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ABSTRACT

Many problems cannot be solved analytically, thus numerical methods are required.
It turns out that many problems are too complex and therefore beyond the reach of
current algorithms and computers. Quantum computation might offer fundamental
improvements in solving these problems. However, it is a difficult task to estimate
the computational power of quantum algorithms. The aim of this thesis is to find
applications related to aerospace especially well suited for quantum computation and
estimate their possible quantum advantage. In particular we focus on the calculation
of radar cross sections, which has been suggested as a promising candidate for
quantum speedup. It turns out that the main problem lies in the input of classical
data. Hence, the reimplementation of classical finite element method is needed,
requiring a substantial amount of quantum resources. Asymptotically a quantum
speedup is achievable but it is far beyond the reach of today’s capabilities to
successfully implement the quantum algorithm for this application. Additionally,
a serious prediction regarding the timeframe is not foreseeable yet. Substantial
breakthroughs are necessary to make quantum computation compete against classical
computation in calculating radar cross sections using the finite element method.
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1
INTRODUCTION

In the last decades electronic data processing, and information theory in general,
have become the game changers in industry and society. All areas of the human life
have been influenced by these new technologies, leading to a new historic period, the
information age.
The processing of huge amounts of data (Big Data) and the tackling of computational
intensive problems (HPC) has led to the development of ever more powerful com-
puters. Since classical computer architectures show specific limitations, additional
components have been added. These so called boosters use architectures differing
from their classical counterparts and are designed for a specific task (GPUs, FPGAs,
etc.). However, they are still based on the same technology as classical computers.
Only recently, fundamentally new architectures have been realized. So far, most of
them are only available in the laboratory, but given the current pace of scientific
development, some of them might have the potential to become interesting alterna-
tives to classical architectures. One of these new computing architectures is quantum
computation. It was introduced a few decades ago but only recently gained traction by
new hardware developments. It may offer a new way to tackle computational intensive
problems. In general, quantum computation can be described as the processing of
data using the concepts of quantum mechanics.
A typical research area in which computationally intensive problems arise is the
area of aerospace. The problems range from aircraft design which involves virtual
prototyping, satellite scheduling to space debris analysis. Exploiting the possible
potential of quantum computation might allow for a better understanding, more
complex simulations, and even more accurate solutions of these problems.

outline In this thesis we will do an exemplary study of a quantum algorithm
that has been proposed to be applicable to a typical aerospace problem. We will
derive an informed estimate of the required quantum resources which are necessary
to make the quantum algorithm comparable to classical methods.
In particular we will study the quantum linear system (QLS) algorithm for solving
systems of linear equations. Theoretically this algorithm scales logarithmic in the
matrix dimension, thus showing exponential speedup compared to the best known
classical methods. Additionally, a promising application based on this algorithm has
been proposed, namely the calculation of radar cross section (RCS) using the method
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introduction

of finite elements (FEM). It turns out that one of the main difficulties lies in the
input of classical data. From a theoretical point of view this is solved by the quantum
oracle formalism. Though, this is not satisfactory from a practical point of view,
i.e. having the implementation in mind. A detailed analysis shows the requirement
for a reimplementation of classical finite element method on the quantum computer.
Therefore classical operations have to be emulated, consuming a substantial amount
of quantum resources.
Even tough the quantum linear system algorithm shows exponential speedup in the
matrix dimension, implementing it for the calculation of radar cross sections is far
beyond the reach of today’s capabilities, e.g. in terms of the maturity and size of
today’s quantum devices. Furthermore, substantial breakthroughs are needed, thus
it is not foreseeable when such an implementation might become possible.

related work The basis for the quantum linear system algorithm has been
laid out by Harrow, Hassidim, and Lloyd in the year 2008 [1]. Originally this al-
gorithm was named by its founders and therefore called HHL algorithm. Since the
original algorithm has been altered by different authors, the class of new algorithms
has been collected under the name quantum linear system (QLS) algorithms.
There are numerous suggested applications for this class of algorithms ranging from
differential equations [2] to support vector machines [3]. Recently, the variations which
have been tailored for applications in machine learning and artificial intelligence have
gained high attention. However, the application to radar cross section as introduced
by Clader et al. [4] is one of the few applications that have been considered in full
detail. Most importantly, they took care of the input of classical data as required by
this algorithm.
There is already one work comparable to this thesis, estimating the cost for reimple-
menting the finite element method on a quantum computer [5]. It has been published
by Scherer et al. and uses the quantum programming language quipper. An impor-
tant difference to this thesis is the employed method for the resource estimation.
Supplementary, the additional cost arising from the target’s shape is not considered
in this work.
There is also comparable work for other quantum algorithms. As an example we
want to mention the work by Roetteler et al. regarding the resource requirements for
Shor’s algorithm [6]. Nevertheless, there is still much room for additional research
concerning the possible applications for quantum algorithms and their resource
requirements.

contents This thesis is organised as follows: We start with a short introduction
to quantum computation which is based on the textbook by Nielsen and Chuang
[7]. In this chapter we will discuss basic building blocks, differences to classical
computation and hardware realizations. Additionally, we lay out the conventions
used in this thesis.
Further on, we will explicitly consider the quantum linear system (QLS) algorithm.
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After getting to know the main algorithm, we familliarize with the different subal-
gorithms involved. Finally, we discuss the algorithmic complexity and challenging
problems. Partially we will be able to offer solutions.
The classical implementation of a possible application for the QLS algorithm is the
topic of the next chapter. More precisely, the calculation of radar cross sections (RCSs)
using the finite element method (FEM) is considered. Starting with the differential
formulation, the variational formulation is used to finally obtain a numerical solution.
The chapter is completed by an example calculation.
The following chapter is used to estimate the potential for a successful implementation
of the calculation of RCSs using the QLS algorithm. In particular, implementation
requirements are discussed, leading to an estimation of the resource requirements
for the input of the classical data. Consequently, an informed estimate in terms of
consumed quantum resources is given.
In the last chapter we summarize our results and discuss possible future improve-
ments.

3





2
QUANTUM COMPUTATION

Developed at the beginning of the 20th century, quantum mechanics is the fun-
damental theory for all physical interactions on small scales resulting in micro-
and macroscopic phenomena. The most important concepts are quantization, su-
perposition and entanglement. Described phenomena range from atomic spectra,
superconductivity to magnetism in general.
Given the rise of classical computers in the 1960s, simulating quantum systems for
better insight became an important part of physics. But classical computers have
not been designed to handle the exponentially growing data structures which are
necessary for simulating quantum mechanics [8]. Therefore, the idea of a new type of
computer was born that could handle this structure by being inherently designed for
them [9]. This computer would use quantum effects for computation and is therefore
called quantum computer.
However the realization of a device that uses quantum effects for computation has
taken some time. The first such machine has been developed by the Canadian com-
pany D-Wave and can be regarded as a type of quantum annealer [10]. It has the
ability to solve quadratic binary unconstrained optimization (QUBO) problems using
the adiabatic evolution from a known initial groundstate to a final groundstate,
which is problem dependent. Since the problem class is restricted to optimization
problems, we will not investigate this machine any further. A more general approach
to quantum computation is based on gate model computations. This idea is based
on operations on the quantum encoded data that are comparable to classical gates.
Unfortunately only small machines of this type exist today and can be seen as
technology demonstrators or experimental devices (see Section 2.2.1).

2.1 gate model

To start our discussion of quantum computation we want to introduce the fundamental
building blocks. The basis for this discussion will be the textbook by Nielsen and
Chuang [7], which can be used as a reference for further questions. Similar to Nielsen
and Chuang we want to understand quantum computation as the processing of data
using quantum mechanical systems. Mainly we want to discuss the building blocks
of gate model quantum computation, namely: the qubit, the manipulation of qubits
by gates and the measurement of qubits.
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2.1.1 building blocks

qubits The fundamental building block for quantum computation is the qubit. Its
name is inherited from its classical ancestor the bit. Whereas the bit can only assume
a distinct value or state from the set {0, 1}, the qubit can also assume intermediate
values of its basis states. Formally we define the set of basis states as { |0〉 , |1〉}. We
use the so called Dirac notation |·〉 to show the difference between a classical and
quantum state explicitly. The obscure term intermediate refers to the property that
the qubit |q〉 can be in a state which is a linear combination of the basis states. This
linear combination is also called superposition. Mathematically, this relation is given
as

|q〉 = α |0〉+ β |1〉 with α, β ∈ C and |α|2 + |β|2 = 1. (2.1)

The last condition ensures normalization of the state |q〉 which is crucial for the
interpretation as a physical state and will become clearer when talking about mea-
surements. The space of all possible states |q〉 is called Hilbert space (see Reference
[11, p. 128] for the definition).
Adding an additional qubit to the system results in a new Hilbert space H =

H1 ⊗ H2 with Hj the single qubit spaces. The basis for the new Hilbert space is
given as: |0〉 ⊗ |0〉 = |00〉 , |01〉 , |10〉 , |11〉. New states are emerging which are
non separable and therefore called entangled states. An example is a state like
|ϕ〉 = 1√

2
( |01〉+ |10〉). This state is non separable since there are no single qubit

states |q〉 and |q′〉 with |ϕ〉 6= |q〉 ⊗ |q′〉. This shows the possibility to encode more
information in the two qubit system in comparison to two single qubit systems.

gates Similar to classical computation, the manipulation of qubits is called gate.
A gate can act on a single qubit or a group of them. As we already know qubits
can be described as an element in a Hilbert space. Therefore, their manipulation is
carried out by operators mapping a Hilbert space to itself. Since a manipulated state
must fulfill the same properties as the non manipulated state, the operators must be
linear and unitary. They are often represented as matrices. We want to divide the
set of gates into three subsets, gates acting on a single qubit, gates acting on two
qubits and the generalization, gates acting on n qubits.
As an example for a single qubit gate we want to take a look at the Hadamard gate
denoted as H. The application of a Hadamard gate transfers the qubit into a state of
an equal weight superposition. Mathematically this can be described as follows

H |q〉 = H (α |0〉+ β |1〉) =
α + β√

2
|0〉+ i

α− β√
2
|1〉 . (2.2)

For the two qubit gates, the Controlled Not gate, denoted as CNOT, is a good
example. Applying this gate to two qubits will flip the second depending on the state
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of the first qubit. In contrast to the Hadamard gate, we will define it through its
matrix representation in the usual computational basis

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.3)

Generally a quantum gate can act on n qubits and is then represented as an
N × N = 2n × 2n unitary matrix. An interesting result is that comparable to
classical computation, it suffices to only consider for a small set of quantum gates,
since any other gate can be approximated by them [7, p. 188ff]. A set showing this
property is called universal gate set. For classical computation the terminology is
functional completeness and an example for such a corresponding set is the NAND

gate [12, p. 218ff]. For quantum computation an universal gate set, allowing for the
approximation of any quantum gate, is given as H, T, P and CNOT. When talking
about possible metrics for the computational complexity of quantum algorithms in
Subsection 5.3.2, we will discuss further details of universal gates.
Whereas the Hadamard gate is one of the fundamental single qubit gates, the CNOT

gate is the simplest one for two qubits.

measurements As distinct from classical computation, we cannot readout
the result directly, due to the superposition of the qubits. But we can carry out a
quantum mechanical measurement.
For a single qubit this measurement is like posing the question: “Which state do
you assume?“. But this question is incomplete because it lacks the information
about the basis of measurement. Most often the computational basis is used, also
in the paragraphs above. The application of a measurement collapses the quantum
state into a definite state, the measured one. Therefore the application of successive
measurements in different basis can yield different information. Thus further insight
into the quantum system can be obtained by using multiple measurements.
If the qubit is in a superposition of the two basis states, as described in Equation
2.1, measuring it in the computational basis, yields one of the two basis states. The
probability for the state |0〉 is given as |α|2 and for the state |1〉 as |β|2. This shows
that the absolute square of the amplitudes must be interpreted as a probability. A
fundamental property of the measurement is the collapse of the quantum state.
For a group of qubits the measurement process becomes more complex. The number
of basis states grows exponentially. As the number of possible outcomes does. As
mentioned above, the probability for a specific outcome is connected to the amplitude
of the outcome or state. Therefore, shifting the probability to a specific wanted
outcome is desired. This has become possible to a certain extend using the quantum
amplitude amplification. Still, obtaining the required and desired information is a
challenging task.
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2.1.2 quantum vs. classical computation

Quantum computation is distinct from classical computation. Apart from the obvious
change from bits to qubits, there are other notable differences. These shall be discussed
in the following subsection.
The first difference is rather surprising, but implied by the no cloning theorem [7,
p. 532]. It states that there is no quantum gate COPY to perform the copy of an
arbitrary quantum state, i.e. the following operation

COPY ( |ϕ〉 ⊗ |0〉) = |ϕ〉 ⊗ |ϕ〉 (2.4)

with |ϕ〉 being the arbitrary state. For classical computation this operation can
simply be done with a XOR gate∗. Since such a gate is missing, intermediate results
can not be obtained by copying them out. Additionally, comparing states before and
after manipulation requires special ideas.
The second difference regards the manipulation of qubits. Since the manipulations
are carried out by linear unitary operators, they are reversible. This means any
computation can also be run in backwards direction. In mathematical notation this
results in the application of the adjoint operator. This is also a huge difference to
classical computations where gates do not need to be reversible. In consequence, it is
not straightforward to emulate classical computation on a quantum computer. The
basic idea of translating classical to quantum calculations will be discussed later (see
Subsection 5.3.1). In addition to that, another consequence of the reversibility is the
requirement for uncomputation. A measurement collapses the quantum state and
leaves the system in the measured state. To obtain the old input state, most often
the zero basis state, the computation needs to be undone. Therefore swapping out
the result to an ancilla qubit and undoing the computation is required. To undo a
computation the inverse gate needs to be applied. Since quantum gates are unitary,
the inverse equals the adjoint matrix. Therefore it suffices to apply the adjoint of
quantum gates in reversed order. Many fundamental gates are self-adjoint making
this application fairly easy.

2.1.3 conventions

There are some general conventions in quantum computation which will be introduced
in this short subsection.

many body quantum mechanics The mathematical/physical framework
for quantum computation is called many body quantum mechanics. Typically the
tensor products are omitted, e.g. |q〉 ⊗ |q′〉 = |q〉 |q′〉. This also applies for the
operators, therefore we will often use an additional index to denote the qubit or

∗The XOR gate needs to be applied to two classical bits. It copies the first bit into the other
one, if this has been initialized to zero. The action of the XOR gate is described by the symbol ⊕,
thus the action is given as (a, 0)→ (a, 0⊕ a) = (a, a).

8
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quantum register that is modified by the operator. In special cases tensor products
might appear to specify them.

quantum register To simplify notation we want to collect qubits into
quantum registers. A collection of n qubits is called quantum register of length n.
The possible states of the register can be relabeled with a binary encoding called
number basis. The result is a compact notation. For example the possible states of a
2 qubit register are

|q〉 =
3∑
j=0

αj |j〉 (2.5)

with the typical complex amplitudes αj . Similarly to qubits, gates can be applied on
registers.

ancilla qubits In many cases there is a need of some scratch space for
quantum routines or algorithms. The qubits used as scratch space are called ancilla
qubits or registers as well as auxillary qubits or registers. Since quantum algorithms
are reversible they are often used to swap out results.

number representation The representation of numbers is a crucial part to
use quantum computation for calculations. The easiest way is to use the amplitude
of a quantum state. This method can be called analog.

α ∈ C→ |α〉 = α |0〉+

√
1− |α|2 |1〉 (2.6)

Obviously this way is well suited to store a vector α within the number basis in a
quantum register of length n = log2 (N). If N is no power of two, we need to round
the logarithm to the next higher integer number.

α ∈ CN → |α〉 =
1

Cα

N−1∑
j=0

αj |j〉 (2.7)

For an arbitrary complex vector we need an additional normalization constant Cα.
Another method is the digital representation. One such encoding method was already
mentioned above. More specifically, the number basis, as resulting from the binary
encoding, is such a digital representation for integer numbers.
The representation of decimal numbers is a little bit more difficult. For floating
point numbers we can use the same representation as in classical computation with
IEEE-754 [13] but it is very resource demanding. A simple approach is to use a fixed
point representation like given in the following. For an angle φ ∈ [0, 1) with the
binary representation φ = 0.φ1φ2φ3 . . . the representation on a quantum register of
length n is given as φ ≈ 0.φ1φ2φ3 . . . φn

φ ∈ [0, 1)→ |φ〉 = |φ1φ2φ3 . . . φn〉 (2.8)

A drawback of both digital representations is that both of them are approximate
and therefore not exact for all numbers.

9



quantum computation

2.2 challenges and expectations

After getting to know the building blocks of quantum computation, we want to
summarize expectations and challenges of quantum computation.
This technology might offer a new approach to tackle computational intensive tasks.
Since there are some algorithms with proven exponential speedup over the best
classical algorithms, e.g. Shor’s algorithm [14], there are high expectations. Most of
them are based on the proven speedup for some quantum algorithms with respect to
their classical counterparts. Additionally some people expect quantum computation
to offer fast solutions for some problems with so called NP complexity.
Albeit there are high expectations towards quantum computation, tough challenges
need to be mastered to develop quantum computation as a new framework for
real-world applications. There are a lot of challenging problems that need to be
solved in order to make quantum computation generally available, i.e. for scientists
and businesses. The challenges spread over different areas which will be discussed
shortly.

2.2.1 hardware

Realizing a quantum computer as a physical device requires several ingredients. The
first one is a physical realization for the qubits.

architectures Several approaches have been examined. Qubits based on
the phenomenon of nuclear magnetic resonance (NMR) have been on of the first
approaches [15]. Other approaches are superconducting qubits, ion-traps or semicon-
ductor qubits that show better scalability. But there is no approach that has finally
superseded all others [7, p. 277ff]. Recently, new approaches like Majorana qubits
[16] have been introduced and might show even better results.
The other important ingredient is the physical realization of gates for a specific
qubit architecture. On the theoretical level the quantum gates act instantly on the
qubits. But on the physical level there is a time evolution from one quantum state
to the other. This evolution should be done in minimal time and with minimal error,
regarding the difference of target state and reached state. Typically the gates are
realized by electromagnetic radiation.
Additionally, the qubit system needs to be in a controlled environment to mini-
mize interactions with the surrounding and to circumvent the so called cross talk,
i.e. interaction between originally non-interacting qubits.

nisq devices The first generation of currently available quantum computers is
called NISQ devices. This abbreviation stands for noisy intermediate state quantum
and refers to the fact that the devices are only an intermediate step towards a
universal quantum computer. A drawback is their small size compared to resource
requirements for quantum algorithms like the Shor algorithm [14]. The typical
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size of today’s devices is roughly in the order of 10 qubits [17] which is a small
amount compared to resource estimates of about 9n qubits factoring a n bit number
[6]. Additionally, they can only offer a small coherence time, i.e. the timespan
with guaranteed entanglement. Therefore, the number of quantum gates running
successively is limited. An interesting open question is the possible usage of NISQ

devices for applications relevant to scientists and businesses.

2.2.2 error correction

A challenge that is directly connected to the hardware, i.e. the physical devices, is the
correction of errors. Since physical devices are often imperfect, errors are a natural
consequence. For classical devices either zero, one or more bits can be flipped. These
errors are easily detectable and since many data formats can handle single bit flips,
they can be tolerated.
Detecting errors in quantum computation is not done easily. On the qubit level
there is an additional possible error, regarding the sign in the superposition. But
on the higher levels, it is also possible to have faulty gates, state preparation or
measurements. To overcome this errors, quantum error correction (QEC) has been
developed. It offers techniques to use a number of physical qubits to encode a logical
qubit. A possible error in the logical qubit can then be detected by measurements on
the physical qubits and corrected. A more detailed description can be seen in [18]
and [7, p. 425ff].

hybrid algorithms An alternative way of treating the errors is used by hybrid
algorithms like the variational quantum eigensolver (VQE) [19] and the quantum
approximate optimization (QAO) algorithm [20]. Instead of running completely on a
quantum computer, these algorithms are designed to use both classical and quantum
resources. Since the circuit depth of the quantum algorithm is relatively short, these
algorithms might match the small decoherence times of NISQ devices (see Subsection
2.2.1).

2.2.3 applications

Since there is no proof for a general quantum advantage, applications solved by
efficient quantum algorithms need to be identified. Especially applications that solve
real world problems are interesting for scientists and businesses. Most promising is
the cut set of the two computational complexity classes BQP and NP. To understand
the theoretical limits of quantum computation and understand the importance of
the mentioned cut set, we want to give a short introduction to complexity classes.

complexity classes In classical information theory several complexity classes
are distinguished. The idea of complexity classes has been introduced to compare
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problems in terms of their computational hardness. This involves computational time
as well as computational space to store results.
The first complexity class we want to mention is the class PSPACE. This complexity
class has the property to include all following complexity classes. It contains all
problems that require polynomial space for the computation on any device. However
there is no specific statement about the computation time of problems within this
class. The next complexity class is called BPP. It consists of all problems that can be
solved up to an error ε < 1/2 on a probabilistic classical computer in polynomial time.
Basically, probabilistic computation can be realized by statistical sampling. One can
show that BPP ⊆ PSPACE by using a small argument from complexity theory. A
special case of a probabilistic computer is the non probabilistic one, which can solve
fewer problems in polynomial runtime. Therefore the corresponding complexity class
P is included in BPP. On the other hand there are problems that can be solved
in polynomial runtime on non deterministic computers. They are collected in the
complexity class NP. A fundamental question in information theory regards the

relation of the complexity classes, e.g. is P
?
= NP or NP

?

⊆ BPP [21].
To give a statement about quantum resources the complexity class BQP has been
defined. Loosely speaking, it consists of all problems that can be calculated efficiently
on a quantum computer. It is known that the complexity class BQP is a subclass of
PSPACE but its relation to the other classical complexity classes remains mainly
unknown. The article [22] by Bernstein and Vazirani contains further material
concerning this question. Further research on the relation of the complexity classes
is needed to show that quantum computation has a definite advantage over classical
computation, e.g. NP ⊆ BQP. Before such an elementary proof can be provided,
examples need to be identified that are part of the cut set BQP ∩ NP and are not
contained in P, like Shor’s algorithm [14].

application candidates Identifying applications for quantum algorithms
is not an easy task since only a few quantum algorithms are known. Additionally the
setting is upside down compared to the typical solution path. Usually we start with
a known application and try to find an algorithm solving it. We can search for an
algorithm that fulfills the desired needs or construct an algorithm that matches the
problem/application. Finding applications to fit quantum algorithms is the other
way around. There is only a small number of possible algorithms but a large number
of applications. In the rest of this paragraph a candidate for a promising application
will be discussed.
As already mentioned in the introduction, quantum computation is inherently well
suited to solve problems related to quantum mechanics. Therefore, a promising
application is the simulation of molecules that show strong quantum effects. These
effects can not be handled with classical computational methods to a satisfactory
extend because strongly bound electrons are involved. The quantum algorithm
to tackle these type of problems is the variational quantum eigensolver (VQE)
[19], as already mentioned in Subsection 2.2.2. Based on a classical approximation
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(e.g. Hartree-Fock methods) it develops an approximation for the groundstate based
on a chosen ansatz and can therefore be seen as a post Hartree-Fock method.

2.3 summary

At this point we want to review the content of the last chapter. This chapter
has been divided into two major sections. The first one was used to give a short
introduction to quantum computation. We mainly focused on the gate model but also
mentioned alternative approaches. Most importantly, the building blocks of gate model
quantum computation have been introduced. Additionally, the differences to classical
computation have been mentioned, like the implications of the no cloning theorem.
Furthermore, we listed the important conventions used in quantum computation to
allow for an understanding of the next chapters.
The other section deals with the challenges and expectations towards quantum
computation in general. On the one hand the early hardware devices suffer strongly
from low qubit counts. On the other hand sophisticated quantum algorithms require
perfect qubits and gate fidelities, resulting in the need for quantum error correction.
Additionally, well suited applications need to be identified such that the full potential
of quantum computation can be used.
Based on the knowledge obtained in this chapter, we will introduce a quantum
algorithm, the quantum linear system (QLS) algorithm and discuss its properties in
the next chapter.
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3
QUANTUM LINEAR SYSTEM ALGORITHM

In this chapter we want to discuss the main quantum algorithm used in this thesis.
The first idea of such an algorithm has been introduced in the year 2008 by Harrow,
Hassidim, and Lloyd (HHL) which led to the name HHL algorithm [1]. More recently
this algorithm has been improved and altered to suit specific design requirements.
Algorithms, which are based on the Harrow, Hassidim, and Lloyd algorithm, are
called quantum linear system (QLS) algorithms.
The main purpose of the quantum linear system algorithm is to provide the quantum
equivalent of a linear system solver. Starting with an initial state representing the
right hand side of a system of linear equations and some ancilla registers, it transforms
the state to a final state proportional to the solution of the linear system.
In the following we will investigate the details of this transformation, look at the
fundamental difference to classical linear system algorithms, and understand the
different subroutines involved. Finally, we will be faced with three problems which
need to be solved for a successful implementation.

mathematical problem To start the investigation we need to define the
mathematical problem that needs to be solved. Let A ∈ CN×N be a matrix and
b ∈ CN be a vector, we search the vector x ∈ CN with

Ax = b.

Such an equation is called a linear system. In the definition above we have already
restricted ourselves to square matrices. We want to restrict ourselves even further,
such that we only consider linear systems that have a unique solution. A unique
solution exists, if the rank of the matrix is the same as the rank of the expanded
matrix, which is obtained by adding the right hand side vector as a new column
vector to the matrix [23, p. 40]

rank(A) = rank(A, b).

Additionally, we want to assume that the matrix is Hermitian. If that is not the
case we can modify the system such that it becomes Hermitian, not changing the
computational complexity, as shown in Appendix A.1.
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3.1 main algorithm

Defining the mathematical problem properly, allows us to start our investigation
of the quantum linear system algorithm. Now, we will investigate the involved
subroutines, identify problems and solutions. In the following subsection we take a
look at the classical HHL algorithm introduced by Harrow, Hassidim, and Lloyd. The
used subroutines will be explained in detail afterwards.

state preparation As a first step, we need to prepare two quantum registers,
one of length t = log2 (T ) and one of length n = log2 (N). The register of length t is
used to store eigenvalues. It is prepared in an equal weight superposition, resulting
in 1√

T

∑T−1
τ=0 |τ〉. The other register will hold a state corresponding to the right hand

side b of the linear system. Thus, we describe it by 1
Cb

∑N−1
j=0 bj |j〉 with bj = (b)j

and Cb, a proper normalization constant. The full system can be described by the
following quantum state

1√
T

1

Cb

T−1∑
τ=0

N−1∑
j=0

bj |τ〉 |j〉 . (3.1)

hamiltonian simulation To let the Hermitian matrix A act on a quantum
state, we need to define the time evolution operator Uτ (A) by interpreting the matrix
A as a Hamiltonian. This interpretation motivates the restriction to Hermitian
matrices. The time evolution operator is defined as

Uτ (A) = exp (−iτA) . (3.2)

Additionally, we want to introduce a basis change. The new basis is the eigenbasis of
the matrix A. Since the basis is not known, this basis change is just a mathematical
trick. The new basis is denoted as {uj}. The corresponding quantum states will
be denoted as |uj〉. This eigenbasis has the property that the action of the time
evolution can be calculated easily

Uτ (A) |uj〉 = exp (−iτλj) |uj〉 (3.3)

with λj the eigenvalue to eigenvector uj. Rewriting the full system in this new basis
yields

1√
T

N−1∑
j=0

T−1∑
τ=0

βj |τ〉 |uj〉 . (3.4)

Now we apply the controlled Hamiltonian evolution
∑T−1

τ ′=0 |τ
′〉 〈τ ′| ⊗ exp

(
−iAτ ′ t0

T

)
onto the second register, controlled by the first. The constant t0 is needed to ensure
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an evolution time that minimizes the error ε of the representation for the eigenvalues
λj. Therefore, we choose it such that t0 ∼ 1

ε

∣∣∣λmaxλmin

∣∣∣ [1]. The resulting formula is

1√
T

T−1∑
τ=0

T−1∑
τ ′=0

N−1∑
j=0

|τ ′〉 〈τ ′|τ〉 ⊗ exp

(
−iAτ ′ t0

T

)
βj |uj〉 (3.5)

=
1√
T

T−1∑
τ=0

N−1∑
j=0

βj exp

(
−iλjτ

t0
T

)
|τ〉 |uj〉 .

Even though the definition and action of the time evolution operator is straightfor-
ward, its actual implementation for a general Hermitian matrix is not. Therefore, its
implementation, which is called Hamiltonian simulation, will be subject of Subsection
3.2.3.

quantum fourier transform The next step is to transfer the eigenvalues
from the amplitude to the first register. This transfer is done by the quantum Fourier
transformation (QFT) (see Subsection 3.2.2). It can be described by the mapping
|τ〉 → 1√

T

∑T−1
k=0 exp

(
2πi
T
kτ
)
|k〉. In total, this results in

1

T

T−1∑
τ=0

T−1∑
k=0

N−1∑
j=0

βj exp

(
−iλjτ

t0
T

)
exp

(
2πi

T
kτ

)
|k〉 |uj〉 (3.6)

=
1

T

T−1∑
τ=0

T−1∑
k=0

N−1∑
j=0

βj exp

(
2πi

T
τ

(
k − λj

t0
2π

))
|k〉 |uj〉

=
T−1∑
k=0

N−1∑
j=0

βjαkj |λ̃k〉 |uj〉 .

In the last step, we defined αkj = 1
T

∑T−1
τ=0 exp

(
2πi
T
τ
(
k − λj t02π

))
and relabeled the

first register as λ̃k = 2πk
t0

. Under the assumption of infinite precision, we can evaluate
αkj to δkj, which motivates us to choose T and t0 such that the difference between
αkj and δkj is small enough. Thus λ̃k is just an approximation to the k-th eigenvalue.
A detailed error discussion can be found in the book by Nielsen and Chuang on page
224 [7].

value controlled rotation Finally, we want to multiply the amplitudes
by the inverse of the eigenvalues. We add an ancilla register of length one and rotate
its state controlled by the value in the first register (see Subsection 3.2.1).

T−1∑
k=0

N−1∑
j=0

βjαkj |λ̃k〉 |uj〉

√1−
(
CA

λ̃k

)2

|0〉+
CA

λ̃k
|1〉

 (3.7)

Here, we introduced another constant CA to ensure that all rotations are valid. The
next step is to “free“ the first register by uncomputation. The purpose of this is
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to ensure that we can ignore them in the following. For infinite precision we have
αkj = δkj which leads to

N−1∑
j=0

βj |uj〉

√1−
(
CA
λj

)2

|0〉+
CA
λj
|1〉

 . (3.8)

measurement Measuring the value of the ancilla register yields one of the
two possible states. If we obtain a |1〉, the rest of the system is in a state that is a
solution to the linear system up to a normalization constant

1

Cx

N−1∑
j=0

βj
λj
|uj〉 . (3.9)

In the above equation the normalization constant is called Cx.

3.2 sub algorithms

Getting to know the involved subroutines is an essential part in understanding the
full quantum linear system algorithm. Therefore, we will discuss these subroutines in
more detail.

3.2.1 value controlled rotation

The value controlled rotation performs a rotation on an ancilla qubit by an value
x ∈ [0, 1], encoded in the first quantum register |x〉 of length n = log2 (N). Its action
is given as

|x〉 |0〉 →

(
N−1∑
k=0

|k〉 〈k| ⊗R (k)

)
|x〉 |0〉 (3.10)

→ |x〉R (x) |0〉

→ |x〉
(√

1− x2 |0〉+ x |1〉
)
.

Since the sine function can be inverted on a proper domain and there are efficient
classical approximation formula for this inverse, a quantum circuit exists to implement

the computation |x〉 → |φ〉 = | 1

2π
arcsin (x)〉. The execution of classical calculations

on quantum resources is discussed in Subsection 5.3.1. Using this angle φ, we are
able to diagonalize the rotation operator R (x) with a unitary matrices that are
independent of the angle

R (x) = R (φ) =

(
cos (2πφ) − sin (2πφ)

sin (2πφ) cos (2πφ)

)
(3.11)

= U

(
exp (2πiφ) 0

0 exp (−2πiφ)

)
U † = UR̃ (φ)U †.
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The matrix R̃ (φ) can now be split into submatrices Sk, since the angle in binary
encoding can be rewritten as

φ = 0.φ1φ2φ3 . . . φn (3.12)

= 2−1φ1 + 2−2φ2 + · · ·+ 2−nφn

=
n∑
k=1

2−kφk.

We get R̃ (φ) =
∏n

k=1 (Sk)
φk with Sk =

(
exp

(
2πi2−k

)
0

0 exp
(
−2πi2−k

)), since φk
can either be zero or one. The final circuit is given in Figure 3.1.

|x〉 → |φ〉

• · · ·
• · · ·

|x〉 • · · · |φ〉
...

...
· · · •

|0〉 U† S1 S2 S3 · · · Sn U
√

1− x2 |0〉+ x |1〉





Figure 3.1: Value controlled rotation: The figure gives the quantum circuit to realize the
value controlled rotation gate on n qubits. Before the rotation can be applied
the angle needs to be computed using trigonometric functions. The quantum
register holding the angle φ ∈ [0, 1) controls the rotation of the ancilla qubit.

3.2.2 quantum fourier transform

Similar to the classical discrete Fourier transformation, the quantum Fourier trans-
formation maps the amplitudes of a quantum state to its Fourier transformation
[7, p. 217ff]. The action of the Fourier transformation, on a quantum register of
n = log2 (N) qubits, is given as

N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉 with yk =
1√
N

N−1∑
j=0

xj exp

(
2πi

N
jk

)
. (3.13)

Even though the definition of the quantum Fourier transformation is a closed equation,
it can be shown that the n-th Fourier coefficient is not influenced by the n− 1 other
coefficients and therefore we can build up a recursive scheme for the quantum Fourier
transformation (see Figure 3.2).
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|x0〉

QFTn−1

Rn−1 · · · · · · |yn−1〉

|x1〉 Rn−2 · · · · · · |yn−2〉

...
...

|xj〉 · · · Rn−j · · · |yn−j〉

...
...

|xn−2〉 · · · · · · R1 |y1〉

|xn−1〉 • • · · · • · · · • H |y0〉

Figure 3.2: Quantum Fourier transformation: The figure gives the quantum circuit to realize
the quantum Fourier transformation on n qubits. This scheme describes the

recursive implementation using rotation matrices defined as Rk =

(
1 0

0 eiπ2−k

)
.

3.2.3 hamiltonian simulation

The algorithm Hamiltonian simulation describes the application of the time evolution
operator of an arbitrary Hermitian matrix. Let A be a complex, Hermitian N ×N
matrix, |ψ〉 a quantum register of length n = log2(N) and τ ∈ R+ a time. The action
of the Hamiltonian simulation is described as follows

|ψ〉 → Uτ (A) |ψ〉 = exp (−iτA) |ψ〉 . (3.14)

Although, applying such an operator to a quantum register is straightforward, building
an efficient quantum circuit to do so, requires further work. The idea is to divide the
operator on different levels, such that easier applicable operators with efficient gate
realizations arise [4, 24]. The first step is to divide the relatively large time into r
smaller times, such that τ/r � 1. The emerged operator can be applied r-times

Uτ (A) =
[
Uτ/r (A)

]r
. (3.15)

For simplicity, we relabel the times τ/r → τ . The next decomposition step will
take effect on the matrix level. We want to decompose the matrix into one-sparse
Hermitian matrices A =

∑m
c=1Ac. One-sparse means that there is not more than one

non zero element per row or column. In general such a decomposition is not efficiently
computable. If the matrix A is sparse, we can use the methods of graph colouring to
define it [24]. For the special case of a banded matrix, the decomposition is trivial.
Using the Suzuki higher order integrators which are based on the Suzuki Trotter
formula, we can approximate exp (−iτA) by applying the unitaries exp (−iτAc)
according to the following scheme.

suzuki higher order integrators In general [A,B] 6= 0 causes

exp (−iτ (A+B)) 6= exp (−iτA) exp (−iτB) .
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Therefore, we want to use a recursive operator S2k (−iτ) to approximate exp (−iτA)

up to approximation error O
(
|τ |2k+1

)
. The operator is defined as

S2k (−iτ) = [S2k−2 (−ipkτ)]2 S2k−2 (−i(1− 4pk)τ) [S2k−2 (−ipkτ)]2 , (3.16)

S2 (−iτ) = Πm
c=1 exp (−iAcτ/2) Π1

c′=m exp (−iAc′τ/2) ,

pk =
(
4− 41/(2k−1)

)−1
.

Often a small value for k is sufficient for the desired accuracy. As a simple example,
we want to choose m = 2 and k = 1, which results in

Uτ (A) = exp (−iτ(A1 + A2)) (3.17)

≈ S2 (−iτ)

= exp (−iτA1/2) exp (−iτA2) exp (−iτA1/2) .

A detailed convergence and error analysis can be found in References [25] and [24].
In consequence an implementation for operators of the type exp (−iτAc) for Ac, a
one-sparse matrix need to be found.

hamiltonian circuit We want to define a set of unitary, self adjoint operators
for each matrix Ac. One operator for the argument Up

c and one for the amplitude
Um
c of the matrix elements shall be defined. They are given as follows

Um
c |a〉 |b〉 |y〉 |z〉 = |a〉 |b⊕ colc (a)〉 |y ⊕ ampc (a)〉 |z〉 (3.18)

Up
c |a〉 |b〉 |y〉 |z〉 = |a〉 |b⊕ colc (a)〉 |y〉 |z ⊕ argc (a)〉 . (3.19)

These operators act on four registers, the first one holds the row index a with
index c defining the matrix. The column index, being hold in the second register,
is colc (a) and since Ac is one-sparse, it is unique. The amplitude of the matrix
element∗ is given as ampc (a) = amp ( 〈a|Ac |colc (a)〉) and its argument as argc (a) =

arg ( 〈a|Ac |colc (a)〉). They are hold in the third and fourth register respectively. Since
Ac is Hermitian by definition, we know that colc (colc (a)) = a, ampc (colc (a)) =

ampc (a) and argc (colc (a)) = −argc (a). The set of operators constitutes a matrix
oracle which gets its name from the resemblance to an ancient oracle.
Additionally, we define an operator called quantum random walk operator which is
explained in detail in Subsection 3.2.5. Its action is defined by swapping two registers
and keeping a third in place.

Hrw |a〉 |b〉 |y〉 = y |b〉 |a〉 |y〉 . (3.20)

As a last ingredient, we need the value controlled phase gate. For φ ∈ [0, 1) its action
is given as follows

Pτ |φ〉 |0〉 = exp (2πiτφ) |φ〉 |0〉 . (3.21)

∗For z ∈ C, we get z = amp (z) exp (iarg (z))
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Its implementation is comparable to the implementation of the value controlled
rotation gate 3.2.1 and can be seen in Subsection 3.2.4. With these four operators,
the matrix A can formally be written as

A =
m∑
c=1

Ac =
m∑
c=1

Up
cP
†
1/4πUp

cU
m
c HrwUm

c Up
cP1/4πUp

c . (3.22)

The action of the operators Ac is given as

Ac |a〉 |0〉 |0〉 |0〉 = Up
cP
†
1/4πUp

cU
m
c HrwUm

c Up
cP1/4πUp

c |a〉 |0〉 |0〉 |0〉 (3.23)

= ampc (a) exp (iargc (a)) |colc (a)〉 |0〉 |0〉 |0〉 .

For the sake of brevity, we skip this proof and refer the interested reader to the
Appendix A.4. An important point to keep in mind is that, this equation is just
descriptive. Since Ac is not unitary, it is not directly applicable to qubits. Therefore
the equation is not rigorous in a mathematical or physical sense.
Now we want to implement the unitary time evolution operator for a single submatrix
exp (−iτAc). Since Um

c Um
c = Up

cU
p
c = 1 and P†1/4πP1/4π = 1, we can simplify the

operator exp (−iτAc) as

exp (−iτAc) = Up
cP
†
1/4πUp

cU
m
c exp (−iτHrw) Um

c Up
cP1/4πUp

c (3.24)

Thus, we only need a circuit for exp (−iτHrw). Whereas this circuit will also be
explained in Subsection 3.2.5, the action is simply given by

exp (−iτHrw) |a〉 |colc (a)〉 |ampc (a)〉 |argc (a)〉 (3.25)

= cos (ampc (a) τ) |a〉 |colc (a)〉 |ampc (a)〉 |argc (a)〉
−i sin (ampc (a) τ) |colc (a)〉 |a〉 |ampc (a)〉 |argc (a)〉 .

Combining all parts we get a unitary operator for each of the matrices, given as

exp (−iτAc) |a〉 |0〉 |0〉 |0〉 (3.26)

= cos (ampc (a) τ) |a〉 |0〉 |0〉 |0〉
−i sin (ampc (a) τ) exp (iargc (a)) |colc (a)〉 |0〉 |0〉 |0〉 .

3.2.4 value controlled phase shift

The value controlled phase shift gate is very similar to the value controlled rotation
gate which has been described in Subsection 3.2.1. For a normalized phase shift
φ ∈ [0, 1), encoded in a quantum register of length n and an ancilla qubit, it is
defined as

Pτ : |φ〉 |0〉 → exp (2πiτφ) |φ〉 |0〉 . (3.27)
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For simplicity, we set τ = 1. The implementation of this operator can be realized as
follows. The operator acting on the ancilla qubit, in dependence on the phase φ, is
given as

P (φ) =

(
exp (2πiφ) 0

0 exp (−2πiφ)

)
. (3.28)

Using the binary encoding of the normalized phase shift φ = 0.φ1φ2 . . . φn =∑n
k=1 2−kφk, we can define consecutive shift operators Sk as follows

Sk =

(
exp

(
2πi2−k

)
0

0 exp
(
−2πi2−k

)) . (3.29)

This allows us to rewrite the phase shift operator P (φ) as P (φ) =
∏n

k=1 (Sk)
φk . The

full quantum circuit can be seen in Figure 3.3.
Sometimes an additional qubit in the first register is used to represent the sign of
the angle φ. If such an encoding is used, we need to add two CNOT gates to the
quantum circuit. These gates are depending on the sign qubit and flip the ancilla
qubit depending on it. They have to be distributed to the beginning and the end of
the circuit. The idea behind the flip of the ancilla qubit is that P acting on the |1〉
state results in a negative phase shift.

• · · ·
• · · ·

|φ〉 • · · · |φ〉...
...· · · •

|0〉 S1 S2 S3 · · · Sn e2πiφ |0〉




Figure 3.3: Value controlled phase shift: The figure gives the quantum circuit to realize the
value controlled phase shift on n qubits. A quantum register holding the phase
φ ∈ [0, 1) controls the shift of the ancilla qubit.

3.2.5 quantum random walk

The quantum random walk operator Hrw is a central part for the Hamiltonian
simulation subroutine. The name is derived from the quantum walk operator as
described in [26]. The operator acts on three registers, the first two registers need to
have the same length n and the other one is of arbitrary length. Its action is defined
as swapping the first two registers and being diagonal in the third register

Hrw |a〉 |b〉 |y〉 = y |b〉 |a〉 |y〉 . (3.30)

This operator can be rewritten in terms of the single registers as

Hrw =

(
n⊗
j=1

Sj,j

)
⊗
∑
y

y |y〉 〈y| (3.31)
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with swap operator Sj,l that swaps the qubits j of the first and l of the second register.
For the Hamiltonian simulation subroutine (see Subsection 3.2.3) the quantum
random walk time evolution exp (−iτHrw) is needed. The action is given as

exp (−iτHrw) |a〉 |b〉 |y〉 = cos (yτ) |a〉 |b〉 |y〉 − i sin (yτ) |b〉 |a〉 |y〉 . (3.32)

The quantum circuit to accomplish this action and a short example can be found in
the Appendix A.5. Further information can be found in References [4, 26].

3.2.6 state preparation

The first subroutine invoked, is the state preparation. Whereas preparing a state like
1√
T

∑T−1
τ=0 |τ〉 is a simple task, preparing one proportional to the right hand side is

challenging.
The first task can be solved easily, since it only requires applying the Hadamard gate
H separately to all qubits in the first register, like in Equation 2.1. In comparison
further work is needed to prepare the second register. The task is to prepare a
quantum register proportional to a complex vector b with entries (b)j = bj as

1

Cb

N−1∑
j=0

bj |j〉 (3.33)

with a normalization constant Cb. Using the procedure as proposed in article [27]
by Grover et al., which was originally referenced by Harrow et al. in article [1], is
generally not possible. It requires the possibility to efficiently compute partial sums
of the vector entries, like

∑J2
j=J1
|bj|2. A more general preparation scheme has been

proposed by Clader et al. in Reference [4]. This preparation scheme is used here,
since it is based on the same oracle formalism as the matrix oracle.
Instead of preparing the state above, a more elaborate construction, using a garbage
state and an ancilla qubit, is used. The state to prepare is given as

cos (φb) |b̃〉 |0〉+ sin (φb) |b〉 |1〉 . (3.34)

The garbage state is denoted as |b̃〉 and the angle φb is needed for normalization.
Initially we prepare a state given as

1√
N

N−1∑
j=0

|j〉 |0〉 |0〉 |0〉 (3.35)

with register two and three of length t, able to hold the amplitude αj = abs (bj) and
argument φj = 1

2π
arg (bj) of the vector entries. The vector oracle for the right hand

side b is controlled by the first register which encodes the row index. Querying it
encodes the amplitude and argument in the second and third register, resulting in
the following state

1√
N

N−1∑
j=0

|j〉 |αj〉 |φj〉 |0〉 . (3.36)
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In the next step, the value controlled phase shift gate, as described in Subsection 3.2.4
is used to apply a phase shift to the ancilla qubit in the fourth register, proportional
to the argument encoded in register three. The resulting intermediate state is given
as

1√
N

N−1∑
j=0

eiφj |j〉 |αj〉 |φj〉 |0〉 . (3.37)

As a last step, we use the value controlled rotation gate as described in Subsection
3.2.1. This rotates the ancilla qubit proportional to the amplitude encoded in the
second quantum register. To ensure normalization, a constant needs to be used

1√
N

N−1∑
j=0

|j〉 |αj〉 |φj〉
(√

1− C2
bα

2
j |0〉+ Cbαj |1〉

)
. (3.38)

To bring this equation into the proposed form in Equation 3.34, we need to define the
angle φb as sin2 (φb) =

C2
b

N

∑N−1
j=0 α2

j . For the right hand side state and the garbage
state, we get the following final result

|b〉 =
1√

N sin (φb)

N−1∑
j=0

Cbαje
iφj |j〉 , (3.39)

|b̃〉 =
1√

N cos (φb)

N−1∑
j=0

√
1− C2

bα
2
je
iφj |j〉 . (3.40)

Since the Value Controlled Phase Shift gate and the Value Controlled Rotation gate
only consume n = log2 (N) operations, an efficient state preparation is possible. But
it requires the usage of a black box oracle to encode the amplitude and argument of
the vectors values into the quantum registers. The properties of such an oracle will
be discussed in one of the next paragraphs.
By changing the input state, the output state of the algorithm has also been altered.
The new output or final state of the quantum linear system algorithm will be given
as

cos (φx) |x̃〉 |0〉+ sin (φx) |x〉 |1〉 (3.41)

with φx a normalization angle and |x̃〉 a garbage state.

3.3 discussion

In this last section three different topics will be discussed, beginning with the
algorithmic complexity. Especially, we will compare the complexity of classical
algorithms to the complexity of the QLS algorithm. The next topic deals with
different challenges on an algorithmic level. Most of them will be solved by tricks or
additional subroutines. This chapter will be sum up at the end.
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3.3.1 complexity

Before discussing the computational complexity of the quantum linear system algo-
rithm, we need to consider the computational complexity of solving linear systems in
general.

classical complexity The simplest classical algorithm to solve a general
system of linear equations, is the Gaussian elimination algorithm. In the worst case,
it performs O (N3) operations on the matrix and right hand side vector [28, p. 11].
Thus, it uses only polynomial runtime. Thereby, we can conclude that solving a
system of linear equations is a problem in the complexity class P.
Instead of solving the system of linear equations directly, like the Gaussian elimination
algorithm does, it is possible to refine an approximate solution iteratively. The
collection of Krylow subspace methods is such a class of recent iterative algorithms.
The most important operation in sparse iterative solvers is sparse matrix vector
multiplication (SpMV). For a sparse matrix with at most s entries per row and N rows
we have a runtime cost for this operation of O (sN). This shows that the runtime
cost of a sparse iterative solver is at least linear in the number of rows. Another
important measure in the context of Krylow subspace methods is the condition
number of the matrix κ (A) = ‖A‖‖A−1‖, since it affects the convergence of the
algorithm [23, p. 41ff, p. 215ff]. As an example, the conjugate gradient method has a
runtime complexity of O (

√
κ log (ε) sN) with ε being the approximation error.

qls complexity The computational complexity of the QLS algorithm can be
split in terms of runtime and space complexity. Both quantities will be discussed
below but we start with the space complexity.
Directly related to the size of the quantum registers is the space complexity. To store
a right hand side vector of length N , we need a quantum register of length log2 (N).
Additionally, we need a quantum register to store the matrix eigenvalues. The length
of this register is determined by the accuracy εT and the number of bits required
to encode the eigenvalues. Therefore, it can be estimated as κ log (1/εT ) [7, p. 224].
The full space complexity is given as

OQLSA−space = O (log (N) + κ log (1/εT )) . (3.42)

The runtime complexity of the quantum linear system algorithm is dominated by the
Hamiltonian simulation subroutine since all other subroutines have lower complexity.
Its complexity is given as O (log(N)m2κ2/ε) withm the number of submatrices which
is roughly equal to the number of entries per row s. The computational complexity
will be explained using a small argument. As can be seen from Figure A.1 the
scaling is linear in the number of qubits and therefore logarithmic in the matrix size.
Since the quantum register to hold the eigenvalues and the simulation time t0 are
proportional to the condition number the scaling is quadratic. Additionally, we have
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a quadratic scaling in the number of submatrices caused by the Suzuki higher order
integrators. This results in a total runtime complexity for the QLS algorithm of

OQLS−time = O
(
log(N)m2κ2/ε

)
. (3.43)

Compared to the best classical methods, this is an exponential speedup in the matrix
dimension. But in terms of the condition number, the scaling is worse. In most
classical algorithms the scaling is proportional to the square-root of the condition
number. This shows that the exponential speedup over classical algorithms is only
given for problems with κ ∼ O (log (N)).

3.3.2 challenges

In the last sections we have seen that the quantum linear system algorithm is a
high level algorithm. This results in a bunch of details and pitfalls that need to be
considered. Some of them are challenging and some of them need improvement. The
next paragraphs will give answers to these questions.

solution readout Similar to the state preparation problem, which describes
the problem of preparing a quantum state proportional to a classical vector, is the
solution readout problem. At the end of the quantum linear system algorithm, we
have obtained a quantum state that is proportional to the linear systems solution.
The entries of the solution vector are encoded as the amplitudes of the quantum
mechanical superposition. Since measuring the quantum state collapses the super-
position to a specific realization, it is not possible to obtain all amplitudes with a
single measurement.
Using the method of statistical sampling, it is possible to obtain the amplitudes
within a certain accuracy. But this method is strongly not desirable, since it requires
at least O (N) samples, demolishing the exponential speedup of the quantum linear
system algorithm. Additionally a sufficient number of measurements can be quite
high, since vector entries with a small amplitude tend to be seldomly realized.
A more robust approach to solve the solution readout requires a special problem
form. If we are not interested in the full solution but in a property of the solution,
like the overlap with another complex vector, the solution readout problem can be
solved.
Assuming, we are interested in the overlap of the solution vector |x〉 with another
vector |R〉. Corresponding to the state preparation for the quantum linear system
algorithm, a state representing the vector |R〉 is prepared

cos (φR) |R̃〉 |0〉+ cos (φR) |R〉 |1〉 . (3.44)

This preparation is based on the assumption that access to a quantum oracle for
the vector R, in the sense of the following paragraph, is granted. A more detailed
discussion about the solution readout can be found in the supplementary material of
Reference [4].
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quantum oracles An important part of the state preparation and the Hamil-
tonian simulation subroutine is the quantum oracle formalism. This formalism is
used to describe the input of classical data into a quantum register.
Generally we can describe a quantum oracle as a black box quantum gate. Meaning
that no statement about the inner workings can be made. Therefore, no estimate
about runtime and space complexity of the oracle is given. To make the quantum
oracle efficient, its runtime and space complexity should be negligible compared to
the full algorithm. It acts on two groups of qubits which are called input and output
registers. Controlled by the data encoded in the first group, it encodes data into
the other one. In the QLS algorithm quantum oracles are used to prepare registers
holding the classical argument and amplitude of the vector and matrix entries.
The quantum oracle formalism may offer an explanation for the possible advantage
of quantum algorithms over their classical counterparts. This is due to the fact
that the quantum oracle can be queried with a superposition of all possible input
states. Consequently, all possible output states are obtained with a single oracle call.
Allowing for a parallel data input into the quantum registers.
Even though such an abstract definition is useful to describe the desired action, it
is useless in targeting an explicit realization of such an oracle. A possible approach
might be to use lookup tables (LUTs). A search is carried out on the classical data,
controlled by the data in the first register. A classical algorithm to fulfill this task
requires at least linear time in the number of elements. Even quantum algorithms,
like Grover’s search algorithm [29], have a computational complexity of O(

√
N).

Therefore, the approach of search in a lookup table is not desirable since it increases
the runtime significantly.
The only possibility left, is to do a on-the-fly computation. Instead of using a lookup
table the information must be computed when needed. Thus, a quantum circuit is
needed to calculate the data and encode it in the output register. This requires a
special problem form, since the classical data must be given analytically. For the
QLS algorithm it is required to have an explicit formula for the calculation of matrix
values. The whole classical calculation of the matrix values must then be emulated
on the quantum computer.
It is important to keep in mind that for other quantum algorithms the lookup table
approach might be well suited. If their computational complexity is much higher,
the lookup table approach does not add much overhead to the quantum algorithm.

determinism The last step makes the algorithm non-deterministic, which is
not desirable in the sense of a reliable tool for solving systems of linear equations.
This problem is due to the measurement subroutine. The rotated ancilla qubit
is measured. It must yield the |1〉 state, to leave the other registers in a state
proportional to the solution of the linear system. Thus, it is possible that repetitions
of the algorithms yield no successful measurement. Therefore, it is desireable to
change the algorithm such that this measurement subroutine is exchanged by another
more reliable technique. Clader et. al solve this problem by using the quantum
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amplitude amplification (QAA) algorithm and the quantum amplitude estimation
(QAE) algorithm. A detailed action of these two quantum algorithms can be seen in
the supplementary material to Article [4].

3.3.3 summary

In the last chapter we discussed the quantum linear system (QLS) algorithm which
enables us to solve systems of linear equations on a quantum computer. After dealing
with the main algorithm, we focused on the different sub algorithms involved. Most
importantly we discussed the subroutine Hamiltonian simulation. A part of this
subroutine will play a significant role in the Chapter 5. Additionally, we discussed
the algorithmic complexity of the QLS algorithm and identified challenges when using
this algorithm for an application.
The next chapter will be used to discuss a possible application for the QLS algorithm,
the calculation of radar cross section (RCS) using the finite element method (FEM).
To get a basic understanding of the application we start with the study of radar
cross section. Afterwards, in Chapter 5 we will discuss, how to apply the quantum
linear system algorithm to the calculation of radar cross sections.
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4
RADAR CROSS SECT IONS

Developed in the beginning of the 20th century, radar has become one of the most
important fundamentals for modern aviation and is nowadays mainly used for airspace
monitoring. But also new applications, like obstacle detection for autonomous vehicles,
are arising. Based on electromagnetic scattering, it provides a simple way to detect
planes in the air. When building a plane, it is essential to consider its behavior
under radar. The most important single quantity to keep in mind is the radar cross
section (RCS). Roughly speaking, it is the ratio of scattered to incoming intensity
weighted by the square of the distance between object and radar. Therefore, it is
measured as an area. In the field of civil aviation the radar cross section of planes
only plays a minor role. On the other hand, military aviation tries to minimize the
radar cross section to make aircraft undetectable and hidden from the enemy.
Since the radar cross section of an aircraft is such an important feature, it should be
considered during the development process. Today’s development processes involve
virtual prototyping. Thus, the possibility is needed to calculate the radar cross section
of a possible future aircraft. Additionally, doing a measurement is often very cost-
intensive and therefore not desirable. The procedure of virtual prototyping has the
advantage that features can be optimized very easily and characteristics like the
radar cross section can be simply recalculated.
In this chapter we want to study the radar cross section of aircraft. We focus on its
calculation using the finite element method (FEM), keeping in mind its usage as an
application for the quantum linear system algorithm. To get a basic understanding of
the radar cross section, we will provide the theoretical background for its calculation,
starting with Maxwell’s equations, continuing with the variational formulation and
ending with the numerical solution. This journey will be mainly based on the book
“The Finite Element Method in Electromagnetics“ by Jian-Ming Jin [30]. At the
end of this chapter we will show an example, obtained with classical linear algebra
methods. In the next chapter we discuss how to calculate radar cross sections with
the quantum linear system algorithm.

4.1 definition

The starting point is the definition of the radar cross section. Before giving the
explicit definition, we need to specify the geometric setup (Figure 4.1). For simplicity
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we will restrict the calculations to two dimensions. We use a mono static radar which
consist of a single sender and receiver at the same place. The sender positioned at
r0 = (r0, θ0) in polar coordinates emits an electromagnetic wave that travels through
the space (homogenous medium like air) to the object located around (0, 0) and gets
reflected. The reflected wave travels back to the receiver positioned at r0 and can
be detected. We want to denote the scattered field with Esc(r) and the incoming

y

xV

r0

Figure 4.1: Geometric setup with object: The figure shows the object V positioned at (0, 0)
and the radar positioned at r0.

field as Einc(r). The radar cross section [31, p.33] can now be defined as the ratio of
scattered and incoming intensity in the limit of infinite distance

σ (θ0) = lim
r0→∞

4πr2
0

|Esc(r0, θ0)|2

|Einc(r0, θ0)|2
. (4.1)

In the calculation of the radar cross section we will omit the limiting process of the
position r0 to obtain finitely quantities. This is motivated by the fact that we have
to deal with a fixed observer positioned far away from the object.
As for all imaging procedures we need to consider the wavelength of the electromag-
netic field as an additional parameter for the radar cross section. When considering
the radar cross section as a function of the wavelength (see Figure 4.2) we can
distinguish three cases [31, p. 33]. Let a denote a typical size of the object, we
define the Rayleigh region as 2πa/λ� 1. On the other hand we define the optical
region with 2πa/λ� 1 and in between we can observe the resonance or Mie region.
The Rayleigh region is of high interest to radar engineers since interactions with
rain and clouds are minimized. But for radar imaging the optical region is more
convenient. Therefore, typical aircraft radars operate in the so called L, S, C,X,K
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band which range from 0.75× 10−2 m to 30× 10−2 m [31, p. 8]. In the definition
above (see Equation 4.1) we have left out the wavelength since we want to fix it to a
finite value for the whole calculation.

100 101
2 a

10 2

10 1

100

2
a

Figure 4.2: Wavelength dependence of the radar cross section: The figure shows the wave-
length dependence of the radar cross section. The target is a sphere of radius a,
thus the RCS can be calculated analytically. Three regions can be distinguished,
the Rayleigh region for 2πa/λ � 1, the Mie Region for 2πa/λ ∼ 1 and the
optical region for 2πa/λ� 1.

4.2 rcs calculation

To calculate the radar cross section we need a description for the electromagnetic field
around the object. There are many different methods to obtain such a description
and in result calculate the radar cross section of a future aircraft. Two widely used
methods which will not be examined any further in here are the physical optical
method [32] and the method of moments [33]. We want to consider a method closely
related to the method of moments, namely the finite element method since it matches
the desired needs. Each of the mentioned methods has their specific advantages and
disadvantages. Therefore, the insufficiencies of the chosen method have to be kept in
mind.

4.2.1 differential formulation

The starting point to obtain a mathematical description of the electromagnetic scatter-
ing process are the differential equations governing the behaviour of electromagnetic
waves.
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maxwell equations Maxwell’s equations are the fundamental set of equa-
tions to describe electromagnetic phenomena [34]. In a material, e.g. air, they are
given as

∇ ·B (r, t) = 0, (4.2)

∇×E (r, t) =
∂

∂t
B (r, t) , (4.3)

∇ ·D (r, t) = ρ (r, t) , (4.4)

∇×H (r, t) = j (r, t) +
∂

∂t
D (r, t) , (4.5)

with the materials polarization P and magnetization M .

P (r, t) = D (r, t)− ε0E (r, t) = (εr − 1) ε0E (r, t) (4.6)

M (r, t) =
1

µ0

B (r, t)−H (r, t) =
1

µ0

(
1− 1

µr

)
B (r, t)

The parameters εr, µr are the electric and magnetic permittivity of the surrounding
material, e.g. air. We want to assume the absence of electromagnetic sources such
that ρ (r, t) = 0 and j (r, t) = 0.

helmholtz equation To use a time-harmonic ansatz, we need to restrict
ourselves to cases when the scattering does not change the frequency of the elec-
tromagnetic waves. We choose the following ansatz for the electric and magnetic
field

E (r, t) = E (r) e−iωt, (4.7)

B (r, t) = B (r) e−iωt.

Inserting this ansatz into Equations 4.3 and 4.5 we get

∇×E (r) = −iωB (r) , (4.8)
1

µrµ0

∇×B (r) = −εrε0iωE (r) . (4.9)

Combining both equations results in the Helmholtz equation for the electric field

∇×∇×E (r)− εrµrk2E (r) = 0 (4.10)

with wavevector k = ω
√
ε0µ0. The rotation of Equation 4.5 can then be calculated

and Equation 4.3 can be inserted to obtain a Helmholtz equation for the magnetic
field. We can conclude that in the absence of field sources within the time-harmonic
ansatz both descriptions are equivalent.

boundary conditions The electric field E (r) is the sum of the incoming
Einc (r) and scattered Esc (r) field. Their interaction will be induced by a boundary
condition on the surface of the object V . For simplicity an object made of a perfectly
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conducting material is considered. Thus, the tangential field on the surface is vanishing.
In formulas we obtain

n×E (r) = 0⇒ n×Esc (r) = −n×Einc (r) at ∂V (4.11)

with n the normal-vector orthogonal to the surface. In principle we can now calculate
the radar cross section of an object V by setting the parameters (wavelength, incoming
field, etc.) and solving the Helmholtz equation to obtain the electric field at the point
of observation. Then we can relate the absolute value of scattered and incoming field
to obtain the radar cross section.

4.2.2 variational formulation

Calculating the scattered field with analytical methods becomes impossible when
analyzing arbitrarily shaped objects V . But it is still possible to obtain a numerical
solutions for such problems. Therefore we use a variational formulation and the finite
element method. The idea is to write the differential equation as an approximation
problem and solve this problem on a discretised version of the geometry.

computational domain Before introducing the variational formulation, we
enclose the object V with a box, the computational domain Ω. We require the
computational domain to be Lipschitz continuous and to fully surround the object.
The boundary of the computational domain shall be split into the outer boundary ∂Ω

and the inner boundary between the object of interest ∂V . We need to pose conditions
at the outer boundary ∂Ω since it has to be fairly distant (see [30, p. 283]) from the
position of observation r0. Furthermore we impose absorbing boundary conditions at
it to allow a free flow of the electromagnetic field out of this computational domain.
This behaviour is approximated up to first order with the following formula

n× (∇×E (r)) ≈ −ikn× (n×E (r)) at ∂Ω. (4.12)

The intention behind this additional geometric object is to solve the Helmholtz
Equation 4.10 only within the computational domain. The motivation is the assump-
tion that most interactions will be near the object V . Therefore, we can restrict
ourselves to a domain near the object and extrapolate the electromagnetic field to
the position of observation. To extrapolate the electromagnetic field we use a far
field approximation, given as

Esc(r0) ≈ e−ikr0

4πr0

∫
∂Ω

(ikr̂0 ×Esc(r)× n (4.13)

−r̂0 × r̂0 × n×∇×Esc(r)) eikr̂0rdS

with r̂0 the unit vector in direction of r0 and its norm r0 = |r0| [30, p. 27].
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general motivation Before deriving a variational formulation for the Helmholtz
Equation 4.10 we want to motivate this approach. In general a differential equation
can be formulated as finding a function φ that solves the relation Lφ = f with the
differential operator L and an inhomogeneity f . Instead of finding the true solution
φ we accept an approximate solution φ̃. To find such an approximate solution we use
Galerkin’s method [35, p. 15]. A good approximate solution minimizes the weighted
residual, defined as R =

∫
ψrdx for ψ a so called test function and r = Lφ̃−f 6= 0 the

residual of the approximate solution. The best minimization is such that R = 0 and
thus

∫
ψLφ̃dx =

∫
ψfdx. This formulation is called weak formulation of the differen-

tial equation. The lemma of Lax-Milgram guarantees, under specific circumstances,
that the weak solution exists and is unique [35, p. 83].

variational helmholtz equation Now we want to obtain a weak formu-
lation for the Helmholtz equation. Hence, we define an appropriate function space and
an inner product to measure the residuals. The function space for the test functions
will be given as

H (curl,Ω) =
{
T ∈

(
L2 (Ω)

)3 with ∇× T ∈
(
L2 (Ω)

)3
}

(4.14)

with L2 (Ω) the function space of square integrable functions [11, p. 62]. In the
following, we use the standard inner product on a complex function space [11, p.
132]. It is given as

〈·, ·〉 : H (curl,Ω)×H (curl,Ω)→ C (4.15)

(T ,E) 7→ 〈T ,E〉 =

∫
Ω

T †EdV.

Using these two definitions, we can obtain a variational formulation for the Helmholtz
equation∫

Ω

T † (∇×∇×E)− εrµrk2T †EdV =

∫
Ω

T †0dV = 0 (4.16)

for T ,E ∈H (curl,Ω).

boundary conditions To make this description complete, we need to add
the boundary conditions (see Equation 4.11 & 4.12) to this formulation. Using Green’s
first Theorem A.12 we can derive the following form for the first part∫

Ω

T † (∇×∇×E) dV =

∫
Ω

(∇× T )† (∇×E) dV (4.17)

−
∫
∂Ω

(T × (∇×E))†ndS

−
∫
∂V

(T × (∇×E))†ndS.
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On the outer boundary ∂Ω we implement the boundary conditions (see Equation
4.12) with the help of Equation A.11∫

∂Ω

(T × (∇×E))†ndS = −
∫
∂Ω

(n× (∇×E))† T dS (4.18)

≈ ik

∫
∂Ω

(T × (n×E))†ndS

= ik

∫
∂Ω

(n× T )† (n×E) dS.

The second boundary condition is incorporated into the function space. Take a look
at Reference [36, p. 13] for all mathematical details. Therefore, we define a new
function space as

H0 (curl,Ω) = {T ∈H (curl,Ω) with n× T = 0 at ∂V } . (4.19)

full variational formulation To obtain the full variational formulation,
we define a functional F that is given as

F (T ,E) =

∫
Ω

(∇× T )† (∇×E)− εrµrk2T †EdV (4.20)

− ik
∫
∂Ω

(n× T )† (n×E) dS.

Using this new functional we can write down the full variational formulation. It is
given as

Find E ∈H0 (curl,Ω) with E (r) = Esc (r) +Einc (r) such that (4.21)

F (T ,E) = 0 for all T ∈H0 (curl,Ω) .

To obtain the scattered field Esc (r) from this formulation we use the relation
E (r) = Esc (r) + Einc (r) which will additionally incorporate the incoming field
Einc (r). This results in

Find E ∈H0 (curl,Ω) with E (r) = Esc (r) +Einc (r) such that (4.22)

F (T ,Esc) = −F (T ,Einc) for all T ∈H0 (curl,Ω) .

4.2.3 numerical solution

The next step towards solving the electromagnetic scattering problem is to find a
solution to the variational formulation of the Helmholtz equation, obtained in the
last section.

general motivation Gernerally speaking, solving the variational formulation
of a differential equation directly with computational methods is not possible since
the function space is infinite dimensional. But we can search for a solution in a
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finite subspace. Therefore, we want to interpolate the approximate solution φ̃ as
φ̃ =

∑
l clvl with vl so called basis functions. Additionally, we choose the set of test

functions to be equal to the set of basis functions vj. In total we get the following
relation for every j

Rj =

∫ (
vj(x)L

∑
l

clvl(x)− vj(x)f(x)

)
dx = 0 (4.23)

⇒
∑
l

cl

∫
vj(x)Lvl(x)dx =

∫
vj(x)f(x)dx. (4.24)

It can be written in matrix form as Ax = b with (A)j,l =
∫
vj(x)Lvl(x)dx, (x)j = cj

and (b)j =
∫
vj(x)f(x)dx.

finite element method Similarly, we want to proceed for the full variational
formulation of the Helmholtz Equation 4.22. But we choose a set of basis functions
with specific properties. To construct these basis functions we divide the domain Ω

into small subdomains or elements Ωj. The elements do not overlap and their union
is the whole domain Ω =

⋃
j∈J Ωj with J being the element index set. Obviously we

want these elements to be mathematically well-behaved like undistorted triangles
or squares [35, p. 32ff]. This division of the geometry is often called geometry
discretization. The boundary of two elements is called edge Ej and at each edge we
define a vector valued basis functionN j . The total set of basis functions is denoted as
N =

⋃
l∈LN l with L the index set of basis functions or edges. These basis functions

have to be mathematically well-behaved as well. The collection of basis function and
region is called finite element [35, p. 19f]. For the case of electromagnetic fields the
class of so called Nédélec functions is a good choice [35, p. 28f]. These basis functions
are highly local, e.g. for degree one we have supp (N l) =

{⋃
j∈J Ωj|El ∩ Ωj 6= ∅

}
.

This has the advantage that many integrals evaluate to zero since there is no overlap
between non-neighbouring basis functions. We can rewrite the scattered electric field
in terms of the basis functions as

Esc =
∑
l∈L

(x)lN l with x ∈ CL. (4.25)

Additionally, we restrict the set of test functions to a discrete subset of the function
space. The simplest choice for such a subspace is to use the same subspace as for the
solution. Thus, we use the Nédélec functions as basis and test functions. Inserting
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this interpolation and the division into subdomains into the variational formulation,
yields

(A)ll′ =

∫
Ω

(∇×N l) (∇×N l′)− εrµrk2N lN l′dV (4.26)

− ik
∫
∂Ω

(n×N l) (n×N l′) dS

=
∑
j∈J

∫
Ωj

(∇×N l) (∇×N l′)− εrµrk2N lN l′dV

− ik
∫
∂Ω∩∂Ωj

(n×N l) (n×N l′) dS.

Inside this step we have converted the variational formulation to a system of linear
equations that is to find x such that∑

l′

(A)ll′ (x)l′ = −F (N l,Einc) for all l ∈ L (4.27)

⇒ Ax = b with (b)l = −F (N l,Einc) .

The choice of highly local basis functions was motivated by the fact that the resulting
linear system is sparse, i.e. most entries in the matrix vanish. As already mentioned
this is due to the fact that many integrals, part of the variational formulation,
evaluate to zero. Such large scale sparse linear systems are well suited for the class
iterative solvers, especially for Krylow subspace methods (see Reference [23, p. 171ff]
and Page 26).

far field approximation The scattering problem inside the computational
domain Ω is now solved. To obtain the electric field at point of observation we use a
far field approximation. Inserting the Ansatz 4.25, we can rewrite the Equation 4.13
into

Esc (r0) ≈
∑
l

(x)lN
′
l (r0) . (4.28)

The far field extrapolation of the basis functions N ′l (r0) is given as

N ′l (r0) =
e−ikr0

4πr0

∫
∂Ω

(ikr̂0 ×N l(r)× n (4.29)

−r̂0 × r̂0 × n×∇×N l(r)) eikr̂0rdS.

The resulting radar cross section can then be calculated as

σ (θ0) ≈ 4πr2
0

|
∑

l (x)lN
′
l (r0, θ0)|2

|Einc (r0, θ0)|2
(4.30)
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4.3 example simulation

To validate the theoretical concept of this section we want to take a look at a small
example calculation. Hence, we have used the software package fenics [37–46] to
implement the finite element method with first order Nédélec elements on an example
geometry. The observed object is a simple representation of an aircraft (see Figure
4.3). To model the geometry of the aircraft and discretize the computational domain
with triangles we use gmsh [47].
As an incoming electric field Einc we have chosen a simple circular wave. Before we

y

x

Ω

V

r0

Figure 4.3: Example geometric setup: The figure shows the geometric setup with the
object V positioned at (0, 0) inside the computational domain Ω and the radar
positioned at r0.

can actually define it, we need to take a look at the polarisation

p (r) =
1

|r − r0|

(
(r − r0)2

−(r − r0)1

)
with |p(r0)|2 = 1. (4.31)

Now we can specify the incoming field as

Einc(r) = E0p (r) e−ik(r−r0) (4.32)

with wave-vector k = −k
(
r̂ − r0

)
= −2πλ

(
r̂ − r0

)
and r̂ indicating the unit

vector in direction r. The resulting complex linear system is solved by a Krylow
subspace method, the generalized minimal residual (GMRES) solver. Choosing the
typical diameter of the elements in the finite element method is a difficult task. On
the one hand larger elements reduce the computational effort, on the other hand
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smaller subdomains tend to reduce the approximation error. To get good results, we
choose the size such that it is much smaller than the wavelength. All other chosen
parameters can be read out of the following table.

h [m] E0 [V/m] εr − 1 [A s/(V m)] µr − 1
[
N/A2

]
r0 [m]

5× 10−2 1.94× 104 5.89× 10−4 3.7× 10−7 1× 104

Table 4.1: Example simulation parameters: The table shows the parameters used for the
example simulation.

With the solution of the linear system we can then calculate the radar cross section
using the far-field approximation as

σ (θ0) =
4πr2

0

E2
0

|Esc (r0, θ0)|2. (4.33)

To obtain the full radar cross section we repeatedly calculate it with different angles
θ0 resulting in the following figures. One shows the absolute value of the scattered
field inside the computational domain and the other one the calculated radar cross
section for different angles of θ0. The plot consists of 560 discrete values for θ0 equally
spaced in the interval [0, 2π].

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5
2.0

2.5

Figure 4.4: Scattered field intensity and radar cross section for a plane-like target:
Left : The left figure shows the scattered electric field intensity inside the com-
putational domain for a plane-like target. An incidence angle of θ = 0 and a
wavelength of λ = 7× 10−1 m was used.
Right : The right figure shows the radar cross section of the geometric shape on
the left. An incidence angle of θ ∈ [0, 2π] and a wavelength of λ = 70 m was
used. The wavelengths are distinct for a better visualization of the involved
phenomena.
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4.4 summary

In the last chapter the calculation of radar cross section using the method of
finite elements was discussed. Starting with the definition of radar cross section
and Maxwell’s equations, we derived a differential formulation for the problem.
Afterwards, we used a variational formulation to obtain a numerical solution. Finally,
an example for such a calculation was given. The next chapter will be used to discuss
the calculation of radar cross section using the quantum linear system algorithm.
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5
RCS CALCULATION US ING THE QLS ALGORITHM

As outlined in Subsection 2.2.3, finding applications for quantum algorithms can
be a difficult task. Whereas the quantum linear system algorithm seems to solve
an elementary problem, it requires a special problem setting to be applicable. A
suitable application allows to circumvent or fix the challenges of the used algorithm,
by generating only a small overhead in computational complexity.
The calculation of radar cross sections using the finite element method as described
in the last chapter is an application that goes well with the quantum linear system
algorithm. On the one hand it requires the solution of a large sparse linear system
but more importantly this application does not require the full solution vector. Only
the overlap of the solution with another vector as shown in Equation 4.30 needs to be
calculated. This becomes possible using the method described on Page 27. However
it is not straightforward to apply the quantum algorithm to this problem. This is
due to the quantum oracle formalism used to input the classical matrix data.
In this chapter we want to work out the implementation details for the matrix oracle.
To estimate the hardware requirements, we focus on the complexity cost in terms
of quantum gates. We start with a short recapitulation about quantum oracles,
especially the matrix oracle. It is followed by a section about its possible classical
implementation, focusing on the restrictions for the finite element method. In the next
step, we estimate the classical cost in terms of elementary operations. Afterwards, we
define metrics to estimate the quantum circuit cost. Using these metrics, we estimate
the resulting cost in terms of quantum resources for our example implementation.
This estimation will be based on a classical to quantum cost translation. The chapter
will be finished by discussing the results.

5.1 quantum oracles

This chapter starts with a recapitulation about quantum oracles. The quantum oracle
has been introduced in the context of Hamiltonian simulation, see Subsection 3.2.3.
Furthermore, we have pointed out specific properties of quantum oracles in general
(see Page 28). In the quantum linear system algorithm quantum oracles are needed
to prepare an input state corresponding to the right hand side of the linear system
(see Page 24), the state preparation for the state overlap, i.e. readout, (see Page 27)
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and for the matrix input (see Page 21). In the following, we focus on the matrix
oracle.

matrix oracle The matrix oracle is used to encode the classical matrix data
into quantum registers. Since we require both argument and amplitude of the matrix
values, two oracles need to be defined. Formally their action is given as follows

Um
c |a〉 |b〉 |y〉 |z〉 = |a〉 |b⊕ colc (a)〉 |y ⊕ ampc (a)〉 |z〉 (5.1)

Up
c |a〉 |b〉 |y〉 |z〉 = |a〉 |b⊕ colc (a)〉 |y〉 |z ⊕ argc (a)〉 . (5.2)

The oracle acts on four registers, each encoding a specific value. Whereas the first
register is the input register, i.e. it controls the oracle’s action, the other registers are
used for output. The first register holds the row a and the second holds the column
colc (a). The third and fourth register hold the amplitude ampc (a) and argument
argc (a) of the matrix values. The first two registers use an integer encoding, the
last two need to hold real values. This can be done using either fixed point or
floating point encoding (see Page 8). The index c indicates the submatrix. Since all
submatrices are one sparse, the column associated to a row in a submatrix is unique.
Consequently, the amplitude and the argument are also unique. The oracle can be
queried by a superposition, allowing for a parallel input of the matrix values.

5.2 classical resource estimation

As already discussed on Page 28, an efficient implementation of the matrix oracle for
the QLS algorithm requires on-the-fly computation of the matrix values. Therefore,
the finite element method must be run on the quantum computer. Thus an efficient
implementation of the finite element method is needed, which computes matrix values
when required. This is comparable to a matrix free version such that the full matrix
is never explicitly calculated.
The following subsection will be used to describe the construction of a classical
implementation for the matrix oracle. Starting the query by a specific row and
submatrix, the column and argument or amplitude of the matrix value are calculated.

5.2.1 fem implementation

The implementation of the finite element method for radar cross section calculation
has been discussed in Section 4.2. Most importantly, we use the same computational
domain as described there but a different target, specified later on.

discretization As discussed in Section 4.2, the computational domain Ω

needs to be discretized. This is done by dividing it into subdomains Ωj . The structure
of this discretization or mesh has a high influence on the sparsity pattern of the
resulting matrix. In the case of an unstructered mesh, a lookup table (LUT) is used
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to relate the region’s index j to it’s geometric parameters, e.g. corner points of a
triangle. Using such a lookup table on the quantum computer is not efficient if it is
used for the matrix oracle (see Page 44). To get an analytical relation between region
index and its geometrical parameters, we need to use a structured mesh. Since we
ware doing a two dimensional analysis, the simplest mesh structure is made of squares
with edge length h. We use this mesh since a simple relation between region index
and geometrical parameters allows an efficient computation. Thus, fewer quantum
resources are needed.
The basis and test functions of choice to simulate electromagnetic phenomena are
Nédélec functions (see Subsection 4.2.2). These basis functions are defined per edge.
Therefore, we will not focus on the number of vertices in the mesh but on the number
of edges. Assuming the number of elements Ωj is H2, there are N = 2H2 + 2H

edges. The numbering scheme for the edges can be seen in Figure 5.1. There are nine
different bands in the matrix and since each central edge is surrounded by seven
other edges there are as many entries per matrix row. Given the row and the band,
it is possible to calculate the corresponding edge and thus the column of this matrix
entry.

k

k +H

k + 2H + 1

k +H + 1

k −H − 1

k − 2H − 1

k −H

k

k −H − 1

k − 1

k +H

k −H

k + 1

k +H + 1

Figure 5.1: Square Mesh: The figure shows the numbering scheme for neighbouring edges.
Left : horizontal central edge, Right : vertical central edge.

geometry The next step towards the calculation of the matrix entries is to
calculate the type of geometric object on which the edge is situated, i.e. target,
boundary or intermediate medium. The edge’s number, i.e. row or column, allows
for the calculation of the mathematical coordinates of the edge’s mid point. These
coordinates can then be used to identify the type of the geometric object. For example,
if the coordinates are equal to the boundary of the computational domain, the edge
should be attributed to this boundary. In this case the matrix values take a specific
form which will be discussed in the following. A problem occurring at this point is
to identify the object of interest. For this object a kind of geometry oracle must be
given. This oracle takes a geometric position as an input and returns either true or
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false if the edge is on the object or not. The problem of such an geometry oracle will
also be discussed in Section 5.4.

(
rcx, r

c
y

)

1

2

3 4

Figure 5.2: Numering scheme for edges: The figure shows the numbering scheme for edges
within an element. Additionally, the edge orientation is given.

matrix entries Using the defined discretization and the information about
the geometry type, the construction of the matrix entries can be started. Equation
4.27 describes the relation between basis functions, geometry and matrix values. It is
given as

(A)ll′ =
∑
j∈J

∫
Ωj

(∇×N l)
† (∇×N l′)− εrµrk2N †lN l′dV (5.3)

− ik
∫
∂Ω∩∂Ωj

(n×N l)
† (n×N l′) dS.

The index set J counts all subdomains Ωj and the index set N counts all edges. Thus
the matrix is of dimension N ×N , following the notation of Chapter 3. We define
the numbering and orientation scheme for the squares with edge length h and center
rc =

(
rcx, r

c
y

)
as in Figure 5.2. The Nédélec basis functions of first order are given as

N1 (r) =
1

h

(
rcy +

h

2
− ry

)
r̂x, N2 (r) =

1

h

(
ry − rcy +

h

2

)
r̂x, (5.4)

N3 (r) =
1

h

(
rcx +

h

2
− rx

)
r̂y, N4 (r) =

1

h

(
rx − rcx +

h

2

)
r̂y.

Since we have chosen highly local basis and test functions, we only get contributions
if edges j and j′ are connected to each other. The resulting integral simplifies to
the subregion that contains both edges. Thus, the sum in Equation 5.4 vanishes.
Accordingly, we can evaluate the integrals depending on the four types of edges El

46



rcs calculation using the qls algorithm

per subdomain Ωj. For simplicity we will set εr = µr := 1. The volume integrals are
given as∫

Ω

(∇×N l)
† (∇×N l′)− k2N †lN l′dV (5.5)

=


+1− k2h2

3
, El and El′ equal,

−1 + k2h2

12
, El and El′ parallel, e.g. 1 and 2,

−1, El and El′ do not follow up, e.g. 1 and 3,

+1, El and El′ do follow up, e.g. 1 and 4.

The surface integral over the absorbing boundary can be evaluated similarly. A
contribution is given if one edge or both are on the boundary. The values are

ik

∫
∂Ω

(n×N l)
† (n×N l′) dS =

ikh, El and El′ equal,

0, otherwise.
(5.6)

There is only one case left. This case occurs if one edge is on the object. Thus the
boundary condition of a perfect conducting surface needs to be considered. This
results in vanishing matrix values on the off diagonals and the diagonal value is set
to 1.

conclusion Using the described restrictions above, it is possible to implement
the finite element method such that each matrix value can be calculated analytically.
This only requires some fixed parameters like wavelength or edge length and the
explicit parameters row and submatrix. Additionally, it is possible to implement the
boundary conditions which also effects the right hand side quantum oracle.

5.2.2 classical operation cost

In classical computer science the metric for runtime is the number of floating point
operations. This is due to the fact that this type of operations is very resource
demanding, but they take an essential part of most algorithms. The two most
fundamental operations are addition and multiplication, both have comparable
runtime cost. In fact most modern computers are equipped with special units, making
the two operations equivalent in terms of runtime (FMA Instructions). Furthermore,
the runtime of more complex operations, e.g. division, can be estimated as a multiple
of the runtime of the fundamental operations. Hence, we use the number of floating
point operations as a metric to estimate the cost of the classical implementation.

test system To estimate the classical cost for the matrix oracle, we have imple-
mented the finite element method as described above in the programming language
python. As will be discussed in Section 5.4 and was also discussed before, an oracle for
the geometric features of the target is needed. As a simple example, we have chosen a
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target that has a circular shape. Thus, an analytical description is available and the
implementation of the geometry oracle, i.e. the computation of the edge’s location,
is efficient. The whole test system can be described as follows. The circular target
of diameter 8 m is centered inside a quadratic computational domain with outer
edge length 10 m. The computational domain is divided into square elements with
edge length 1 m. The incoming electromagnetic field has a wavevector of k = 1/2 m−1.

classical results We have counted the number of required floating point
operations and listed the most important of them in Table 5.1 and 5.2. To estimate
the impact of the geometry oracle cost, there are two tables, one excluding and one
including this cost. The resulting matrix is banded and has nine different bands. Since
there is the possibility of implementation dependent differences, all nine different
bands are given in the tables. To make them comparable, a typical number of
operations per band is derived. In terms of classical computation addition and
multiplication have the same cost, however in the context of quantum computation
these operations have different cost. Therefore, the numbers are given for both
operations. By construction this classical cost for the quantum oracle is more or
less independent of the chosen parameters for the test system. This is due to the
fact that all matrix values have analytical descriptions and thus there is no runtime
dependence on the mesh size.

5.3 quantum resource estimation

After the successful implementation of the classical oracle, we want to obtain an
estimate for the quantum oracle cost or more specifically the quantum circuit cost.
This estimation will be based on the emulation of classical floating point operations.
Before the quantum cost can be considered, a reliable metric is needed.

5.3.1 classical emulation

reversibility The different methods for number representation have been
discussed in Subsection 2.1.3. Since the finite element method requires high precision
and the multiplication of very small and large numbers, we need to choose the floating
point representation. Obviously, this representation has a much higher complexity
than the fixed point representation. Additionally, this representation has also been
used in the classical implementation.
To implement the method of finite elements, different classical operations are needed.
Examples are addition and multiplication for floating point numbers. However, most
classical operations are not reversible. If we take a look at addition for example, the
classical circuit has two inputs but only one output. Therefore, information is lost
when adding two numbers. Since quantum circuits are unitary, a direct translation
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from classical to quantum operations is not possible. Nevertheless, one can construct
a classical reversible circuit for the desired action. Afterwards, this reversible circuit
is mapped to a quantum circuit. We want to regard this as the emulation of classical
operations using quantum circuits.
The theory of classical reversible circuits has a long tradition as the theory of classical
non reversible circuits also has. Although seldomly used in actual hardware, it has
recently drawn the attention of many computer science researchers. This is only
partly related to the close connection to quantum computation but mainly by the
possibility to give solutions for modern circuit design problems [48].
In the following paragraph we discuss the construction of classical reversible circuits
and its translation to quantum circuits called circuit design or synthesis.

circuit synthesis The approach used in this thesis is based on automata
theory, more precisely on the LUT-based hierarchical reversible logic synthesis (LHRS)
as introduced by Soeken, Roetteler et al. in References [49–52]. Another approach
worth mentioning is based on the quantum lambda calculus and was introduced by
Selinger et al. in References [53, 54].
The starting point for our approach is a lookup table (LUT) network for the desired
mathematical operation. Such LUT networks can be used to realize arbitrary Boolean
functions. Intermediate results are stored in ancilla states and thus require additional
space. Based on this LUT network, a reversible network is designed by the mapping
described in the references. The reversible circuit can then be mapped to a quantum
circuit. By reusing already uncomputed ancilla states, it is possible to use fewer
of them. Using this synthesis procedure it is possible to derive quantum circuits
emulating simple classical floating point operations. The advantage of such an
automated Synthesis approach is that it becomes possible to allow for different
optimization stages. Hand crafted circuit designs show better quality but they are
hard to achieve, especially for more complex operations. To design circuits for
advanced operations, the approach of iterative approximative methods can be used
(see Reference [55]).

5.3.2 quantum metrics

implementation complexity For classical algorithms there are a handful
of implicitly standardized metrics to measure the complexity of a specific algorithmic
implementation. One can count the usage of memory or the absolute runtime. For
quantum algorithms such metrics have not been standardized yet.
On the one hand we can observe initiatives to measure the computational capabilities
of quantum hardware. On the other hand there are efforts to invent metrics to
measure the quantum computational effort of quantum algorithms. Since none of
the above mentioned inventions is widely accepted by now, we want to stick to more
classical metrics. Two simple metrics are the gate count and the qubit count. More
precisely, this is the number of qubits needed and the number of gate operations
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performed to run the algorithm successfully. Additionally, both metrics have the
advantage that they are hardware independent. But we have to deal with the disad-
vantage that hardware dependent optimizations have not been considered.
The quantum linear system algorithm will require quantum error correction. Addition-
ally, there is no self repair mechanism in this algorithm thus errors are propagated and
accumulated. Therefore, QEC must be considered as a key feature when estimating
the circuit cost. Since the exact error correction scheme is unknown and might be
hardware dependent, the estimation will be in terms of logical qubits and gates.

qubit metrics A possible approach for a metric is to count the number of
logical qubits used in the quantum circuit. If an exact quantum circuit is given, it is
straightforward to count the number of qubits. But we are using a mapping from
classical to quantum circuits, therefore we can only estimate the number of qubits.
Since additional qubits are needed for the program logic it is hard to estimate the
overall count.
Additionally, the scaling in the number of qubits of quantum architectures is unknown.
Therefore, it is hard to predict the number of qubits which can be used by a quantum
algorithm in the near future.

gate count metrics In consequence we are left with gate metrics as an
approach to measure the implementation complexity of the quantum circuit. As
already mentioned, it is necessary to take quantum error correction into account.
Just counting the number of quantum gates does not yield reliable results since only
a small subgroup of gates can be implemented in an error-free manner. The idea is
to choose this gate set such that all other gates can be represented or approximated
by this small set. Such a subset is called universal. The full procedure is described in
the following and can also be seen on page 188ff in Reference [7] and in Reference
[18].
The first result regarding the universality of quantum gates is that any n qubit gate
can be decomposed into a sequence of at most 2n−1 (2n − 1) one and two qubit gates
[56]. Most often this number can be improved drastically. Additionally it turns out
that any two qubit gate can be decomposed into a sequence of one qubit gates and
CNOT gates [57]. Therefore only a single type of two qubit gates in combination with
one qubit gates is needed to construct all others. Up to this point all decompositions
are exact. Restricting the continuous set of single qubit gates to a discrete will require
approximations. Each single qubit gate can be seen as a rotation and therefore it is
possible to implement this rotation approximately. Within this thesis, we used the
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universal gate set consisting of the Hadamard H, Phase P, π/8 T and CNOT gate
[58]. The matrix representation of these gates is given as follows

T =

(
1 0

0 eiπ/4

)
, CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (5.7)

P =

(
1 0

0 eiπ/2

)
, H =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

It is important to note that the phase gate P is distinct from the value controlled
phase gate as introduced in Subsection 3.2.4. Likewise important is the fact that the
T gate is sometimes called π/8 gate, despite the fact that its action is related to π/4.
In conclusion, counting the occurences of these four gates is an interesting metric
under the consideration of quantum error correction (QEC) to estimate the quantum
circuit cost.
However, we will only count the number of T gates. This is motivated by the fact
that this gate is much more costly on all quantum computing architectures. To apply
this gate the method of magic state destillation needs to be used which is very costly
in terms of computational resources [59]. Therefore the number of T gates is a good
estimate for the complexity of a quantum circuit.

5.3.3 quantum operation cost

The method described in Subsection 5.3.1 has been implemented by Soeken et al. in
the software revkit [60]. This software allows for the synthesis of quantum circuits
emulating classical operations. The generated circuits are build of the universal gate
set as described in Subsection 5.3.2 and can be found in Reference [49]. There are
three parameters that can be optimized, the number of qubits, the number of T gates
and the LUT network depth. It turns out that there is an inverse relation between
the number of qubits and T gates. Thus, optimizing for one parameter results in
a poor value for the other and vice versa. For the operations, used in the classical
implementation of the quantum oracle, the quantum cost are given in Tables 5.3 and
5.4. In these tables both extremes are given, the best number of qubits and the best
number of T gates. Additionally, the results are given for both 16 bit floating point
and 32 bit floating point representation. It turns out, that the order of magnitude for
the qubits is approximately equal in both scenarios. However the number of required
T gates is extremely high in case of the best qubit count. This is an additional
motivation to use the best number of T gates. It might also be a good idea to use a
parameter set, resulting in an nearly optimal T gate count but not fully non optimal
qubit count. Another approach, not considered here is to use circuit optimization
techniques to optimize the high T gate count in case of an nearly optimal qubit
count.
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Using the resulting cost for the emulation of the classical operations, we can estimate

Operation Best Qubit Count Best T Gate Count
Qubits T Gates [103] Qubits T Gates [103]

Addition 141 723 367 12

Subtraction 141 760 368 11

Multiplication 229 6533 931 28

Division 112 8378 375 13

Square 32 196 191 5

Comparator 38 35 97 3

Table 5.3: Resources for classical operations on 16 bit floating point numbers: The table
shows the required quantum resources for emulating typical classical operations
like addition or multiplication. Two cases are given that correspond to the
minimal number of qubits or the minimal number of T-gates.

Operation Best Qubit Count Best T Gate Count
Qubits T Gates [103] Qubits T Gates [103]

Addition 350 838 819 26

Subtraction 337 564 829 26

Multiplication 778 6839 2640 89

Division 905 111 875 2007 48

Square 194 8415 894 20

Comparator 74 992 193 5

Table 5.4: Resources for classical operations on 32 bit floating point numbers: The table
shows the required quantum resources for emulating typical classical operations
like addition or multiplication. Two cases are given that correspond to the
minimal number of qubits or the minimal number of T-gates.

the cost of a single quantum oracle call. Using the results from Tables 5.1, 5.2 for the
test system and Tables 5.3, 5.4, we can calculate the total cost by multiplying the
number of operations by their individual resource requirements. The resulting costs
can be seen in Table 5.5. Both cases have been considered, including and excluding the
oracle cost for the geometric shape of the target. Also both floating point precisions
are given. In total we can estimate the typical number of operations in an oracle
call to roughly a hundred. The resulting number of T gates is ∼ 1.6million for 16 bit

floating point (FP) precision and ∼ 5.4million for 16 bit FP precision. From the
numbers we can deduce that the additional cost for the geometry oracle is important
but will not change the order of magnitude in our estimation. Thus, considering
the required resources, the calculation of arbitrarily shaped objects seems possible.
Furthermore, the required resources are more or less independent of parameters
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employed for the test system. Therefore, it is possible to simulate a higher mesh
resolution without additional computational complexity in the context of the matrix
oracle.

Operation
Ex. Target In. Target

Typical T-Gates [103] Typical T-Gates [103]

16 bit FP 32 bit FP 16 bit FP 32 bit FP

Addition 29 333 755 33 379 860

Subtraction 7 80 184 7 80 184

Multiplication 32 896 2834 32 896 2834

Division 27 339 1303 32 402 1545

Square 13 69 261 25 132 502

Comparator 12 30 56 16 40 74

Total 120 1647 5392 145 1928 5997

Table 5.5: Resources per band for 16 bit and 32 bit FP numbers: The table shows the
quantum resources required to compute the matrix values per band. There are
two estimations, one including and one excluding the target cost. Additionally,
numbers for both 16 bit and 32 bit floating point precision are shown.

5.4 open problems

condition number In Subsection 3.2.3 we discussed the computational com-
plexity of the subroutine Hamiltonian simulation. We estimated the time complexity
as O

(
log (N) 1

ε
κ2s2

)
with ε the error, N the number of matrix rows, s the number

of entries per row and κ the matrix condition number. For the finite element method
the typical scaling in the condition number is given as κ (A) ∼ h−2 with h being
a measure for the element diameter Ωj [61–63]. In conclusion the time complexity
grows with a factor four when doubling the mesh resolution. Since our interest lies in
very fine meshes, respectively large linear systems, we are interested in small element
diameters resulting in large condition numbers. A possible solution for this open
question is preconditioning.
Instead of solving the given linear system Ax = b, a modified linear system

MAx = Mb (5.8)

with an additional matrix M , of the same size as A, is solved. The idea is to
choose M such that the condition number of the matrix MA is smaller than the
condition number of A. To make this idea useful we also require M to be efficiently
computable. In the context of classical iterative solvers (see Page 26), where precon-
ditioning is widely used, this corresponds to an efficient computation of the matrix
vector product. For the quantum linear system algorithm an efficient implementation
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is related to an efficient quantum oracle (see Page 28) for the matrix. Addition-
ally, an efficient implementation of the altered right hand side in oracle form is needed.

geometry oracle Another open problem is the complexity of the geometry
oracle. In out previous discussion of the implementation of the finite element method
on the quantum computer, the geometry oracle has been introduced. It is used to
check if a point inside the computational domain is on, in or outside the object.
Similar to the matrix oracle, the geometry oracle can be seen as a black box with
unknown inner workings.
For certain types of geometries an implementation is fairly easy since the geometry
can be represented by an analytical formula. Thus, the computation is efficient and
can be emulated on the quantum computer using the strategy described in the last
chapter. A good example for such an efficiently computable geometry is the circle
as used in Subsection 5.2.1. For arbitrary shaped objects like aircraft this remains
unknown. A possible approach might be offered by B-splines.

5.5 summary

In the last chapter we discussed, how to implement a quantum oracle for the input of
classical data. In particular, we considered an exemplary implementation of the matrix
oracle for the quantum linear system algorithm and its application the calculation of
radar cross sections. It turned out that the classical finite element method needs to
be reimplemented on the quantum computer, leading to the emulation of classical
operations. We estimated the cost for this emulation in terms of T gates for a test
system. Additionally, we separated the circuit cost for the geometric shape of the
target, to show that it has only a minor influence on the total cost.
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6
SUMMARY

Finally, we want to sum up and discuss the results. Furthermore, possibilities for
improvement are shown. We end with an outlook and some final remarks.

recapitulation In the present thesis, the quantum linear system algorithm
and its application to the calculation of radar cross sections has been discussed.
At the beginning we focused on the basics of quantum computation. Afterwards,
we took a detailed look at the QLS algorithm and the involved subroutines. We
verified the computational complexity of the algorithm, especially the logarithmic
speedup in the matrix dimension compared to classical methods. It turned out that
the main challenge lies in the input of classical data. From a theoretical point of
view this has been solved by introducing the formalism of a black box quantum
oracle. This solution is not satisfying from an implementation point of view. Thus, we
have described the actual realization of a quantum oracle. After deriving a possible
metric for quantum circuits, we were able to perform an exemplary study of the
quantum resources required to implement the matrix oracle. This estimation showed
that a substantial number of quantum resources is required, namely the order of a
million T gates. In the context of quantum error correction this type of gates can be
regarded as the most demanding. Additionally, we were able to separate the cost for
the geometric description of the target. This is important since more complex shapes
require substantially more resources. Comparing the results to the capabilities of
today’s quantum devices shows the requirement for more advanced quantum devices.
Furthermore, a serious estimate in terms of a timeframe is not possible due to the
requirement of fundamental advances in quantum computation.

possible improvements Since the required resources for a successful imple-
mentation of the quantum linear system for the proposed application are quite high,
there is still room for improvements. Additionally, loosening the employed restriction
might allow for more reliable solutions.
At first we want to mention improvments on the algorithmic level regarding the
quantum linear system algorithm. Its central part is the subroutine Hamiltonian
simulation (see Subsection 3.2.3). As Hadfield et al. have pointed out in Reference
[64], it might be desirable to use different levels of division for different submatrices.
Thus, allowing for fewer operations, if the desired accuracy can be kept due to
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properties of the submatrices. More importantly, it seems necessary to tackle the
open problem regarding the condition number. One approach might be to find a
new algorithm for the Hamiltonian simulation with much better dependence on the
condition number.
Another area that allows for further improvement is the implementation of quantum
oracles, especially the matrix oracle. More precisely, it is required to improve and
optimize the emulation of the classical operations. It might be possible to use a
mixed number representation, i.e. some numbers in fixed point representation, some
in 16 bit floating point representation and some in 32 bit floating point representation.
A possible advantage of this mixture is that only the required precision is used, thus
freeing unnecessarily occupied resources.

outlook and final remarks Even though a serious estimate about the
timeframe of a possible realization of the quantum linear system algorithm is not
possible, we want to mention enhancements required to allow for a flexible tool for
the calculation of radar cross section. In the calculation on Page 33 the restriction to
perfectly conducting materials was made, real materials do not show such a behaviour.
To model imperfect conductors it is required to employ other boundary conditions,
thus enlarging the complexity of the finite element method.
Additionally, the condition of stationary scattering is rather strong. Weakening this
condition will allow for more elaborate simulations, even tough a new computational
approach is required. Highly interesting materials, from the perspective of a radar
engineer, are so called meta materials. Classical methods need to altered too in
order to allow a precise and fast calculation of the properties. This leaves room for
powerful quantum algorithms tackling problems resulting from the simulation of
these materials.
An advantage of the quantum linear system algorithm is its logarithmic speedup
in the matrix dimension when compared to classical methods. Additionally, the
resource requirements for the matrix oracle are more or less independent of the
given parameters, especially the mesh size. Therefore, the quantum linear system
algorithm might allow for the calculation of linear systems that do not match the
memory limitations of to today’s supercomputers. However, the condition number of
the observed matrices might not allow for this scaling. Furthermore it is unclear how
to describe complex target geometries analytically.
Finally, it can be concluded that quantum computation offers a high potential to
tackle computational intensive problems far beyond the capabilities of today’s classical
computers. But it is necessary to examine algorithms in detail to come up with
promising applications and consider possible pitfalls. The acquired knowledge can
then be used to correct design faults or design quantum inspired classical algorithms.
The future will tell us, if quantum computation has finally emerged from laboratories
to data centers.
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APPENDIX

a.1 hermitization

The quantum linear system algorithm is only suited for Hermitian matrices since the
matrix is interpreted as a Hamiltonian (see Subsection 3.2.3). If the matrix resulting
from the application is not Hermitian, a modification is needed. This modification
shall be called hermitization.

definition For A ∈ CN×N a non Hermitian matrix, we define C ∈ C2N×2N as

C =

(
0 A

A† 0

)
. (A.1)

By construction C is Hermitian. The new right hand side is given as

d =

(
b

0

)
. (A.2)

The unknown x from the original equation can be extracted from the new unknown
y as

y =

(
x̃

x

)
. (A.3)

The resulting system of linear equations is given as

Cy = d. (A.4)

computational complexity An important question is the change in
computational complexity caused by this hermitization. By construction the number
of non zero elements per row is unchanged. Therefore only the change in the number
of rows and the condition number need to be considered. Doubling the number of
matrix rows adds constant overhead to the computational complexity, thus it does not
change the scaling. For the condition number, the analysis is a little more elaborate.
The condition number of a matrix is an important mathematical property. It is
a measure for the change of the solution under perturbations of the input. A full
derivation can be seen in the book "Iterative Methods for Sparse Linear Systems"
by Yousef Saad [23] on page 41.
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Definition: (Condition Number) Corresponding to a norm ‖.‖X we can define the
condition number κX (A) as

κX (A) = ‖A‖X
∥∥A−1

∥∥
X
. (A.5)

Typically, the Euclidian (or two) and the Frobenius norm are used. For the following
estimation of the condition number we want to use the Frobenius norm

‖A‖2
F =

∥∥A†∥∥2

F
=

n∑
k,l=1

|akl|2 ,
∥∥A−1

∥∥2

F
=
∥∥∥(A†)−1

∥∥∥2

F
=

n∑
k,l=1

∣∣(a−1
)
kl

∣∣2 . (A.6)

Therefore the norm of C is given as

‖C‖2
F =

n∑
k,l=1

(
|akl|2 + |ākl|2

)
= 2 ‖A‖2

F . (A.7)

Because of its simple form, the inverse matrix for C is given as

C−1 =

(
0 A−†

A−1 0

)
. (A.8)

With this we get for the condition number

κF (C) = ‖C‖F
∥∥C−1

∥∥
F

= 4 ‖A‖F
∥∥A−1

∥∥
F

= 4κF (A) . (A.9)

Since all matrix norms are equivalent, we get the following result for the condition
number in any matrix norm

κX (C) ∝ κX (A) . (A.10)

This final result shows that the condition number is not affected by the hermitization
and thus there is no change in computational complexity.

a.2 vector identities

1

[a× (∇× b)] c = εijkaj (∇× b)k ci
= εijkajεklm (∂lbm) ci

= εkijεklmajci (∂lbm) = (c× a) (∇× b)
= −εjikεklmajci (∂lbm) = −a [c× (∇× b)]

(A.11)

a.3 integral identities

first vector green’s theorem Let a, b be vector fields, n ∈ R3 the face
normal and V a Lipschitz continuous domain, then∫

V

a (∇×∇× b) dV =

∫
V

(∇× a) (∇× b) dV −
∫
S

(a×∇× b)n dS. (A.12)
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a.4 submatrix action

The explicit action of each submatrix Ac can be represented as

Ac |a〉 |0〉 |0〉 |0〉 = UpcP†
1/4π

UpcUmc HrwUmc UpcP1/4πUpc |a〉 |0〉 |0〉 |0〉 (A.13)

= UpcP†
1/4π

UpcUmc HrwUmc UpcP1/4π |a〉 |colc (a)〉 |0〉 |argc (a)〉

= exp (iargc (a) /2) UpcP†
1/4π

UpcUmc HrwUmc Upc |a〉 |colc (a)〉 |0〉 |argc (a)〉

= exp (iargc (a) /2) UpcP†
1/4π

UpcUmc HrwUmc |a〉 |0〉 |0〉 |0〉

= exp (iargc (a) /2) UpcP†
1/4π

UpcUmc Hrw |a〉 |colc (a)〉 |ampc (a)〉 |0〉

= ampc (a) exp (iargc (a) /2) UpcP†
1/4π

UpcUmc |colc (a)〉 |a〉 |ampc (a)〉 |0〉

= ampc (a) exp (iargc (a) /2) UpcP†
1/4π

Upc |colc (a)〉 |0〉 |0〉 |0〉

= ampc (a) exp (iargc (a) /2) UpcP†
1/4π

|colc (a)〉 |a〉 |0〉 |−argc (a)〉

= ampc (a) exp (iargc (a)) Upc |colc (a)〉 |a〉 |0〉 |−argc (a)〉
= ampc (a) exp (iargc (a)) |colc (a)〉 |0〉 |0〉 |0〉 .

As already discussed in Subsection 3.2.3, this equation is just of descriptive character
since Ac is not unitary and thus can not be applied to qubits directly.

a.5 quantum random walk

The quantum random walk operator (see Subsection 3.2.5) is an important part of the
Hamiltonian simulation subroutine (see Subsection 3.2.3). To understand the action
of the exponential of this operator, we want to give the quantum circuit and discuss
an example. The action of the quantum random walk operator is defined as swapping
the first two registers and being diagonal in the third register, mathematically this is
given as

Hrw |a〉 |b〉 |y〉 = y |b〉 |a〉 |y〉 . (A.14)

It can be rewritten in terms of the single registers as

Hrw =

(
n⊗
j=1

Sj,j

)
⊗
∑
y

y |y〉 〈y| (A.15)

with swap operator Sj,l that swaps the qubits j of the first and l of the second register.
Often this operator is named SWAP gate and its matrix representation is given as

Sj,l =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

quantum random walk time evolution We are not interested in the
direct application of the quantum random walk operator but in the application of its
time evolution. Therefore, we need to consider the operator exp (−iτHrw). To create
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an efficient gate realization, we need to bring the quantum random walk operator to
diagonal form. Since there is already one diagonal part, we only consider the SWAP

gate Sj,l. To diagonalize S = WS̃W†, we use the following unitary and self adjoint
matrix

Wj,l =


1 0 0 0

0 1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2 0

0 0 0 1

 . (A.16)

The SWAP gate in the diagonal basis is given as S̃j,l = diag (1, 1,−1, 1). This enables
us to rewrite the operator as

exp (−iτHrw) = exp

(
−iτ

(
n⊗
j=1

Wj,jS̃j,jWj,j

)
⊗
∑
y

y |y〉 〈y|

)
(A.17)

Since the operator Hrw has been brought to diagonal form, it is now possible to
implement the time evolution as in the following Figure A.2.

|a1〉
W

• •
W

|b1〉
|a2〉

W
• •

W
|b2〉
...

...
. . . ...

...
|an〉

W
• •

W
|bn〉
|c1〉

P−τ

|c2〉
...

...
...

|cm〉
|0〉

Figure A.1: Quantum random walk time evolution: The figure gives the quantum circuit to
realize the quantum random walk time evolution operator on 2n+m qubits.
Whereas the first two registers are swapped qubit wise, the ancilla qubit gets
a phase shift controlled by the third register. The ancilla qubit is needed to
make this calculation possible.

small example As an example, three qubits and an additional ancilla qubit are
used. For this simple case, the value controlled phase shift simplifies to a controlled
rotation gate e−iτσz . The quantum circuit is given in Figure A.2. Additionally, we
want to write out the full calculation for the following action

e−iτHrw |a〉 |b〉 |c〉 |0〉 = cos (τδc,0) |a〉 |b〉 |c〉 |0〉 (A.18)

−i sin (τδc,0) |b〉 |a〉 |c〉 |0〉 .
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To start the calculation, we need to consider the initial state, given as

|a〉 |b〉 |c〉 |0〉 = α1β1 |00〉 |c〉 |0〉+α1β2 |01〉 |c〉 |0〉 (A.19)

+α2β1 |10〉 |c〉 |0〉+ α2β2 |11〉 |c〉 |0〉 .

Applying the diagonalizing gate W yields

α1β1 |00〉 |c〉 |0〉+α1β2√
2

( |01〉+ |10〉) |c〉 |0〉 (A.20)

+
α2β1√

2
( |01〉 − |10〉) |c〉 |0〉+ α2β2 |11〉 |c〉 |0〉 .

The application of the CC̄NOT gate will then entangle the qubits as follows

α1β1 |00〉 |c〉 |0〉+α1β2 + α2β1√
2

|01〉 |c〉 |0〉 (A.21)

+
α1β2 − α2β1√

2
|10〉 |c〉 |1〉+ α2β2 |11〉 |c〉 |0〉 .

Applying the off controlled rotation C̄ROT with parameter τ , yields

α1β1e
−iτδc,0 |00〉 |c〉 |0〉+α1β2 + α2β1√

2
e−iτδc,0 |01〉 |c〉 |0〉 (A.22)

+α2β2e
−iτδc,0 |11〉 |c〉 |0〉+α1β2 − α2β1√

2
e+iτδc,0 |10〉 |c〉 |1〉 .

Thus, there is only a different sign for the |10〉 state of the swap basis. To undo the
computation we need to apply the CC̄NOT gate again, yielding

α1β1e
−iτδc,0 |00〉 |c〉 |0〉+α1β2 + α2β1√

2
e−iτδc,0 |01〉 |c〉 |0〉 (A.23)

+α2β2e
−iτδc,0 |11〉 |c〉 |0〉+α1β2 − α2β1√

2
e+iτδc,0 |10〉 |c〉 |0〉 .

Additionally, the inverse of the W gate needs to be applied. Since, it is self inverse
this application is simply resulting in

α1β1e
−iτδc,0 |00〉 |c〉 |0〉+ α2β2e

−iτδc,0 |11〉 |c〉 |0〉 (A.24)

+ (α1β2 cos (τδc,0)− α2β1i sin (τδc,0)) |01〉 |c〉 |0〉
+ (α2β1 cos (τδc,0)− α1β2i sin (τδc,0)) |10〉 |c〉 |0〉 .

This is equal to the described action.

|a〉
W

• •
W

|b〉
|c〉

|0〉 e−iτσz

Figure A.2: Quantum random walk time evolution: The figure gives the quantum circuit to
realize the quantum random walk time evolution operator on 3 qubits. Whereas
the first two qubits are swapped, the ancilla qubit is rotated in dependence on
the third. The ancilla qubit is needed to make this calculation possible.
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