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Abstract

Recently, 3D input data based hand pose estimation

methods have shown state-of-the-art performance, because

3D data capture more spatial information than the depth

image. Whereas 3D voxel-based methods need a large

amount of memory, PointNet based methods need tedious

preprocessing steps such as K-nearest neighbour search for

each point. In this paper, we present a novel deep learning

hand pose estimation method for an unordered point cloud.

Our method takes 1024 3D points as input and does not re-

quire additional information. We use Permutation Equivari-

ant Layer (PEL) as the basic element, where a residual net-

work version of PEL is proposed for the hand pose estima-

tion task. Furthermore, we propose a voting-based scheme

to merge information from individual points to the final pose

output. In addition to the pose estimation task, the voting-

based scheme can also provide point cloud segmentation re-

sult without ground-truth for segmentation. We evaluate our

method on both NYU dataset and the Hands2017Challenge

dataset, where our method outperforms recent state-of-the-

art methods.

1. Introduction

Hand pose estimation plays an important role in human-

robot interaction tasks, such as gesture recognition and

learning grasping capability by human demonstration.

Since the emergence of consumer level depth sensing de-

vices, a lot of depth image based hand pose estimation

methods appeared. Many state-of-the-art methods use depth

image as input, which provides the conveniences to use the

well developed convolutional neural networks or residual

networks. However, methods using 2D images as input can-

not fully utilize 3D spatial information in the depth image.

Furthermore, the appearance of the depth image is depen-

dent on the camera parameters, such that the trained model

using one camera’s image cannot generalize well to another

camera’s image. On the other hand, 3D data is more ”di-
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hand pose
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weighted

fusion

Figure 1. Our method takes point cloud as input. Then each point

predicts the hand pose and its importance weights for different

pose dimensions. The final pose is obtained through weighted

fusion from each point’s pose prediction. Using the importance

weight, the hand can be clearly segmented into different parts, al-

though no segmentation ground-truth was used during training.

rect” and ”distinctive” than depth image because the appear-

ance of 3D data is unique and invariant to camera parame-

ters.

Recently, methods using 3D data as input have shown

the outperformance over depth image based methods [36].

One way to use 3D input data is to convert 2D depth image

to volumetric representation, such as 3D voxels [15] [4],

where occupied 3D voxel is set to 1 and voxels with empty

space is set to 0. Using the voxelized data brings the con-

venience to directly use 3-dimensional CNN learning struc-

ture. However, the voxelization requires large amount of

memory to represent the input and output data, which pre-

vents the deployment of a very deep structure.

Another way to use 3D input data is to use unordered

point cloud as input [6][9][3]. Recently, PointNet, a deep

learning structure for point cloud, has shown its success in

different tasks. The PointNet estimates point-wise features

for individual points and extract global feature from indi-

vidual points using a max-pooling layer, such that the net-

work is invariant to the order of points. Ge et al. use Point-
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Net [20][22] as backbone to estimate hand pose from point

cloud [6]. However, tedious pre-processing steps such as

surface normal estimation and k-nearest-neighours search

are required for [6]. Moreover, the final max-pooling layer

in the PointNet neglects many informations that might be

crucial for pose estimation.

In this work, we explore a more flexible learning struc-

ture for unordered point sets, the permutation equivariant

layer (PEL) [24] [39]. The PEL is a deep learning structure

that can be applied for unordered points. In PEL, point-

wise features are computed, where each point’s feature does

not only depend on its own input, but also the global max-

imum value. Using PEL as the basic element, we propose

a residual network version of PEL to construct a deep net-

work for hand pose estimation task. Moreover, we propose

a point-to-pose voting scheme to obtain hand pose, which

eliminates the use of max-pooling layer to extract global

feature, thus avoiding the loss of information. Furthermore,

the generated point-to-pose importance weights can be also

used for the hand segmentation task (Fig. 1), where clear

segmentation result can be obtained even without the seg-

mentation ground-truth.

The contributions of this work are:

• We propose a novel deep learning based hand pose

estimation method for unordered point cloud. Using

Permuation Equivariant Layer as the basic element, a

residual network version of PEL is used to solve the

hand pose estimation task. Compared to PointNet [22]

based methods, our method doesn’t require tedious

steps such as normal estimation, nearest neighbour es-

timation.

• We propose a point-to-pose voting scheme to merge

the information from point-wise local features, which

also genearates weakly-supervised segmenation re-

sults without the need of segmentation ground-truth.

• We evaluate our method on Hands2017 Challenge

dataset and NYU dataset, where state-of-the-art per-

formance is shown. The proposed method achieves the

lowest pose error on the Hands2017 Challenge dataset

at the time of submission.

2. Related work

A lot of research about hand pose estimation has been

done in the last decade, which can be categorized to

generative, discriminative and hybrid methods. Gener-

ative methods rely on a hand model and an optimiza-

tion method to fit the hand model to the observations

[25][29][23][19]. Discriminative methods use learning data

to learn a mapping between observation and the hand pose

[17][30][15][4][3][16][26][28]. Hybrid methods use a com-

bination of the generative and discriminative methods [18]

[27][34]. Our method is a learning based method thus falls

into the second category.

Deep learning for hand pose estimation

With the success of deep learning methods for 2D com-

puter vision, depth image based deep learning methods also

showed good performance in hand pose estimation task.

Tompson et al. use 2D CNN to predict heatmaps of each

joint and then rely on PSO optimization to estimate the hand

pose [30]. Oberweger et al. [17] uses 2D CNN to directly

regress the hand pose out of the image features, where a

bottleneck layer was used to force the predicted pose obey

certain prior distribution. In a later work, Oberweger [16]

replaced CNN to a more sophisticated learning structure,

ResidualNet50, to improve the performance of feature ex-

traction. Zhou et al. [40] regress a set of hand joint angles

and feed the joint angles into an embedded kinematic layer

to obtain the final pose. Ye et al. [33] use a hierarchical mix-

ture density network to handle the multi-modal distribution

of occluded hand joints.

Recently, 3D deep learning has been also applied for the

hand pose estimation task. Moon et al. use 883 voxels to

represent hand’s 3D geometry and use 3D CNN to estimate

hand pose [15]. Their method achieved very accurate result,

however, 3D voxelization of the input and output data re-

quires large memory size, such that their method only runs

at 3.5 FPS. Ge et al. [6][9] use 1024 3D points as input, and

rely on PointNet [22] structure to regress the hand pose.

Their method achieved satisfying performance, but tedious

pre-processing steps are required, which includes oriented

bounding box (OBB) calculation, surface normal estima-

tion and k-nearest-neighbours search for all points. Chen

et al. improves Ge’s method by using a spatial transformer

network to replace the OBB and furthermore added a aux-

iliary hand segmentation task to improve the performance

[3]. Their method can be trained end-to-end without OBB,

but the segmentation ground-truth data require a extra pre-

computation step from the pose data.

3D Deep learning

Since 3D data cannot be directly fed into a conventional

2D CNN, some methods project the 3D data onto different

views to obtain multiple depth images and perform CNN

on all images [7] [21] [10] [35]. Another way to process the

3D data is to use volumetric representation and process the

data with 3D CNN [8] [32] [14] [15]. These methods can

capture the feature of input data more effective, but they

require large memory size. Qi et al. developed PointNet to

handle unordered point cloud [20]. The PointNet estimates

point-wise local features and obtains global features with a

max-pooling layer. Later on, PointNet++ extends PointNet

by hierarchically upsampling the local features into higher

levels [22].
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Figure 2. Overview of our method.

Other recent methods taking 3D points as input in-

clude point-wise CNN [11], Deep kd-Networks [12], Self-

Organizing Net [13] and Dynamic Graph CNN [31]. De-

spite their good performance for different tasks, they all re-

quire extra steps to estimate k-nearest neighbours or con-

struct kd-tree, which are not required in our proposed resid-

ual PEL network.

3. Methodology

The overview of our method is illustrated in Fig. 2.

Our method takes N 3D points P ∈ R
N×3 with arbitrary

order as input, and outputs the vectorized 3D hand pose

y ∈ R
J in the end, where J = 3 × #joints. To estimate

the hand pose, the residual permutation equivariant layers

(PEL) (Fig. 4) first extract features from each point (Section

3.2). Using the point-wise local features, we use point-to-

pose voting to estimate the final pose output (Section 3.3),

where two versions for point-to-pose voting are developed,

which are the detection version and the regression version.

3.1. Preprocessing with view normalization

For pre-processing, first, the depth pixels in the hand re-

gion are converted to 3D points. The next step is to cre-

ate a 3D bounding box for the hand points to obtain nor-

malized coordinate of these points. A usual pre-processing

method will simply create a bounding box aligned with the

camera coordinate system (Fig 3a). However, because of

self-occlusion of the hand, this will result in different set

of observation points for the exact same pose label, which

creates one-to-many mapping of the input-output pairs.

To maintain the one-to-one mapping relation of the

input-output pairs, we propose to use view normalization

to align the bounding box’s z-axis [0, 0, 1]T with the view

direction towards the hand centroid point c ∈ R
3. The

alignment is performed by rotating the hand points with a

camera camera

a) w/o view normalization b) with view normalization

sample 1 sample 2 sample 1 sample 2

Figure 3. View normalization as pre-processing step. Red skele-

tons indicate ground-truth pose, green points indicate observed

points of the camera. a) The same hand pose result in different ob-

servations due to different view directions, thus the resulted train-

ing samples will contain one-to-many mappings. b) With view

normalization, the different observations will also have different

pose labels, thus the input-output pairs will have a one-to-one map-

ping.

rotation matrix Rcam:

αy = atan2(cx, cz),

c̃ = Ry(−αy) · c,

αx = atan2(c̃y, c̃z),

Rcam = Ry(−αy) ·Rx(αx).

(1)

After rotating the observation points and ground truth pose

with Rcam, the hand is rotated such that it appears right in

front of the camera, As illustrated in Fig. 3b, the one-to-

many mapping problem is then avoided.

3.2. Residual Permutation Equivariant Layers

The feature extraction module in our method is called

Residual Permutation Equivariant Layers. The basic ele-

ment is the permutation equviariant layer (PEL), which fol-

lows the design from [24]. A PEL takes a set of unordered
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points as input and computes separate features for each in-

dividual input point.

Assuming that the input for a PEL is x ∈ R
N×Kin and

the output is x′ ∈ R
N×Kout , where N is the number of

points and Kin,Kout are the size of input and output feature

dimensions. The output x′ of the PEL is:

x′ = σ(1NβT +(x diag(λ)+1NxT
max diag(γ))W), (2)

where λ ∈ R
Kin ,γ ∈ R

Kin are weighting terms for the

point’s own feature and the global maximum value respec-

tively, and xmax ∈ R
Kin is a vector representing maximum

values for each column of x. W ∈ R
Kin×Kout is the weight

term and β ∈ R
Kout is the bias term and 1N ∈ R

N is a vec-

tor full of ones. Furthermore, an activation function σ(·) is

applied to provide non-linearity, where a sigmoid function

is used in our method.

This layer is invariant to input order because the output

value of each individual point only depends on its own in-

put feature and the global maximum values in each feature

dimension, whereas the global maximum values are also

invariant to the order of input points.1 In this way, each

point’s feature does not only computed based on its own

input feature, each point also exchanges information with

other points through the weighted summation of xmax.

For the practical side, four elements need to be trained,

which are β, λ, γ and W. In total, the number of parame-

ters needed for one layer is Kout + (Kout + 2)Kin, which

is only slightly more than a fully-connected layer, thus it is

feasible for training in practice.

In order to extract very complex features, we construct

a residual network with 39 PEL layers. As illustrated in

Fig. 4, we use three residual blocks, whereas each residual

block consists of 13 PELs and four short-cut connections.

Furthermore, after each PEL, a batch normalization is per-

formed.

3.3. Pointtopose voting

With the residual PEL module, features F of points are

computed, where each row of F represents local feature for

one point. Using these local point-wise features, the hand

pose y ∈ R
J will be estimated using a point-to-pose vot-

ing scheme. Two versions for point-to-pose voting are ex-

plored, which are the detection based version and the regres-

sion based version. The performance of these two versions

will be compared in the experiment section.

Detection version

In the detection version (Fig. 2 left), probability distri-

butions of each pose dimension is firstly detected and the

pose is then integrated from the distributions. We use two

1The detailed proof of the invariance for PEL can be found in [24].
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Figure 4. Residual network of permutation equivariant layer

separate fully connected modules to estimate two matri-

ces: an importance term G ∈ R
N×J and a distributions

D̂ ∈ R
N×J×B . An element of importance matrix Gnj rep-

resents the confidence level of nth input point to predict the

jth output pose dimension. In other words, each of the N
points predicts J B-dimensional distributions and J corre-

sponding importance weights. Notice that the final layer

of the two fully connected modules are sigmoid functions,

such that all elements of G and D̂ are in the range of [0, 1].

D̂ represents the output pose distributions, where each

point makes its own predictions to J output dimensions.

Each of the output pose dimension is represented as discrete

distribution using a B bins, representing the value range in

[−r,+r] with the resolution per bin ∆d = 2r/B. For the

jth dimension of the output pose yj , the corresponding bin

index for itself is then:

indexgt
j = ⌈(ygt

j + r)/∆d⌉,

and the ground truth distribution is defined as:

D
gt
jb =

{
1, if b ∈ [indexgt

j − 1, indexgt
j + 1]

0, otherwise
(3)

whereas the three bins around ground truth pose are set to

one and all other bins are set to zero.

The final distribution for the J-dimensional output D ∈
R

J×B is then obtained by merging the predictions of all N
points:

Djb =

∑N

n=1
(GnjD̂njb)∑N

n=1
Gnj

. (4)

And the final pose y is estimated with integration over

the distribution:

yj =

∑B

b=1
(b− 0.5)Djb∑B

b=1
Djb

, (5)
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where b− 0.5 represents the bin center position.

Regression version

In the regression version (Fig. 2 right), each point will di-

rectly predict the pose without the intermediate distribution

detection. Similarly to the detection version, two separate

fully connected modules are used to estimate the impor-

tance term G ∈ R
N×J and the point-to-pose estimates

ŷ ∈ R
N×J . Then the final pose output is merged as the

weighted average over all points’ predictions:

yj =

∑N

n=1
(Gnj ŷnj)∑N

n=1
Gnj

. (6)

3.4. Segmentation using importance term

The importance term G ∈ R
N×J is estimated automati-

cally without the ground-truth information. However, it still

provides vital information of each point’s importance to the

pose output. Therefore, the obtained importance term can

be also used for the hand segmentation task based on the

most contributed pose dimension. For the n-th point having

the importance terms g = Gn, the point’s most contributed

pose dimension is:

jmax = argmax
j

gj ,

where the pose dimension jmax can be categorized to a spe-

cific hand part. In this work, we categorized the J pose

dimensions to palm, thumb, index, ring and pinky fingers.

3.5. Training Loss

The only training loss for the detection version is the log-

arithm loss of the pose distributions:

Ldet = −

J∑

j=1

B∑

b=1

D
gt
jblog(Djb + ǫ)

+(1−D
gt
jb)(1− log(Djb + ǫ)),

(7)

where ǫ = 10−7 is a small offset to avoid feeding zero to

the logarithm operator.

The only training loss used for the regression version is

the L2 loss between predicted pose and ground-truth pose:

Lreg =
1

2

J∑

j=1

(ygt
j − yj)

2. (8)

For both detection and regression versions, the impor-

tance term G ∈ R
N×J is estimated automatically without

the ground-truth information.

4. Experiment and result

Our hand pose estimation method is evaluated on

the Hands2017Challenge dataset [37] and the NYU [30]

dataset. The Hands2017Challenge is composed from parts

of the Big Hand 2.2M dataset [38] and the First-person

Hand Action Dataset (FHAD) [5], it is currently the largest

dataset available. Its training set contains 957032 depth im-

ages of five different hands. The test set consists of 295510

depth images of ten different hand shapes, of which five

are the same as in the training set and five are entirely new.

The NYU dataset contains 72757 training images of a single

subject’s hand and 8252 test images that include a second

hand shape besides the one from the training set. The NYU

dataset provides depth images from three different views,

we trained our method both using only frontal view data

and using all three views. And we test only using the frontal

view.

Our method is implemented using TensorFlow [1]. The

networks are trained on a PC with an AMD FX-4300/Intel

Core i7-860 CPU and an nVidia GeForce GTX1060 6GB

GPU. We train 100 epochs for the NYU dataset and train

only 20 epochs for the Hands 2017 challenge dataset since

the challenge dataset has a large size. For both datasets, the

first 50% of the epochs are trained with smaller number of

points (N = 256) to boost the training speed. The remain-

ing epochs are trained with a point size of N = 512. We

used Adam optimizer for training with an initial learning

rate of 10−3 and we decrease the learning rate to 10−4 for

the last 10% of the epochs. For the detection version, we

set r = 15mm and B = 60. Online augmentation was

performed with random translation in all three dimensions

within [−15, 15]mm, random scaling within [0.85, 1.15]
and random rotation around z-axis within [−π, π].

4.1. Evaluation metrics

For the NYU dataset, two standard metrics are used to

evaluated the performance. The first metric is the mean joint

error, which measures the average Euclidean distance error

for all joints across the whole test set. The second metric

is correct frame proportion, which indicates the proportion

of frames that have all joints within a certain distance to

ground truth. The second metric is considered as more dif-

ficult since single joint violation will cause an unqualified

frame. For the Hands2017Challenge dataset, only the mean

joint error is used since the ground-truth data of test set is

not publicly available and the official test website only pro-

vides the mean joint error result.

4.2. Selfcomparison

In this subsection, we perform self-comparison to show

the effects of different components in our method. The de-

tailed comparison can be found in Table 1.
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Hands2017Challenge dataset NYU dataset

detection
detection w/o

view normalization
regression

detection/

single view

regression/

single view

regression/

three views

256 points 11.34 13.14 11.21 9.82 9.45 9.05

512 points 10.23 11.93 10.11 9.33 9.06 8.49

1024 points 9.93 11.67 9.82 9.25 8.99 8.35

2048 points 9.93 11.69 9.87 9.32 9.08 8.35

Table 1. Self-comparison result

Figure 5. Comparison with state-of-the-arts on NYU [30] dataset. Left: mean errors of different joints. Right: proportion of correct frames

based on different error thresholds.

method avg test seen test unseen test

Ours/regression 9.82 7.15 12.04

Ours/detection 9.93 7.18 12.22

V2V-PoseNet [15] 9.95 6.97 12.43

RCN-3D [36] 9.97 7.55 12.00

oasis [6] 11.30 8.86 13.33

THU VCLab [2] 11.70 9.15 13.83

Vanora [36] 11.91 9.55 13.89

Table 2. Comparison of our method with state-of-the-art methods

on the Hands2017Challenge dataset

method mean joint error (mm)

Ours/regression/singleView 8.99

Ours/regression/threeViews 8.35

Ours/detection 9.25

DeepPrior++ [16] 12.23

3DCNN 14.11

DenseReg [4] 10.21

V2V-PoseNet [15] 8.42

SHPR-Net [3] 10.77

SHPR-Net (three views) [3] 9.37

HandPointNet [6] 10.54

Point-to-Point [9] 9.04

Table 3. Comparison of our method with state-of-the-art methods

on the NYU dataset

View normalization. To validate the necessity of view

normalization, we trained our method using both view nor-

malized data and original data for the detection version.

It is evident from Table 1 that view normalization de-

creases the pose estimation error by about 1.5 mm for the

Hands2017Challenge dataset.

Detection vs. regression. Yuan et.al. indicates

that detection based methods work in general better than

regression-based methods [36], therefore we implemented

both detection-based (ours/distribution) and regression-

based (ours/regression) variations. As seen from Table 1,

in both datasets, both variations show similar performance,

where regression-based variation slightly outperforms the

detection-based counterpart. Possible reasons for this can

be quantization effect of the binary distribution and the sim-

plification of 1-dimensional heat vectors compared to 2D

or 3D heat maps used in previous works. However, the

1D heat vector representation is much more efficient than

the 3D heatmap representation. For the heat vectors, we

need B×J values to represent the pose output, whereas 3D

heatmaps require J × B3 values [15]. In future work, it is

worth to investigate more different loss types and heat map

representations.

Number of points. Taking advantage of the PEL struc-

ture and voting-based scheme, our method is very flexible

to the input point cloud size. Although the network was

trained with 512 points, arbitrary number of points can be

used at the testing stage. For an online application, this

property can be beneficial to choose an arbitrary number of

points based on the computational resources available. As

seen from Table 1, different number of points were tested
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Figure 6. Segmentation results based on importance weights (best viewed in color). Points: input point cloud, color indicates depth value,

blue points are more distanced and red points are more closer to the camera. Segmentation: each part of the hand is indicated with an

different color, palm (red), thumb (green), index (blue), middle (yellow), ring (cyan), pinky (pink) and irrelevant points with low importance

weight for all parts (gray).

for both datasets. Our method can achieve good perfor-

mance with only 256 points, the mean joint error only in-

creased by 0.11 mm compared to 512 points. In general,

more points provides better performance, but it doesn’t im-

prove any more after 1024 points. Therefore, we choose

1024 points for testing to compare our method with other

state-of-the-art methods.

4.3. Comparison to stateoftheart methods

Hands2017Challenge dataset. Since the ground-truth

data for the testing set publicly available, some previous pa-

pers divide the training set on their own to create their own

testing set. Therefore, for fair comparison, we only compare

to those methods, who have also tested on the official test-

ing website2. In Table 2, we compare our method with five

other top performing methods on the Hands2017Challenge

dataset, which include both methods using 3D input data

and methods using 2D depth image. RCN-3D [36], THU

VCLab [2] and Vanora [36] use depth image as input data.

V2V-PoseNet [15] uses voxel representation for both input

data and output heatmaps. Oasis [6] also uses 3D point

cloud as input and their method is constructed based on

PointNet [20]. Three different errors are used for compar-

ison: 1) the average across the complete test set (avg test),

2) the average across the test set of seen subjects’ hand dur-

2https://competitions.codalab.org/competitions/17356#learn the de
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our method V2V-PoseNet [15] Hand3D [4] P2P-Regression [9]

GPU GTX1060 Titan X Titan X Titan Xp

time

detection regression

285.7 ms 33.3 ms 23.9 ms
256 points 3.5 ms 2.9 ms

512 points 6.9 ms 5.5 ms

1024 points 12.5 ms 10.7 ms

Table 4. Comparison of runtime and hardware

ing training (seen test), and 3) the average across the test set

images of unseen subjects’ hand (unseen test). Currently,

our method achieves the lowest overall mean joint error on

the test dataset of 9.82 mm. For seen subjects’ hand and un-

seen subjects’ hand, the mean joint errors are 7.15 mm and

12.04 mm respectively, which shows the generalizability of

the proposed method even without regularization on the pa-

rameters. In comparison to other 3D data based methods,

our method is slightly better than V2V-PoseNet, whereas

V2V-PoseNet requires 10 good GPUs to run realtime and

our method requires only one moderate GPU. Compared to

oasis, which also uses 1024 3D points as input, our method

is 1.48 mm better, where oasis requires more input informa-

tion like surface normal and k-nearest neighbours.

NYU dataset. For the NYU dataset, we only compared

to recent state-of-the-art methods after 2017. For testing

the performance, only the frontal view was used. Follow-

ing previous works [17][30][9], only 14 joints out of 36

joints provided were used for evaluation. For a fair com-

parison, we only compared to the methods trained solely

on the NYU dataset without additional data. The compared

methods include depth image based methods (DeepPrior++

[16], DenseReg [4]), 3D voxel based methods (3DCNN

[8], V2V-PoseNet [15]) and point cloud based methods

(SHPR-Net [3], HandPointNet [6], Point-to-Point [9]). The

comparison is shown in Figure 5, where our method per-

forms comparably good with V2V-PoseNet [15] and Point-

to-Point [9], and outperforms all other methods. A closer

comparison of the mean joint error value can be found in

Table 3, where our method trained with single view is the

second best, and our method trained with three views out-

performs all recent state-of-the-art methods.

4.4. Segmentation using importance term

Besides showing the quantitative results relying on the

ground-truth data, we also show some qualitative result of

the segmentation using the automatically inferred impor-

tance term. As seen from Figure 6, the segmentation re-

sult is shown alongside the original point cloud. The sam-

ples are taken from the Hands2017Challenge dataset. Both

samples with all visible fingers and samples with different

levels of self-occlusion are shown. In all cases, the fingers

are clearly segmented with each other, even the fingers are

twisted together. The points has no contribution to any joint

has very small importance values and they are classified as

background. As Figure 6 shows, the arm and the back-

ground points are clearly segmented in gray. Notice that

the segmentation result is obtained without the ground-truth

data for segmentation. This leads to a future research ques-

tion about whether we can perform this method on hand-

object interaction cases, where the influence of the object

can be automatically removed.

4.5. Runtime and model size

Compared to depth image based methods, our method

requires more computation time and memory storage, this

limits our training to use only 512 points (batch size=32)

on our hardware setting. To store the learned models, the

proposed method takes 38 MB for the regression version

and 44 MB for the detection version. Compared to 420MB

for a 3D CNN based method [4], our model size is much

smaller. For the testing stage, the runtime of our method

is 12.5 ms and 10.7 ms per frame for the detection and re-

gression version respectively, where 1024 points are used

as input. When less input points is used, the runtime can

be further reduced with a small performance loss. Table 4

shows a comparison of runtime to other state-of-the-art 3D

methods [15][4][9]. Although the other methods all used a

more powerful GPU than ours, our method require the least

processing time.

5. Conclusion

We propose to use a novel neural network archi-
tecture, ResidualPEL, for hand pose estimation using
unordered point cloud as input. The proposed method
is invariant to input point order and can handle different
numbers of points. Compared to previous 3D voxel
based methods, our method requires less memory size.
And compared to PointNet based methods, our method
does not require surface normal and K-nearest-neighours
information. A voting-based scheme was proposed to
merge information from individual points to pose output,
where the resulting importance term can be also used to
segment the hand into different parts. The performance
of our method is evaluated on two datasets, where our
method outperforms the state-of-the-art methods on both
datasets. In future work, the proposed ResidualPEL and
voting scheme can be also applied to similar problem
such as human pose estimation and object pose estimation.
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