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Abstract

During the �ight of a sounding rocket often multiple ground stations are used
to receive telemetry data. The overlapping time in which the telemetry stations
can receive data from the rocket is rather high (up to 100%), compared to other
setups like air and space applications, where it is only used to switch from one
ground station to another. This, and the knowledge about the data format of
the transmission protocol allow new approaches for Best-Source-Selection and error
correction.

This thesis provides a working software implementation which enables the en-
hancement of data streams received by multiple ground stations from the same
transmitter by con�ation of the streams and performing forward error correction.
For the forward error correction the existing protocol had to be analyzed to get
the used error correction algorithm and with it the statistical information on wrong
detection possibilities. The usage of a higher OSI-Level together with the long over-
lapping times of data streams allows to build a software with advanced capabilities
compared to simple Best Source Selectors. It provides the possibility to replace de-
fect frames in the output by validated ones of other inputs and furthermore eliminate
even wrongly detected errors.
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1 INTRODUCTION

1 Introduction

For a long time Best Source Selectors have been in use on test ranges all over the world.
The development of new technologies in this �eld is inert and was not in the main focus for
test engineers for a long time. However, over the past years with new and faster processors
and Field Programmable Gate Array (FPGA) di�erent approaches became feasible while
real-time data analysis became progressively important to the operators, especially with
recent development of autonomous systems. This brought the development of source
selection back into the focus.
One possible challenging use case for best source selection are sounding rockets, which
present a special application on test ranges and space centers. With a very characteristic
trajectory and application domain they �ll a niche in scienti�c research platforms and have
special demands compared to aircraft, drones and other aerospace systems especially when
compared to launch systems performing orbit injection. Most �ights di�er very much in
the mission objectives based on the changing scienti�c background, reaching from micro
gravity experiments to technology demonstrations. With a �ight monitored by several
redundant ground stations this results in the need of a source selection that does not only
switch between incoming telemetry streams but is also able to extract the best possible
data to provide a clean outcome while being �exible to adapt to new demands at the same
time.
When looking at past 25 years of recorded sounding rocket launches across the world
that reached an apogee of at least 80 km height, it can be seen that the market did not
change radically during that time (See Figure 1). Around 84 launches can be expected
per year, mostly form the same launch providers. This makes clear that the market for
products dedicated to sounding rockets, like a specialized Best Source Selector, is small
and therefore a lot of products are tailor-made. The software framework developed in this
thesis is designed precisely for such a custom purpose.
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Figure 1: Worldwide sounding rocket launches per year with an apogee above 80 km
of the past 25 years, numbers generated from entries in sounding rocket database of
[McDowell(2019)]
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1 INTRODUCTION

1.1 Outline

This thesis provides a working implementation of a data stream merger to be used as a
technology demonstration to determine its further capability of using it to replace state-
of-the-art Best-Source-Selectors. This merger is capable of parallel decoding of incoming
data streams of di�erent sources as well as of detection and correction of errors package-
wise in soft real-time. Errors will be corrected by correlating frames in di�erent streams
and using di�erent approaches to �nd the best suitable outcome. The output result is
a data stream of the same format with the best possible set of data extracted from the
input provided by all telemetry stations. It will give an overview of the error correcting
algorithms and the detection probabilities that are being used to conduct the forward-
error-correction. Furthermore, it will be shown how the software has been implemented
and which issues had to be addressed in order to provide a stable software solution.

1.2 DLR - German Aerospace Center

The German Aerospace Center (German Aerospace Center (DLR)) in which environment
this thesis was written is the German national center for research and development of
aerospace applications but also in areas of energy, transportation and robotics. Its 8700
employees are distributed over 26 locations across Germany and four locations outside
the country. With a research and operation budget of over 1 billion euro and a dedicated
budget of over 1.5 billion euro it provides a powerful institution for cutting edge research.
(See [DLR(2019)]) Besides research DLR functions as the German Space Agency providing
operational support for space missions. The operational part is located at the Institute
for Space Operations and Astronaut Training at the site in Oberpfa�enhofen.

The Institute for Space Operations and Astronaut Training is responsible for space
operations and for research in related subjects. It consists of Mission Operations which
is part of German Space Operation Center (GSOC), Mission Technology, Ground Sta-
tions and Communications (GSOC), Space�ight Technology (GSOC), Microgravity User
Support Center (MUSC), Astronaut Training, Controlling & Acquisition and the Mo-
bile Rocket Base (MORABA) as shown in Figure 2. For more information see refer-
ence [RB(2019)].

1.3 MORABA - Mobile Rocket Base

MORABA is doing research in the �eld of sounding rockets as well as carrying out un-
manned parabolic �ights and experimenting under micro gravity conditions at high alti-
tudes. Applications are related to atmospheric, astronomy, geophysics, material sciences
or hyper sonic research (see [MOR(2019)]). The mobility of this unit enables scientists
to perform these tests all over the world, from arctic climate above the polar circle up
to hot humid climate at the equator. The MORABA itself consists of �ve groups. This
thesis is written with the data handling group which provides hard- and software know-
how on collection of experiment data, observes housekeeping data during test and launch
campaigns and delivers data to the scientists and engineers during and after the �ight.
The Telemetry, Tracking & Command group is responsible for operating the telemetry
ground stations and the transmitters on the rocket as well as for the transmissions itself.

-3-



1 INTRODUCTION

On request radar services can be provided to the customer. Control and Sensorics pro-
vide attitude and rate control to achieve certain trajectories and rotation rates. Launch
Services provide everything necessary to launch a rocket system and Mechanical Flight
Systems are concerned with structural development and production of rocket parts.

Telemetry, Tracking & Command is closely connected to the Data Handling unit
where which this thesis was conducted. A typical mission can be roughly divided into
six parts. It starts with the experiments design which has to be done by the scientists
themselves. However, they will be provided guidance in how to build and fabricate their
constructions to be space harden and secure. Secondly, the experiments need to proof
their feasibility during design reviews. Afterwords the hard- and software components will
be produced. Before being accepted and mounted on the rockets they have to be veri�ed
for functionality under stress conditions by environmental tests including vibration and
vacuum tests. If all reviews are successful the experiment can take place on a suitable
launch side for example at Esrange Space Center in Sweden or Andøya Space Center in
Norway. A typical sounding rocket for micro gravitation missions is launched in a parabola
�ight, separates the motor and performs a de-spin to reach micro gravity without external
in�uences, reentering through the atmosphere and landing the payload with a parachute.
Then it is picked up by a helicopter and brought back to the range where experimenters
investigate their results. A more detailed explanation on the �ight phases can be found
in section 2.2.2. During the �ight experiment data can be sent down together with the
housekeeping of the rocket through the onboard data handling system, a radio link, a
ground station system and a data proxy to the operators. While the data passes trough
all this stations errors might occur, especially in the radio link.

�6�S�D�F�H���2�S�H�U�D�W�L�R�Q�V���D�Q�G���$�V�W�U�R�Q�D�X�W
�7�U�D�L�Q�L�Q�J

�6�S�D�F�H���)�O�L�J�K�W���7�H�F�K�Q�R�O�R�J�\

�0�L�V�V�L�R�Q���7�H�F�K�Q�R�O�R�J�\

�0�L�V�V�L�R�Q���2�S�H�U�D�W�L�R�Q�V

�&�R�P�P�X�Q�L�F�D�W�L�R�Q�V���D�Q�G
�*�U�R�X�Q�G���6�W�D�W�L�R�Q�V

�0�L�F�U�R�J�U�D�Y�L�W�\���8�V�H�U���6�X�S�S�R�U�W
�&�H�Q�W�H�U

�$�V�W�U�R�Q�D�X�W���7�U�D�L�Q�L�Q�J

�0�2�5�$�%�$

�7�H�O�H�P�H�W�U�\�����7�U�D�F�N�L�Q�J���	
�&�R�P�P�D�Q�G

�/�D�X�Q�F�K���6�H�U�Y�L�F�H�V

�'�D�W�D���+�D�Q�G�O�L�Q�J

�&�R�Q�W�U�R�O���D�Q�G���6�H�Q�V�R�U�L�F�V

�0�H�F�K�D�Q�L�F�D�O���)�O�L�J�K�W���6�\�V�W�H�P�V

Figure 2: Organizational chart of Space Operations and Astronaut Training and
MORABA
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1 INTRODUCTION

1.4 State of the Art

This chapter shall provide an overview of the current state-of-the-art technology used
on rocket and military test ranges for data path selection and fusion. Since especially
military test ranges have a very conservative information policy for obvious reasons, only
few papers are available describing the technology that is used currently. More details
can be gained from data sheets and lea�ets of manufacturers like GDP Space Systems
for telemetry equipment. For this reason the information has to be looked at with some
precaution regarding the timeliness and actual performance.

Data transmission on test ranges is always an important but di�cult topic. Test
parameters, subjects and con�guration change constantly and rapidly from mission to
mission and sometimes even during the operation itself. The objects (e.g. rockets, aircraft)
to be examined might not survive the procedure and extracting data afterwords can be
di�cult or impossible. So it is particularly important to receive, enhance and store as
much data as possible in real-time. Not only for the later use by the scientists but also by
the experiment operators who for example utilize the data for adjusting test parameters,
controlling outputs. Also, this data is used to maintain range safety. On top of these
requirements the objects to be tested move fast, in case of super sonic rockets up to ten
times the speed of sound. Antennas have to track the sender continuously until the signal
gets too weak to be used and other antennas have to take over or have to compensate
data loss, since all this has to be done without interrupting the �ow of information.

The development of best source selectors reaches back into the mid of last century.
Simple techniques were used to switch between data streams of pre-prioritized antennas.
A schematic illustration of this can be seen in Figure 7.

A simple Best Source Selector (BSS) switches between several inputs. The inputs are
prioritized by the operators beforehand. If a signal gets too weak, the BSS switches to
the next stream. This comes with several disadvantages which are further explained in
Chapter 2.3.

Based on the encryption of data streams a pattern recognition with state machines
was introduced, comparing pattern in all streams to do the matching. This was the
birth hour of Correlating Best Source Selector (CBSS). The appearance of CBSS was
necessary since single frames could not be determined in an encrypted stream. In a further
developed advanced approach data received could be encapsulated with additional data
generated in the telemetry ground stations and then sent to the BSS at a rocket base.
This method is called Data Quality Encapsulation (DQE) and the additional information
can be used as a basis for decision-making in the switching process without using pre-
prioritized streams. Both methods can be used to enhance each other as can be seen
in Figure 11. A bit �agged with poor quality is compared to the other streams and
the majority of the answers is chosen. A third method is to use a Cyclic Redundancy
Check (CRC) or Forward Error Correction (FEC) to detect errors in transmitted data
(see [Nicolo(2018)]). The advantages and how to overcome the down sights are discussed
in Chapter 2.3.
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1 INTRODUCTION

1.5 Motivation

After being founded in 1966, MORABA experienced technical development over many
decades. This means that there is also lots of legacy involved that cannot be altered easily
because of system dependencies. This reaches from analog technology, logic implemented
in hardware to newer software components relying on aged formats and connectors. How-
ever, there is also a constant force in lifting the technology to the next level to keep up
with the newest research and developments. Naturally, one of the �elds heavily under
construction is the software. As mentioned before, many components which used to be
implemented in hardware can now be replaced by software making processes more �exibly.
Not only does modern computing hardware become constantly cheaper, the reliability of
recent operating systems gets better with time. Based on this above described a feasibility
test for stream selection was in discussion, where the software implementation could allow
a maximum of �exibility while being cost-e�cient at the same time.
With further investigation into the topic new possibilities arose. Currently, the ground
station only consists of one or two ground stations with one or more receivers depending
on the mission, but more would be possible. This means that the data streams could not
only be switched between the best or strongest signals but also a fusion of streams could
take place to reach a better overall stream quality. And on top of that, even error correc-
tion could be done in real-time, not only in the post-processing. With sites at di�erent
sections of the ground path it is possible to increase the reception time further, however,
in this case it is imported to switch between the stations without data loss.

All these points sum up to the motivation to conduct a concept design and a test-
wise implementation of such a software. Further, in this thesis background research,
architecture, implementation and results will be discussed.

-6-



2 BACKGROUND

2 Background

With this section background information is given to lay a foundation and a more detailed
understanding on how the implementation took place and what circumstances had to be
considered.

2.1 Theoretical Background

The theoretical background gives an overview of the most relevant technical terms and
techniques as well as basic numbers used in the implementation.

2.1.1 OSI-Model

The Open Systems Interconnection (OSI) reference model provides a basis for system
interconnections to exchange information. It reaches from the physical layer up to the
user interface and divides the communication into di�erent layers with di�erent objectives.
By this schematic any kind of data transmission can be �t to the OSI-layer model. For a
more detailed information see the reference [ISO(1994)]. It to get mutual understanding
of di�erent transmission methods as well as recognition implementations.

Figure 3 shows the bottom-up view of the layer system. Transmissions handled by the
Stream Merger build in this thesis operate in highlighted layers two and three. For this
work it is assumed that there are no insights in the layers above, like the application or
session layer.

�3�K�\�V�L�F�D�O���/�D�\�H�U

�'�D�W�D���/�L�Q�N���/�D�\�H�U

�1�H�W�Z�R�U�N���/�D�\�H�U

�7�U�D�Q�V�S�R�U�W���/�D�\�H�U

�6�H�V�V�L�R�Q���/�D�\�H�U

�3�U�H�V�H�Q�W�D�W�L�R�Q���/�D�\�H�U

�$�S�S�O�L�F�D�W�L�R�Q���/�D�\�H�U

Figure 3: OSI-Model layer representation. Stream merging takes place in highlighted
layers.

2.1.2 Noise

Noise N in signal processing stands for an unwanted disturbance value on a measured
signal and is a mostly random �uctuation on top of the signal. On the receiver side it can
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2 BACKGROUND

lead to a false interpretation e.g. due to quantization of the analog signal. Noise cannot
be avoided completely but as one can see in Section 2.1.3 a more powerful transmission
reduces the chance of a bit failure by rising the signal power higher than the noise power.
An additional method to avoid bit errors on the physical layer is to correct damaged bits
by performing error correction on higher OSI levels if their occurrence is below a certain
boundary.

2.1.3 Bit Error Rate (BER)

The Bit Error Rate (BER) of a data transmission is not only dependent on the energy per
bit ( Eb) to noise spectral density (N0) with the inversed Gaussian error functionerfc . The
error is also dependent on the modulation used for the transmission. The energy per bit
is calculated by dividing the carrier power by the bit rate [Eb] = J

1
s

= Js, while the noise

unit is also [No] = J
Hz = Js it means that Eb

N0
is dimensionless (See [Breed(2003)]). It has

to be distinguished between the transmission BER and the overall BER of the process.
The here considered one is the raw error rate without correction. Error correction on
a higher OSI-level can improve the performance further. The inversed Gaussian error
function erfc is described by the integral:

erfc (x) = 1 �
2

p
�

�
Z 1

x
e� � 2

d� (1)

Since there is a dependency between theEb
N0

and the BER it can be calculated as follows:

BER =
1
2

� erfc

0

@

vu
u
t

 

1 �
sin(2�h )

2�h

!

�
Eb

2N0

1

A (2)

This equation is taken from the handbook of the Telemetry Receiver [IN-SNEC(2009)].
The h variable describes the modulation index, which is set toh = 0:7.
The modulation used for the down-link is Pulse Code Modulation (PCM)/Frequency
Modulation (FM) as de�ned in the Inter Range Instrumentation Group (IRIG) standard
(IRIG106). Telemetry Tracking & Command group of MORABA (1.3) tries to maintain
a Eb

N0
above 13.5 dB which leads to a maximum BER of around 1� 10� 7 per bit as can

be read from Figure 4. This means that one out of 1� 107 bit can be considered to be
damaged at the receiver side. For further calculations this value is used assuming the
worst case for operations.

2.1.4 Hamming Distance

The Hamming distance (d) between two data words (u; v) with the exact same length is
equal to the number of symbols in which these words are di�ering. The Hamming distance
is described asd(u; v). If d(u; v) = 0 the information content of the data words is the
same. (See [Butter�eld et al.(2016)Butter�eld, Ngondi, and Kerr])
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Figure 4: Bit Error Rate for PCM-FM signals according to [IN-SNEC(2009), Typical
PCM-FM Bit Error Rate E�ciency]

2.1.5 Block Code

Block Codes are codes used for error-correction and detection. They are characterized
by a �xed length of symbols which can be decoded uniquely without knowledge of other
blocks. A block is referred to as a code word with a lengthn and an information content
of k symbols. Some additional symbols are added, so thatn > k , creating a redundancy
in the information content. This can be used to detect and correct errors. A block code
is described as (n; k)-code which indicates the overhead but also the maximum of wrong
symbols that can be detected and corrected. (See [Butter�eld et al.(2016)Butter�eld,
Ngondi, and Kerr])

2.1.6 Hamming Code

The family of Hamming Codes are a set of error correcting, linear and perfect block codes
(2.1.5) ful�lling the following characteristics:

n = 2m � 1; k = n � m (3)

Where m is the number of additional added symbols used as control and correction re-
dundancy.

2.1.7 Forward Error Correction (FEC)

Protocols relying on two-way-communication channels a checksum for detecting errors is
su�cient, e.g. TCP. A client can use it to test its received data for errors and in case an
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error occurred a re-transmission of the data will be initiated until a correct package has
been veri�ed at the receiving side.

Unfortunately the communication channels used on sounding rockets often rely on a
single-way communication channel. Which means that it just consists of a down-link and
a package that has been altered during the transmission process will not be resent by the
sender. For this case a Forward Error Correction technique is used.

2.2 Practical Background

In this chapter on practical background the technical environment is described in which
the development took place. Implementation fundamentals as well as basic knowledge
will be provided to the reader.

2.2.1 Sounding Rockets

Sounding Rockets are a special group within the rocket family. For their scienti�c purpose
they are launched following a parabolic trajectory without performing an orbit injection
and descending back to earth. During the �ight they can reach trough all layers of
the Earth's atmosphere up till the boarder of the Exosphere 700 km above the ground.
These high altitudes cannot be reached balloons. The scienti�c purpose is mostly but
not exclusively civil. The �ight through the di�erent layers of the atmosphere enables
scientists for example to measure gas con�gurations and particle densities like plasma
which provides important data on climate and global warming. But not only chemical
experiments can be performed, the parabolic �ight allows a short duration of micro gravity
of at least 10� 4 m

s2 down to 10� 7 m
s2 ranging from some seconds up to 12 minutes depending

on the height of the apogee (see [Pallone et al.(2018)Pallone, Pontani, Teo�latto, and
Minotti]). This can be used to execute biological or physical experiments. Also, the high
altitude with space conditions enables scientists to conduct technological and material
veri�cation. Since the parabola has a high altitude but the ground distance is rather
short, the rockets payload can be picked up and returned to the rocket range again for
investigation and data extraction.

This huge variety of capabilities makes sounding rockets a unique tool for science and
research. On top of this, a sounding rocket mission is inexpensive compared to a satellites
mission or a �ight to the International Space Station (ISS). Disused military rocket motors
like M112 Hawk rocket motor can be depleted for these civil purposes (see [Ast(2019)]).

A sounding rocket usually consists of the following parts. It starts with a rocket motor
where �ns are attached for a stabilized �ight by introducing a spin to the whole rocket
of around 15 Hz. The motor can be, but not always is solidly fueled, which means that
it is ignited once and then burns until the fuel is exhausted. A thrust pro�le has to be
build in while manufacturing the motor and it cannot be changed during the �ight like it
is possible with liquid fuels where e.g. a valve can be opened or closed to provide more or
less fuel to a burning chamber. However, solid fuel is more easily to be handled since it
does not need maintenance like cooling, pressure and has only very few mechanical parts.
The rocket is build modular with di�erent module rings of multiple heights for di�erent
purposes. The amount of modules varies with the mission and only the standard modules
are listed here. On top of the motor there is a so called Recovery Module attached. The
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Figure 5: Sounding rocket MAPHEUS 5 with two motor stages (S30 and S31) and several
payload modules, by MORABA

attachment is locked by a ring which can be removed by �ring small pyrotechnic initiators
to separate both parts after the engine burned out. (See Section 2.2.2)

As an example, the possible con�guration of a MAPHEUS rocket is described. Other
con�gurations are possible, depending on the used system and mission requirements. In
this case the Recovery Module contains the parachute and the pressure sensor to land the
payload safely on ground. Attached to the recovery module there is also a mechanism for
mechanical de-spinning of the payload after separation. Depending on the con�guration it
is followed by a rate control system to maintain a precise rotation rate or to keep the rate
close to zero. On top of the Recovery Module there is the Service Module containing all
the electrical equipment necessary for the �ight like batteries, on-board computers, timers,
sensors, radio transceivers etc. It also provides connectors for the experiments which are in
separate modules and contains the connector for the umbilical power and data lines while
attached to the launcher or during testing. As mentioned every experiment is placed in a
separate module, it is provided a connector for power and telemetry data. The scientists
are more or less free in what they are doing as long as it meets the electromechanical
requirements. Also, the choice of the data format for the down-link is up to them the
scientists, since the data is repacked inside an internal protocol format (see Sections 2.2.4
and 2.2.6 for further information).

The experiment modules are stacked an placed on top of the Service Module. At the
tip of the rocket there is the nose cone which as well can house experiments. Is also has
an antenna for the GPS receiver in its tip and can as well be removed by a ring connector.
But its main purpose is of course the aerodynamic shape to reduce drag during launch. A
completely assembled sounding rocket with a dual stage S30 and S31 motor can be seen
in Figure 5. To reach higher altitudes or di�erent �ight pro�les a second stage can be
attached. The bandwidth can change with the �ight phases as experiments are started
and stopped facing di�erent criteria variations for example micro gravity or pressure.

2.2.2 Flight Phases

At the beginning of a mission launch the rocket is placed at the launchpad, usually
attached to a rail. Just before the countdown reaches zero the engines are ignited. The
rockets starts moving along the rail still attached to the umbilical which consists of power
and data wires. Just by the lifting force the wires are plugged out of the service module.
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Before that the power was switched to the internal batteries but the data transmission over
wire gets interrupted. This interruption is de�ned as "Lift-o�" and this exact moment will
be used as a �x time reference later the process. However, no data gets lost, the ground
stations were already receiving data and transmitting it to the operators.

Since the engines used are former military rocket motors the acceleration during the
�rst �ight phase is enormous and reaches up to 21 times the gravitational force (for
Improved Orion motors). The �ight is stabilized by spinning the rocket up to around 11
Hz. After this short but rapid burning phase the motor is burned out and decoupled from
the payload modules. Because of the velocity, the height above ground is still increasing.
Now the "de-spinning" takes place where two weights on wires are released to bring the
rotation down to roughly 0 Hz. It is possible to reduce the spin further by using an
active rate control system. With the de-spinning the zero gravity phase starts. No more
forces are acting on the payload system. Often the experiment phase of the scientists
starts at this moment. For some experiments live data is essential during the short micro
gravity phase in case a rocket cannot be recovered afterwords or since parameters have
to be changed using an up-link. Also, veri�cation of is important to give feedback to the
construction engineers. This state will be maintained during descending until it starts to
interact with increasing density of the atmosphere again. At a certain point the rocket
loses the telemetry connection since it descents behind the horizon and the telemetry is
switched o� by a timer after touchdown. Just before touchdown the landing position will
be sent via a dedicated Iridium Satellite up-link to the recovery team. This transmission is
not recorded by a ground station. Depending on the landing zone the payload is collected
by a helicopter or ship and brought back to the rocket range for further investigation by
the scientists. The rocket motor might not be recovered immediately.

2.2.3 Rocket Range

Throughout this thesis the term "rocket range" or "test range" sometimes is used. A "rocket
range" is a restricted access area where, as the names intends, rockets are launched. It does
not only contain the launcher, but everything that is necessary to support and maintain
scienti�c or technology experiments. This reaches from a range safety department which
concerns things from handling toxic to explosive material as well as safety during launch
to the actual launch sta� and scientists.

Rockets launched within the area do not necessarily land within that area since the
distances covered by the vehicle can be immense. Ranges can usually be found in little
inhabited areas like "Esrange Space Center" in Sweden above the polar circle or the well
known military test range "White Sands Missile Range" in the desert of New Mexico, USA.
Usually receiving antennas are located along the �ight path of an aircraft observed, like
displayed in the schematics by GDP Space Systems Figure 7 while the the Best Source
selection takes place on the range (see [Nicolo(2018)]). For the special family of sounding
rockets which have a parabolically shaped trajectory this does not apply. The ground
range is rather short compared to the height which means the antenna systems are close
to each other. Therefore, the rocket is in the �eld of view of several antennas at the same
time. Actually, the overlapping time can be considered above 95%. This con�guration is
the basis for the con�ating best source selection.
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Figure 6: Schematic representation of a sounding rocket �ight with two motor stages.
Telemetry stations are located close to the launchpad. Rocket schematic by MORABA

Figure 7: Typical ground station setup for an aircraft test range, taken from [Nicolo(2018)]

-13-



2 BACKGROUND

2.2.4 Experiment Data

As stated in Section 2.2.1 the rocket's payload with the experiments will be recovered after
the �ight, however, often it is necessary for the scientists to receive live data during the
�ight, even so most of the time only a down-link is provided instead of a bi-directional con-
nection and the experiment phases performed are autonomously triggered by pre-de�ned
signals like Lift-O�. Normally the majority of the data is stored onboard and only the
most important parameters are sent to the ground station, this has to be done since a
safe pickup of the payload can never be guaranteed. The rockets Service Module can be
seen as a black box for the experiments. A RS-422 or Ethernet connector is provided
where a fully transparent asynchronous down link can be established (see [Schuettauf
et al.(2018)Schuettauf, Kirchhartz, et al.]). The same interface is provided at the science
center where the scientists operate their experiments. This means that the whole trans-
mission process is transparent to the scientists and the only limitation is to stay within a
pre-de�ned transmission rate. The protocol for performing the transmission is up to the
customers, providing maximum of �exibility.

2.2.5 Communication Channel

During the whole phase from lift-o� until the experiments are shut o� data is transmitted
from the rocket to the ground stations. Figure 8 shows the logical data path. In the upper
part, one can see the path inside the rocket. Data from the experiments and housekeeping
like rates, acceleration, GPS-position, currents, temperatures etc. are collected inside
the "Data Handling"-subsystem which is placed inside the "Service Module" where it
is chopped and packed into IRIG-106 frames, see Section 2.2.7. The packages are then
modulated with PCM/FM on a carrier signal and transmitted down to one or more ground
stations. In this case there are two station which receive the signal and demodulate it.
Inside a so-called "Proxy" the frames receive a second header with additional information
like size, version, quality etc. This will be explained in detail in Section 2.2.8. From
these Proxy the frames are sent via an Ethernet User Datagram Protocol (UDP) to the
Stream Merger described in this thesis. Streams of several ground stations are merged in
this process into one single stream. A "Stream Extractor" removes all frame headers on
OSI-layer 2 and 3 and unpacks the data. It is then send to the scientists and operators.

2.2.6 Data Transmission

The housekeeping and experiment data is transferred via di�erent paths to the scientists.
In a �rst step incoming data is atomized into �x block sized data junks inside the Onboard
Data Handling module. These junks are then repacked using a protocol close to the IRIG-
106 standard for digital on-board recording. This standard is still widely used in telemetry
of aeronautical telemetry applications of the Range Commanders Council (RCC) member
ranges. (See [Baggerman(2019)])

Before lift-o�, while the rocket is still attached to the launcher, data is transmitted
via an umbilical, which is a bundle of di�erent wires plugged into the service module.
During the lift-o� the umbilical is being pulled out of the rocket just by the force of
the moving rocket. At that point the stream of data packages has to be received by a
telemetry ground station via S-band. The signal gets received ampli�ed and in the end
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Figure 8: Schematic representation of the continuous transmission from experiment and
housekeeping data to users with two ground stations
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synchronized by a Cortex receiver. The Cortex receiver is a broadband radio telemetry
receiver produced by Zodiac Aerospace used within MORABA telemetry stations. Then
it is transmitted using Ethernet to a proxy service, which repacks the frames send by
the Cortex in a suitable format which can be understood by the operators' software.
Sometimes the Iridium satellite constellation is used for long range transmission. The
sender is a satellite transceiver unit from where the data is routed through a network of
75 satellites (see [Tan et al.(2019)Tan, Qin, Cong, and Zhao]) in low earth orbit and down
to a ground station. From there it is also sent through an Ethernet connection.

2.2.7 TFrame Structure

The transfer frame (TFrame) generated inside the Service Module has a very simple
structure. It orients itself on the IRIG-106 frame format but implements a reduced version
with less metadata inside the header, so that the overhead for the transmission gets
reduced to a minimum. The header begins with a 3-byte sync word (0xFAF320) to easily
be found in the stream. It is followed by 12 Bit words, called DataWord in this thesis.
The �rst 8 bits are data with a 4 bit redundancy for FEC. Further information on the
FEC will be given in Section 3.1.2 Theoretically an in�nity number of DataWords can be
inside a frame, however, the length is limited by the length counter in the TMFrame, see
Section 2.2.8. The length is pre-de�ned before a �ight, so that all frames have the same
number of DataWords. However, it can vary from mission to mission.

Special attention in the implementation is required by the �rst DataWord. Even so
the format is the same for all DataWords, the �rst word belongs to the header carrying a
counter value which over�ows every 256 counts. This is the only counter within the whole
format. Since the format is part of legacy and will remain the standard for a longer period
of time all soft- and hardware implementations require this frame format so the counter
cannot be increased to improve the matching of frames inside the bu�er as described in
Chapter 3. For example the telemetry department does slant range measurements on the
data stream which require the counter to stay in this shape. For this purpose even empty
frames, only consisting of the header, the count and empty DataWords can exist, if there
is no data to be transmitted at that moment. Since one DataWord consists of 12 bit an
uneven count of DataWords plus one DataWord carrying the count have to be send to
get an even byte number.

Sync Count DataWord #1 DataWord #2 DataWord #n
Size (Bit) 24 8+4FEC 8+4FEC 8+4FEC 8+4FEC

Table 1: Transfer frame (TFrame) structure

2.2.8 TMFrame Structure

The telemetry frame is generated by the proxy and exists only in the ground segment
packed in Ethernet and UDP frames. Its purpose is to provide additional information
along with the TFrame and with this it allows a maximum of �exibility on the user side.
One TMFrame can carry exactly one TFrame. The frame header is modular and can be
extended with various information. On wired connections inside the ground segment the
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overhead does not matter much compared to the radio transmission between rocket and
telemetry stations. As the TFrame, the TMFrame starts with a synchronization word but
consisting of 4 Bytes instead of 3. It is followed by a length value which describes the
whole size of the frame in bytes. As described in Section 2.2.7, the count of DataWords
is limited in length by this value. This means that a total size of 65536 bytes is possible.
After the size a version number follows, which can be used to di�erentiate di�erent versions
of headers with di�erent extra information. To allow a downward compatibility an o�set
�eld is given. It describes the o�set from the �rst byte of the TMFrame-header to the
�rst byte of the TFrame header. This means that if there is additional information the
system is not aware of, it can just ignore this �elds and jump directly to the frame body.
The last header �eld in the standard header contains a double value (64 bits) to describe
a quality index which can be calculated inside the Cortex receiver. For example, it can be
based on values like bit synchronization errors, frame loss etc. After the header, the data
�eld follows. It consists of a whole TFrame as in Table 2. No additional error correction
is implemented in the frame's header however this is not necessary since the frames are
transported over an Ethernet protocol like UDP (with CRC).

Sync Length Version O�set Quality Body
Size (Bit) 32 16 8 8 64 (double) < TFrame>

Table 2: Telemetry frame (TMFrame) structure

2.3 Best Source Selection Strategies

As described in Section 1.4, it is di�cult do determine what are the details of the most
recent approaches for best source selection in industrial and military applications. What
all BSS have in common is that they have to monitor all available input data streams
continuously to be able to adjust the output in a way so that the output has the best
possible quality while preventing interruptions. A simple selector monitors the bit error
rate and switches from one data stream to another if the bit error rate reaches a critical pre-
de�ned threshold (see Figure 9). The switch just redirects the input to the output channel,
all data from other channels is ignored. A rapid switching is possible. This implementation
leads to a low technical e�ort and does not limit the maximum throughput of the system
since the measurement can easily be done in real-time during the bit synchronization
which is normally done by the receiver internally, even if there is no source selection
taking place. This kind of BSS has no limit on the input channels since other channels
than the selected one do not have to be processed.
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Figure 9: Simple Best Source Selector switch with three inputs and one output

Yet, the above described method has a lot of disadvantages. The incoming data
streams are most certainly asynchronous due to di�erent travel times of the signal to the
antenna and then to the selector. If the output is switched to another input source there
is also a jump in time in the future or past depending on the position of the current data
stream in time. If the time jump is into the future, data will be lost since the output
stream has lost frames or has a gap. Therefore, all the frames in between the points in
time will just be omitted. The time jump is accompanied by a phase jump which requires
an electronic system to �nd the lock on the stream again as can be seen in Figure 10. A
lock means that the system's internal clock is synchronized to the arrival interval of new
frames. This makes it easy to determine the beginning and the ending of a frame. Burst
errors can lead to a rapid switching between input channels since the overall quality of
the streams might be good, but the stream only has a short period of defective frames
due to a lot of errors arriving in a short time interval. Also, the streams have to be
prioritized e.g. based on the sequence of over�ights over the antennas. This is especially
important if the experiment is done over a large area like experiments with aircraft. In
case of sounding rockets where the rocket is received by all ground stations roughly over
the whole duration of the experiment a di�erent approach has to be chosen.

However, there has been some development since the use of simple Best Source Selec-
tors. To determine the functions of more recent applications it is useful to have a look on
publications like [Nicolo(2018)] of manufacturers of BSS components. Several methods to
improve the selection are mentioned in the Section 1.4 "State of the Art". There will be a
more detailed discussion of these options, and they can contribute to a custom approach
for the data stream improvement for sounding rockets.

2.3.1 Frame Synchronization Pattern

Apart from this simple switching done in the 80' and 90', with more powerful FPGA
sophisticated ideas could be realized. The biggest disadvantage of the simple approach is
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Figure 10: Time shift between di�erent streams. Taken from [Nicolo(2018), p. 49] and
modi�ed

the data loss during switching. Bu�ers were used to synchronize the incoming frames in
phase and time. Each stream was handled simultaneously and the synchronization o�set
could also be used as a quality index. With this a dynamic lossless switching between
the streams became possible while maintaining an unlimited bandwidth. However, the
correlation was only done based on the input timing by the frame synchronization pattern
not on the data itself. The improvement of this idea is to use state machines to match
patterns from one stream against the other streams and once a pattern has been detected
the process is repeated after some time to verify that the streams are still synchronous.
This was done in the more recent years from 2000 to 2010. It also allows matching
of encrypted streams with random data. In fact random data is even better for this
method since repeating patterns can load to a false positive in the correlation process.
(See [Nicolo(2018)])

2.3.2 Data Quality Encapsulation

With advanced hardware it was possible to gather information not only inside the Best
Source Selector but also directly at the remote located ground stations. The received data
is repacked in a second frame carrying this information to the CBSS. This encapsulation
of additional quality around the data itself is called Data Quality Encapsulation (DQE).
This helps to make use of additional and more reliable information for decision-making for
each stream but has the downside of a lager overhead potentially limiting the throughput
of the transmission. In the worst case every bit has an additional bit describing whether
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the signal was strong or weak during the reception, which leads to an overhead of 100%.
But if this is acceptable it can be used to do a bit-wise majority vote on the data. In
the majority vote a single matching bit of each stream is compared and the majority is
accepted as the true value of this particular bit. This might sound very ine�cient but
leads to an output that can potentially be better than each single input stream. This
process can be seen in Figure 11. Poor bits have a lower value than bits with a high
signal quality. The majority is then calculated based on this information and placed on
the output stream. Of course this requires powerful logic processing capabilities.
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Figure 11: Bit-by-Bit majority vote between di�erent streams using data from Quality
Encapsulation. Taken from [Nicolo(2018), p. 54] and modi�ed

2.3.3 Digital Pattern Mode

The digital pattern mode is a mode similar to the Data Quality Encapsulation. At �rst
frame synchronization is used to correlate the sources. With the frame synchronization
pattern a quality index can be derived by investigating the synchronization process. An
advantage is that existing receivers provideEb=N0 (see Section 2.1.5) and Best Source
Selectors can be used. No powerful hardware is necessary to calculate that information
since it is already available in the correlation process. However, it needs to process quite
a lot of data until trends or degrading infect the quality index. This mode can also be
used together with majority vote. Nevertheless, in this case one needs pay attention to
the fact that there are three sources available from the beginning or that the switch-over
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to majority vote is fast in case a new stream appears to prevent data loss in between.
(See [Nicolo(2018)])

2.3.4 Data Quality Metric Mode

Data Quality Matrix (DQM) is a new mode, developed by the Range Commanders Council
in the US in the year 2017. Bit Error Probability (BEP) is used in the Data Quality
Encapsulation but not bit-wise. Instead, a block of 4096 bits is encapsulated with a
header of 48 bit containing 16 bit frame sync pattern and 16 bit for the Data Quality
Metric additional with some other information. The DQM is translated from a table to
the Bit Error Probability. This reduces the overhead in the stream and allows to use
fully encrypted streams where no information about the content is available and the data
seems to be random. The downside is a lack of information on the quality of smaller data
junks. (See [Nicolo(2018)])

2.3.5 Cyclic Redundancy Check Mode

A mode working with the data itself instead of information based on external measure-
ments like the Eb=N0 is the CRC-Mode. CRC stands for Cyclic Redundancy Check and
uses additional information added to a block of data. By adding additional structured bits
generated from the content of the data block to the header or footer of a transfer frame it
is possible to calculate whether the data in the data block is correct or if bit �ips occurred
during transmission. The code words with the redundant information are calculated using
a generator polynomial. On the receiver side the same polynomial is used to calculate the
code word. Now both code words can be compared. If they match, the data is most likely
to be correct. "Most likely" means that the likelihood is dependent on the polynomial
used and cannot be ensured to 100%. Based on this error detection a quality index can
be calculated. The best source selection can take place based on this index. Since the
data block has to be a static size to work the polynomial, it might be necessary to �ll it
up with zeros. This leads to an unnecessary transmission of data which can be seen as
an overhead to the transmission together with the additional CRC-bits. This approach
could lead to a di�culty in correlation since frames �lled with zeros might look the same
if no random data or variable data like frame counters are sent within the header. Also,
bu�ering is needed since only whole frames can be analyzed. The bu�er therefore depends
on the data block size and the correlation interval. However, this approach also works
with encrypted data. (See [Nicolo(2018)])

2.3.6 GDP Weighted Majority Vote with Data Quality Encapsulation

In the paper [Nicolo(2018)] submitted by GDP, this mode is said to be the most powerful
available mode. It consists of three subsets. The quality is determined based on the ana-
log signal during the bit synchronization and quality information is provided for every bit
received. The second approach is using Data Quality Encapsulation based on the analog
signals quality located at the ground station. By using DQE the quality information is
sent inline with the data. The third does the same by transmitting the data directly out
of the receiver over e.g. an Ethernet connection. The signal quality is monitored over a
256bit for every stream as a basis to do a weighted majority vote in case there are at least
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three streams available. For two streams a bit-by-bit decision can be done as shown in
Figure 11. It can be switched lossless between those modes for a dynamic stream man-
agement. With this setup the streams can correct each other so that the output is better
than single inputs by a factor of up to 3. By the bit-by-bit DQE the required bandwidth
is doubled between the receiver and the best source selector (See [Nicolo(2018)]).

In this approach of developing a software based on BSS it will be shown that it is
possible to fuse all these functions together to provide the best possible output of the
system and therefore doing a Best Data Selection. The data can even be enhanced by
doing error correction in the process. It is not switched as in a BSS or CBSS so no frames
can be lost during the process. The streams are monitored over time as well as a frame
wise analysis of the data is done. This is made possible by the fact, that there is an
insight in the protocols used on higher OSI levels. The downside is that the protocols
have to be known by the system and, therefore, the system cannot be used when the
protocol is unknown. Moreover, the software bound to the special use in the environment
of MORABA. To improve the data further than with error correction it is necessary
that several data streams are received in parallel at a time like it is the case for typical
sounding rocket applications. The framework is build in a way, so that additional header
information of the transfer frame can easily be added and even a replacement of IRIG-106
with a di�erent protocol like the ones used by Consultative Committee for Space Data
Systems (CCSDS) would be possible with small e�ort.
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3 Results

In this chapter an overview of the implementation process will be given. It starts with a
detailed analysis of the error detection and correction capabilities of the undocumented
FEC implemented in the DataWords of the TFrame described in Section 3.1.2. Then an
overview of the data �ow inside the software will be given followed by a detailed insight
in the modular structure of the system. Each processing step will be discussed in detail
along with which problems occurred and how they were solved.

3.1 Error Correction

At �rst here is an overview of the process of obtaining the error detection and correction
code for the further use in the correction process. Further criteria for the convolution of
previous corrupted frames are discussed.

3.1.1 Reverse Development of FEC Code

Since there exists description nigher of the Forward Error Correction used in the trans-
mission and nor of its mathematical capabilities, it had to be �gured out by reversing
the process to get to the mathematical model. Only the error syndromes for doing the
correction and detection are available but no further information on the statistics. This
information could be obtained from the data sheet of the CMX909 Package Data Modem
of CML Microcircuits [CML(2008)].
Given is the following parity check matrixH from [CML(2008), 5.5.2 FEC]:

H 0 =

2

6
6
6
4

1 1 1 0 1 1 0 0 1 0 0 0
1 1 0 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0 0 0 1 0
0 1 1 1 0 1 0 1 0 0 0 1

3

7
7
7
5

(4)

From this matrix everything else has to be derived by calculations and educated guesses.
The �rst striking thing to notice is that the matrix ends with an identity matrix of 4 � 4.
This leads to the unveri�ed assumption that a systematic code is used. Systematic codes
are separated in data bits and parity bits for a better handling by e.g. FPGA. So the
usage of such a code would make sense. With the formulas given in [Pless(1998), 1.2] it
is now tested if our assumption can be translated into a model. Error syndrome take the
following form:

H = ( � AT jI n� k) (5)

And for binary codes� A = A:
H = ( AT jI n� k) (6)

By looking at the Matrix 4 with the identity matrix at its end and the knowledge that a
set of data is 8-bit per code word, it can further be assumed the following for the Equation
6. Where A is a matrix with k � (n � k) and I as the k � k identity matrix. It can be
derived from that n � k = 12 � 8 = 4, this means that the parameters would ben = 12,
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k = 8 and therefore I k � k is I 8� 8. And following for � AT :

� AT =

2

6
6
6
4

1 1 1 0 1 1 0 0
1 1 0 1 0 0 1 1
1 0 1 1 1 0 1 0
0 1 1 1 0 1 0 1

3

7
7
7
5

(7)

And the transformed version of the matrix:

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

(8)

The standard form of the generator matrixG can be described as in [Ling(2004), De�nition
4.5.3 p. 52]:

G0 = ( I k jA) (9)

This leads to a possible generator matrixG:

G0 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1 0 1 1
0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

(10)

With a possible generator matrix it can now be tested whether the previous assumptions
were right. A code wordc can be calculated by multiplication of the generator matrixG
with 8 bits of data [Ling(2004), p. 57]:

c = G � d = dT � GT (11)

In the manual an example can be found for testing a code word on validity. This 12-bit
code word can now be used to test the derived generator matrix.

d =
h

0 0 1 0 1 1 0 0
i

(12)

Which supposes to result in a code word of:

c =
h

0 0 1 0 1 1 0 0 1 0 0 0
i

(13)
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This can now be used to verify the calculated generator matrix and therefore the code
structure with the parametersk and n:

c0 =
h

0 0 1 0 1 1 0 0
i

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1 0 1 1
0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

(14)

c0 =
h

0 0 1 0 1 1 0 0 1 0 0 0
i

(15)

With c = c0 follows that the previously made assumptions on the matrix structure in
Equation 4 were right. Following is the code used for Forward Error Correction a (12,8)-
Code wheren = 12 and k = 8. Furthermore, a generator matrix was obtained which
can now be used to generate valid input data for the software stream merger. With this
knowledge the mathematical capabilities can be derived.

3.1.2 (12,8) Code

A (12,8) code produces a 12-bit output for a 8-bit input. With Equation 3 it can be seen
that the (12,8)-code does not ful�ll the requirements to be a simple Hamming code:

n = 2m � 1; k = n � m (16)

Calculating m from the second part of the requirements:

m = n � k = 12 � 8 = 4 (17)

For setting m = 4, the result should ben = 12.

n = 2m � 1 = 24 � 1 = 7 6= 12 (18)

This proofs that this is not a simple Hamming code.
The block code could also be an extended or shortened Hamming Code. An extended
code has a minimum Hamming Distance of 4 with an additional parity bit. By calculating
the distance between every word using a Matlab script (see Appendix A.1) it could be
proven, that there can be found tuple of words for every word with a minimum Hamming
distance of 3. This way we can rule out the usage of an extended version of Hamming
Code, since the minimum distance would have bin 4 in this case. So this code has to be
a shortened (15,11)-code, since there are 4 parity bits the number of symbols which were
reduced by 3 from 11 to 8. This reduces the overall length of the code word to 12. It
was most likely done to �t the criteria of easy handling in hardware implementations as
discussed above.

Figure 12 shows two code wordsX i and X j of the same code spaceX . These words
have a Hamming distance of 3 to each other which means that there are two unused words
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lying in between. The di�erence both words is 3 bits.
If a code word would be received and be placed on position 1 on the line it is more likely
that the original word is X i than X j since the distance toX i is 1 and to X j is 2. It is
assumed that the received word has a single bit error and therefore will be corrected to
X i . However, if exactly two bit errors occur, it will be placed on position 2. As a result
it would be corrected toX j which is wrong, but we still can see that a defect word has
been transmitted. This is displayed by the so called correction circles. Every code word
within the red circle would be corrected to the red code word, every word within the blue
circle to the blue word.

This means that the code is capable of detecting two bit errors and correcting single
bit errors. Three bit errors in X i would be detected as a valid code wordX j .

Figure 12: Correction circles for a Hamming Distance of between a tuple of code words
X i and X j , taken from [Tran-Gia(2015)] and modi�ed

From this the possibilities of such errors can be calculated and later be used to compare
the reliability of words that were received over di�erent communication channels.
From Section 2.1.3, it can be derived, that BER is 1� 10� 7 in the worst case, which
implies that on average every 1� 107 bit is damaged. And the possibility of an error free
transmission with a code word of 12�bit length is:

Pe=1 = (10 � 7)0 � (1 � 10� 7)12 = 0:9999988 = 99:99988% (19)

The possibility of one and two transmission errors is:

Pe=1 = (10 � 7)1 � (1 � 10� 7)11 = 9; 99� 10� 8 = 9; 99� 10� 10% (20)

Pe=2 = (10 � 7)2 � (1 � 10� 7)10 = 9; 99� 10� 15 = 9; 99� 10� 17% (21)

For an error to occur a code word has to be falsi�ed into another one. Since the data bits
of the code have been reduced, the code is no longer dense.
From the Matlab code word generator A.1 and the script in A.2 the residual error proba-
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bility can be calculated with the following formula (see [Mildenberger and Werner(1998),
6.4.3]):

PR =
nX

i = dmin

A i � pi � (1 � p)n� i (22)

Where A is the number per bit equal to 1 in a code word, also called weight:

Weight 0 1 2 3 4 5 6 7 8 9 10 11 12
A 1 0 0 16 39 48 48 48 39 16 0 0 1

Table 3: Count of code words with the weight A

Summing up the probabilities in Equation 22 and starting with the minimum distance
dmin = 3 (as the distance where errors are no longer detectable) result in a residual error
probability of:

PR = 1:6 � 10� 27 (23)

For the error correction we can simply calculate the possibility of two or more errors,
which results in a di�erent valid code word:

Pe� 2 =
nX

i = k

 
n
i

!

� pi (1 � p)n� i (24)

Pe� 2 =
12X

i =2

 
12
i

!

� (10� 7) i (1 � 10� 7)12� i (25)

Pe� 2 = 6:60� 10� 13 (26)

Where the probability factor readsp = 10� 7 and the count of bits in the word isn = 12.
This results in a possibility of Pe� 2 = 6:60 � 10� 11% for a falsely corrected error with a
transmission experiencing the worst Bit Error Rate.

This means that it is very reliable to detect errors but correcting errors is more likely
to be wrong. However, if a 5 Mbit transmission is assumed, 5� 1024� 1024 = 5242880 bit
will be transmitted per second. So in one second 5242880� 6:60� 10� 13 = 3:46� 10� 6 errors
will be corrected to another code word. This implies one uncorrected error appears every
80.27 hours in a laboratory environment without additional external disturbances. Such
a single error during the duration of a �ight is not very likely and can easily be corrected
by mechanisms in higher OSI levels.
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3.2 Software Architecture

In this chapter an overview of the derived software architecture is given for an understand-
ing how and in which way the data is processed. The realization of di�erent merging modes
is shown together with di�culties that were encountered during the process. Furthermore,
this chapter shall not only show the design decisions but also give a fundamental under-
standing of the processing. The most important parts of the code framework are shown
in the text.
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�7�L�P�H���0�D�Q�D�J�H�U
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Figure 13: Schematic representation of the data �ow inside the software. Red: data �ow,
blue: DataWord object �ow, green: DataWord with �lled objects �ow, yellow: metadata
�ow, gray: time data �ow

Figure 13 shows a schematic drawing of data paths through the system. The red big
arrows indicate the logic path of the data through di�erent processing steps. UDP binary
data streams are received simultaneously and spitted in single frames as they are sent from
a telemetry station. This is done inside the input handler (see Section 3.2.3). The frames
are atomized in their constituent parts. The telemetry frame TMFrame (see Section 3.2.6),
the transfer frame TFrame (see Section 3.2.5) and the data in single DataWord objects
(see Section 3.2.1). The DataWord objects are pre-generated and collected inside a pool
(see Section 3.2.2). During this process the error correction is executed as it was explained
in Section 3.1.2 and statistical data is collected for each stream in the Statistics class (see
Section3.2.11). In the end, the streams are merged into one inside the StreamMerger
class (see Section 3.2.9) and send to at UDP output socket. The merging process is
based on information collected in the Statistics class and the DataQualityManger which
is responsible for matching the streams against each other (see Section 3.2.8). For this
process to stay in certain time limits a TimeManager class is introduced to observe the
run-time (see Section 3.2.12).
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3.2.1 Data Word

A class called DataWord is used to handle code words with additional meta information
about whether the word has errors of if it had been corrected. An object of the class
is created without data content (for more information refer to the next Section Object
Pooling 3.2.2) and the data has to be �lled during run-time. The word has to be corrected
and during the merging process it has to be provided to the output. Afterwords the object
needs to be cleaned so that it can be used again after it has been returned to the object
pool.
Since the protocol standard supports endianness, both big and little endian has to be
supported in the framework. For this reason there is an abstract class DataWord which
contains all functions to provide the methods for the aforementioned tasks as well as two
inherited implementations for both bit orders.

The error detection and error correction is done using a lookup table. For each 8�bit
word there is a corresponding 4�bit FEC code (see Section 3.1.2). The 4�bit code can
be looked up in the table as "static readonly" which is very similar to a constant. The
modi�er is used since a byte array as a constant can only have the null-type.

Listing 1: ErrorDetectionTable

1 internal stat ic readonly byte [] ErrorDetect ionTable = new byte[] {
2 0x0, 0x5, 0x6, 0x3, 0x9, 0xc , 0xf , 0xa , 0xa , 0xf ,
3 0xc , 0x9, 0x3, 0x6, 0x5, 0x0, 0x7, 0x2, 0x1, 0x4,
4 0xe , 0xb , 0x8, 0xd , 0xd , 0x8, 0xb , 0xe , 0x4, 0x1,
5 0x2, 0x7, 0xb , 0xe , 0xd , 0x8, 0x2, 0x7, 0x4, 0x1,
6 0x1, 0x4, 0x7, 0x2, 0x8, 0xd , 0xe , 0xb , 0xc , 0x9,
7 0xa , 0xf , 0x5, 0x0, 0x3, 0x6, 0x6, 0x3, 0x0, 0x5,
8 0xf , 0xa , 0x9, 0xc , 0xd , 0x8, 0xb , 0xe , 0x4, 0x1,
9 0x2, 0x7, 0x7, 0x2, 0x1, 0x4, 0xe , 0xb , 0x8, 0xd ,

10 0xa , 0xf , 0xc , 0x9, 0x3, 0x6, 0x5, 0x0, 0x0, 0x5,
11 0x6, 0x3, 0x9, 0xc , 0xf , 0xa , 0x6, 0x3, 0x0, 0x5,
12 0xf , 0xa , 0x9, 0xc , 0xc , 0x9, 0xa , 0xf , 0x5, 0x0,
13 0x3, 0x6, 0x1, 0x4, 0x7, 0x2, 0x8, 0xd , 0xe , 0xb ,
14 0xb , 0xe , 0xd , 0x8, 0x2, 0x7, 0x4, 0x1, 0xe , 0xb ,
15 0x8, 0xd , 0x7, 0x2, 0x1, 0x4, 0x4, 0x1, 0x2, 0x7,
16 0xd , 0x8, 0xb , 0xe , 0x9, 0xc , 0xf , 0xa , 0x0, 0x5,
17 0x6, 0x3, 0x3, 0x6, 0x5, 0x0, 0xa , 0xf , 0xc , 0x9,
18 0x5, 0x0, 0x3, 0x6, 0xc , 0x9, 0xa , 0xf , 0xf , 0xa ,
19 0x9, 0xc , 0x6, 0x3, 0x0, 0x5, 0x2, 0x7, 0x4, 0x1,
20 0xb , 0xe , 0xd , 0x8, 0x8, 0xd , 0xe , 0xb , 0x1, 0x4,
21 0x7, 0x2, 0x3, 0x6, 0x5, 0x0, 0xa , 0xf , 0xc , 0x9,
22 0x9, 0xc , 0xf , 0xa , 0x0, 0x5, 0x6, 0x3, 0x4, 0x1,
23 0x2, 0x7, 0xd , 0x8, 0xb , 0xe , 0xe , 0xb , 0x8, 0xd ,
24 0x7, 0x2, 0x1, 0x4, 0x8, 0xd , 0xe , 0xb , 0x1, 0x4,
25 0x7, 0x2, 0x2, 0x7, 0x4, 0x1, 0xb , 0xe , 0xd , 0x8,
26 0xf , 0xa , 0x9, 0xc , 0x6, 0x3, 0x0, 0x5, 0x5, 0x0,
27 0x3, 0x6, 0xc , 0x9, 0xa , 0xf
28 } ;

As an example the word 13 from Section 3.1.2 is used. The data part is spitted from the
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parity bits and used separately. The spiting can simply be done by bit shifting.

cdata

h
0 0 1 0 1 1 0 0

i
= 0x2C (27)

The value 0x2C is now looked up in the Table 1. The entry in the array at the location
0x2C is 0x8. This is now compared to the FEC of the code word:

cfec

h
1 0 0 0

i
= 0x8 (28)

So the FEC matches the entry in the ErrorDetectionTable which means that the code
word is correct. The matching is done by a XOR calculation with the lookup result from
the table and the FEC. If the result is greater zero there must be an error and the
detection �ag will be set inside the object.

Listing 2: ErrorDetect

1 public bool ErrorDetect ( )
2 {
3 byte diff = ( byte )( ErrorDetect ionTable [ Data ] ^ fecBits ) ;
4 errorDetected = diff > 0 ? true : false ;
5 return errorDetected ;
6 }

This process is also needed for the error correction part. With a XOR-operation the
looked up FEC is processed with the received FEC. The result is zero if the word is
correct. If it is not zero, there is an error that will be corrected in the next step. With
the result of an XOR-operation the error can be looked up from a second array from the
ErrorSyndromTable.

Listing 3: ErrorSyndromTable

1 internal stat ic readonly byte [] ErrorSyndromTable = new byte[] {
2 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x10,
3 0x00, 0x04, 0x08, 0x20, 0x00, 0x40, 0x80, 0x00
4 } ;

With the syndrome the error position in the data can be determined. By using XOR
again, the �ipped bit is �ipped back in its original position (see Listing 4). Remember
that the correction might result in the next valid data word instead of the original one
if there were two bit errors. The variables are then overwritten with the resulting code
word and a boolean is returned if a correction took place. Also the corrected-�ag inside
the object is set to true to be used in the statistics later.

Listing 4: ErrorCorrect

1 public bool ErrorCorrect ( )
2 {
3 byte diff = ( byte )( ErrorDetect ionTable [ Data ] ^ fecBits ) ;
4 if ( diff == 0) return false ;
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5 int correctedWord = ( int ) ( ( Data ^ ErrorSyndromTable [ diff ]) ) ;
6 data = ( byte )(( correctedWord >> 4) & 0xFF) ;
7 fecBits = ( byte )( correctedWord & 0x0F) ;
8 corrected = true ;
9 return true ;

10 }

In case there was no error the run-time is not longer than the ErrorDetect function. This
and the derived possibility of receiving the wrong code word from the error correction
results in the decision of using only the detection in this implementation of the framework.
Furthermore, two DataWord objects are assumed to be equal when the code words are
equal. This can later be used for comparison in the merger process. A cleaning function
resets all variables to their initial value for the use in the object pooling.

Two classes inherit from the DataWord class. DataWordLE and DataWordBE for
little and big endian. They both only have a getter and a setter each to �ll the data �elds
Data and FECBits inside the DataWord object.

For the DataWordLE:

Listing 5: DataWordLE

1 // Extract data and FEC from lit t le endian DataWord
2 public overr ide void setWord( int word)
3 {
4 Data = ( byte )(( word >> 4) & 0xff ) ;
5 FECBits = ( byte )( word & 0xf ) ;
6 }
7

8 // Build l i t t le endian DataWord
9 public int getWord()

10 {
11 return ( int ) ( ( Data << 4)| FECBits ) ;
12 }

And for the DataWordBE:

Listing 6: DataWordBE

1 // Extract data and FEC from big endian DataWord
2 public overr ide void setWord( int word)
3 {
4 Data = ( byte )( word & 0xff ) ;
5 FECBits = ( byte )(( word >> 8) & 0xf ) ;
6 }
7

8 // Build big endian DataWord
9 public int getWord()

10 {
11 return ( int ) ( ( FECBits << 8) | Data ) ;
12 }
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3.2.2 Object Pooling

Object pooling is a design pattern that can be used in case if a lot of objects have to be
created in a short time or the creation of an object e.g. the procedure in the constructor
takes a lot of time to initialize. In such a case objects can be pre-generated to gain a
performance boost during the run time. To keep track of the available objects a pool is
generated where objects can be taken from for further usage or placed back into the pool
in case the object is no longer needed. This pick and place is much more e�cient than
creating a new object every time one is needed and even faster if objects do not have to
be copied but reached around by a reference. There is, however, the downside that data
is not available at the point of creation and data has to be �lled into the empty objects
after picking it up.
In this thesis object pooling was found to be a good way of handling code words also
known as DataWords objects since they have to be processed very rapidly.

The class is called DataWordObjectPool and contains all functions necessary to keep
track of the DataWord objects inside the pool and handle events like adding, returning
and creation of new objects as well as the pre-allocation during startup.

As can be seen in Listing 7 the constructor of the class takes the object count as
argument and uses function PreAllocateObjects with a parallel For-function to create
new objects using the CreateNewDataWord function. A new object will be created and
placed in the ConcurrentBag. A ConcurrentBag is an unstructured container in the C#
concurrent collections which provide thread-safe collection classes that can easily be used
in multitasking or multi threading environments. The automatic locking features of the
collection allow safe access on the bag for multiple accesses at a time.

Listing 7: DataWordObjectPool

1 private ConcurrentBag< DataWord> _bag ;
2 // New DataWordPool . Create new bag object , call pre - al loca t ion
3 public DataWordObjectPool ( int objectcount )
4 {
5 _bag = new ConcurrentBag< DataWord> () ;
6 PreAl locateObjects ( objectcount ) ;
7 }
8

9 //Pre - create DataWord objects in paral lel tasks .
10 public void PreAl locateObjects ( int count )
11 {
12 Paral lel . For ( 0, count , ctr => { CreateNewDataWord() ; } ) ;
13 }

A Get and a Release function shown in Listing 8 provides the previously described
necessary access functionalities for getting empty and returning used objects to the bag
for further use. In case the bag is empty because all objects have been taken and are in
the process new objects are created and placed in the bag to provide locking the process.
However, this should not happen since the time an object can be used is limited by the
design. So only a su�cient pre-allocation has to be done to prevent time-consuming
creation of objects.
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Listing 8: DataWordObjectPool

1 // Get empty DataWord from the bag , if there are no more , creat e one
2 public DataWord Get()
3 {
4 DataWord word;
5 if ( _bag. TryTake ( out word)) return word ;
6 return CreateNewDataWord() ;
7 }
8

9 // Release used word into the bag , clear data before
10 public void Release ( DataWord word)
11 {
12 word. Clear () ;
13 _bag. Add( word) ;
14 }

This simple but time saving construct can now be used by the InputHandler class for
reaching the objects down to the frames where they are used for data validation, error
correction and storing additional information.

3.2.3 Input Handler

The main purpose of the Input Handler Class is to provide the functionality to listen on
a network socked and handle the pre-treatment of the received data like header valida-
tion. There is an instance of the InputHandler for each incoming data stream. Each data
stream needs to have an unique socket where the data can arrive. For a non-blocking pro-
cessing the handler is launched in a separate thread so that it does not interfere with other
parts of the software. This way di�erent data sources can send data to the framework
as they would send the data to the operator. This ensures that the system is optional
insight of pipeline and can be placed and taken from the data path without the need of
additional information apart from changing IP and port. The transmission is done as a
UDP Ethernet data stream. This means the InputHandler might listen for data even if
there is nothing connected.

In a �rst step it connects to the socket which is handed over by the main class. If
an exception occurs during the connection e.g. a socket is blocked by a di�erent applica-
tion the system will try to reconnect until the connection can be successfully established.
Data reaching the UDP Port will be bu�ered by the operating system's kernel outside the
program until the data gets collected by the framework. This external bu�er needs to be
periodically read and emptied. The collection is done by the receiving function RcvData,
which moves all available data in the external bu�er to a linked byte list. A Linked List
consists of single elements linked to a pre- and a successor object of the same type. By
this constellation the size is logically unlimited, the only limitation is the working memory.

The runner, which contains the main loop of the class, constantly iterates over the
list while new items are added. Bytes are moved into a temporary bu�er until a value
matches with the �rst byte of the telemetry frames sync word (preamble). See Table 2
and line 12 of Listing 8. Then the next three bytes are tested against the sync word. In
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case they do not mach, no header has been found and the byte is assumed to be part
of the data block of a frame. A frame's header can only be veri�ed after the frame has
fully been received. For this reason the temporary bu�er is introduced. With an assumed
correct stream it always contains valid frame data except from the �rst moment when
the software is switched on. At this point most probably only fractional parts of the last
frame transmitted are received. The temporary bu�er is �lled until a new sync word is
found (lines 13 and 19 of Listing 8). The bu�er contains now data that has to be veri�ed
if it is a valid frame, corrupted data or only fractional parts. For this a TMFrame object is
�lled with the data and the validation is executed. See Section 3.2.6 for more information
on the validation process. If the process does not raise an error, a valid frame has been
found. It is now added to the DataStream as described in Section 3.2.7 to be used inside
the merging process. If an error occurs, the procedure starts again and the data in the
temporary bu�er is skipped since it seemed to be unrecoverable distorted. After a frame
has been validated or no more bytes are available for processing the RevData function is
called to get new data from the external bu�er. If the runner is stopped the last frame
will be processed and the thread comes to an end.

This process is also important since the length of a frame is not speci�ed. By using
the header information of a TMFrame discussed in Section 2.2.8 it would be possible to
send 65536 byte long frames. Since the �eld containing the frame length does not have a
CRC or FEC it cannot safely be used for predicting the data collection time.

Listing 9: InputHandler

1 while ( run )
2 {
3 // Fi l l rawData with data from Network Socket
4 RcvData() ;
5

6 // Test if data received
7 if ( rawData. First == null )
8 {
9 // If there is no data , col lect more and come back afterwords .

10 continue ;
11 }
12

13 // Add bytes to frame buffer unti l rawData is empty and new dat a
has been received and a byte matches the first byte of the
preamble .

14 while ( rawData. Count > 0 && rawData. First . Value ! = preamble [ 0])
15 {
16 frame . Add( rawData. First . Value ) ;
17 rawData. RemoveFirst ( ) ;
18 }
19

20 // If there are 4 or more bytes and the first one matches the
preamble , check if this is a header . If not add it to frame
buffer .

21 if ( rawData. Count >= 4 && rawData. First . Value == preamble [ 0])
22 {
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23

24 // Check if next three bytes match the preamble . First byte
has already been checked .

25 if ( ( rawData. First . Next . Value == preamble [ 1]) &
26 ( rawData. First . Next . Next . Value == preamble [ 2]) &
27 ( rawData. First . Next . Next . Next . Value == preamble [ 3]) )
28 {
29

30 // New header found !
31 // If frame buffer is empty , obviously there cannot be

a frame . ( e.g. on program start )
32 if ( frame . Count == 0)
33 {
34 frame . Add( rawData. First . Value ) ;
35 rawData. RemoveFirst ( ) ;
36 continue ;
37 }
38

39 // Add old frame buffer to frame object ( val idi ty
check wil l be executed ) , if it fai ls frame wil l
not be added to stream

40 try
41 {
42 // Fi l l TMFrame object and check if frame is valid

. Throws error if not .
43 tmframe . SetRawBytes( frame . ToArray ()) ;
44

45 // Update stat ist ics about corrected errors and
other meta data .

46 stats . LastFrameErrors = tmframe .
ErrorsCorrectedCnt ;

47 stats . LastFrameSize = tmframe . Length ;
48 stats . LastFrameQual i ty = tmframe . Quali ty ;
49 // Add the new found frame to stream DataStream
50 dataStream . Add( tmframe ) ;
51 }
52 catch
53 {
54 // Frame val idat ion error . Nothing can be done to

repair it , go on and
55 // search for next frame header .
56 frame . Clear () ;
57 frame . Add( rawData. First . Value ) ;
58 rawData. RemoveFirst ( ) ;
59 continue ;
60 }
61

62 frame . Clear () ;
63 // Since new frame has been found and last frame has

been added successful ly ,
64 // putt ing all new bytes into frame buffer
65 frame . Add( rawData. First . Value ) ;
66 rawData. RemoveFirst ( ) ;
67 }
68 else
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69 {
70

71 // This is not a header , so add bytes to frame buffer
.

72 frame . Add( rawData. First . Value ) ;
73 rawData. RemoveFirst ( ) ;
74 }

As explained in the following Sections e.g. DataStream 3.2.7 Concurrent Queues are used
to transport the objects created inside the Input Handler. This ensures the safe usage for
the multi threading environment by internal blocking operations.

3.2.4 Frame

To cope with di�erent frame types an abstract class Frame is introduced. A function
SetRawBytes 10 is implemented which calls the validation method that is overwritten
by the inherited classes. The function is used to set received bytes to the empty frame
object as it can be seen in the InputHandler class in Section 3.2.3. When bytes are set, the
validation is executed in a dedicated task to prevent a locking of the thread. The task will
return a result containing a byte consisting of 8 �ags that can be used to determine the
occurred error. If the result is greater than zero the error does not match the requirements
and the frame has to be dropped. The validation is dependent of the frame type and can
of course be implemented individually. The error �ags are reported inside an argument
exception to the parent instance.

Listing 10: Frame SetRawBytes

1 public void SetRawBytes( byte [] RawBytes)
2 {
3 this . rawbytes = RawBytes;
4

5 try
6 {
7 byte val idat ion = 0 ;
8 // Start a new val idat ion task
9 ValTask . Start ( ) ;

10 // Wait for the result
11 ValTask . Wait ( ) ;
12 // Save the result for report ing and stream three and so on.
13 val idat ion = ValTask . Result ;
14

15 // If result is not equal zero there must have been an error .
Report it

16 if ( val idat ion > 0)
17 {
18 System. Console . WriteLine ( str ing . Format ( " Header not

matching design : { 0} - > Argument Exception " , ( int )
val idat ion )) ;

19 throw new ArgumentExcept ion ( str ing . Format ( " Header not
matching design : { 0} " , ( int ) val idat ion )) ;

20 }
21 }
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22 catch ( Exception e )
23 {
24 // Catch and report if there were errors thrown within the

val idat ion process
25 Console . WriteLine ( e. ToStr ing ()) ;
26 }
27 }

It also provides functionalities to compare two frame types. Two frames are equal when
their bytes from the body match. The TMFrame header cannot be compared to each
other since it could have a di�erent version with additional information as well as another
quality index since it traveled on a di�erent data path. This overwrites the standard
Equal function of C#. But there is also a second method shown in Listing 11 which
allows comparing similar frames and get the percentage of congruence between the byte
representation of these frames. Even frames with a di�erent length can be compared.

Listing 11: Frame EqualPercentage

1 public f loat EqualPercentage ( object obj )
2 {
3 // Check if object to be compared is of the same type
4 if ( obj is Frame){
5 var frame = obj as Frame;
6 int count = 0 ;
7 byte [] bytes = frame . GetByteRepresentat ion () ;
8

9 // Lock into each byte
10 for ( int i = 0 ; i < Length ; i ++)
11 {
12 try
13 {
14 // Count matching bytes
15 if ( rawbytes [ i ] ! = bytes [ i ])
16 {
17 count += 1 ;
18 }
19 }
20 catch
21 {
22 continue ;
23 }
24 }
25 // Calculate the ratio of matching bytes ( range 0 to 1)
26 return ( Length - count ) / Length ;
27 } else {
28 return 0. 0f ;
29 }
30 }

The Length method of the object is implemented as the length of the frame in its byte
representation. The GetHashCode function is as well overwritten with a hash code over
the raw byte representation of the whole frame. The object carries the ID value that is
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assumed to exist in the used protocol. If it does not exist it has to be derived from e.g.
the input counter or in a di�erent manner, since the matching uses this value to compere
two frames in a �rst fast step. However, the TFrame contains a counter that can be
used for our purpose. The following two classes TFrame in Section 3.2.5 and TMFrame
in Section 3.2.6 are derived from this. Frames are compared and transported through
the whole process, while carrying all the information including the DataWords with their
additional correction information.

3.2.5 TFrame

The TFrame class is used to implement the representation of a transfer data frame as
it has been described in Section 2.2.7. The class inherits from the abstract Frame-class
shown in Section 3.2.4. It keeps track of the DataWord-objects that came with the data
header together with the header validation and of course the header data itself.

The validation functions implement the abstract validation method of the parent class.
In a �rst step it is checked if the DataWordObjectPool is already created. Without it,
there are no DataWords that can be �lled. This check is necessary in case there is
something wrong with the initialization. Then the header is checked whether it �ts the
pre-programmed preamble as shown in Table 1. Now the data collection process starts.
Since a word is 12�bit long, it does not �t into a byte sized variable. For this reason a
whole Integer has to be used. A For-loop iterates over the previous set rawbytes-array
until it reaches the end of the data. Always three bytes are covered in one cycle. The
�rst byte is data of the �rst word, the third byte is data of the second word and the byte
in between consists of four bytes from the �rst and four bytes of the second word. This
data has to be shifted together and �lled into the according integer values.
An empty DataWord is taken from the DataWordObjectPool (see Section 3.2.2). Depend-
ing on the endianness it can now be �lled with the data- and FEC-bits. As mentioned
before in Section 3.2.1, an error correction is performed to ensure a valid word. A counter
tracks the errors that where found in this frame. As it can be seen in Table 1 there is the
noteworthiness that the frame counter of the TFrame is written into the �rst DataWord
of the body, even so it does belong to the header. Due to this fact that the counter is
needed in the later process of matching the data of the �rst word is written to a variable
called ID.

Listing 12: TFrame

1 internal overr ide byte Val idat ion ()
2 {
3 if ( dataWordPool == null ) throw new Exception ( " Wordpool not

ini t ia l ized . Use DataHandler . TFrame . SetDataWordObject Pool ( )
beforehand " ) ;

4 int f i rstword = 0 ;
5 int secondword = 0 ;
6

7 // Check if preamble matches . This did not take place before o r
the TMFrame

8 if ( rawbytes [ 0] ! = preamble [ 0]) return 0xFF;
9 if ( rawbytes [ 1] ! = preamble [ 1]) return 0xFF;
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10 if ( rawbytes [ 2] ! = preamble [ 2]) return 0xFF;
11 int count = 0 ;
12 wordList . Clear () ;
13

14 // Separate data of the body . This contains the DataWord obje cts
15 for ( int i = 3 ; i < rawbytes . Length ; i += 3)
16 {
17 try
18 {
19 // Read always 3 bytes /2 DataWords at once
20 f i rstword = (( rawbytes [ i ] & 0xFF) << 4) ;
21 f i rstword | = (( rawbytes [ i + 1] >> 4) & 0x0F) ;
22 secondword = (( rawbytes [ i + 1] & 0x0F) << 8) ;
23 secondword | = (( rawbytes [ i + 2] & 0xFF)) ;
24 }
25 catch
26 {
27 // Throw an exception in case the frame is not complete
28 throw new IndexOutOfRangeExcept ion ( " RawBytes of Frame to

short . Last Word omitted " ) ;
29 }
30

31 // Take DataWord objects from the objects pool
32 dw1 = dataWordPool . Get() ;
33 dw2 = dataWordPool . Get() ;
34

35 // Check if l i t t le or big endian words are used
36 if ( dw1 is DataWordLE)
37 {
38 dw1. Data = ( byte )(( f i rstword >> 4) & 0xFF) ;
39 dw1. FECBits = ( byte )( f i rstword & 0x0F) ;
40 dw2. Data = ( byte )(( secondword >> 4) & 0xFF) ;
41 dw2. FECBits = ( byte )( secondword & 0x0F) ;
42 }
43 else
44 {
45 dw1. FECBits = ( byte )(( f i rstword >> 8) & 0x0F) ;
46 dw1. Data = ( byte )( f i rstword & 0xFF) ;
47 dw1. FECBits = ( byte )(( secondword >> 8) & 0x0F) ;
48 dw1. Data = ( byte )( secondword & 0xFF) ;
49 }
50

51 // Call the error correct ion and save the result for the use
in the stat ist ics class

52 ErrorsCorrectedCnt += dw1. ErrorCorrect ( ) ? 1 : 0 ;
53 ErrorsCorrectedCnt += dw2. ErrorCorrect ( ) ? 1 : 0 ;
54

55 // Add words to the wordList containing all the DataWord
objects

56 wordList . Add( dw1) ;
57 wordList . Add( dw2) ;
58

59 // The first DataWord of a TFrame is belonging to the header .
It contains the frames ID

60 if ( i == 3)
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61 {
62 count = dw1. Data ;
63 ID = count ;
64 }
65 }
66 return 0x00 ;
67 }

3.2.6 TMFrame

A second frame, the telemetry frame (TMFrame), is wrapped around a transport frame
to add additional information gained by the telemetry station. As described in Section
2.2.8 it contains quality information as well as the frame size, version of the header and
length of the header for dynamic header extension. With the version and o�set additional
�elds can be added. Here discussed is the initial version number 0.
Since we observe the data directly by extracting the frames, verifying the headers and
doing error correction on the body we know the absolute quality of the data. This means
the quality �eld, that is used for DQE otherwise can be ignored, it is even set to zero. In
the end there will be an output stream from several input streams and the quality index
value will be set again based on measurements that were done during the merging and
the previous correction process.

The TMFrame class also implements the abstract functions from the parent Frame-
class as described in Section 3.2.4. So it di�ers from TFrame mainly by the implementation
of the validation method. In a �rst step the byte values of the �elds are derived by
shifting the appropriate bits together. The result is then converted to �t the data types.
Secondly the content of the length �eld is matched against the actual length of the raw
representation of the frame in bytes and the o�set is tested to �t the size of a version 0
header. If the header does not match the criteria the frame has to be dropped since the
data cannot be evaluated anymore.
After the validation the content of the TMFrame data block is set as raw input to the
provided TFrame object where a second evaluation is done as described in Section 3.2.5.

Listing 13: TMFrame

1 internal overr ide byte Val idat ion ()
2 {
3 if ( _tframe == null ) throw new Exception ( " TFrame not ini t ia l ized .

Use DataHandler . TMFrame . SetTFrame( ) beforehand " ) ;
4 byte val idat ionbools = 0 ;
5

6 // Check if frame is longer than header 's minimum size
7 if ( rawbytes . Length < 16)
8 {
9 val idat ionbools | = 0x11 ;

10 }
11 else {
12 // Cast values
13 _sync = ( uint ) ( ( rawbytes [ 0] << 24) | ( rawbytes [ 1] << 16) | (

rawbytes [ 2] << 8) | ( rawbytes [ 3] << 0)) ;

-40-



3 RESULTS

14 _length = ( short ) ( ( rawbytes [ 4] << 8) | ( rawbytes [ 5] << 0)) ;
15 _version = ( byte )( rawbytes [ 6] << 0) ;
16 _offset = ( byte )( rawbytes [ 7] << 0) ;
17 }
18

19 // Check minimum requirements
20 if ( Length ! = Length ) val idat ionbools | = 0b0000_0001;
21 if ( Version ! = 1) val idat ionbools | = 0b0000_0010;
22 if ( Offset ! = ( 2 * sizeof ( int ) + sizeof ( double )))
23 {
24 val idat ionbools | = 0b0000_0100;
25 }
26

27 // Return result if error occurred
28 if ( val idat ionbools ! = 0b0000_00000)
29 {
30 return val idat ionbools ;
31 }
32

33 // If no error , pass body to TFrame
34 byte [] words = new byte[ Length - Offset ] ;
35 for ( int i = _offset ; i < rawbytes . Length ; i ++)
36 {
37 words[ i - _offset ] = rawbytes [ i ] ;
38 }
39

40 _tframe . SetRawBytes( words) ;
41 ErrorsCorrectedCnt = _tframe . ErrorsCorrectedCnt ;
42

43 return val idat ionbools ;
44 }

As can be seen the header is not tested, this is due to the fact that the header must have
matched the preamble in the InputHandler already.

3.2.7 DataStream

The data transportation between the InputHandler and the StreamMerger is handled by
the DataStream class. However, it is not only used for transmission, this could have been
done with a concurrent list more easily. It also carries metadata like statistics to the
DataQualityManager and the TimeManager which can than access the data periodically
without interrupting the transmission process. The class implements the IList-interface
for Frame data types. Internally it consists of a concurrent queue on the input side and
a list on the output side. The splitting is done to prevent locking on the input and
therefore an unnecessary block for the InputHandler during the data appending process
while the StreamMerger (see Section 3.2.9) can operate on the stream simultaneously.
Since the access by the merger is rather long compared to rapid appending process and
the appending has to be done very frequently this is a su�cient workaround of the blocking
problem. Each stream and input handler has its own unique instance of the class.

To move the Frame-objects from the input to the output there is a runner that pe-
riodically locks the output side and moves objects from the input. The time interval is

-41-



3 RESULTS

managed by the Timer-class of C# that executes the AddQueueToList function periodi-
cally. The runner is started from the main class on program startup. It takes the duration
between two executions as an argument. The AddQueueToList checks if there is data to
copy before acquiring the lock. The hole process is there to ensure that the lock time is
reduced to a minimum and the merger can work with a minimum interruption time.

Listing 14: DataStream Runner

1 public void Runner( int ms)
2 {
3 // Start t imer for AddQueueToList
4 Timer timer = new Timer ( ms) ;
5 t imer . Elapsed += AddQueueToList ;
6 t imer . Enabled = run ;
7 }
8

9 private void AddQueueToList( Object source , ElapsedEventArgs e )
10 {
11 Frame frame;
12

13 // Check if there is data in the input queue
14 if ( inputQueue ! = null )
15 {
16 // Lock output , copy input to output
17 lock ( _lock )
18 {
19 while ( inputQueue . TryDequeue( out frame ))
20 {
21 f rameList . Add( frame ) ;
22

23 }
24 }
25 }
26 }

3.2.8 DataQualityManager

Several duties are maintained by the DataQualityManger. It accesses the DataStream
objects of each stream to inspect the data and provides information to the merger about
the stream synchronization. Incoming streams arrive with a di�erent delay which is
dependent on the distance between rocket and ground station but also on the distance
between ground station and this Stream Merger. Additional time is added by the Ethernet
transmission e.g. by switches, routers or the scheduler of the kernel of the PC where this
software is running on. The result is an asynchronous reception of the frames. Additionally
the time information is lost in the receiving process since the packages are stored in the
DataStream without detailed timing information. However, it is necessary to synchronize
the streams before frames can be compared. The synchronization itself can be achieved
by determining the o�set in between. The o�set is not calculated in time, but in frame
count which is equivalent to the position inside the DataStream. Therefore, the o�set is
always an integer value.
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Since it is not intended to store the o�sets between very stream, the stream that
connected �rst to the software is used as reference stream. Its position number is always
1, which does not mean that it is the �rst stream. The others streams can have a negative
o�set which means the stream is earlier or positive which means it has a higher latency.

The process is executed periodically since it is not expected that the latency will not
change a lot between two frames. The worst case execution time for �nding a correspond-
ing frame in a second stream isO(n). It is a good approach to save calculation time by
not determining the di�erence periodically.

In a �rst step the runner has to �nd the �rst stream in a dictionary of streams that
contains data. A dictionary entry consists of a DataStream object as value and the port
number as key. The key value is used to identify a stream. Since this is an UDP connection
a stream exists when it is created, not when a connection to the UDP socket is made.
Also with an outage of a ground station a stream would be empty. If the check is done,
streams containing data are counted. A single stream containing data results in a jump to
the next cycle of probing, since a single stream cannot be merged. In this case only error
correction would take place and all the data from the input will be sent to the output.

In case there are two or more streams with available data they have to be matched
against each other. Always two streams are compared at a time. To iterate over the
dictionary an enumerator (dsEnumberator) is used.

Listing 15: DataQualityManager Runner

1 // Search for next non - empty stream
2 while ( dsEnumberator . Current . Value == null )
3 {
4 emptycount += 1 ;
5 dsEnumberator . MoveNext() ;
6 }
7

8 // Check if non or only one stream has data , there is nothing to merge
9 if ( emptycount >= dataStreamDict . Count - 1)

10 {
11 continue ;
12 }
13

14 stream 1 = dsEnumberator . Current . Value ;
15

16 // Reset of an enumerator not possible by design of C#, so re -
ini t ia l ize enumerator to start from scratch

17 dsEnumberator = dataStreamDict . GetEnumerator () ;
18

19 // Skip first entry , since we already have it saved to stream 1
20 dsEnumberator . MoveNext() ;
21

22 // Match all streams against each other and save the result in g offset
in the offsets array

23 while ( dsEnumberator . MoveNext() )
24 {
25 stream 2 = dsEnumberator . Current . Value ;
26 try
27 {
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28 offsets [ streamcounter ] = MatchStreams( stream 1, stream 2) ;
29 }
30 catch
31 {
32 continue ;
33 }
34 stream 1 = stream 2 ;
35 }

After the processing, the "o�sets" array contains the o�set between stream pairs in rising
order. This means that the �rst entry is the o�set of stream two to stream one, the second
entry the o�set between stream three to stream two and so on. As explained before it is
important to know the o�set of all streams regarding the �rst entry. This has to be solved
by an equation system. However, a matrix can be derived from the problem to avoid the
necessity to solve this linear equation system during run-time like using e.g. Cramer's
Rule. The matrix describing the absolute positions looks like:

x0 =

2

6
6
6
6
6
6
6
4

1 0 0 0
1 � 1 0 0 : : :
0 1 � 1 0
0 0 1 � 1

...

3

7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
4

x1

x2

x3

x4
...

3

7
7
7
7
7
7
7
5

(29)

Which translates into an equation system like following:

x0
1 = x1

x0
2 = ( � x2) + x1

x0
3 = ( � x3) + ( � x2) + x1

x0
4 = ( � x4) + ( � x3) + ( � x2) + x1

x0
n = ( � xn ) + ( � xn� 1) + ( � xn� 2) + : : : + x1

(30)

That can be reduced down to:

x0
1 = x1

x0
2 = ( � x2) + x0

1

x0
3 = ( � x3) + x0

2

x0
4 = ( � x4) + x0

3

x0
n = ( � xn ) + x0

n� 1

(31)

Where x is the previous calculated value from Listing 15 andx0 is the absolute position
to x1. The start value for the equation system is de�ned as stream one at position one
(x1 = 1). With this solution we can derive an equation that calculates the absolute posi-
tion of each stream in relation to stream number one from our o�sets-array input.

It can be expressed with the term:

x0
N =

8
<

:
1; N = 1

1 +
P N

i =2 (� x i ); N > 1
(32)
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This term now can easily be implemented with a For-loop to calculate the corresponding
x0 for each stream.

Listing 16: DataQualityManager AbsolutStreamPosition

1 foreach ( int StreamID in dataStreamDict . Keys)
2 {
3 int sum = 0 ;
4

5 // Do not execute for x_1
6 if ( ! f i rst ) {
7 cnt += 1 ;
8

9 // calculate x ' for this stream
10 for ( int j = 1 ; j <= cnt ; j ++)
11 {
12 sum += ( - 1) * offsets [ j ] ;
13 }
14 sum += 1 ;
15

16 // Add an entry to the AbsStreamPosit ion dict ionary
17 AbsStreamPosit ion . Add( StreamID , sum) ;
18 } else {
19 // Add the first stream with x ' = 1 to the AbsStreamPosit ion

Dict ionary
20 AbsStreamPosit ion . Add( StreamID , 1) ;
21 f i rst = false ;
22 }
23

24 }

When looking at the matching process to �nd the dependent stream positions between
two streams, there is the assumption to be made that the package loss has the worst
possible constellation. The frame counter (ID) is limited to one byte, this way it can only
count 256 times until it over�ows. This means that when two frames are compared and
have the same ID they are not necessarily identical frames. In case the time shift in the
transmission from the rocket to the merger is longer than 256�times it takes to transmit
a single frame, a frame with the right ID is in the right position but still it is a frame from
the previous cycle. This can be seen in Figure 14. In this schematic it is assumed that the
ID-counter has a maximum of 5 instead of 256 for displaying purposes. Stream one is the
reference stream which an o�set should be calculated to. Stream two is a stream without
frame loss but has a shift of �ve times the length of a frame. The green frame is the one
that should be located in stream two. At the assumed position is a frame with the right
ID but since the counter does not produce unique IDs within a �ight it is still the wrong
package. So a byte-by-byte comparison has to be done to �nd out if it really does match.
This has to be done every time a matching frame is found to ensure the result.
At startup of the software, it is unknown what is the stream with the lowest latency. So
it might be that it is not the previous cycle but a cycle earlier in case the stream that is
compared has a lower latency. So the shift can be n-times in both directions.
In the absolute worst case every 255th frame is lost, this would mean the IDs in the bu�er
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have a descending order even, so they are in the right place. This means that it is not
possible to assume any kind of order when only looking at the IDs and therefore no binary
search algorithm can be used. On top of that, frame drops can occur any time so a jump
of 256 frame into the past or future is not an applicable method to �nd a stream o�set,
since it can not be assumed that there is not a frame with the frame ID in-between the
256 frames. This scenario can also be found in Figure 14. Stream number three has three
frames with ID 5 within a row of �ve frames. If the �rst package does not match, a jump
to a frame �ve �elds away might be not the next frame in the row. Stream 3 also has the
lowest latency in this example.
Altogether this explains why no sorting can be assumed and therefore a binary search
algorithm is not suitable for the correlation process.

Figure 14: Three streams with a maximum ID count of 5. Green frames are matching,
red frames do not match. The second stream is shifted by one cycle count compared to
stream one. The third stream has frame loss.

The only solution to this problem without previous knowledge is, to search the �rst
frame of one stream in the second stream and if it cannot be found, stream two has to
have a lower latency than stream one. Then frame one of stream two has to be searched
in stream one. The worst case run-time isO(n2) if the latency of one stream is so high,
that they do not share any frames in the bu�er. However, since the latency shift will not
change rapidly it is okay to run the matching with a lower cycle rate and in a separate
task. If there is a frame drop and the frame is only shifted by some frames this is handled
in the merger class which also reports the o�set back to the DataQualityManager.

Listing 17: DataQualityManager MatchStreams

1 private int MatchStreams( DataStream stream 1, DataStream stream 2)
2 {
3 // Break in case streams do not have data
4 if ( stream 1. Count== 0 || stream 2. Count == 0)
5 {
6 throw new IndexOutOfRangeExcept ion () ;
7 }
8 int countStream 1 = 1 ;
9 int countStream 2 = 1 ;
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10 Frame firstFrame = stream 1. First ;
11 f loat congruence = 0 ;
12

13 // Try to find first frame of f irst stream in second stream
14 while ( countStream 2 <= stream 2. Count)
15 {
16 Frame secondFrame= FindFrameWithID ( stream 2, countStream 2- 1,

f i rstFrame . ID ) ;
17 congruence = firstFrame . EqualPercentage ( secondFrame) ;
18

19 // Check if frames are matching with more than 98\ %
20 if ( congruence > 0. 98)
21 {
22 return countStream 2 ;
23 }
24 else
25 {
26

27 // If they do not match search further
28 if ( countStream 2 == stream 1. Count)
29 {
30 countStream 2 = 1 ;
31 countStream 1 += 1 ;
32 f i rstFrame = stream 1[ countStream 1] ;
33 }
34 countStream 2 += 1 ;
35 }
36 }
37

38 // Reset condit ions for reverse search
39 countStream 1 = 1 ;
40 countStream 2 = 1 ;
41 f i rstFrame = stream 2. First ;
42 congruence = 0 ;
43

44 // Try to find first frame of second stream in first stream
45 while ( countStream 1 <= stream 1. Count)
46 {
47 Frame secondFrame= FindFrameWithID ( stream 1, countStream 1 - 1

, f i rstFrame . ID ) ;
48 congruence = firstFrame . EqualPercentage ( secondFrame) ;
49

50 // Check if frames are matching with more than 98\ %
51 if ( congruence > 0. 98)
52 {
53 return - 1* countStream 1 ;
54 }
55 else
56 {
57

58 // If they do not match search further
59 if ( countStream 1 == stream 2. Count)
60 {
61 countStream 1 = 1 ;
62 countStream 2 += 1 ;
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63 f i rstFrame = stream 2[ countStream 1] ;
64 }
65 countStream 1 += 1 ;
66 }
67 }
68 return 0 ;
69 }

As can be seen in the code, two frames match if they have a congruence of 98%. This
means matching frames can even be found if errors in the correction occurred. This can
then be corrected in the majority vote of the later described merging process. In case a
match goes wrong, which is likely for empty frames, this can be corrected in the merging
process as well.

3.2.9 StreamMerger

For now, it was discussed what had to be done to prepare the data for the merging
process. With the StreamMerger class it will now be explained how the actual merging
takes place. This is done in several steps which depend on the input data. Like other
resource demanding classes the StreamMerger also runs in a dedicated thread. There is
only a single instance of this class that takes a dictionary with the DataStream objects and
a dictionary with the stream positions calculated in the DataQualityManager as reference
parameters. The runner itself is kept very short and is running constantly without a
pre-set cycle interval o timer. The Statistic object explained in Section 3.2.11 holds a
StopWatch object additionally to the collected metadata of each stream. As every input
stream, the output stream also has a particular statistic object to collect metadata like
the processing time. The �rst step in the runner-function is to restart the stopwatch on
the output stream-statistics. This is used for the watchdog that will later be explained in
the TimeManager Section 3.2.12 to keep the operation time of the merging process within
certain boundaries. Then the current quality index of each stream will be calculated. The
order in which the streams are looked at is dependent on its quality index. If majority is
found, streams with a low index will be skipped. This process is based on various criteria
and will be explained later. For the merging it is necessary to always have a minimum
amount of data inside the bu�er. For this reason the TestSu�cientData function is used.
The o�set between the fastest and slowest stream is calculated. At least 2=3 of the
streams must have that amount of frames inside the bu�er otherwise the runners loop is
skipped for a cycle. To prevent a deadlock it can only be skipped �ve times before frames
are processed again. Then the merger-function is called, which returns the next valid
telemetry frame. The exact procedure for this is explained below. Statistics of this frame
will be added to the output statistics and a function named CleanupProcessedFrames is
called that removes processed frames from all streams. The frame is than handed over
to a UDP output socket on default port 10000. With this the runner is completed and
starts over again.

The whole process can be interrupted at any time and for this reason includes an
interrupt handler. This works together with the aforementioned TimeManager to stay
within the soft real-time boundaries.
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Listing 18: DataMerger Runner

1 while ( run )
2 {
3 try
4 {
5 // Restart Stopwatch for the use with TimeManager
6 outputStats . RestartFrameTicks () ;
7

8 // Calculate qual i ty index for each stream
9 StreamQual i ty = calcQual i tyIndex () ;

10

11 // Test if suff ic ient data is inside the buffers .
12 if ( TestSuff ic ientData () == false & boundary < 5)
13 {
14 boundary += 1 ;
15 continue ;
16 }
17 boundary = 0 ;
18

19 try
20 {
21 // Do the merging for the most recent frame
22 outframe = ( TMFrame) merger () ;
23

24 // Save the stat ist ics
25 outputStats . LastFrameErrors = outframe . ErrorsCorrectedCnt

;
26 outputStats . LastFrameSize = outframe . Length ;
27 outputStats . LastFrameQual i ty = outframe . Quali ty ;
28

29 // Cleanup
30 CleanupProcessedFrames() ;
31 }
32 catch
33 {
34 // Insuff ic ient data
35 System. Console . WriteLine ( "No Input for Merger " ) ;
36 continue ;
37 }
38

39 // Send matched stream to the output
40 try
41 {
42 byte [] outframebytes = outframe . GetByteRepresentat ion () ;
43 UDPwriter . Send( outframebytes , outframebytes . Length ,

RemoteIpEndPoint ) ;
44 }
45 catch
46 {
47 // Noti fy if there was an error during sending process
48 System. Console . WriteLine ( " Could not send data to output

socket " ) ;
49 continue ;
50 }
51
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52 }
53 catch ( ThreadInterruptedExcept ion e )
54 {
55 // Handle interrupt ions
56 InterruptHandler () ;
57 }
58 }

The mentioned functions will now be explained in more detail. The CalcQualityIndex
function is one of the core methods in the merging process. An index is calculated for
each DataStream and will be used to rank the streams by quality for the next matching
process. The index returned is a �oat with a maximum of 1. An index of 1 means that
the stream is in a perfect condition without any errors occurred in the close past and no
errors predicted for the future. The future quality of the stream is predicted by looking at
the errors of the last 20 frames and by extrapolating those error counts. The process does
not only include the average but also a trend. This extrapolation is done by a separate
function simply called Extrapolation. The algorithm used for the extrapolation is called
double exponential smoothing and is explained in Section 3.2.10.

Extrapolation is called with � = 0:8 and y = 0:2 so that the smoothing and the trend
enter the result with 80% and 20% respectively. With the predicted error the predicted
quality index can be calculated. It is the quotient of the predicted errors and the length
of the frame subtracted from 1. This way a prediction of zero errors results in a predicted
quality index of 1. The average of the history of 20 error counts is calculated, divided by
the length and subtracted from 1. With a quality index for the last values and an index
for the future now both can be combined to be used for prioritizing the streams.
This is done calculating: 1 divided by the average of both indices which also leads to a
maximum quality of 1 in case of no errors in the past and no predicted error in the future.
This way a short burst error will not reduce the con�dence signi�cantly.

Listing 19: DataMerger CalcQualityIndex

1 public Dict ionary < int , f loat > CalcQual i tyIndex ()
2 {
3 StreamQual i ty = new Dict ionary < int , f loat > () ;
4 f loat [] extrap = new float [ 15] ;
5 f loat predict ion = 0. 0f ;
6 int length = 0 ;
7 f loat predQual i ty ;
8 f loat lastQual i ty ;
9 f loat sum = 0 ;

10 f loat qindex = 0 ;
11

12 // Calculate qual i ty index for each stream
13 foreach ( KeyValuePair < int , DataStream> dspair in dataStreamDict )
14 {
15 DataStream DS = dspair . Value ;
16 Stat ist ics dsstats = DS. Stats ;
17

18 // Test if there are enough frames in the stream to do an
extrapolat ion

19 if ( DS. Count > 20)
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20 {
21 length = DS. First < Frame> () . Length ;
22

23 // Extrapolate next error based on history
24 extrap = Extrapolat ion ( dsstats . History , 0. 8f , 0. 2f ) ;
25 predict ion = extrap . Last < float > () ;
26

27 // Calculate predicted qual i ty index
28 predQual i ty = 1 - ( predict ion / length ) ; // if zero errors

. Qual i ty == 1
29 for ( int i = 0 ; i < 10 ; i ++)
30 {
31 sum += extrap [ i ] ;
32 }
33

34 // Calculate history qual i ty index
35 lastQual i ty = 1 - ( sum / length ) ;
36

37 // Weight 1:1 , average of history and predict ion . If zero
errors . Quali ty == 1

38 qindex = 1 / (( lastQual i ty + predQual i ty ) / 2) ;
39 StreamQual i ty . Add( dspair . Key, qindex ) ;
40 }
41 else
42 {
43 StreamQual i ty . Add( dspair . Key, f loat . MinValue ) ;
44 }
45 }
46 // Add results to a dict ionary that has the streamid as refere nce ,

ordered by qual i ty
47 var tmp = StreamQual i ty . OrderBy( x => x . Value ) ;
48 Dict ionary < int , f loat > StreamQual i tySorted = new Dict ionary < int ,

f loat > () ;
49 foreach ( KeyValuePair < int , f loat > entry in tmp)
50 {
51 StreamQual i tySorted . Add( entry . Key, entry . Value ) ;
52 } asses
53 return StreamQual i tySorted ;
54 }

After a quality index is found and the streams have been sorted, the �rst frame of
the stream with the best quality is taken and looked up in the other streams by a list
containing the latency. A list with a sorting of the latency is received by the quality
manager which is described in the list of absolute stream positions. The latency is not
meant as a latency in time but an o�set in frame count. The list streamID contains the
ID of all available streams holding data sorted by the previous determined quality.
At �rst the assumed position of the frame in the stream is looked up by calculating the
absolute o�set between the streams which is based on the continuous calculation in the
DataQualityManager. Then the FindMatchingFrame function is called to look up the
frame. It returns the real position even when it is shifted because of a frame drop or a
change in the overall stream o�set. This can happen in between two cycles of the quality
manager. The details of this process will be explained later. If a frame was found it will
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be placed in a list for collation. This way there will be the frame with the right ID of
each stream inside the compareList list.

Figure 15: Matching frames of each stream are added to a list for comparison and majority
vote

Listing 20: DataMerger AddToComparison

1 for ( int i = 0 ; i < streamID . Count ; i ++)
2 {
3 // Lookup the stream offset / latency
4 int streamLatency = LatencyByStreamID ( streamID [ i ]) ;
5 DataStream DS;
6

7 // Get the appropriate stream from the dict ionary
8 dataStreamDict . TryGetValue ( streamID [ i ] , out DS) ;
9

10 // Calculate the expected positon
11 int expectedPosi t ion = streamLatency - f i rstStreamLatency ;
12

13 // Calculate the exact posit ion
14 int exactPositon = FindMatchingFrame ( streamID [ i ] ,

expectedPosit ion , DS[ expectedPosi t ion ]) ;
15 currentFramePos = exactPositon ;
16

17 // Add the frame into a list for later comparison . If frame not
found , skip

18 if ( exactPositon >= 0)
19 {
20 compareList . Add( DS[ expectedPosi t ion ]) ;
21 }
22

23 }

-52-



3 RESULTS

The list of frames can now be used to choose the best one. In a �rst step the frame
with the least errors is chosen and if there are more than two streams a majority vote is
executed with the selected word as basis. If there is no majority for this frame the next
frame is chosen for the majority vote. If there are not enough frames for a majority vote
the frame with the least corrected errors will be chosen. In case no majority can be found,
the least defective frame will be returned. A majority is found if there are more than half
of the frames (0:5 � NF rames + 1) matching the selected frame.

Listing 21: DataMerger Frame Selection

1 // Get and save errors for each frame in separate list
2 for ( int i = 0 ; i < compareList . Count ; i ++)
3 {
4 errorAr [ i ] = (( TMFrame) compareList [ i ]) . ErrorsCorrectedCnt ; //
5 }
6

7 // Ini t ia l ize the select ion
8 int min = int . MaxValue;
9 int forcemin = 0 ;

10 int minIndex = 0 ;
11 int cyclecount = 0 ;
12 int absMinError = 0 ;
13

14 // Select the best frame
15 while ( cyclecount <= compareList . Count - 1)
16 {
17 // Limit the select ion process to the numbers of elements in t he

list
18 cyclecount += 1 ;
19

20 // Find frame with the least errors , save the error count and t he
posit ion

21 for ( int i = 0 ; i < errorAr . Length ; i ++)
22 {
23 if ( errorAr [ i ] < min & errorAr [ i ] > forcemin )
24 {
25 min = errorAr [ i ] ;
26 minIndex = i ;
27 }
28

29 // Save the frame with the absolute minimum error count for
the use in case no majori ty can be found

30 if ( cyclecount == 1)
31 {
32 absMinError = min ;
33 }
34 }
35

36 // Do a majori ty vote based on the previous selected frame
37 if ( compareList . Count > 2)
38 {
39 int matchcount = 0 ;
40

41 // Count the matches for a
42 for ( int i = 0 ; i < errorAr . Length ; i - -)
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43 {
44 if ( compareList [ minIndex ]. Equals ( compareList [ i ]) )
45 {
46 matchcount += 1 ;
47 }
48 }
49 // If there are more matches than half of the entr ies a

majori ty is found
50 if ( matchcount > compareList . Count / 2)
51 {
52 return compareList [ minIndex ] ;
53 }
54 forcemin = min + 1 ;
55 }
56 else
57 {
58 return compareList [ minIndex ] ;
59 }
60 }
61 // If no majori ty could be found return the frame with the mini mum

corrected errors
62 return compareList [ absMinError ] ;

The last function of Stream merger that has to be discussed is the aforementioned
FindMatchingFrame. As described in Section DataQualityManager 3.2.8 no binary search
is applicable for the use inside a stream, but since we now have an expected position we
can use this information to reduce the comparison operations.
The function takes three arguments. The ID can be used to look up the corresponding
DataStream object in the stream dictionary, the expected position that was derived using
the output of the o�sets calculated in the DataQualityManager and the frame itself for
verifying potential matches by frame ID. At �rst, it is checked if the frame is at the
expected location, if it is, the function returns the expected position and quits. In case
the stream ID that is been looked at has the lowest latency, we only have to search to the
right which means younger frames than the chosen one. If not, then the matching frame
can be younger or older and it has to be searched in both directions. Since it is more
likely that the searched frame is closer to the expected position than far away, the search
is executed in circles around this initial position. This means the next upper and lower
member of the list is tested for a matching ID. If the ID matches at a frame, the content
of the frame is compared to the frame given by argument. This way the run time can
be reduced signi�cantly in the best case. Of course in the worst case if there is no such
frame the run-time is still O(n) and the function will return -1. The found position will
also be returned to the DataQualityManger, so that the next iteration might not have to
search again.

Listing 22: DataMerger FindMatchingFrame

1 public int FindMatchingFrame ( int streamid , int expectedPosit ion ,
Frame frame)

2 {
3 DataStream DS;
4 Frame thisFrame ;
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5 int upcounter ;
6 dataStreamDict . TryGetValue ( streamid , out DS) ;
7

8 // If the frame is at the expected posit ion return the posit io n
9 if ( DS[ expectedPosi t ion ]. ID == frame . ID )

10 {
11 return expectedPosi t ion ;
12 }
13 else
14 {
15 // Check if this is the stream with the lowest latency .
16 // If yes , search only to the right
17 if ( StreamAtPosi t ionInLatencyList ( 0) . Value == streamid )
18 {
19 upcounter = expectedPosi t ion ;
20

21 // I terate over all entr ies in the stream
22 while ( upcounter < DS. Count)
23 {
24 upcounter += 1 ;
25 thisFrame = DS[ upcounter ] ;
26

27 // First just check if the ID matches to speed up the
process

28 if ( thisFrame . ID == frame . ID )
29 {
30

31 // If ID fits , compare whole frame to verify
result

32 if ( thisFrame . Equals ( frame ))
33 {
34 // Check if stream is l isted in offset l ist (

st reamPosi t ionInLatencyList )
35 if ( s t reamPosi t ionInLatencyList . ContainsValue

( streamid ))
36 {
37 // Update offset l ist for

DataQual i tyManager
38 lock ( streamPosi t ionInLatencyList )
39 {
40 // Remove the entry , and create the

new one
41 streamPosi t ionInLatencyList . Remove(

expectedPosi t ion ) ;
42 streamPosi t ionInLatencyList . Add(

expectedPosi t ion + upcounter ,
streamid ) ;

43 }
44 }
45 return ( upcounter ) ;
46 }
47 }
48 }
49 }
50 else
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51 {
52 // Search in both direct ions
53 int downcounter = expectedPosi t ion ;
54 upcounter = expectedPosi t ion ;
55 int counter = 0 ;
56

57 // Stay inside the l imits of the DataStream entr ies
58 while ( downcounter > 0 || upcounter < DS. Count)
59 {
60 counter += 1 ;
61 downcounter - = counter ;
62 upcounter += counter ;
63

64 // Look to the right neighbor of the last tested frame
65 if ( upcounter < DS. Count)
66 {
67 thisFrame = DS[ upcounter ] ;
68

69 // First just check if the ID matches to speed up
the process

70 if ( thisFrame . ID == frame . ID )
71 {
72 // If ID fits , compare whole frame to verify

result
73 if ( thisFrame . Equals ( frame ))
74 {
75 // Check if stream is l isted in offset

l ist ( streamPosi t ionInLatencyList )
76 if ( s t reamPosi t ionInLatencyList .

ContainsValue ( streamid ))
77 {
78 // Update offset l ist for

DataQual i tyManager
79 lock ( streamPosi t ionInLatencyList )
80 {
81 // Remove the entry , and create

the new one
82 streamPosi t ionInLatencyList .

Remove( expectedPosi t ion ) ;
83 streamPosi t ionInLatencyList . Add(

expectedPosi t ion + upcounter ,
streamid ) ;

84 }
85 }
86 return ( upcounter ) ;
87 }
88 }
89 }
90

91 // Look to the left neighbor of the last tested frame
92 if ( downcounter > 0)
93 {
94 thisFrame = DS[ downcounter ] ;
95 // First just check if the ID matches to speed up

the process
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96 if ( thisFrame . ID == frame . ID )
97 {
98 // If ID fits , compare whole frame to verify

result
99 if ( thisFrame . Equals ( frame )) // if id fits ,

compare whole frame to verify result
100 {
101 if ( s t reamPosi t ionInLatencyList .

ContainsValue ( streamid )) // check if
entry is there

102 {
103 // Update offset l ist for

DataQual i tyManager
104 lock ( streamPosi t ionInLatencyList )
105 {
106 // Remove the entry , and create

the new one
107 streamPosi t ionInLatencyList .

Remove( expectedPosi t ion ) ;
108 streamPosi t ionInLatencyList . Add(

expectedPosi t ion + downcounter
, streamid ) ;

109 }
110 }
111 return ( downcounter ) ;
112 }
113 }
114 }
115 }
116 }
117 return - 1 ;
118 }
119 }

3.2.10 Double Exponential Smoothing

Exponential smoothing is a technique for calculating short term projections of a time
series of values. Unlike the moving average function exponential smoothing decreases the
weights for older observations in the process. This ensures that more recent events have a
deeper impact on the prediction which is useful for our �eld of application since we have
to cope with rapid changes in quality like burst errors. However, we want to observe a
trend in our values to detect an overall increasing or decreasing quality. Nevertheless,
this is not applicable with (single) exponential smoothing but with double exponential
smoothing. See [NIST/SEMATECH(2012), 6.4.3.1] for the background and the following
derived equation on single exponential smoothing.

The algorithm for single exponential smoothing consists of one expression. The �rst
one de�nes the smoothingS of the measured valuesy in time period t. For t = 1 the
value of St � 1 = y0:

St = �y t � 1 + (1 � � )St � 1 (33)

The parameter � is called smoothing constant that can be used for weighting of the
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current with the last measurement.
The exponent comes with the recursion. It will be more clear when looking at a substituted
expression for the last two time periods:

St = �y t � 1 + (1 � � )[�y t � 2 + (1 � � )St � 2] (34)

St = �y t � 1 + � (1 � � )yt � 2 + (1 � � )2St � 2 (35)

For double exponential smoothing a trend is introduced into the smoothing. The trend
is calculated from the previous history. The di�erence of the last two smoothed valuesSt

and St � 1 is weighted with a trend constant:

bt =  (St � St � 1) + (1 +  )bt � 1 (36)

Which is also an exponential equation likeSt (yt ). As described the trend is added to
the smoothing of the previous calculation. So the smoothing expression from the single
exponential smoothing transforms into:

St = �y t � 1 + (1 � � )(St � 1 + bt � 1) (37)

Since St and bt are exponential functions this algorithm is called double exponential
smoothing (see [NIST/SEMATECH(2012), 6.4.3.3]). The initial values forSt � 1 are zero
and b= y2 � y1. The weighting parameters can be chosen by the operator and derived by
testing data from previous �ights and will change from mission to mission.

For the implementation the error of the past 20 frames will be looked at and one step
will be predicted into the future.

Listing 23: DataMerger Extrapolation

1 public f loat [] Extrapolat ion ( List < Stat ist ics . ResetEvent> serie , f loat
a, f loat y )

2 {
3 // Array predict keeps S for 21 frames : 20 from the past , 1

predicted into the future
4 f loat [] predict = new float [ 21] ;
5

6 // Test if there are already 20 processed frames for this stre am
7 if ( serie . Count >= 20)
8 {
9 int [] errorAr = new int [ 20] ;

10

11 // Get the last 20 error counts out of the history from the
stat ist ic class

12 for ( int i = serie . Count ; i > ( serie . Count - 20) ; i - -)
13 {
14 errorAr [ 20 - i ] = serie [ i - 1]. Errors ;
15 }
16

17 // Set the start parameters
18 f loat S = ( f loat ) errorAr [ 0] ;
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19 f loat St_ 1 = 0. 0f ;
20 f loat b = ( f loat ) ( errorAr [ 1] - errorAr [ 0]) ;
21 f loat error = 0. 0f ;
22

23 // Predict one step into the future , based on the last 20
steps

24 for ( int i = 1 ; i <= errorAr . Length + 1 ; i ++)
25 {
26

27 if ( i < errorAr . Length )
28 {
29 // The first 20 entr ies to be used as St_1 are from

measurements of the past
30 error = ( f loat ) errorAr [ i ] ;
31 }
32 else
33 {
34 // The last entry is based on the last predict ion bt -1
35 error = predict [ i - 1] ;
36 }
37 St_ 1 = S;
38

39 // Execute the double exponent ial smoothing
40 S = a * error + ( 1 - a) * ( S + b) ;
41 b = y * ( S - St_ 1) + ( 1 - y ) * b ;
42 predict [ i ] = S;
43 }
44 }
45 return predict ;
46 }

The function returns an array that can now be processed by the CalcQualityIndex method
inside the merger.

3.2.11 Statistics

The Statistics object of each stream keeps track of meta information for each stream like
last frame error, frames received, frames received per time period, frame quality, average
frame quality per time period and overall corrected errors since startup. Quality and
frame de�ned time period are kept as well as a history on errors corrected per time slot.
For keeping track of the time intervals a DateTime is stored per object as well. It also has
a stopwatch that is used by the time manager to keep track of the processing times in the
system to keep them in de�ned bounds. Getters and Setters are de�ned so that errors just
have to be added and the statistics will update automatically. Inside a statistic object
there is a nested object called ResetEvent. The creation of a reset event can be triggered
from outside periodically. Each reset event contains the errors that where corrected since
the last event, the count of frames that have been processed and the average quality in
the DQE of the incoming frames. The Statistics object keeps a list of all ResetEvents.
These events will be used to calculate the prediction with double exponential smoothing
like described in Section 3.2.10.
The ResetEvent class is very short since it just stores information:
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Listing 24: Statistics ResetEvent

1 public class ResetEvent
2 {
3 DateTime Time = DateTime. Now;
4 public int Errors = 0 ;
5 public int Frames = 0 ;
6 public double AvgQual i ty = 0 ;
7 public ResetEvent ( int error , double avgQuality , int frames )
8 {
9 this . Errors = error ;

10 this . AvgQual i ty = avgQual i ty ;
11 this . Frames = frames ;
12 }
13 }

The introduction of ResetEvents allows a dynamic adaption of di�erent data stream
speeds. For a 1 kBit/s stream it is not useful to measure errors per ms and for several
MBit/s it might be a way to �nd resolution. This way the operator can choose the
intervals depending on the anticipated input.

The following �elds are publicly accessible by the Statistics class and might also be
used for further documentation purposes like post-processing of data or user interfaces.

Listing 25: Statistics Data Fields

1 public int LastFrameErrors { get => lastFrameErrors ; set => AddError (
value ) ; }

2 public int ErrorsSinceReset { get => errorsSinceReset ; }
3 public int ErrorsOveral l { get => errorsOveral l ; }
4 public int FramesReceivedOveral l { get => framesReceivedOveral l ; }
5 public int FramesSinceReset { get => framesReceivedSinceReset ; }
6 public double LastFrameQual i ty { get => lastFrameQual i ty ; set =>

CalcAvgQual i ty ( value ) ; }
7 public double AvgQual i tySinceReset { get => avgQual i tySinceReset ; }
8 public double AvgErrorSinceReset { get => avgErrorSinceReset ; }
9 public List < ResetEvent> History { get => history ; }

10 public DateTime ResetTime { get => resetTime ; set => resetTime =
value ; }

11 public Stopwatch FrameWatch { get => frameWatch ; set => frameWatch =
value ; }

12 public Int 64 FrameTicks { get => FrameWatch. ElapsedTicks ; }
13 private List < ResetEvent> history = new List < ResetEvent> () ;

3.2.12 TimeManager

The TimeManger is there to observe the duration of the processing time of a frame. It
keeps track of the ongoing process as well as dynamically calculates the maximum allowed
time based on the frame rate at the input side.
If the time limit for a frame in the merger is reached the process will be interrupted and
the current frame is copied to the output omitting the merging process. This has to be
done in order to guaranty that data cannot pile up in the system and that a frame reaches
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the operator in reasonable time. On average the output rate has to be equal to the input
rate. This is ensured by the Watchdog task inside the TimeManger class. The runner is
executed in a dedicated task to work parallel to the other duties.

Listing 26: TimeManager CalcMaxTics

1 public void CalcMaxTics ( Object source , ElapsedEventArgs e )
2 {
3 // Prevent a division by zero if no frames have been received y et .
4 if ( stats . FramesSinceReset == 0)
5 {
6 t icksPerFrame = Double . MaxValue;
7 }
8 else
9 {

10 // Calculate the maximum allowed time in ticks per frame
11

12 // Seconds since last reset event
13 double sSinceReset = ( double )(( DateTime. Now. Subtract ( stats .

ResetTime)) . TotalSeconds ) ;
14 // Frames per second
15 double framesPerS = stats . FramesSinceReset / sSinceReset ;
16 // Ticks per Frame
17 t icksPerFrame = Stopwatch . Frequency / ( 1 / framesPerS) ;
18 }
19 }

This function is called periodically by a timer task, the duration can be modi�ed. The
dynamic calculation of the time boundaries of a frame allows to adapt the time spend on
the frame automatically. For slower streams the hard boundary is higher than for faster
inputs.

The watchdog is a simple runner that checks the current frame statistics and the previ-
ously calculated boundary continuously. To have a 10% margin on top of the calculations
the ticksPerFrame is reduced by the factor of 0:9. In case a boundary is reached the
merger thread will be interrupted as explained in Section 3.2.9.

Listing 27: TimeManager Runner

1 public void Runner()
2 {
3 while ( run )
4 {
5 // Check if maximum calculat ion time is elapsed . Add a 10 %

time margin to ensure soft - realt ime
6 if ( stats . FrameTicks >= t icksPerFrame * 0. 9)
7 {
8 mergerThread. Interrupt ( ) ;
9 }

10

11 }
12 }
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3.3 Veri�cation

The functionality of the software was veri�ed using unit tests together with a data gen-
erator that has been implemented for this reason. The generator is capable of generating
DataWords, TFrames, TMFrames and Streams of various content. In the Appendix B the
code can be found. DataWord generator has two constructors. The �rst one takes data
and FEC bytes as arguments, which allows setting data and parity bits independently.
With this a faulty word can be generated. The parity bits are limited to the maximum
of 4�bit since only four party bits are allowed with this FEC algorithm. Constructor
number two takes just the data bits as input. The FEC is generated accordingly for a
valid DataWord. The words are generated in little endian representation. By using binary
operations in the Forward Error Correction generator the generation speed is improved.
With the Frame generator TFrame objects are created. From inside the class the afore-
mentioned DataWords are made. As arguments, it accepts a word count, a frame number
and a signal quality. Using this information the FrameGen function is called. By utilizing
the HostToNetworkOrder function from the System library the endianness of the host
is adapted. In a �rst step the sync word 0xFAF 320 of the TFrame is placed inside a
BitArray. Appended will be a DataWord containing the counter, followed by more words
using a counter value as data for veri�cation purposes.
A TMFrameGen method wraps the just generated TFrame into a second header. Data
is returned in a byte array format. The preamble is added followed by the frame length,
that has to be calculated based on the header and the TFrame length. Then the version
is included followed by an o�set containing the length of the header and the quality which
is a double value. Finally, the data of the TFrame is added.
For creating a stream out of frames the stream generator function is used. As arguments
to the constructor a frame and word count have to be given. From the StreamGen func-
tion the Frame and DataWord generators are called, subsequently �lled and returned as a
binary array. With this array unit testing can be done, by sending the array to the UDP
socket of the framework. Each processing step is tested by comparing input against the
processed output to verify its functionality. With it the DataWord and the parity bits
for the Forward Error Correction as well as the error correction itself were checked. The
data stream from input to output has been reviewed through the system.

Majority vote and frame selection worked as intended. Three data streams up to 717
kBit/s were tested without di�culties. The measurement was done with the network
analysis tool WireShark. After reaching this bandwidth, copy instructions limited the
transfer and the watchdog got activated on the system used. So the limitation of this
implementation is not the algorithm itself but the implementation of data preparation.
The system consisted of an Intel Core i7�6700K CPU and 16 GB RAM. However, due
to the load on memory by copying objects, the full potential of the CPU could not be
utilized during the tests, the load did not exceed 30%. Most certainly the utilization of
a Linked List is not suitable for the use as bu�er object. A possible solution would be to
modify the InputHandler in a way so that it does not rely on a Linked List or use another
FIFO object. The delay introduced by the system was measured with WireShark as well.
It could be determined to be in the range of 0.1�0.2 seconds, which is acceptable. It has
to be noted that the measurement is dependent on the hardware used.
Since optimization was explicitly not part of the requirements for this thesis there are
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various options to improve the performance in the future. One approach would be to
reduce the rapid object copying during the input procession or to make use of special CPU
instructions in the error correction process like Intel's "POPCNT" for checking parities.
Furthermore, the Statistics object inside the software can be utilized for example to build
a graphical user interface showing the current stream stability and system health. For a
maximum �exibility the software was written using the .Net framework which permits a
support for Windows and Unix operating systems.

With the results and veri�cation the functionality of the framework was tested success-
fully. The architecture combines various selection and improvement modes into a single
framework, these have previously been used as standalone options. This approach allows
to get the maximum quality of data �lled into the algorithm. Additionally, through the
detailed analysis of the Forward Error Correction algorithm now new developments for
other use cases besides the con�ating stream merger are made possible. Therefore, it
can be concluded that the algorithm development and implementation was successful and
met the requirements of showing a working implementation of a con�ating best source
selection with inter-stream error correction.
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4 Conclusion

During the work presented in this thesis a large amount of e�ort had to be dedicated to
analyze the existing error correction functions and to adapt the selection process to the
special environment of sounding rockets. This was possible not only using best source
detection but also by frame recombination enabled by the long overlapping time of teleme-
try reception. With this it became possible to achieve the maximum data quality for the
operators in soft real-time. A functional framework with the approach of stream quality
determination for pre-ranking and single frame selection were implemented.

From the known parity check matrix the forward error correction method was derived
along with the statistical capabilities. With these values and the software implementation
for the detection and correction of broken frames it was determined that each frame can be
corrected without further investigation. This is possible because the computing overhead
of the correction is not signi�cantly higher than the detection process and the probability
of a wrong correction is low, especially for the characteristic duration of a sounding rocket
�ight. Each stream is split up in its constituent parts for an educated reassembling into a
single output stream. To achieve this, o�sets have to be identi�ed and eliminated and a
majority vote on the pre-ranked frames is done if operable. By keeping the frame format
during the process the output looks identical to a single stream as it would be sent by
a telemetry station. This results in the possibility to use the framework as an optional
add-on to the current process.

This altogether shows that it is possible to perform dynamic best data selection on
several input streams while staying within a soft real-time boundary, so that the correction
is not limited to the post processing of the recorded data. With this achieved, further
developments can now focus on system performance, external monitoring and supervision
options by the operator. The advantage of a tailor made system of sounding rocket
applications running on a PC with a sophisticated selection process instead of using
a FPGA based implementation comes with the downside of limited bandwidth. The
decision which implementation �ts best each campaign is, however, based on the custom
criteria of each individual launch.

Overall this thesis lays a solid foundation for further custom-made best source selec-
tions for sounding rockets at MORABA.
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A Matlab Code

A.1 Hamming Distance Calculation

1 %% Hamming distance calculator for Blockcode used in CMX909
2 % Result is dmin =3
3

4 CodeWords = genCode () ;
5 countmax =256;
6 countmin =0;
7 countarray = zeros (12 ,1) ;
8 count2 =0;
9 for i=1: size ( CodeWords ) -1

10 for j= i+1: size ( CodeWords )
11 a= CodeWords ( i ) ;
12 b= CodeWords ( j ) ;
13 count =0;
14 if i~= j
15 f i l lstr ing ="";
16 f i l lupsize =0;
17 abin= dec2bin (a) ;
18 bbin= dec2bin (b) ;
19 f i l lup =( size (bbin ) - size (abin )) ;
20 f i l lupsize = fi l lup (2) ;
21 if f i l lupsize > 0
22 for adsf =1: f i l lupsize
23 f i l lstr ing = f i l lstr ing +"0";
24 end
25 abin= strcat ( f i l lstr ing ,abin ) ;
26 abin= convertStr ingsToChars (abin ) ;
27 end
28 sizeamatr ix = size (abin ) ;
29 sizea = sizeamatr ix (2) ;
30 for x = 1: sizea
31 if abin (x)~= bbin (x)
32 count = count +1;
33 end
34 end
35 if count ==3
36 count2 = count2 +1;
37 abin ;
38 bbin ;
39 end
40 end
41 if count < countmax
42 countmax = count ;
43 maxcnt = count ;
44

45 end
46 if count > countmin
47 countmin = count ;
48 mincnt = count ;
49 end
50 i= i+1;
51 end
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52 countarray ( countmax )= countarray ( countmax )+1;
53 countmax =12;
54 countmin =0;
55 end
56 % Result :
57 "dmin ="+ mincnt
58 "dmax ="+ maxcnt
59

60 % Generate DataWords (eq . to code words )
61 funct ion CodeWords = genCode ()
62 H =[236 211 186 117];
63 P =[256:5];
64 for i =1:256
65 % count bits == 1
66 iAndH = bitand (( i -1) ,H);
67 %calc parity
68 a=mod(sum( bitget ( iAndH (1) ,1:8) ) ,2) ;
69 b=mod(sum( bitget ( iAndH (2) ,1:8) ) ,2) ;
70 c=mod(sum( bitget ( iAndH (3) ,1:8) ) ,2) ;
71 d=mod(sum( bitget ( iAndH (4) ,1:8) ) ,2) ;
72 %join parity bits
73 Pbits = bin2dec ([ dec2bin (a) dec2bin (b) dec2bin (c) dec2bi n (d) ]) ;
74 CodeWords (i ,:) =( i -1) *16+ Pbits ;
75 end
76 end

A.2 Possibility of Undetectable Errors in Code Word

1 %% Calculate the possibi l i ty of undetectable errors in a cod e word
2 % calculate bits ==1 sum per word
3 countarray = zeros (13 ,1) ;
4 CodeWords = genCode () ;
5 for x=1: size ( CodeWords )
6 word= CodeWords (x) ;
7 out= sum( bitget (word ,1:12) ) ;
8 countarray (out +1)= countarray (out +1) +1;
9 end

10

11 % calculate possibi l i ty per bitsum
12 posarray = zeros (13 ,1) ;
13 format longE ;
14 for x=1: size ( countarray )
15 posarray (x)= countarray (x) *(10.^ -7) .^x *(1 -10.^ -7) .^( 12 -x) ;
16 end
17 posarray
18 sum=0;
19 % sum up possibi l i t ies
20 for x=4: size ( posarray )
21 sum=sum+ posarray (x) ;
22 end
23 " posi i l i ty of undetectable wrong code word : "+ sum
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B DataGenerator Framework

B.1 DataWord

Listing 28: DataGenerator DataWord

1 public class DataWord
2 {
3 private Int 32 databits ;
4 private Int 32 fec ;
5 private Int 16 word ;
6 private readonly Int 32[] HammingBlock = { 0b11101100,
7 0b11010011,
8 0b10111010,
9 0b01110101} ;

10

11 // / < summary>
12 // / Constructor of a new DataWord Object consit ing of the dat a

bytes and a given FEC parity
13 // / < / summary>
14 // / < param name= " databits " > 8bit data < / param>
15 // / < param name= " fec " > 4bit bits ( FEC)< / param>
16 public DataWord( byte databytes , byte fec )
17 {
18 // check if fec is longer than 4 bit
19 if ( ( fec & 11110000) > 0) throw new Exception ( "FEC has to be

4 bits long " ) ;
20 this . databits = databytes ;
21 this . fec = fec ;
22 this . word = ( Int 16)(( this . databits << 4) | this . fec ) ;
23 }
24

25 // / < summary>
26 // / Constructor of a new DataWord Object consit ing of the dat a

bytes . FEC is generated
27 // / < / summary>
28 // / < param name= " databits " > 8bit Data < / param>
29 public DataWord( byte databits )
30 {
31 this . databits = databits ;
32 this . fec = FECGenerator( databits ) ;
33 this . word = ( Int 16)(( this . databits << 4) | this . fec ) ;
34 // System . Diagnost ics . Debug . WriteLine ( this .word ) ;
35 }
36

37 // / < summary>
38 // / Constructor of a new DataWord Object from an exist ing wor d .
39 // / < / summary>
40 // / < param name= "word " > 12bit Word in binary format < / param>
41 // / < param name= " check " > Do error detect ion < / param>
42 public DataWord( Int 16 word)
43 {
44 this . word = word ;
45 }
46
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47 // / < summary>
48 // / DataWord getter
49 // / < / summary>
50 public Int 16 Word { get { return this . word ; } }
51

52 // / < summary>
53 // / Two DataWords are equal when their words are equal
54 // / < / summary>
55 // / < param name= "obj " > Obj to compare with < / param>
56 // / < returns > Equal i ty < / returns >
57

58 public overr ide bool Equals ( object obj )
59 {
60 DataWord dw= obj as DataWord;
61 if ( dw == null ) return false ;
62 if ( dw. Word == this . word) return true ;
63 return false ;
64 }
65

66 // / < summary>
67 // / Hash is generated on word itself
68 // / < / summary>
69 // / < returns > Hash of Word< / returns >
70 public overr ide int GetHashCode()
71 {
72 return this . word. GetHashCode() ;
73 }
74

75 // / < summary>
76 // / Generate the fec for a 8-bit data input
77 // / < / summary>
78 // / < returns > 4-bit FEC code < / returns >
79 public Int 32 FECGenerator( Int 32 databits )
80 {
81 Int 32 fec = 0 ;
82 Int 32 cAndd = 0 ;
83 foreach ( Int 32 code in HammingBlock)
84 {
85 cAndd = ( code & databits ) ;
86 fec = ( fec << 1) | Pari tyCounter ( cAndd) ;
87 }
88 return fec ;
89 }
90

91 // / < summary>
92 // / Count parity , 1 if even 0 if uneven
93 // / < / summary>
94 // / < param name= " databits " > databits to count on < / param>
95 // / < returns > 1 if even 0 if uneven < / returns >
96 public Int 32 Pari tyCounter ( Int 32 databits )
97 {
98 databits ^= databits >> 16 ;
99 databits ^= databits >> 8 ;

100 databits ^= databits >> 4 ;
101 databits ^= databits >> 2 ;
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102 databits ^= databits >> 1 ;
103 return ( databits & 1) ;
104 }
105 }

B.2 Frames

Listing 29: DataGenerator Frame

1 public class Frame
2 {
3 // Using Sync word from IRIG106 Chapter 8 Section 8.4. 00 at th e

end has to stay there , to fi l l up the value even it is
overwri t ten

4 private const UInt 32 FrameSync = 0xFAF320 ;
5 private const UInt 32 TMFrameSync= 0xFAFBFCFD;
6 private UInt 16 wordcount ;
7 private byte count ;
8 int length = 0 ;
9 private byte [] frame ;

10 private byte [] TMWrapperFrame;
11 private const byte TMFrameVersion= 1 ;
12 public const byte offset = 2 * sizeof ( Int 32) + sizeof ( double ) ;
13 private double signalqual i ty ;
14

15 // / < summary>
16 // / Generates a single ( TM/ Transfer ) Frame consist ing # wordcount

words , with rising numbers as data . Start ing counter at 0 ,
Signal qual i ty is 0.

17 // / < / summary>
18 // / < param name= " wordcount " > Number of words in frame< / param>
19 public Frame( UInt 16 wordcount )
20 {
21 if ( wordcount % 2 ! = 1) throw new Exception ( " Wordcount has to

be uneven ") ;
22 this . wordcount = wordcount ;
23 this . count = 0 ;
24 this . s ignalqual i ty = 0 ;
25 }
26

27 // / < summary>
28 // / Generates a single ( TM/ Transfer ) Frame consist ing # wordcount

words , with rising numbers as data . Signal qual i ty is 0.
29 // / < / summary>
30 // / < param name= " wordcount " > Number of words in frame< / param>
31 // / < param name= " framenumber " > Frame number< / param>
32 public Frame( UInt 16 wordcount , byte framenumber)
33 {
34 if ( wordcount % 2 ! = 1) throw new Exception ( " Wordcount has to

be uneven ") ;
35 this . wordcount = wordcount ;
36 this . count = framenumber;
37 this . s ignalqual i ty = 0 ;
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38 }
39

40 // / < summary>
41 // / Generates a single ( TM/ Transfer ) Frame consist ing # wordcount

words , with rising numbers as data
42 // / < / summary>
43 // / < param name= " wordcount " > Number of words in frame< / param>
44 // / < param name= " framenumber " > Frame number< / param>
45 // / < param name= " signalqual i ty " > Quali ty of the signal ( 0 to 1) < /

param>
46 public Frame( UInt 16 wordcount , byte framenumber, double

signalqual i ty )
47 {
48 if ( wordcount % 2 ! = 1) throw new Exception ( " Wordcount has to

be uneven ") ;
49 this . wordcount = wordcount ;
50 this . count = framenumber;
51 this . s ignalqual i ty = signalqual i ty ;
52 }
53

54 // / < summary>
55 // / Returns a transfer frame
56 // / < / summary>
57 public byte [] TransferFrame => FrameGen() ;
58

59 // / < summary>
60 // / Returns a TM transfer frame
61 // / < / summary>
62 public byte [] TMFrame=> TMFrameGen() ;
63

64

65 public stat ic void PrintValues ( IEnumerable myCol lect ion )
66 {
67 foreach ( Object obj in myCol lect ion )
68 Debug. Write (( bool ) obj ? "1" : "0" ) ;
69 Debug. WriteLine ( "" ) ;
70 }
71

72 // / < summary>
73 // / Generates a transfer frame
74 // / < / summary>
75 // / < returns > Transfer Frame < / returns >
76 public byte [] FrameGen()
77 {
78

79 length = ( int ) ( 4. 5 + wordcount * 1. 5) ;
80 frame = new byte[ length ] ;
81

82 // Ad FrameSync with right endianness
83 unchecked
84 {
85 Array . Copy( BitConverter . GetBytes ( System. Net . IPAddress .

HostToNetworkOrder (( int ) ( FrameSync))) , frame , 3) ;
86 }
87 DataWord counter = new DataWord( count ) ;
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88 BitArray counterbi ts = new BitArray ( new Int 32[] { counter .
Word }) ;

89 BitArray data = new BitArray ( wordcount * 12+12) ;
90

91 for ( int i = 0 ; i < 12 ; i ++) {
92 data [( ( wordcount +1)* 12) - i ] = counterbi ts [ i ] ;
93 }
94

95 // Counts words , f irst word is counter so start at 2
96 for ( int i = 2 ; i <= wordcount +1 ; i ++)
97 {
98 DataWord dw= new DataWord(( byte ) 128) ;
99 BitArray dwbit = new BitArray ( new Int 32[] { dw. Word }) ;

100 for ( int j = 0 ; j < 12 ; j ++)
101 {
102 data [ wordcount * 12-( j +1+( i - 2)* 12)] = dwbit [ ( 12 - 1) - j

] ;
103 }
104 }
105 byte [] output = new byte[ data . Length / 8] ;
106 data . CopyTo( output , 0) ;
107 Array . Reverse( output ) ;
108 Array . Copy( output , 0, frame , 3, output . Length ) ;
109 return frame ;
110 }
111

112 // / < summary>
113 // / Generates a TM transfer frame
114 // / < / summary>
115 // / < returns > TM transfer frame < / returns >
116 public byte [] TMFrameGen()
117 {
118 frame = FrameGen() ;
119 length = frame . Length + offset ;
120 TMWrapperFrame= new byte[ length ] ;
121 unchecked
122 {
123 Array . Copy( BitConverter . GetBytes ( System. Net . IPAddress .

HostToNetworkOrder (( int ) TMFrameSync)) , TMWrapperFrame,
sizeof ( Int 32)) ; // frame sync

124 Array . Copy( BitConverter . GetBytes ( System. Net . IPAddress .
HostToNetworkOrder (( short ) length )) , 0, TMWrapperFrame,

4, sizeof ( short ) ) ; //12bit per word + 3byte transfer
header + 3byte counter + 18 byte tm header // length

125 TMWrapperFrame[ 6] = TMFrameVersion; // version
126 TMWrapperFrame[ 7] = offset ; // offset
127 Array . Copy( BitConverter . GetBytes ( signalqual i ty ) , 0,

TMWrapperFrame, 8, sizeof ( double )) ; // qual i ty #
128 }
129 Array . Copy( frame , 0, TMWrapperFrame, offset , frame . Length ) ;

// data
130 return TMWrapperFrame;
131 }
132

133 // / < summary>
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134 // / Two Frames are equal when their TM Frame data is equal
135 // / < / summary>
136 // / < param name= "obj " > Obj to compare with < / param>
137 // / < returns > Equal i ty < / returns >
138 public overr ide bool Equals ( object obj )
139 {
140 Frame otherframe = obj as Frame;
141 if ( otherframe == null ) return false ;
142 return otherframe . TMFrame. SequenceEqual( TMFrame) ;
143 }
144

145 // / < summary>
146 // / Hash is generated on TMFrame
147 // / < / summary>
148 // / < returns > Hash of Word< / returns >
149 public overr ide int GetHashCode()
150 {
151 return this . TMFrame. GetHashCode() ;
152 }
153

154 }

B.3 Stream

Listing 30: DataGenerator Stream

1 public class Stream
2 {
3 private int framecount = 0 ;
4 private UInt 16 wordcount = 0 ;
5 private byte [] stream ;
6 public const byte offset = 2 * sizeof ( Int 32) + sizeof ( double ) ;
7 public Stream( int framecount , UInt 16 wordcount )
8 {
9 this . framecount = framecount ;

10 this . wordcount = wordcount ;
11 }
12

13 // / < summary>
14 // / Generate stream data
15 // / < / summary>
16 // / < returns > Hash of Word< / returns >
17 public byte [] StreamGen()
18 {
19 Int 32 length = framecount * ( int ) ( offset + 4. 5 + wordcount *

1. 5) ;
20 stream = new byte[ length ] ;
21 for ( UInt 16 i = 0 ; i < framecount ; i ++)
22 {
23 Frame frame = new Frame( wordcount , ( byte )( ( i * framecount

) % sizeof ( byte )) ) ;
24 Array . Copy( frame . TMFrame, 0, stream , i * frame . TMFrame.

Length , frame . TMFrame. Length ) ;

-74-



APPENDIX

25 }
26 return stream ;
27 }
28

29 public byte [] TMStream => StreamGen() ;
30

31 }
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List of abbreviations

BEP Bit Error Probability

BER Bit Error Rate

BSS Best Source Selector

CBSS Correlating Best Source Selector

CCSDS Consultative Committee for Space Data Systems

CRC Cyclic Redundancy Check

CRC Cyclic Redundancy Check

DLR German Aerospace Center

DQE Data Quality Encapsulation

DQM Data Quality Matrix

FEC Forward Error Correction

FM Frequency Modulation

FPGA Field Programmable Gate Array

GSOC German Space Operation Center

IRIG Inter Range Instrumentation Group

ISS International Space Station

MORABA Mobile Rocket Base

MUSC Microgravity User Support Center

OSI Open Systems Interconnection

PCM Pulse Code Modulation

POE Probability Of Error

RCC Range Commanders Council

UDP User Datagram Protocol
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