𝑦𝑖 − ȳ)2𝑛

𝑖=1

𝑛

=
𝑠Ŷ

2

𝑠𝑦
2
 

  

(Eq.17) 

 

where ŷ represents a value i estimated by X (see equation 16), y is a dependent value i (= TDX 

DSM UMC at point i) and ȳ constitutes the arithmetic mean. 𝑠Ŷ
2 further represents the scattering 

of the estimated values ŷ (= explained variation) and 𝑠𝑦
2 the scattering of the dependent variable y 

(= total variation). By putting both variances in relation, the coefficient of determination is 

calculated, which functions as the quality of the linear regression (Zimmermann-Janschitz 2014, 

261). If the estimated values correspond to the real values (here: TDX DSM UMCs), R2 can 

assume a maximum value of one. The residuals then take the value zero. With increasing 

deviation of the data from the regression straight line, R² decreases. In the case of no linear 

relation between the dependent and independent variable, R2 is zero (Zimmermann-Janschitz 

2014, 261f.; McKillup & Darby Dyar 2010, 217).    

Distance-based validation         

In order to include the spatial location of the grid cells in the investigation, a spatial distance-based 

approach is applied in the second part of the validation. Instead of comparing individual grid cell 

values, as it is the case for simple linear regression, sum values of grid cells at a certain distance 

from the city center are used. The definition of the center is similar to chapter 2.3.1 (= center in 

open source GIS) and the volume values per grid cell are summed up at intervals of 1km around 

each city’s midpoint. This allows the UMCs to be validated depending on their distance to the 

city center in the study area. By adding a spatial characteristic to the validation, a broader 

statement can be made about the quality of the estimated volumes based on the TDX DSM data. 

 

 

 

 



52 

 

2.3.5 Polycentricity Analysis 

The polycentricity analysis in the framework of this thesis is based on an approach developed by 

Taubenböck et al. (2017a). In order to systematically identify hUMC (high urban mass 

concentrations), which are interpreted as (sub-)centers, the scientists have tested different 

threshold methods on underlying 3D building models derived from Cartosat-1 DSMs. The 

investigated possible threshold strategies are two single-density threshold approaches and one distance-

based, relative threshold approach (Taubenböck et al. 2017a, 44f.)            

For the single-density approaches, one cut-off value is used for all study areas (= global threshold) 

or one cut-off value is utilized per investigated urban region (= region-specific threshold). In the 

distance-based method, the thresholds for identifying hUMCs depend on the location of each 

grid cell within the urban area. A ring model around the city center with bandwidths of 1km is 

applied and each grid cell is assigned to an individual ring. This is done by calculating the 

centroids of the grid cells and assigning them to the respective rings. By this the UMC values get 

classified into different rings in dependence of their distance to the city center. Subsequently, one 

cut-off value is calculated for each ring (=distance-based, relative threshold). The bandwidth of 1km is 

chosen, because high spatial accuracy shall be achieved (Taubenböck et al. 2017a, 45).     

The cut-off values separating UMCs from hUMCs are defined as a certain standard deviation 

(SD) above the mean of the UMC values used in the study. Taubenböck et al. (2017a) tested 

different thresholds on each approach by systematically applying various SDs (1.0 – 2.5; 

Taubenböck et al. 2017a, 45f. & 49).             

The researchers found that the single-density approaches (global & region-specific) tend to 

overestimate the inner city area, while the distance-based approach often does not find hUMCs 

near the inner city area, but identifies hUMCs in the periphery not identifiable with the single-

density approaches. Therefore Taubenböck et al. (2017a) applied a combination of methods in 

order to identify both, the hUMCs in the city center and in peripheral areas - namely the region-

specific and the distance-based approach. The global approach would also be conceivable instead 

of the region-specific one, but the latter is conceptually more like the distance-based approach as 

it allows to weight the UMCs of the cities individually. By combining the methods, the 

disadvantages of the individual approaches can be avoided. Furthermore, the scientists found that 

a SD of 1.3 above the mean identifies a number of (sub-)centers which may come closest to 

reality (Taubenböck et al. 2017a, 47ff.).               

In summary, (sub-)centers or hUMCs within the UMCs (= result of chapter 2.3.3) are identified 

in the scope of this thesis once via the region-specific approach with a SD of 1.3 above the mean 

and once via the distance-based approach with a SD of 1.3 above the mean. After that, the results 
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of both methods get combined. In addition, adjacent grid cells identified as hUMCs get merged, 

since it is assumed that they belong to one center (Taubenböck et al. 2017a, 50). 

The identification of the (sub-)centers is followed by an analysis in order to assess the degree of 

polycentricity. This is especially important because it is not possible to extrapolate polycentricity 

solely based on the count of detected (sub-)centers (Taubenböck et al. 2017a, 53). Moreover, it is 

necessary in order to make comparisons between 1) the cities within the USA and Germany and 

2) between the cities of the USA and Germany.                  

Therefore, in a first step a rank-size distribution is calculated for the area (2D) and the volume (3D) 

of the (sub-)centers of each city. All existing area/volume values (same values are only used once) 

are sorted hierarchically, with the first rank being assigned to the largest area/volume value and 

the last rank n to the smallest area/volume value occurring in the respective urban region. 

Through the graphical representation of these hierarchies it is possible to interpret the degree of 

polycentricity. The main indicator to be considered in this regard is the slope of the rank size 

distribution. Its degree expresses the hierarchy of the decreasing patch sizes. The more 

pronounced the hierarchy, represented by a steep slope, the more likely a low degree of 

polycentricity is predominant. Additionally, relatively high area and volume values at rank one (= 

largest patch with the highest volume/area value) are more likely an indicator for a lower degree 

of polycentricity, than lower values with less pronounced differences to other ranks (Taubenböck 

et al. 2017a, 47 & 53).                        

In a second step the largest patch index (LPI) is calculated. The index represents the dominance of 

the largest hUMC regarding its area and volume value in comparison to the complete 

area/volume of hUMCs. It is defined as (Taubenböck et al. 2017a, 47) 

𝐿𝑃𝐼 =  
ℎ𝑈𝑀𝐶 𝑚𝑎𝑥

ℎ𝑈𝑀𝐶𝑡𝑜𝑡𝑎𝑙
∗ 100 

  

(Eq.18) 

 

where hUMCmax represents either the largest (sub-)center area or volume value and hUMCtotal 

shows the total area or volume covered by detected hUMCs/(sub-)centers. The result of the 

division gets multiplied by 100 in order to describe the share of the largest area/largest volume in 

the total quantity of (sub-)centers in percent. The larger the share, the more dominant is a center 

compared to the other identified centers.         

Furthermore, other non-site specific measures - the mean size, mean volume, total area of hUMCs and 

the total volume of hUMCs - which are calculated as well during the analysis process allow to 

draw conclusions about the degree of polycentricity.      
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In general, although it may not be regarded as an universal rule, it is assumed that higher values 

for the non-site specific measures mean size, mean volume and total volume of hUMCs and a 

high dominance of the traditional center (here: center with the largest area and the highest 

volume) indicate a low degree of polycentricity. Whereas lower values of the non-site specific 

measures and the LPI express a higher degree of polycentricity (Taubenböck et al. 2017a, 53). In 

this thesis, however, greater emphasis is placed on the LPI values than on the non-site specific 

measures. The LPI values refer directly to the rank-size distribution in regard to dominant 

characteristics of the largest patch with the highest volume/area value. Therefore, a greater 

correlation between the rank-size distribution and the LPI values is assumed. The non-site 

specific measures, nevertheless, serve as support for a more precise analysis.          

The analysis of polycentricity within the two countries is carried out by evaluating the rank-size 

distribution, the LPI and the non-site specific measures inside the certain radius around the city 

center - 100km radius in the USA and 40km radius in Germany.            

In order to compare the polycentricity between the two countries, the data is mutually adapted 

beforehand. This means, that only the area within a 40km radius of the city center is considered 

when comparing polycentricity between the cities in the USA and in Germany. To do so, the 

rank-size distribution, the LPI and the non-site specific measures for the USA are calculated 

additionally only for the (sub-)centers within a 40km radius around the city center. Due to its 

large size, Atlanta is only included in the comparison within the Urban Area, whereas the 

remaining US cities still have data across the UA. 
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3 Results  

In this chapter the results of the applied methodology (see chapter 2) are presented. Reference is 

first made to the morphological characterization to show the generated UMCs/km2 (see chapter 

3.1). Subsequently the outcome of the validation is displayed (see chapter 3.2), before the final 

polycentricity analysis is reviewed (see chapter 3.3).              

In order to present the outcomes clearly, only two US and two German cities are introduced and 

compared. Portland and Austin have the largest coverage of validation data. Therefore, it was 

decided to look at these cities within this chapter more closely. In Germany, Hamburg and 

Hanover are shown as they are an example for a large and a medium-sized city. The remaining 

four cities Atlanta, Philadelphia, Berlin and Nuremberg and their associated results are featured in 

Appendix I (reference to chapter 3.1), Appendix II (reference to chapter 3.2) and Appendix III 

(reference to chapter 3.3).       

3.1 Morphological Characterization 

Figures 17 and 18 show the results of the morphological characterization for Portland (17a), 

Austin (17b), Hamburg (18a) and Hanover (18b). The scaling, representing the different UMC - 

classes in the Figures, is kept equal for all cities. Therefore, a comparison can be made between 

the different considered urban regions.                                      

Figure 17 shows that the urban structure, in terms of volume per grid unit (= UMC), differs 

significantly between Portland and Austin. Especially the inner part of the investigation area, 

depicted in the upper left corner in Figure 17a and 17b, demonstrates that Austin only has a few 

cells with a volume value higher than 512,000m³. Besides, they are all connected in a cluster of 

adjacent pixels. In Portland on the contrary, comparatively more pixels are part of this class. 

Moreover, they seem to be more distributed. Based on these observations the metro area (here: 

central area of the examined expanse) of Portland is denser than the one of Austin. It is also 

interesting that the metro area of Austin seems to have, to some degree, a radial/axial 

development from the densest area (dark blue pixels) to less dense areas (yellow pixels) in the 

surroundings. Portland does not show this kind of development. The highest volumes per grid 

units have no clear delimitation, although a tendency of decreasing volumes towards the edge of 

the central area can also be observed.                     

Differences can also be deducted when considering the entire study area. In Portland, the urban 

structures extend from north to south in a broad stripe-like formation with scattered higher 

volume clusters. This formation is delimited by the terrain in the east and west, where no 

significant urban structures can be detected. In Austin, on the other hand, tendencies of an axial 
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development with high volumes connected in a star-shaped pattern can be identified. A denser 

urban stripe, which extends to the southern end of the study area, stands out.                    

At first glance, Figure 18, showing Hamburg (a) and Hanover (b), procures a relatively similar 

urban structure in terms of volume per unit. First, parts of the inner area of the investigated 

regions are examined more closely, visible in the upper left corner. A comparison indicates that 

the metro area of Hamburg seems to have higher volume values than the one of Hanover. While 

in Hamburg many pixels having volume value of more than 512,000m³ (dark blue pixels) are 

densely located in a cluster, Hanover only shows a few pixels in this class. By including the entire 

generated area, it becomes obvious that high volumes (dark blue and purple coloured pixels) in 

Hamburg occupy a larger part of the entire area compared to Hanover. Moreover, the 

surrounding areas of the dense concentrations of urban masses in Hamburg and Hanover are 

characterized by less dense urban structures (orange and yellow coloured pixels). To conclude, 

the study area of Hamburg appears to be characterised by higher urbanity. But given that 

Hamburg is a city with much more inhabitants than Hanover, this is also expectable (see chapter 

2.1). 
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Figure 17: Generated UMC (urban mass concentration) in Portland (a) and Austin (b). The UMC 
corresponds to the volume per grid unit, which has a size of 1km x 1km (own Figure). 
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Figure 18: Generated UMC (urban mass concentration) in Hamburg (a) and Hanover (b). The UMC 
corresponds to the volume per grid unit, which has a size of 1km x 1km (own Figure). 

3.2 Validation 

Initially, the results of the simple linear regression are presented (additional overview of the 

following results are shown in Table 6). Subsequently the outcome of the distance-based 

validation approach is described.                    

As previously explained, it is pointed out once again that only the US cities are subjects for the 

validation. Moreover, validation is the only way to verify the quality of calculations and is 

therefore an important factor in any scientific work. Because of this, the simple linear regression 

results for Atlanta and Philadelphia are presented in addition to the ones of Portland and Austin 

to provide a larger scope.  

Simple linear regression                               

Figure 19 shows the simple linear regression results for all four American cities. Based on the 

available validation data, different numbers of grid cells containing the UMCs are validated. The 

PBF (Portland Building Footprint) enables a simple linear regression with 2430 grid cells and 

their corresponding UMC values (Figure 19a). The highest UMC within the reference data, 

displayed on the x-axis, shows a value of over 2 million m³. Within the calculated UMCs based 

on the TDX DSM data the highest values are around 1.5 million m³. Furthermore, Figure 19a 

shows that the UMCs based on the LoD1 building footprints are mainly located in a cluster up to 
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1 million m³. In contrast, the values of the TDX DSM UMCs are primarily located up to 

500,000m³. Overall, the TDX DSM UMCs are therefore below the UMCs shown by the 

validation data. The coefficient of determination has a value of 0.4589.              

Austin, displayed in Figure 19b, has the largest coverage of validation data with the ABF (Austin 

Building Footprint). The validation is based on TDX DSM- and LoD1 building footprint-UMCs 

of 2807 grid cells. The highest UMCs of the reference data have values between 10 million m³ 

and 11.5 million m³ and the densest cluster is located up to approximately 4 million m³. In 

contrast, the highest UMCs based on the TDX DSM data have values between 800,000m³ and 

850,000m³ and are most densely distributed up to 150,000m³. In summary, the volume difference 

between UMC values of LoD1 building footprint and TDX DSM data is more pronounced 

compared to Portland. However, the coefficient of determination is significantly higher than in 

Portland with a value of 0.6369.                                         

Figure 19c presents the result of the regression for the city of Atlanta. With only 132 grid cells, 

the city has the scarcest coverage of validation data with the MBF (Microsoft Building Footprint). 

The highest UMC values of the MBF are situated around 13 million m³. However, they are only 

represented by a few grid cells. Most UMC values are located up to approximately 3 million m³. 

In the case of the calculated UMCs based on the TDX DSM data, the highest values lie between 

7 million m³ and 8.5 million m³ and a cluster of values can be identified up to 2.5 million m³. In 

comparison to Portland and Austin, these identified volume values indicate a higher similarity 

between the TDX DSM UMCs and LoD1 building footprint UMCs. This trend is also reflected 

in the coefficient of determination, which is, with a value of 0.7233, higher than the ones 

calculated for Portland and Austin.            

Philadelphia, shown in Figure 19d, is a special case. As can be seen in Appendix I 1, UMCs could 

only be calculated for about half of the area of the investigation expanse. The reason is an error 

in the raw data, i.e. the TDX DSMs underlying the area of examination. This error only became 

apparent in the course of the UMC generation. Although values are available, they are 

significantly below sea level and are thus incorrect. To confirm the error, the height values were 

compared with a SRTM (DSM data conducted by the Shuttle Radar Topography Mission) of the same 

area. Due to this limitation, only a small part of the originally available LoD1 building footprint 

data of the PHBF (Philadelphia Building Footprint) could be used. Nevertheless, with 272 grid 

cells a larger area compared to Atlanta could be validated. The highest volume values based on 

this data are located around 9.5 million m³. For the UMCs calculated with the TDX DSM data 

the highest values are situated around 1 million m³. A cluster of volume values, as it is the case 

for the other three US cities, cannot be identified in Philadelphia. This is also reflected in the 

coefficient of determination, which has a value of 0.3297.  Therefore, in comparison to the other 
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three US cities, Philadelphia has the lowest value for the coefficient of determination.       

To conclude, it can be stated that the TDX DSM UMCs are always below the volume values of 

the LoD1 building footprint data. This is also clearly shown by the mostly flat slopes of the 

regression lines.  

 

 

 

Figure 19: Representation of the simple linear regression for Portland (a), Austin (b), Atlanta (c) and 
Philadelphia (d). The x-axis shows the UMCs [m³] (urban mass concentrations) of the validation data and 
the y-axis the UMCs [m³] of the TanDEM-X DSM (Digital Surface Model) data. In addition, the 
coefficient of determination, making a statement about the quality of the regression, is indicated in each 
case (own Figure). 
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Table 6: Summary of the simple linear regression results calculated for the cities in the USA. The highest 
calculated UMCs (urban mass concentrations), the area, where most UMC values are located and the 
coefficient of determination are listed respectively per city and data source (own Table). 

 
STUDY AREA DATA HIGHEST UMC 

[MILLION M³] 
UMC CLUSTER 
[MILLION M³] 

R² 

PORTLAND 
       PBF 

       TDX DSM 

2 

1.5 

       up to   1 

       up to   0.5 
0.4589 

AUSTIN 
       ABF 

       TDX DSM 

11.5 

0.085 

       up to   4 

       up to   0.15 
0.6369 

ATLANTA 
       MBF 

       TDX DSM 

13 

8.5 

       up to   3 

       up to   2.5 
0.7233 

PHILADELPHIA 
       PHBF 

       TDX DSM 

9.5 

1 

- 

- 
0.3297 

 

Distance-based validation 

Figure 20 shows the UMCs (y-axis) within the coverage area with validation data as a function of 

distance to the city center (x-axis) for Portland (20a) and Austin (20b). The LoD1 building 

footprint data and their corresponding calculated UMCs, displayed in dark grey, and the TDX 

DSM data and their corresponding UMCs, displayed in light grey, indicate a significant difference 

regarding the height of the generated volumes. This again confirms the outcome of the simple 

linear regression. Atlanta and Philadelphia presented in Appendix II show similar results. 

However, if the summed-up volumes generated from the TDX DSMs and the LoD1 building 

footprint data are represented uniformly scaled in one diagram, the course of the TDX DSM 

UMCs cannot be interpreted correctly due to the occurring underestimation. For this reason, the 

TDX DSM UMCs are additionally displayed in the top right corner in the scale range determined 

by the volume range of these data. When comparing the progressions of the TDX DSM data, 

shown in the top right corner for each city, with those of the associated LoD1 building footprint 

data, it becomes apparent that the courses of the summed-up volumes resemble each other. In 

no case are the courses the same, but a similarity can be established.           

In Portland, Figure 20a, it can be observed that the volumes first increase roughly and then 

decrease gradually with increasing distance to the city center. In Austin, Figure 20b, the course of 

the volumes based on the reference data is relatively uniform. Up to a distance of 28km from the 

center the sum volumes are above 100 million m³. A similar course can be identified for the TDX 

DSM data, where the total volume values are over 2 million m³ up to a distance of 28km. In both 

datasets low values can be observed starting from a distance of 34km compared to the areas 

closer to the city center. The similarity in the course of the TDX DSM and LoD1 building 

footprint data can also be seen in Atlanta and Philadelphia, Appendix II.    
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Figure 20: Representation of UMCs (urban mass concentrations) (x-axis) as a function of distance to the 
city center (y-axis) for Portland (a) and Austin (b). In intervals of one kilometre the volumes per grid cells 
are summed up. Therefore, the UMCs on the y-axis show the total volume per kilometre (own Figure). 
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3.3 Polycentricity Analysis 

Within the scope of this chapter the results of the identification of the hUMCs (high urban mass 

concentrations), i.e. the (sub-)centers, are presented initially. Followed by this, the findings of the 

rank-size distribution and the calculation of the LPI (largest patch index) are displayed. As in the 

previous chapters (3.1, 3.2), only the output of the cities Portland, Austin, Hamburg and 

Hannover are introduced. The results of the remaining urban agglomerations are shown in 

Appendix III. 

3.3.1 Detection of high urban mass concentrations 

Figures 21, 22, 23 and 24 show the patterns of (sub-)centers for the city regions of Portland (21), 

Austin (22), Hamburg (23) and Hanover (24), which were detected using a combination of the 

region-specific and distance-based approach with UMCs exceeding a SD (standard deviation) of 

1.3. At the top of each Figure the grid cells identified as hUMCs are shown with the classes 

region-specific (yellow), distance-based (red) or with a combination of both approaches (orange). 

In the lower part a holistic representation of the detected (sub-)centers is displayed. This 

visualisation allows a first assessment of the size ratio of the identified (sub-)centers (they are 

delimited by a boundary illustrated in black colour). In addition, the number of detected (sub-

)centers is indicated in the upper right corner.                                  

Figure 21 shows the city of Portland for which a total of 66 (sub-)centers were identified. With 

the region-specific approach, hUMCs could be detected mainly within the UA (Urban Area) near 

the city center. The distance-based approach, on the other hand, also identifies centers at a 

greater distance from the city center, which would remain hidden by applying solely the single-

density threshold method. However, there are also many grid cells that were recognized by both 

approaches as hUMCs. In the bottom part of the Figure, in which the hUMCs are combined to 

(sub-)centers, it becomes clear that a large part of the UA was identified as a hUMC. A total of 

three comparatively large (sub-)centers were detected within the UA. Since the separation 

between the three runs along the course of the rivers Willamette and Columbia, a connection 

between these centers can be established as well. Because they are also close to the city center, it 

is assumed that these structures belong to the traditional center of the city. Outside the UA, the 

center structures are small to medium-sized and they occur mainly in the south of the UA. In 

comparison with an underlying optical satellite image in an open source GIS a significant 

correlation to major highways can be established.                              

Within Figure 22 the results of the center detection for the city of Austin are presented. With 68 

detected (sub-)centers almost the same number as for Portland, could be identified in Austin. 

Furthermore, Austin also shows that the region-specific approach is mandatory to identify center 
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structures in a shorter distance to the city center, while numerous pixels in greater distance to the 

city center are only discovered by the distance-based approach. The majority of the identified 

hUMCs, however, except for the ones in close distance to the city center, were identified by both 

approaches. The bottom part shows, similar to Portland, that the largest detected (sub-)center 

corresponding to the dominant and traditional center is located within the UA. It extends from 

north to south through the UA in a rather longitudinal form. Moreover, a strip which spreads 

from the south-end of the UA, as a continuation of the dominant center, in a south-westerly 

direction to the end of the area under investigation is apparent. A correlation with a large 

highway connecting Austin with the even larger city of San Antonio can be established.   In the 

case of Atlanta and Philadelphia, both shown in the Appendix (III 1 & III 2), 144 and 127 (sub-

)centers could be identified. Thus, in these cities, more or less twice as many center structures 

could be detected in Atlanta and in Philadelphia, compared to the amount of centers identified in 

Austin and Portland.                         

In Atlanta a dominant center stands out from the other detected (sub-)centers. Within the UA it 

is located in a rather elongated shape from the southwest of the UA to the northeast of the UA. 

Nevertheless, compared to the other US cities, it covers only a comparatively small part of the 

UA. However, the UA of Atlanta in general is also much larger than the ones of Portland, Austin 

and Philadelphia. The comparison with an optical satellite images shows that the longitudinal 

form reproduces a large highway, with large building complexes (possible warehouses or 

production facilities) lined up at its edges. The well-known, large Atlanta Hartsfield-Jackson 

International Airport (City of Atlanta 2019) is also included in the dominant detected center at the 

southernmost end. In addition, numerous smaller center structures as well as some medium-sized 

ones were detected. Outside of the UA explicit one larger (sub-)center sticks out, which seems to 

be an extension of the dominant city center.               

Due to the errors in the raw data, already described in chapter 3.2, hUMCs in Philadelphia were 

generated only for about half of the investigated area. The city center is also located in an area 

where no data is available. Therefore, the traditional center is not displayed correctly. 

Accordingly, it is not possible to describe it more precisely, let alone determine its dominance as 

it is the case for the other US cities. A few results, nevertheless, can be presented. Outside the 

UA in the north-western part of the study region some medium-sized center structures could be 

identified. These seem to be connected with the city center (even though only parts of it could be 

processed). The visual comparison shows that these are small cities (Reading, Allentown, Easton) 

connected by large highways to the city center of Philadelphia. Along these roads numerous 

smaller (sub-)centers are distributed.                  

The results for Hamburg and Hanover are similar to each other, as can be seen in Figures 23 and 
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24. The numbers of (sub-)centers detected are slightly lower than for Portland and Austin. In 

Hamburg 38 (sub-)centers could be identified and 49 in Hanover. This is also due to the fact that 

the processed area in Germany is smaller than in the USA. In these cities, too, the upper parts of 

the Figures show the importance of applying a regional-based approach in addition to the 

distance-based approach in order to detect the hUMCs near the city center. Furthermore, similar 

to the US cities, in the bottom part of the Figures 23 and 24 the dominance of a large (sub-

)center within the UMZ (Urban Morphological Zone) can be established. Moreover, it is 

noticeable that the majority of (sub-)centers in Hamburg were identified north of the Elbe River 

and only with the distance-based approach. The direct assignment to a large road is more difficult 

than in the US cities. Correlations to road courses can be identified, but since Hamburg shows a 

higher level of infrastructural network (by comparison with an optical satellite image), there is no 

unambiguity as it is present in the two US cities. In Hanover, the (sub-)centers are distributed 

relatively evenly around the UMZ. Two medium-sized center structures stick out, besides the 

dominant, traditional center, in the southeast and northeast of the investigation area. The 

alignment with an underlying satellite image shows that they represent parts of the cities 

Hildesheim (southeast) and Celle (northeast). Particularly in Hildesheim, similarities with 

economic areas (large buildings, which could be warehouses or production facilities in terms of 

structure) can be found.                  

The number of detected (sub-)centers in Nuremberg and Berlin, shown in the Appendix (III 3 & 

III 4), is similar to the German cities Hamburg and Hanover. In Nuremberg 40 and in Berlin 43 

center structures were identified. Berlin has a dominant center covering most of the UMZ. It is 

also noticeable that no center structures were detected in the northeast of the investigated area. 

But further medium-sized (sub-)centers are located in the southern, south-western and south-

eastern part of the examined region. They mainly correspond with economic areas of smaller 

cities outside of Berlin (e.g. Mitterwalde or Ludwigsfelde). Parts of Potsdam were also detected as 

hUMC. Moreover, in contrast to the other cities investigated (except for Hamburg), it is striking 

that the (sub-)centers outside the UMZ could mainly only be identified using the distance-based 

approach. In Nuremberg almost the entire UMZ is classified as hUMC, which exemplifies the 

dominance of the traditional center. Further (sub-)centers were identified especially in the north 

of the UMZ, where an axial formation of center structures extends to the end of the investigated 

area. A correspondence with a large road can be established, on which parts of other cities in the 

region were detected (e.g. Erlangen, Fürth).                       

In summary, there is still a dominant center in every city investigated, regardless of the country, 

Germany or the USA. Portland is the only city, where more than one dominant center was 

identified. Due to the missing data this statement is not valid for Philadelphia.  
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Portland, Oregon, USA 

 

 

 

Figure 21: Detected (sub-)centers in Portland. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
(sub-)centers. According to the definition, adjacent grid cells are merged (own Figure). 
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Austin, Texas, USA 

 

 

 

Figure 22: Detected (sub-)centers in Austin. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
hUMCs. According to the definition, adjacent grid cells are merged (own Figure). 
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Hamburg, Germany 

 

 

 

Figure 23: Detected (sub-)centers in Hamburg. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
hUMCs. According to the definition, adjacent grid cells are merged (own Figure). 
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Hanover, Germany 

 

 

 

Figure 24: Detected (sub-)centers in Hanover. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
hUMCs. According to the definition, adjacent grid cells are merged (own Figure). 
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3.3.2 Polycentricity in Germany 

In this chapter the results of the rank-size distribution, the LPI and the non-site specific measures 

are introduced for Germany to analyse polycentricity in German cities. 

Rank-size distribution 

The outcome of the rank-size distribution is displayed in Figure 25. In the top row the 

distributions for the parameters area (left) and volume (right) are shown. In order to allow 

comparisons between cities, the area- and volume-values are presented with a logarithmic scaling 

since differences become more pronounced that way. In addition, the bottom row of Figure 25 

shows the frequency of the occurring area ranks. For the parameter volume this representation is 

redundant because each volume value occurs only once. Therefore, the hierarchy of rank-sizes 

for the parameter volume (top right diagram) corresponds to the number of detected (sub-)centers 

in each city.                 

Considering the rank-sizes for the parameter area (top left), a heterogeneity of 13 (Hanover and 

Berlin) and 12 (Hamburg and Nuremberg) different sized centers could be identified. 

Furthermore, the area rank-size distribution also provides information about the actual 2D-size of 

the individual (sub-)centers. The diagram shows that rank one, which corresponds to the center 

structure with the highest area value and is seen as the traditional center, is in all four German 

cities larger than 100km². All (sub-)centers categorized between rank two and rank six have area 

values between 30km² and 10km². In rank seven and above area values less than 10km² are 

characteristic. This shows a distinctive hierarchy by decreasing patch sizes especially between 

rank one and rank two, which can be observed in all four German cities. This is an indicator of a 

strong dominance of the traditional center. Nevertheless, a ranking between the four German 

urban regions can be established regarding their degree of polycentricity. The most distinct 

hierarchy by decreasing patch sizes can be identified in Berlin and Hamburg. Even though, this 

represents only a slight difference to the hierarchy present in Nuremberg and Hanover. A similar 

statement can be made for the largest area values ranked on position one. The highest ranked 

areas are larger in Berlin and Hamburg compared to Hanover and Nuremberg, but the difference 

is not very pronounced. The inclusion of the rank-size distribution for the parameter volume 

provides additional information. Concerning the highest volume in each city, Hamburg, again, 

features the largest volume of one center with about 500,000,000m³. The largest center volume of 

Berlin, in contrast, is comparatively low with 10,000,000m³. This is striking because Hamburg 

and Berlin show a similar area rank-size distribution. Nuremberg owns the lowest volume value 

of a city center (maximum around 100,000m³). This is in line with the area ranking of the distinct 

hierarchy of the decreasing patch sizes explained before. Hanover shows equally large volume 



71 

 

values in the centers like Hamburg (maximum around 100,000,000m³). Based on this information 

gained from the rank-size distributions Hamburg has the lowest degree of polycentricity and 

Nuremberg the highest degree of polycentricity among the four cities surveyed in Germany. 

Moreover, the count of the area ranks (Figure 25 bottom left) illustrates that (sub-)centers with 

lower area values (= higher rank-size) occur more often than those with higher area values (= 

lower rank-size). 

  

 

Figure 25: Results of the rank-size distribution for the parameters area (top left) and volume (top right) in 
Germany. Rank-size one represents the largest area/volume value in each case and rank-size n the smallest 
area/volume value. In addition, the frequency of the occurring area ranks is shown (bottom left; own 
Figure). 

 

Largest patch index & non-site specific measures 

Table 7 summarizes the results of the non-site specific measures and the LPI for each of the 

parameters area and volume in Germany. The LPI values are printed bold because they have a 

higher weighting compared to the non-site specific measures, as already described in the method 

(see chapter 2.3.5).              
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The LPI outcomes confirm the assignment of Hamburg to a low degree of polycentricity. The 

city has the highest LPIArea (= 57.36%) among the German cities. This means that over 50% of 

the area of all detected center structures is concentrated in the traditional center. Moreover, 87% 

of the total volume categorized as hUMC belongs to this center (= LPIvolume of 87.43%). 

Therefore, its dominance is very pronounced. In comparison to the other German cities the 

measures mean size of (sub-)centers, mean volume of (sub-)centers and total volume of all 

detected (sub-)centers also confirm the allocation of Hamburg to a lower degree of polycentricity 

among the investigated German urban regions.         

Berlin shows similar LPI values as Hamburg with a LPIArea of 53.62% and a LPIvolume of 86.15%. 

Like Hamburg, Berlin concentrates over 50% of the total hUMC-area and over 80% of the total 

hUMC-volume in one center. Similarity between these two cities also appears through the mean 

size value for the centers, which is with 11.23km² just slightly below Hamburg (=12.16km²). 

However, the volume values (expressed by mean volume and total volume) are much lower. 

Based on these statements, Berlin is therefore also considered as a city with a rather low degree 

of polycentricity. Tendencies towards polycentricity, however, are already more present in Berlin 

compared to Hamburg because the LPI values as well as the mean size of the center structures 

are lower than the ones of Hamburg. Through the rank-size distribution Nuremberg has already 

been classified as a city with a higher degree of polycentricity among the four German 

investigated cities. The LPI results confirm this statement. In comparison to Berlin and 

Hamburg, only 39% of the total area characterized as hUMC and 63% of the total volume 

characterized as hUMC belong to the largest, traditional center. These values are still relatively 

high, especially the one of the LPIvolume. Nevertheless, Nuremberg tends to exhibit a more 

polycntric development compared to Hamburg and Berlin. The city shows, in addition, the 

lowest mean volume (= 6,804m³) and total volume (=272,167m³) values among the four German 

cities. Together with the, in comparison to Hamburg and Berlin, lower mean size value of 

8,63km², Nuremberg clearly shows a higher degree of polycentricity.                   

Hanover could also be classified as more polycentric compared to Berlin and Hamburg due to 

the rank-size distribution. The value of the LPIArea and the mean size, however, indicate an even 

higher degree of polycentricity than Nuremberg. The LPIArea has a value of 37.94% and the mean 

size of (sub-)centers counts 7.53km². But the difference of these values compared to Nuremberg 

is quite small. The LPIArea value shows only a one percent difference and the mean size less than 

one km² difference. The LPIVolume is with 68.07% even higher than the one of Nuremberg. Based 

on these findings, Hanover gets categorized as the city with the second highest degree of 

polycentricity after Nuremberg (in relation to the four German cities under investigation). The 
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values of the mean volume and the total volume also justify this classification approach. The 

values are considerably higher compared to Nuremberg’s volume values.    

Table 7: Representation of the non-site specific dimensions and the LPI (largest patch index) for Germany; 
each for the parameter area and the parameter volume (own Table). 

 LPIAREA [%] LPIVOLUME [%] MEAN SIZE 
[KM²] 

TOTAL 
AREA [KM²] 

MEAN 
VOLUME [M³] 

TOTAL 
VOLUME [M³] 

HAMBURG 57.36 87.43 12.16 462 13,126,684 498,814,000 

HANOVER 37.94 68.17 7.53 369 3,507,094 171,847,600 

BERLIN 53.62 86.15 11.23 483 118,224 5,083,651 

NUREMBERG 38.9 63.03 8.68 347 6,804 272,167 

 

In conclusion it can be stated, based on the approach used in this thesis, that Hamburg has the 

lowest degree of polycentricity among the four German cities under investigation. The city seems 

to be rather monocentric with a clear dominance of the traditional city center. This is followed by 

Berlin. The city also features a monocentric structure, although less pronounced than in 

Hamburg. Both Nuremberg and Hanover can be classified as cities with a higher degree of 

polycentricity compared to Hamburg and Berlin. Moreover, Nuremberg can be classified as even 

more polycentric than Hanover in regard to the rank-size distribution. In general, however, it is 

difficult to establish a ranking order for these two cities. 

3.3.3 Polycentricity in the USA 

In this chapter the results of the rank-size distribution, the LPI and the non-site specific measures 

for the USA are introduced and allow analysing polycentricity in US cities. 

Rank-size distribution 

The arrangement and the scaling of the diagrams in Figure 26 corresponds to that described in 

the previous chapter (3.2.2). Moreover, Philadelphia is included in the representation of results of 

the rank-size distribution within the USA despite the lack of data. However, the results must be 

related to the missing data, as especially the central city area is not correctly displayed. The 

surrounding areas of the study region, nevertheless, may still provide relevant information 

regarding the polycentric structure in Philadelphia.           

The rank-sizes for the parameter area (top left) show a maximum of 25 (Atlanta) and a minimum 

of 17 (Austin). This means, a heterogeneity of 25 different sized area values could be detected in 

the USA. Furthermore, similar to Germany, the area rank-size distribution provides additional 

information about the actual 2D-size of the identified (sub-)centers. The center structure with the 

highest area value corresponding to the traditional center (= rank one) is larger than 300km² in 
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Atlanta and Austin. In Portland it is larger than 100km² and in Philadelphia the size is slightly 

below 100km². In Philadelphia, however, the largest detected center does not correspond to the 

traditional center. Due to the missing data, the traditional center is smaller and located at rank 

two. In the processed data in the scope of this thesis only a small part of this center structure is 

represented and not even the city center is contained (see Appendix III 2). Therefore, it must be 

assumed that the actual size of the traditional center exceeds the size of the highest area value 

detected in this thesis.                  

The area rank-size distribution between rank two and four shows (sub-)center sizes between 

30km² and 100km² for Atlanta, Austin and Philadelphia. Especially in Austin and Atlanta the 

hierarchy between rank one and two is therefore very distinct. But from rank two onwards 

Atlanta shows a less distinct hierarchy. The slope is less pronounced in Philaldelphia because the 

largest detected center is already smaller than 100km². But is must be assumed that the actual 

hierarchy between rank one and two is more distinct due to the described characteristics. The 

distribution for Portland indicates the least pronounced hierarchy (in comparison to Austin and 

Atlanta). Rank two is located above 100km² and rank three just slightly below 100km².         

A (sub-)center size of less than 10km² is only reached at rank ten in Austin, rank 13 in Portland, 

rank 15 in Philadelphia and rank 17 in Atlanta.                   

To conclude, the most distinct hierarchy by decreasing patch sizes between the largest, traditional 

center and the next smaller center can be observed in Austin and Atlanta. This indicates a 

dominance of the traditional center and a rather lower degree of polycentricity. In Atlanta, from 

rank two, however, a decreasing hierarchy can be determined. In comparison to the other US 

cities, Atlanta even shows the lowest hierarchy starting from rank five. Portland, having the least 

pronounced slope in the higher ranks, can be assigned to a higher degree of polycentricity with a 

less dominant traditional center compared to Austin and Atlanta. The degree of polycentricity in 

Philadelphia cannot be detected by using the information given by the highest rank. But the 

course of the distribution for the lower ranks indicates at least a higher degree of polycentricity as 

detected for Austin. The area values of rank one strengthen these assumptions. They are higher 

in Austin and Atlanta compared to Portland (Philadelphia’s highest area value cannot be 

interpreted due to described reasons).            

The volume rank-size distribution provides additional information. The volume values of Atlanta 

correspond with the observations seen in the distribution of the area rank-sizes. A distinct 

hierarchy by decreasing volume values can be identified, especially in the higher ranks. But it is 

striking that the volume values of Atlanta are below the ones of the other US cities, even the 

highest volume with about 10,000,000m³. The largest center volume of Portland, in contrast, is 

higher with about 100,000,000m³. Austin and Philadelphia also show a maximum volume value at 
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around 100,000,000m³. Regarding the hierarchy of decreasing (sub-)center volumes, the least 

distinct one can be assigned to Philadelphia, followed by Portland and Austin. For the two latter, 

this corresponds with the area ranking of the distinct hierarchy of the decreasing patch sizes 

explained before.            

Based on the findings from the rank-size distributions for the parameters area and volume, Austin 

has the lowest degree of polycentricity and Portland the highest degree of polycentricity among 

the four examined US cities.              

The count of the rank-sizes for the parameter area (Figure 26 bottom left) additionally reveals, 

that smaller center structures (= higher rank-size) occur more often than larger center structures 

(= lower rank-sizes). 

 

 

Figure 26: Results of the rank-size distribution for the parameters area (top left) and volume (top right) in 
the USA. Rank-size one represents the largest area/volume value in each case and rank-size n the smallest 
area/volume value. In addition, the frequency of the occurring area ranks is shown (bottom left; own 
Figure). 
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Largest patch index & non-site specific measures 

Table 8 lists the results of the non-site specific measures and the LPI for each of the parameters 

area and volume in the USA. As in the corresponding table for Germany, the LPI values are 

printed bold due to their higher weighting compared to the non-site specific measures. 

Furthermore, the results for Philadelphia are shown in a different colour because they cannot be 

put into context with the other three US cities. The size of the traditional center and its volume 

are missing in the calculations for this city due to the lack of data. Since the dominance of this 

center is expressed by the LPI values, they are not correct for Philadelphia. But volume and size 

tendencies of the whole investigation area can be deduced based on the generated non-site 

specific measures of Philadelphia.                  

The highest LPIArea value belongs to Austin with 44.66%. This means, about 45% of the total 

hUMC area is concentrated in the traditional center. In addition, about 60% of the total detected 

volume categorized as hUMC belongs to this center (LPIVolume = 59.12%). These numbers 

confirm the assignment of Austin to a low degree of polycentricity conducted based on the rank-

size distributions. The non-site specific measures calculated for Austin, in contrast, are not the 

highest compared to Portland and Atlanta. With 11.98 km² as the mean center size and a total 

(sub-)center area of 815km², Austin shows the lowest values. The values for mean volume and 

total volume are located in the middle between the ones of Portland and Atlanta.             

Atlanta has a LPIArea value of 37.22% and a LPIVolume value of 58.32%. Therefore, they are below 

the LPI values of Austin. This corresponds with the hypothesis, that Atlanta has a higher degree 

of polycentricity than Austin, which was established through the rank-size distribution. Similar to 

Austin, it is difficult to associate the non-site specific measures with the degree of polycentricity. 

The mean size of the detected (sub-)centers is with 12.01 km² nearly similar to the one of Austin, 

whereas the volume values are significantly lower. This in turn, indeed, indicates a rather higher 

degree of polycentricity as well.             

The highest degree of polycentricity was assigned to Portland by the rank-size distribution results. 

The LPI values also confirm this finding. With only 21% of the total hUMC area (LPIArea = 

21.27%) concentrated in the largest center, which holds only 29% of the total hUMC volume 

(LPIVolume = 29.08%), the city shows a comparatively low dominance of the traditional center and 

therefore a lower degree of polycentricity. The non-site specific measures, again, do not 

correspond with this assumption. Portland has the highest mean size value with 13.82km², even 

though the difference is not very distinct compared to Austin and Atlanta. Moreover, the mean 

volume and total volume values are also the highest among these three US cities.          

In the case of Philadelphia, the non-site specific measures as well as the LPI values cannot be 

interpreted in relation to the degree of polycentricity, but the total area value as well as the total 



77 

 

volume value provide additional information on the count and extent of (sub-)centers in this city. 

Only half of the investigation area could be processed in the context of this thesis (see Appendix 

III 2) and yet Philadelphia’s identified (sub-)centers have the highest total volume and second 

highest total area value among the four US cities. This proofs, that this city holds the highest 

volume in regards to hUMCs. Moreover, it can be suspected that hUMCs in Philadelphia actually 

may cover an area larger than or nearly as high as detected for Atlanta, the city with the highest 

total area value. 

Table 8: Representation of the non-site specific dimensions and the LPI (largest patch index) for the USA; 
each for the parameter area and the parameter volume. Philadelphia’s values are presented in the colour 
grey because the values are not valid for the whole city due to errors in the underlying TanDEM-X data 
(own Table). 

 LPIAREA [%] LPIVOLUME [%] MEAN SIZE 
[KM²] 

TOTAL 
AREA [KM²] 

MEAN 
VOLUME [M³] 

TOTAL 
VOLUME [M³] 

PORTLAND 21.27 29.08 13.82 912 3,699,271 244,151,900 

AUSTIN 44.66 59.12 11.98 815 2,047,360 139,220,454 

ATLANTA 37.22 58.32 12.01 1730 59,952 8,633,134 

PHILADELPHIA 9.39 29.08 7.63 969 3,072,693 390,231,964 

 

Regarding the sequence of degree of polycentricity, the rank-size distributions, the LPI values and 

the non-site specific measures for the USA allow to draw the following conclusions. Among the 

four investigated US cities Austin has the lowest degree of polyentricity. The city seems to be 

rather monocentric including a dominance of the traditional center. Atlanta as well shows a clear 

dominance of the traditional center. The surroundings, however, lean towards polycentric 

characteristics. Therefore, the city has a higher degree of polycentricity compared to Austin. 

Portland has the highest degree of polycentricity and the traditional center does not seem to be 

very dominant. Therefore, the city can be described as a city with a rather polycentric urban 

structure. The categorization of Philadelphia can only be done based on the rank-size distribution 

and without considering the degree of dominance of the traditional center. But the course of the 

area rank-size distribution suggests polycentric characteristics. Hence, the city gets ranked 

somewhere between Austin and Portland in regard to polycentricity.    

3.3.4 Transcontinental comparison of polycentricity 

As described in the method, polycentricity between Germany and the USA is compared within a 

radius of 40km around the city center based on the rank-size distribution for the parameters area 

and volume as well as on the LPI and the non-site specific measures. The rank-size distributions, 

shown in Figure 27 at the top and at the bottom, are displayed with a logarithmic scaling, similar 
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to the analysis within the countries, for a better representation of the differences between the 

cities under investigation. The LPI values and the non-site specific measures are listed in Table 9. 

Moreover, since the assessment of polycentricity for Philadelphia has only been possible to some 

extent within the USA, the city is excluded from the transcontinental comparison. Thus, the 

analysis of polycentricity between countries is based only on complete data.                             

The comparison of the area rank-size distribution between Germany (top left) and the USA (top 

right) provides first indications. Based on the slope of the distributions the German cities seem to 

have a higher distinct hierarchy by decreasing patch sizes than the US cities Atlanta and Portland. 

Austin, in contrast, indicates the most pronounced hierarchy among all German and US cities. 

Furthermore, except for Austin, the US cities show a slightly higher heterogeneity (13 & 15 rank 

sizes vs. 12 & 13 rank-sizes) in regard to different (sub-)center sizes, even though only 40km 

around the city center are included. Concerning the area value for rank one (= largest/traditional 

center), Atlanta and Austin have larger traditional centers (> 300km²) than Portland and the 

German cities (between 100km² and 300km²). In general, the actual 2D-sizes of the different 

ranks show that the German (sub-)centers are smaller than those in the USA, again except for 

Austin. Already from rank two the German (sub-)centers are smaller than 30km² and from rank 

six three out of the four German cities are smaller than 10km². Atlanta and Portland reach these 

area sizes only at higher ranks (< = 30km² at rank three and four, < = 10km² at rank ten and 

eight). Figure 28 (left side) shows these relations in an interrelated diagram, which displays the 

area rank-size distribution in a direct comparison between the USA and Germany. The 

representation in one diagram gives a clearer description of the indicators. Moreover, the count 

of the rank-sizes (Figure 27 middle) and the volume rank-size distribution (Figure 27 bottom) 

show that the German cities, in a radius of 40km around the city center, have more (sub-)centers 

than the US cities. Only Atlanta has a similar number with about 50 (sub-)centers. It is striking 

that Portland has less and Atlanta roughly the same amount of center structures, but still the 

hierarchy by decreasing patch sizes is less pronounced than in Germany. This can also be 

identified in the volume rank-size distribution for Atlanta and Portland, even though the less 

distinct hierarchy by decreasing volume values is only slightly recognizable. For the volume rank-

size distribution Figure 28 (right side) also clarifies the relationships described in a direct 

comparison between the USA and Germany, without subdivision into the individual cities. 
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Figure 27: Results of the rank-size distribution for the parameters area (top) and volume (bottom). Rank-
size one represents the largest area/volume value in each case and rank-size n the smallest area/volume 
value. In addition, the frequency of the occurring area ranks is shown in the middle. The outcome of the 
German cities is given on the left side and of the US cities on the right side of the Figure (own Figure). 
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Figure 28: Results of the rank-size distribution for the parameters area (left) and volume (right) in a direct 
comparison between the USA and Germany. Rank-size one represents the largest area/volume value in 
each case and rank-size n the smallest area/volume value (own Figure). 

 

The LPI values (Table 9) partly confirm these findings. Within a 40km radius around the city 

center Austin has a LPIArea value of 77.03% and a LPIVolume value of 86.04%. This indicates a very 

pronounced dominance of the traditional center in Austin. More than 75% of the total hUMC 

area and more than 85% of the total hUMC volume is concentrated in this center structure. 

Therefore, Austin shows the lowest degree of polycentricity among all German and US cities 

under investigation. Portland, in contrast, shows the highest degree of polycentricity among these 

cities. Only 32% of the total hUMC area (LPIArea = 31.54%) and 37% of the total hUMC volume 

(LPIVolume = 36.90%) is assigned to the traditional center. The classification of the remaining cities 

is more difficult. Atlanta has the second highest LPIArea value (= 57.70%) after Austin. This 

finding is similar to the LPIArea values shown by Hamburg and Berlin, cities that can be assigned 

to a lower degree of polycentricity in combination with their LPIVolume values. But the LPIVolume 

value (= 69.42%) of Atlanta resembles rather the LPIVolume values of Hanover and Nuremberg, 

cities that can be assigned to a higher degree of polycentricity in combination with their LPIArea 

values. Therefore, Atlanta takes a middle position between Hamburg and Berlin on one side and 

Nuremberg and Hanover on the other side in regard to the degree of polycentricity based on the 

LPI values. But it must be taken into account that not even the complete UA of Atlanta is 

included in the radius of 40km around the city center. Should the LPI values be overestimated, 

what may be suspected, Atlanta would have a higher degree of polycentricity than the German 

cities. This in turn would correspond to the results of the area ranks-size distribution. This 

characteristic of the data suspects that Atlanta, just like Portland, has a higher degree of 

polycentricity than the German cities, especially if the rank-size distribution is considered as well. 

Overall, it is difficult to pronounce a certain tendency of polycentricity between the USA and 

Germany based on the data within a 40km radius around the city center. This is further 

USA Germany USA Germany 
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complicated by the fact that the city with the lowest degree of polycentricity is located in the USA 

(Austin), as it is the city with the highest degree of polycentricity (Portland).  Concerning the 

non-site specific measures (Table 9), the mean size of the (sub-)centers shows, like already 

identified through the rank-size distribution, that the center structures in Germany are smaller 

than in the USA. Moreover, a tendency can be established based on the total area and volume 

values. A larger 2D-area seems to be covered by hUMC within a 40km radius around the city 

center in the USA and these hUMC areas seem to hold a higher amount of 3D-urban masses. An 

exception is Hamburg, showing the highest total volume value of all cities under investigation. 

Table 9: Representation of the none-site specific dimensions and the LPI (largest patch index) in Germany 
and the USA within a radius of 40km around the city center; each for the parameter area and the parameter 
volume (own Table). 

 LPIAREA [%] LPIVOLUME [%] MEAN SIZE 
[KM²] 

TOTAL 
AREA [KM²] 

MEAN 
VOLUME [M³] 

TOTAL 
VOLUME [M³] 

PORTLAND 31.54 36.90 21.96 615 6,871,442 192,400,401 

AUSTIN 77.30 86.04 17.11 445 3,593,951 93,442,749 

ATLANTA 57.70 69.42 18.74 1012 127,965 6,910,116 

HAMBURG 57.36 87.43 12.16 462 13,126,684 498,814,000 

HANOVER 37.94 68.17 7.53 369 3,507,094 171,847,600 

BERLIN 53.62 86.15 11.23 483 118,224 5,083,651 

NUREMBERG 38.9 63.03 8.68 347 6,804 272,167 

 

All in all, the transcontinental polycentricity comparison between Germany and the USA allows 

to draw the following conclusions. It is important to note that these are tendencies based on a 

comparison of seven cities and cannot be generalized. They apply to a radius of 40km around the 

city center of each urban region under investigation. 

1) More (sub-)centers in Germany than in the USA in terms of count 

2) Smaller (sub-)centers in Germany than in the USA in terms of 2D-size 

3) (Sub-)centers cover a larger area in the USA in terms of 2D-size 

4) Slightly higher heterogeneity of (sub-)centers in the USA in terms of 2D-sizes 

5) Slightly less distinct hierarchy be decreasing rank-sizes in the USA in terms of 2D- and 3D-sizes 
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4 Discussion 

In a first step this thesis applies an approach developed by Geiß et al. (2015c, 2017) for the first 

time in US cities to generate nDSMs and subsequently UMCs based on remotely sensed data. 

UMCs in Germany are calculated using the same procedure, but the method has already been 

validated by Geiß et al. (2015c, 2017) in this country. Secondly, UMCs in the USA are validated 

with LoD1 building footprint data. In a third and last step, a polycentricity analysis based on the 

generated UMCs is carried out between the cities within Germany and the USA and finally a 

transcontinental comparison is deployed between the two countries. Extraordinary about this 

comparison is the data basis: the UMCs are calculated with the same method - in Germany and in 

the USA. Until now there have always been solely transcontinental polycentricity analyses based 

on different data bases (see e.g. Krehl 2018). However, the generation of the UMCs, the 

validation of the UMCs in the USA and the subsequent polycentricity analysis revealed various 

characteristics that need to be discussed. 

4.1 Urban mass concentration generation and validation 

The validation results of the generated UMCs in the USA show that the TanDEM-X volume 

values are generally smaller than the LoD1 volume values in all four US cities (see chapter 3.2). 

This means that the nDSM might display a general underestimation. During the classification in 

BE and OBJ, too many OBJ pixels have possibly not been recognized as object above ground 

and thus have been categorized as BE. In consequence, an overestimation takes place in the 

DTM interpolation since too much height information of objects above ground is included. If 

the overestimated DTM is subsequently subtracted from the TDX DSM to generate the nDSM, 

an underestimation occurs. The validation outcome thus shows that the error of commission (= false 

positives) is very pronounced in all four US cities under investigation. Geiß et al. (2015c) also 

discussed this problem in their work. But by applying the postclassification algorithm SOBV 

(selective object-based voting) the researchers were able to compensate this error in Germany 

(Geiß et al. 2015c, 4359f.). In the USA, however, even under application of the SOBV algorithm 

after the RPMF (region growing Progressive Morphological Filter; see step 2) in Figure 9), the 

error of commission remains very high, as the validation results show. However, there are further 

possibilities that could lead to an underestimation of the nDSM. One of them is the chosen 

interpolation method used in the scope of this thesis to generate the DTM, namely the IDW 

(inverse distance weighting). But it must be considered that other interpolation methods are also just 

as suitable. Geiß et al. (2015c) for example also proposed Ordinary Kriging as possibility to generate 

the DTM (Geiß et al. 2015c, 4357). It is conceivable, that overestimation of the DTM may be less 



83 

 

pronounced if another interpolation method is applied and thus the underestimation of the 

nDSM heights would also be lower. Besides the technique, the methodological setup of the 

applied interpolation scheme is another source of error. The use of the IDW also includes the 

manual setting of a weighting factor. In the scope of this thesis the commonly used value ‘2’ has 

been applied (see chapter 2.3.3.1 Step 4). But other values are possible as well. With increasing 

height of the weighting factor sample points (here: known height values) at a greater distance 

from the target variable (here: unknown height information) are given less consideration (Hengl 

2009, 13). Different weighting factors therefore lead to different interpolation results. Hence, it is 

possible that a different weighting factor could achieve a better outcome, which would ultimately 

lead to a lower underestimation in the nDSM.                     

In addition, the TanDEM-X raw data itself are a possible source of error. This has already been 

clearly demonstrated in the course of this thesis in the extreme case of Philadelphia (see chapter 

3.2 & 3.3.1). But also, the TDX DSMs showing less obvious errors or no errors at all can have a 

different quality regarding their height accuracy. All tiles come with information about their status 

- Approved, Limited Approval and Not Approved - specified in the Meta data. The state 

‘Approved’ is applied to TDX DSM tiles if nothing special can be noted. The state ‘Limited 

Approval’ if e.g. cloud effects are visible or a height error due to the case that more than half of 

the land area in the tile is covered by forests or snow. ‘Not Approved’ is given if e.g. land 

coverage is missing and the affected area is larger than 1,000km² (Wessel 2018, 45ff.). In the 

scope of this thesis only tiles having the status ‘Approved’ or ‘Limited Approval’ have been used. 

But as the extreme case of Philadelphia has already shown, errors are nevertheless contained. 

Therefore, it would be conceivable to further develop the algorithm by only using tiles that are 

approved. Possible arising gaps could be compensated by further satellite data (e.g. Carotsat-1). 

This could potentially lead to better nDSM results. With regard to that, the relation between the 

state of approval and final nDSM quality must be examined more closely first, since it is not 

known to what extent the quality of the TDX DSMs influences the final product.           

Another step that has affected the quality of the nDSM, is the setting of the SE (structuring 

element). The adjustment of the dmax value, which is needed to calculate the SE, has been done by 

visual inspection of underlying optical satellite images. Every city under investigation is covered 

by several TDX DSM tiles and within the buffer zone (100km radius in the USA; 40km radius in 

Germany) each tile has been processed separately with an optimized SE. Therefore, several dmax 

values have been determined for each urban region in dependence of the number of existing tiles 

(see chapter 2.3.3.1 Classical Morphological Filtering & Step 1). An alternative approach would have 

been to use a single SE per urban region. The final nDSM would then have a more uniform 

appearance, since the use of several SEs means that the intersections between the tiles can partly 
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also be seen in the final nDSM. An example is given in Appendix IV 1, where a transition zone 

from one SE to another is exemplarily shown in the nDSM of Atlanta. The Figure reveals that 

the height distribution changes depending on the underlying SE. Simultaneously, with one SE per 

urban region the local structures would not be preserved, as it is the case with several SEs. 

Further research is needed to determine whether the choice of the SE influences the height of 

the nDSM with regards to over- and underestimation or if the choice influences the nDSM, but 

not so far as significant under-or overestimation occurs.               

Another possible source leading to an underestimation emerges after the nDSM processing. It 

must be taken into consideration that the masking with the NDVI may exclude too much 

building information. As a consequence, the volume values per processing unit are 

underestimated. In this thesis Sentinel-2 images between October and March (time span with low 

vegetational activity in the Global North) have been used to calculate the NDVI and thus exclude 

pixels from the subsequent UMC generation having a value above 0.3. But the comparison with 

optical satellite images displayed that this masking process also led to the exclusion of urban 

structures that might be residential areas. To minimize this error the time range of applied 

Sentinel-2 images could be reduced to November until February. In this season of the year the 

presence of active vegetation is comparatively lower than in the months October and March (at 

least in the Global North) and thus less pixels would show a NDVI value above 0.3. This change 

in the method could lead to a compensation of the underestimation seen in comparison with the 

validation data.                  

Nevertheless, it is also important to note that not only the presence of active vegetation might 

lead to an exclusion of too much building information. Different roofing materials must be taken 

into account as well when searching for errors leading to an underestimation in regard to the 

NDVI. Copper roofs for example can show NDVI values corresponding to active vegetation 

when they are exposed to a certain irradiation and direction of reflection (freiland 

Umweltconsulting ZT-GmbH 2010, 15f.). Therefore, it must be considered that an 

underestimation in the UMCs can also be intensified by the different reflection ratios of varying 

roof surface materials, since buildings can be mistakenly treated as vegetation.       

The points mentioned above are potential sources of error which may influence the quality of the 

UMCs.  But it is also possible that none of these points affected the height of the UMCs 

drastically. The latter case is conceivable, when the validation data is examined more closely. In 

general, the validation data is assumed to be true and the quality of the UMC calculations is 

measured based on this data. Moreover, since the MBF (Microsoft Building Footprint) covers 

parts of metro regions all over the USA, the LoD1 Microsoft data is also available for Portland, 

Austin and Philadelphia (and not only for Atlanta, where the MBF has been used for the 
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validation; OpenStreetMap Wiki 2018). In these cities the PBF (Portland Building Footprint), the 

ABF (Austin Building Footprint) and the PHBF (Philadelphia Building Footprint) have been 

used to validate the generated UMCs (see chapter 2.2 validation). Based on the assumption that the 

validation data reflects reality, the MBF data of the respective cities should therefore also be 

consistent with the ABF, the PBF and the PHBF (= correlation coefficient of ‘1’ or close to ‘1’). 

The performance of a simple linear regression, exemplarily implemented for Portland and Austin 

(results in Appendix IV 2), between the MBF and the PBF/ABF in the respective areas covered 

by both data sources reveals something different. With correlation coefficients of 0.5786 (Austin) 

and 0.1026 (Portland) the data is neither identical nor correlated. This shows that even the 

validation data used in the scope of this thesis may not reflect reality and the occurring 

underestimation in the generated UMCs is therefore difficult to evaluate. It is even possible that 

the UMCs reflect reality better than the validation data.                 

All these factors suggest that there is a need for further research in the calculation of the nDSM 

and the subsequent UMC generation based on moderate resolution radar data. It is important to 

find out why underestimation occurs in the USA. However, the validation also proofed that the 

general distribution of the volumes in the city in relation from high to low in distance from the 

city center has been reflected more or less correctly (see chapter 3.2 Figure 20 & Appendix II).  

4.2 Polycentricity analysis 

As described in chapter 2.3.5, the identification of sub-(centers) is not based on the total volumes 

per grid cells, but on relative values greater than 1.3 SD (standard deviations) from the mean of 

all calculated volumes. Therefore, it is not the total height of the volumes that is decisive for the 

identification of the (sub-)centers. It is more important that densified areas have been identified 

at the correct location. Therefore, it can be assumed that even if the UMCs have been 

underestimated, the (sub-)centers have been identified correctly within the framework of the 

described definition.                

This leads to the next discussion target. The approach to analyse polycentricity has been taken 

over from Taubenböck et al. (2017a) and they already claimed at the end of their work that there 

is not one truth and the identification of the hUMCs strongly depends on the method and the 

thresholds selected (Taubenböck et al. 2017a, 49f.). This means, that there is always the 

possibility that a different SD would have accomplished other maybe better results. Moreover 

Taubenböck et al. (2017a) additionally tested further conditions beside different SDs. They also 

implemented two more conditions, with whom their results got better. Next to a SD of 1.3, only 

grids with a larger built-up volume than 1000m³ and only identified hUMCs having an area larger 

than 2km² could be finally identified as (sub-)center (Taubenböck et al. 2017a, 52). As these cut-
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off values are absolute values adjusted to the calculated UMCs of the cities under investigation, 

they could not simply be adopted to the underestimated UMCs in the USA. Nevertheless, such 

conditions could also improve the (sub-)center identification that has been conducted in the 

scope of this thesis.             

Even though the analysis of polycentricity based on the morphological parameter built-up 

volume generated with moderate resolution DSMs makes it possible to carry out international 

comparisons as this thesis has proven, a realistic and correct characterization of spatial urban 

structures remains challenging. The scientific community is still far from a universally accepted 

measurement method due to the conceptual and analytical fuzziness of polycentricity. But an 

approach, which provides the possibility of application regardless of the area contributes to the 

understanding of polycentricity by providing a comprehensive view on this fuzzy concept 

(Taubenböck et al. 2017a, 54).                    

Similar to the characteristic of different methods and/or thresholds producing different results in 

regard to the number of identified (sub-)centers (Taubenböck et al. 2017a, 49) the results can 

differ in regard to the chosen processing units. In the scope of this thesis a grid with a 1km x 

1km size of the single grid units has been chosen. Although this is a comparable and consistent 

spatial reference, the results are not protected from the MAUP (modifiable areal unit problem), 

which has been described in detail by Openshaw (1984). Thus, the chosen extents of the analysis 

units have an effect on the results. Even though the definition of spatial reference units is 

necessary, the outcome can vary depending on the underlying spatial structure (Madelin et al. 

2009, 645f.).              

Furthermore, it must be considered that there will always be the obstacle that the evaluation of 

functional polycentricity is not possible without additional socioeconomic data (Schneider et al. 

2015, 46). A holistic picture of polycentricity in a city can never be given by morphology alone. 

The integration of remote sensing data can, however, be a supplement to empirically collected 

information dealing with functional polycentricity (de Sherbinin et al., 2002, 18). The 

combination of the potential of both, remote sensing and social science, has the ability to bear 

the desired result – to bring clarity and deepen the understanding of the concept of 

polycentricity. 
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5 Conclusion and Outlook 

Conclusively the research questions, presented in chapter 1.3, will be answered.  

Do the UMCs derived from TanDEM-X data by using the approach developed by Geiß et al. (2015c, 2017) 

render the urban morphology of cities in the USA? 

The processing results of the morphological characterization (see chapter 3.1) demonstrate that 

the algorithm applied to the TDX DSMs enables to extract the urban structures. But there is a 

high chance that underestimation in terms of volumes occur as the validation indicated (see 

chapter 3.2). Nevertheless, the validation showed at the same time, that the location of urban 

structures was extracted more or less correctly. The algorithm has detected higher or lower 

volumes in the right locations. Therefore, it can be summarized that the approach developed by 

Geiß et al. (2015c, 2017) is able to render the urban morphology in US cities, although 

adjustments will have to be made in the future with regard to the underestimation.  

Which differences and similarities in urban center distributions based on UMCs can be found between US and 

German cities?               

The polycentricity analysis (see chapter 3) revealed that within a radius of 40km around the city 

center Germany has more hUMC structures than the USA. But they are comparatively smaller in 

terms of covered area size. Therefore, although Germany shows more (sub-)centers, hUMCs in 

the USA cover a larger area. It could also be discovered that, within a radius of 40km around the 

city center, the USA tends to show a less distinct hierarchy between the traditional center and 

further (sub-)centers, except for Austin. Therefore, monocentrism might be more pronounced in 

Germany than in the USA (statement applies to the cities under investigation) and the traditional 

center seems to have a higher weighting. However, independent of the country, Germany or the 

USA, a dominant center structure was identified in all cities under investigation and it is always 

located around the city center (except for Philadelphia, where the calculations are incorrect).  

Can the assumptions about similar development of urban structures in US and German cities (see chapter 1.2) be 

confirmed?          

This thesis can confirm that (sub-)centers exist in Germany and the USA. The aspect of the 

different sizes of these center structures could also be discovered. Likewise, the transcontinental 

analysis showed that cities with both, a higher degree as well as a lower degree in polycentricity, 

exist in both countries. Therefore, this thesis can confirm, that the urban development in 

Germany and the USA is similar or at least not significantly different. But only eight (seven) cities 

were examined in terms of their degree of polycentricity. Consequently, the assumption that a 
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polycentric development exists in both countries cannot be clearly confirmed nor contradicted. 

To make a statement like that, more cities need to be analysed. 

This thesis was a first attempt to compare polycentricity transcontinental using a consistent data 

basis retrieved from remote sensing means. Nevertheless, the outcome is determined by the 

applied method, the threshold set and the underlying examination unit. This thesis proofed, 

however, that a transcontinental comparison of morphologic polycentricity is possible. But the 

discussion (see chapter 4) demonstrated, that during the processing of the UMCs and the 

subsequent polycentricity analysis, many points appeared that need to be looked at more closely 

in future work. Especially with regards to the applied method it would be profitable to further 

differentiate the parameters of (sub-)center identification. Moreover, a comparison of more cities 

in addition to the ones investigated in the context of this thesis could show, if Austin, the city 

with the lowest degree of polycentricity, is just an exception or if more cities with the same 

characteristics exist in the USA. Future work also needs to concentrate on the influence of the 

examination unit (keyword MAUP). The spatial conditions of cities in Germany and the USA 

complicated the transcontinental comparison. Therefore, it would be worth it to find a way that 

does justice to the spatial extent of US cities and at the same time the spatial extent of German 

cities in order to depict (sub-)centers as realistically as possible.                 

To conclude, the method applied in this thesis to generate the UMCs and the method used to 

identify (sub-)centers produce reasonable results, which give a first impression about the 

polycentric development in terms of morphology in Germany and the USA. Based on these 

findings it is now necessary to further develop the applied approaches. The inclusion of further 

socioeconomic data could also be useful in order to improve the (sub-)center identification 

procedure. 
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Appendix 

Appendix I: Urban mass concentrations  

 

 

Appendix I 1: Generated UMC (urban mass concentration) in Atlanta (a) and Philadelphia (b). The UMC 
corresponds to the volume per unit having an area size of 1km x 1km. Due to errors in the raw data, only for 
about half of the investigation area the UMCs could be calculated in Philadelphia (own Figure). 
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Appendix I 2: Generated UMC (urban mass concentration) in Berlin (a) and Nuremberg (b). The UMC 
corresponds to the volume per unit having an area size of 1km x 1km (own Figure). 

 

 



107 

 

Appendix II: Urban mass concentrations in distance to the city center 

 

 

Appendix II: Representation of UMCs (urban mass concentrations) (x-axis) as a function of distance to the 
city center (y-axis) for Atlanta (a) and Philadelphia (b). In intervals of one kilometre the volumes per grid 
cells are summed up. The UMCs on the y-axis therefore show the total volume per kilometre (own Figure). 
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Appendix III: High urban mass concentrations 

 

 

Appendix III 1: Detected (sub-)centers in Atlanta. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
hUMCs (own Figure). 
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Appendix III 2: Detected (sub-)centers in Philadelphia. Top: Representation of the hUMCs (high urban 
mass concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-
specific & distance-based (orange), depending on the approach of detection. Bottom: Representation of all 
detected hUMCs. Due to errors in the raw data, only half of the investigation area could be processed (own 
Figure). 
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Appendix III 3: Detected (sub-)centers in Berlin. Top: Representation of the hUMCs (high urban mass 
concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-specific & 
distance-based (orange), depending on the approach of detection. Bottom: Representation of all detected 
hUMCs (own Figure). 
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Appendix III 4: Detected (sub-)centers in Nuremberg. Top: Representation of the hUMCs (high urban 
mass concentrations) assigned to the classes region-specific (yellow), distance-based (red) and region-
specific & distance-based (orange), depending on the approach of detection. Bottom: Representation of all 
detected hUMCs (own Figure). 
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Appendix IV: Figures with reference to the Discussion 

 

Appendix IV 1: Representation of the influence of the SE (structuring element) on the nDSM (normalized 
Digital Surface Model). Exemplarily shown for a small part of the area under investigation in Atlanta (own 
Figure). 

   

 

Appendix IV 2: Simple linear regression of a) the Microsoft Building Footprint of Austin and the Austin 
Building Footprint and b) the Microsoft Building Footprint of Portland and the Portland Building 
Footprint. The coefficient of correlation is in each case shown in the upper right corner (own Figure). 
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