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Abstract  

Railway switches are crucial assets since they enable trains to change tracks without stopping. Larger parts of the 

infrastructure are compromised when certain switches fail. Regular inspections, maintenance and repairs are 

required to increase switch reliability, making them costly assets. Monitoring systems help determining the 

condition of assets. Nowadays nearly thousand switches in the Netherlands are remotely monitored by Strukton 

Rail. The current version of this monitoring system has helped to identify degrading and failing switches, but it 

also generates false alarms. There is room for improvement in how the monitoring system supports asset 

managers in making decisions regarding the asset. Here, we present a workflow that exploits switch monitoring 

data under real operation conditions. The running workflow implements a machine-learning model for automatic 

detection of anomalous switch functioning. Models for predicting switch degradation and failure evolution, and 

for identifying failure types are under development and remain to be implemented. 
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1. Nomenclature 

SR   Strukton Rail 

CC  Current curve(s) 

SCC  Strukton Control Centre 

T
2  

Hotelling’s parameter 

SPE  Square Prediction Error 

FMECA  Failure Mode, Effect and Criticality Analysis 

ARIMA  Autoregressive Integrated Moving Average 

TRL  Technology Readiness Level

 

2. Introduction  

Condition monitoring is the continuous update of parameters that characterize the health state of a system or 

component, and is made available through sensors. Condition monitoring may enable substituting preventive (i.e. 

scheduled) maintenance by condition-based maintenance. The latter is a more efficient approach than the former 

(see Vinberg et al. (2018)) for repairing and maintaining, since it leads to improved reliability, availability, 

safety and reduced costs. Condition monitoring is of great interest for the railway system and is an active field of 

research; it has been applied for the detection of railway track irregularities and faults by Tsunashima (2019), 

wheel and wheelset defects by Alemi et al. (2016), vehicle dynamics faults in Ngigi et al. (2012) and switch 

faults in Silmon and Roberts (2010).  

 

SR recently developed an application for collecting, handling and managing warnings and alarms coming from 

railway assets monitored by different systems. This includes POSS®, the system that monitors the condition of 

switches via sensors that acquire point machine (or switch engine) current during each turnover. This signal 

(referred here to as CC) provides a useful representation of the energy required by the switch engine to relocate 

the switch-blades from one end-position to the other according to INNOTRACK (2009). The blades end-position 

determines the tracks that a transiting vehicle takes. In its current version POSS® provides warnings and alarms 

when CC exceed manually-selected reference thresholds (see Narezo Guzman et al. (2018b) for further details). 

Multiple warnings and alarms may be triggered when anomalous behaviour is detected, reflecting that there is a 

problem with the asset. However, warnings and alarms might also be triggered due to ill-defined reference 

thresholds. Moreover warnings and alarms of an asset are clustered according to their time of occurrence. An 

expert at the SCC assesses these clusters and creates notifications for work i.e. a list of follow-up maintenance 

and repair actions. By consulting multiple information sources, such as video inspections, these experts also 

provide long-term maintenance recommendations. In the past, many problems were detected and solved using 

this method, often even preventing upcoming failures. However, many of the clusters are not worth of following 

up since they are a collection of low priority and/or false alarms. The analysis of clusters and the creation of 

notifications is a time consuming job. Clearly, there is a need for a more accurate warning system which 

minimizes unnecessary work, reduces costs and assures asset availability. 

 

In a real operational environment there are thousands of assets being monitored and maintained. Each of them is 

unique and has its own degradation curve, which is partially determined by local parameters. In the Netherlands 

the execution of repair and maintenance actions needed for preventing further degradation is subject to very tight 

schedules and the strong incentive to reduce maintenance slots. As an organization responsible for the 

maintenance and availability of railway assets, SR would greatly benefit from models exploiting the monitored 

data, which can trigger accurate alarms, identify the failure cause, detect asset degradation and predict upcoming 

problems at an early stage. The goal of this research is to successfully develop such models, as well as to 

implement the necessary IT infrastructure for supporting the workflow under real operation conditions. These 

efforts can be considered a significant step towards condition-based and predictive maintenance. The outcome of 

the models should enable the operators and analysts at the SCC (the end users) to visualise asset current and 

future conditions in an intuitive way, allow them to easily add or remove switches from the workflow, as well as 

to train the models efficiently and reliably. 

 

This paper reports on a fully automated workflow for monitoring and assessing the condition of switches in a 

real operation environment. The workflow constituent parts, their dependencies and the output are described in 

section 3.1. Overviews of currently running machine-learning models embedded in the workflow, as well as of 
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the models under development to be implemented in the workflow, are provided in sections 3.2 and 3.3, 

respectively. In section 4 closing remarks are provided. 

 

3. Workflow under real operation conditions 

3.1. Description of workflow 

Fig. 1 shows a schematic representation of the workflow including all input information accessing it (represented 

by three boxes on the left side).  These data come from different sources and include:  

 POSS® monitored CC acquired as raw data (in hexadecimal system). 

 FMECA system and domain knowledge. 

 Additional data: executed and planned maintenance actions, repair of asset failures, asset information 

(e.g. location, switch characteristics, etc.), switch usage and load (e.g. total weight of passing trains).  

 Weather data: weather variables with high temporal and spatial resolution that have an impact on switch 

performance such as temperature, snow, rain and humidity.  

The server is configured to run the workflow every hour. In the workflow, raw monitoring data is pre-processed 

in the production environment and stored in a SQL database on a SR server. The data in the database is then 

further processed in the demonstrator, computing features derived from the acquired CC (such as CC duration, 

maximum value, etc.) measured for every switch-blades repositioning. The machine-learning model for anomaly 

detection exploits the derived features as well as weather information gathered at the time the repositioning takes 

place. Once the model is trained with historical records of the aforementioned information/data, it assesses every 

CC acquired in the previous hour and triggers an alarm in case anomalous behaviour is detected. Several 

consecutive anomalies for one switch can indicate an evolving/sustained failure. If the failure is detected at an 

early stage, the problem can be addressed and the switch repaired before its functionality is completely 

compromised. Moreover, some failures (e.g. a rusting gear-box) follow a clear degradation trend that can be 

captured by a regressive model, making the evolution of the failure, in principle, predictable. Such failures can 

be prevented provided they are detected early enough. Besides failure detection and the prediction of future 

switch condition, it is of great interest to identify the failure type and provide an automated diagnosis. Given the 

lack of adequate training data required for purely supervised machine-learning approaches, the diagnostic model 

under development takes a hybrid approach. It consists of an extensive modular Bayesian network (see Koller 

and Pfeffer (1997)) whose structure is based on expert knowledge (for instance collected via  FMECA or similar 

methods) and additional information from literature.  

Fig. 1 Schematic representation of the workflow under real operation conditions.  

With regard to the anomaly detection results, the model output is reported and visualized as time series of the 

anomaly score as well as of the most significant features, where a data point represents a CC. The graphical 

representation of the switch functional condition is made available on the server, and is accompanied by 
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historical and planned maintenance actions, which for instance, can be helpful in understanding sudden changes 

in the switch behaviour. Moreover, further development of the graphical representation is planned to include 

time series projections into the future resulting from predictive modelling. In this workflow, on the one hand, the 

visualization of results, together with alarms and failure diagnosis are analysed and provide support to specialists 

at the SCC in decision making. On the other hand, annotated lists of real anomalies and diagnostic results 

(ground truth) will become available over time, serving for validation of the models performance and assessment 

of informative KPIs. 

 

The workflow presented in this paper is required in order to integrate the anomaly detection, diagnosis and 

predictive models into the daily practice at the SCC. 

3.2. Current implementation and results 

In the current demonstrator pre-processed data from hundreds of monitored switches is made available every 

hour. More than eighty features have been defined and twenty of them are currently being computed for all 

monitored switches in the demonstrator. In order to consider or not a given switch in the workflow, its ID has to 

be included in or excluded from a configuration file. Switches included so far are characterized by a relatively 

high frequency of failures and preferentially by long-term degradation (not all switches present a clear 

degradation process).  

 

A first version of the anomaly detection model was applied to historical data of seven double-slip switches 

gathered over more than five years; the model was shown to be temperature-robust in Narezo Guzman et al. 

(2018b). A more temperature-sensitive version of the model has since been developed and is now embedded in 

the workflow. This version of the model described in Narezo Guzman et al. (2019a) is applied every hour to 

eight (out of the twenty) computed features derived for tens of switches. The most useful model output is the 

anomaly score, which is computed for every CC. The anomaly score ranges from -0.5 (for data points that are 

extreme outliers) to +0.5 (for explicitly normal/average data points), as described by Sharova  (2018). The latest 

version of the model was applied to the same historical data as in Narezo Guzman et al. (2018b). The results in 

Narezo Guzman et al. (2019b) showed that, provided the model is trained with a set of CC that present a 

consistent and narrowly distributed response to small changes in temperature, the sensitivity, precision and 

specificity of the model for detecting anomalies (based on expert assessment of nearly 600 CC) are high: 0.95, 

0.96 and 0.85, respectively. 

 

Anomaly detection results obtained in the workflow are displayed on a user interface together with other 

additional information (e.g. maintenance actions and switch failures). Fig. 2 shows one of the windows on this 

interface, where the anomaly score of CC measured for switch S4730 is plotted as a function of time. This 

window provides the user with a view of the switch behaviour over time, making evident any trend in the 

anomaly score. The user can modify the time-window of the displayed timeseries. The threshold value below 

which a CC is identified as anomalous is user-defined and can be modified at any time. In this example the 

threshold is set to around -0.05. Several anomalies can be identified within the time ranging between Feb. 1
st
 

2018 and Oct. 1
st
 2019. Special attention is drawn to the end of year 2018, where over the course of a couple of 

weeks the anomaly score increasingly became negative. In fact a failure was registered on Dec. 12
th

 but it is 

evident that it was not repaired right away, which is confirmed by the maintenance log, as anomalies continued 

to be detected for more than a week. Moreover in the first half of Jan. 2019 a maintenance action took place, 

likely restoring the normal switch functioning, as it is observed from the anomaly score timeseries.  
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Fig. 2 User interface displays the anomaly score of CC as a function of time for each blades moving direction separately: (a) N(0) and (b) 
R(1). The user-defined threshold (horizontal dotted line) separates anomalous from normal data points. 

 

Another window of the user interface, called operational view, is shown in Fig. 3. In it the user has a more 

detailed overview of recent anomalies detected for the selected switch (S4730); it includes temperature at the 

time the CC was measured as well as corresponding feature values. Furthermore, the user interface is linked to 

POSS®, which can easily be accessed with a single click for visualizing the corresponding CC and any other 

information stored in that system.   

 

 

Fig. 3 User interface displays a list of recent anomalies detected for switch S4730. Each anomaly is accompanied by date/time, direction, 

anomaly score and measurement ID (columns in top table). The interface is linked with POSS®: by clicking on the red button the user can 
open the corresponding CC in that system. Feature values derived from anomalous CC are listed in the bottom table. 

a 

b 
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3.3. Future developments 

The approach under consideration for predicting the evolution of switch incipient failures i.e. failures which 

develop gradually over a period of time, is ARIMA modelling of timeseries (see Aggarwal (2017)). Here an 

ARIMA model is separately developed for the timeseries of log(T
2
) and log(SPE), where a data point in each of 

these timeseries represents a CC. T
2 

and SPE are parameters that summarize the information contained in the 

features (see Narezo Guzman et al. (2018a) and Yue and Qin (2001) for more details), and in our approach they 

are closely related to the anomaly score since they define the parameter space on which the anomaly detection 

algorithm (Isolation Forest) is applied. ARIMA model parameters must be computed for the logarithm of both T
2 

and SPE separately, and for single incipient failure events given that every case is different. This involves 

training the model with the degrading trend observed/detected in the timeseries that precedes complete failure. 

First results found in Narezo Guzman et al. (2019a) are encouraging however further research is required before 

the model can be validated and implemented in a real condition environment. Several aspects are still open, 

including the definition of rules that initiate model training (e.g. how many consecutive anomalies indicate a 

persistent failure mode that can be modelled), the applicability and generality of ARIMA models for predicting 

switch failures evolution, the increase in prediction confidence in the presence of more accurate weather 

variables measurements, etc. 

 

With regard to the diagnostic model presented in Neumann and Narezo Guzman (2019), the basic structure has 

been derived from current expert knowledge. The novelty of the network structure is that it consists of dedicated 

modules that can for instance be switched off or adjusted, allowing to consider various characteristics concerning 

the specific construction of a given switch. Moreover, the model principally incorporates the probabilities that 

certain weather conditions or other influencing factors induce on the observation of different failures types. 

Further investigation is necessary in order to calibrate the model, identify other relevant external factors and 

possible causes of switch failure, and establish a link between the diagnostic model and the switch anomaly 

detection output, e.g. by considering features as evidences in a (extended) version of the Bayesian network 

model.  

 

All models presented here may benefit from considering a larger number of features than done until now. 

Therefore more features will be computed and exploited by the anomaly detection, predictive and diagnostic 

models for railway switches in the future. 

 

4. Final remarks and outlook 

The described workflow implements the previously validated anomaly detection model in an operational 

environment; and it is the base for running the - currently under development - predictive and diagnostic models 

in the future. This work represents an essential step towards condition-based and predictive maintenance enabled 

by machine-learning approaches, since it provides the results to the end users (domain experts) via an interface 

in (nearly) real-time. The TRL (according to the definition by NASA) of the switch anomaly detection model 

embedded in the workflow is that between technology development and demonstration, i.e. TRL between 4 and 

5. Nevertheless, many challenges remain and research is necessary with regard to the workflow in order to 

include all mentioned models and reach TRL 9. These efforts will be continued within the IN2SMART-2 

project. 
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