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Abstract—This paper explores the potential of multi-spectral
Sentinel-2 imagery for human settlement mapping, using deep
learning based methods. We show first results of a study area in
central Europe, with an attention-based ResNeXt to better exploit
the spectral information. Reasonable mapping accuracy has been
achieved, compared to the state-of-the-art products. Based on the
results and comparison with the existing products, we discuss two
interesting questions: how can human settlement mapping be
made consistent with or complementary to the existing human
settlement maps and how can further improvement in human
settlement mapping be achieved by exploring deep learning-based
approaches?

Index Terms—Sentinel-2, classification, attention, convolutional
neural network (CNN), human settlement (HS) mapping

I. INTRODUCTION

Mapping human settlements across the world is of great im-
portance, since the availability of accurate, reliable and up-to-
date human settlement maps is essential to a large number of
issues including housing and sustainable urban development,
poverty reduction, climate change, biodiversity conservation,
ecosystem services provision, as well as disaster management
[1]. This is especially true in the era of rapid urbanization.
Currently, there are only few global products in this regard
available, for example the Global Urban Footprint (GUF)
[2] produced from TerraSAR-X and TanDEM-X Synthetic
Aperture Radar (SAR) data and the Global Human Settlement
Layer (GHSL) produced with global, multi-temporal archives
of fine-scale satellite imagery and other auxiliary data [3].
While all the products show operational application value in
assessing and monitoring human presence [4], improvement
is still needed regarding aspects such as mapping accuracy,
update frequency, production costs etc. For example, high
resolution satellite images such as those from SPOT 5 and
WorldView used in [5] are not freely available on a global
scale. In addition, in areas such as Africa, where not much
reference data is available, the accuracy assessment of each
product tends to be difficult, which makes cross comparison
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among different products necessary. More importantly, these
products are not mapping exactly the same targets, even though
they are all related to human settlements or built-up areas. This
is due to the differing definitions of each product regarding
the classes “urban”, “human settlement” or “built-up”. For
example, GUF represents the built-up areas marked by the
presence of vertical structures, while GHSL represents the
built-up areas marked by the presence of buildings. Another
reason might relate to the employed data source (optical
or SAR satellite images), which carries different kinds of
information with specific potentials and limitations [5]-[7].

The current situation motivates us to explore more possi-
bilities on human settlement mapping from space, taking into
account the powerful feature learning ability offered by deep
learning based methods. Furthermore, we want to eventually
explore the potential to monitor settlement areas based on data
with frequent updating capabilities. For this, we propose to
first focus on the globally available multi-spectral images pro-
vided by the Sentinel-2 mission [8]. Back in 2016, [9] already
assessed its value for detecting built-up areas, showing its
potential regarding the mapping of thematic contents compared
to Landsat and Sentinel-1 images. In addition, we recently
investigated the use of Sentinel-2 imagery with respect to
Local Climate Zone (LCZ) mapping at large scale [10], using
deep learning based methods. For this non-trivial task, map-
ping results with state-of-the-art accuracy have been achieved,
exploiting both the multi-spectral Sentinel-2 imagery and the
powerful feature learning ability of a Residual Convolutional
Neural Network based architecture [11]. Adding to these first
results, this work is meant to give insights into the potential
of Sentinel-2 imagery for the mapping of human settlements
using deep learning based methods, especially in the case
where no ground truth data is available for the target area, thus
domain adaptation is needed. To this end, we investigated the
attention-based ResNeXt architecture, followed by discussions
on the potential, limitations and possible solutions.

II. A CASE STUDY IN CENTRAL EUROPE

A. Convolutional block attention module-based ResNeXt for
human settlement mapping

For deep learning-based HS mapping, there are two options.
The first is to train a semantic segmentation neural network,
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using the ground truth data either in the region of interest or in
a different area, and segment the whole image using the trained
network. While straight-forward, this kind of HS mapping
approach suffers from the unavailability of the ground truth
data. The alternative is to train a patch-wise classification
network, followed by the pixel labeling via a sliding window
on the whole image, with the aiming ground spacing distance
as the step of the sliding window. This way, the patch-
wise ground truth is easier to obtain, for instance, through a
propagation of urban land cover classes. However, the ground
spacing distance of the resulting HS maps will be affected by
the size of the input image patch and the step of the sliding
window. This work will employ the second approach for HS
mapping, and investigate two different sizes of the input image
patch.

For the presented study, we have adapted the Convolu-
tional block attention module (CBAM)-based ResNeXt for HS
mapping, as it has been shown powerful through extensive
evaluations [11], [12]. The input to the network is an image
patch, and the output is a label indicating the class of the
input image patch. The adapted network, hereafter referred to
as ResNeXt(8) and ResNeXt(32) for the input size of 8 and
32, respectively. No big changes are made to the ResNeXt-
50, except a CBAM is added for each residual block, in order
to explore the potential of the attention-based neural network
architecture for HS mapping.

B. Experimental data and setup

Our study areas are spread over seven cities located in the
heart of Europe: Amsterdam, Berlin, Cologne, London, Milan,
Munich and Paris. For each city, four cloud free Sentinel-2
images were downloaded from Google Earth Engine (GEE):
one for each season from winter 2016/2017 to autumn 2017.
Only 10 bands of Sentinel-2 imagery are used in this study:
B2 (Blue), B3 (Green), B4 (Red) and B8 (Near-infrared) with
10 m Ground Sampling Distance (GSD) and B5 (Red Edge
1), B6 (Red Edge 2), B7 (Red Edge 3), B8a (Red Edge 4),
B11 (Short-wavelength infrared 1) and B12 (Short-wavelength
infrared 2) with 20 m GSD. The 20 m bands are up-sampled
to 10 m GSD.

The ground truth labels available for selected neighborhoods
in the seven cities are taken from the So2Sat LCZ42 dataset
[13], which was hand-labeled for LCZ mapping. The 17 LCZs
are: Compact high-rise, Compact mid-rise, Compact low-rise,
Open high-rise, Open mid-rise, Open low-rise, Lightweight
low-rise, Large low-rise, Sparsely built, Heavy industry, Dense
trees, Scattered trees, Bush or scrub, Low plants, Bare rock
or paved, Bare soil or sand and water, respectively. Since the
focus of this study was on the detection of human settlements
with a general notion rather than assigning different classes
to different neighborhoods, we combined the LCZ classes 1
to 8 and 10 to a human settlement (HS) target class, because
they all describe built-up areas. The LCZ A, B, C, D, F, G
are considered as the background class. LCZ class 9 (Sparsely
built) and LCZ E (Bare rock or paved) were not considered
for the HS class or the background class, because they contain

mostly natural surroundings, while the buildings and the streets
(roads) parts are already contained in the HS class. In this way,
we generate a binary classification scheme that distinguishes
between human settlements and natural surroundings. For each
ground truth pixel, a image patch was cutted around the
corresponding position and the patch size is 8 x 8 and 32 x 32,
as input for ResNeXt(8) to ResNeXt(32), respectively. Because
of the 100 meter GSD of the ground truth dataset, the 32 x 32
patches have some overlap.

In order to fully validate the proposed approach for a
first proof-of-concept study, we designed a cross validation
experimental setup, in which the city of Munich was left for
testing while the other six cities were used for training. In this
way, we can gain insights into the potential of this framework
for large-scale human settlement mapping, where ground truth
data is not sufficiently available.

After training the classifier, the human settlement map is
produced by applying a sliding window on the Sentinel-2
image with a stride of one pixel, i.e., 10 meters. To have
a completely independent evaluation, we used the building
layer from OpenStreetMap (OSM) [14] ! transferred to geotiff
format with 10 meter GSD as ground truth.

C. Experimental results

Table I shows the classification accuracy of the two ap-
proaches, evaluated against the OSM building layer, as well
as the manually labeled ground truth. In order to avoid human-
induced bias, an equally distributed grid is generated for the
test city, in the city center area, with 2000 meter distance
between each two points. These manually labeled grid-based
checking points (MLGCPs), with a size of 20m x 20m,
are manually classified into HS or non-HS, allowing for a
meaningful spatial assessment of the HS mapping results. Fur-
thermore, the state-of-the-art products, GUF, Global HBASE,
and the GHS built-up grid, were chosen for comparison, for
better evaluation of the investigated HS mapping approach.

The comparative classification results from ResNeX#(8) and
ResNeXt(32) can be seen in Fig. 1, where the corresponding
OSM building layer is also shown, as a reference. Figure 2
shows a closer view of the subset in the upper-left corner of
the study area in Fig. 1

TABLE I: Accuracy assessment of the HS mapping results.
Overall accuracy (OA), Kappa, commission error (cme), omis-
sion error (ome) are with respect to the MLGCPs, and the
recall is with respect to the OSM building layer.

MLGCPs-based OSM-based
OA Kappa cme ome recall
ResNeXt(8) 0.91 0.79 025  0.02 0.99
ResNeXt(32) 0.88 0.71 029  0.09 0.96
GHSL 0.88 0.69 021 0.24 0.84
GUF 0.92 0.78 008 0.24 0.87
HBASE 0.84 0.64 033 0.15 0.89

IThe employed OSM data copyrighted OpenStreetMap contributors and
available from https://www.openstreetmap.org.



(a) The result of ResNeXt(8).

(b) The result of ResNeXt(32).

b

(c) OSM overlaid on (a).
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Fig. 1: The mapping results overlaid on the Sentinel-2 images, or overlaid with the OSM building layer, in the city center area

of Munich, Germany.

(b) The result of ResNeXt(32).

(a) The result of ResNeXt(8).

Fig. 2: A closer view of the subset indicated by the blue
polygon, in Fig. 1.

III. DIiscusSION
A. Evaluation of the Classification Results

Both the classification accuracy and the mapping results in
Section II show promising performance of the proposed frame-
work for human settlement mapping. Comparable accuracy to
the state-of-the-art products is achieved. The major part of
the human settlement in the city of Munich is successfully
mapped based on the visual comparison to the OSM building
layer in Fig. 1. The higher commission error in Fig. 1 (c) can
be possibly due to the bigger pixel of the HS mapping result,
the different definition of the HS than the building layer in
OSM, as well as the potentially inaccurate and unreliable of
the OSM [15].

From Tab. I, it can be seen that a small input patch size
(ResNeXt(8)) is better based on both of the evaluation methods,
with higher recall for class HS. Besides, ResNeXt(8) provides
lower omission error and commission error than ResNeXt(32).
This can also be proved by Fig. 2, where the result of
ResNeXt(32) shows a clear false positive on the boundary of
the building. This is partly due to the larger patch size of the
input for ResNeXt(32), thus the classification result of a pixel
is possibly negatively affected by its neighborhood within 320
meter.

However, both approaches in this paper provide rather high
commission error, which means many non-urban areas are
classified into the HS class. While this might result from the

limited generalization ability of the classifier trained with sam-
ples from six cities far from the test city Munich, it might also
come from LCZ-derived HS class being non-optimally defined.
A possible solution is to explore the semantic segmentation
networks such as fully convolutional networks.

B. Difference between actual human settlement and the HS
class

When overlying reference building footprints on the map-
ping result, as shown in Fig. 1(c), it becomes clear that the
HS class is not only representing buildings. Instead, it contains
also roads and some other falsely classified areas. This is partly
due to the fact that the labeled HS class still contains streets
in the building blocks, even though we excluded LCZ class
E while preparing the reference samples. Besides, it is related
to the spatial resolution of the employed Sentinel-2 images.
The misclassification can be partly solved by suitable post-
processing, while the challenge of distinguishing buildings
from roads is non-trivial, when using the 10 meter GSD
satellite images.

Similar misclassfication also exists in the existing products,
as shown in Fig. 3. There are some ways to the exclude roads
(streets) out of the human settlement mapping result, which
is necessary at regional or even large-scale, even though we
do not have standard definitions for “city”, “urban”, “built-
up” or “human settlement” yet. The first is considering large
and small neighborhood at the same time, as many parts of
road is not classified as class HS when using ResNeXt(32) (Fig.
3(b)). Another solution can be fusing SAR and optical satellite
images, since both GUF and the Built-up result from Sentinel-
1 contain fewer road area (Fig. 3(c) and 3(d)). However in
the next section, it shows that problems still exist even if the
mapping results only contain buildings.

C. From multi-level classification to human settlement map-
ping
With human settlement mapping as an objective, it is not

enough to only map buildings, since humans do not live in all
kinds of buildings. In the LCZ scheme, there are 10 kinds of



(a) The result of ResNeXt(8).

(b) The result of ResNeXt(32).

(d) Built-up Sentinel-1

(c) GUF

Fig. 3: Comparison of the resulting maps (a, b), GUF (c) and GHSL (d), in a suburban area of Munich. GHSL Source:
https://ghsl.jrc.ec.europa.eu/visualisation.php#. The satellite image data: Google, Image Landsat / Copernicus.

building areas, with difference in height, density and land use.
Figure 4 shows the produced LCZ map of Munich, Germany.
From the subset, we know that it contains at least two kinds of
building areas: Large-low rise and Open low-rise. Therefore,
classifying all buildings into one “human settlement” class is
probably not enough in order to develop a global, people-based
definition of cities and settlements.

From this example, it seems that a multi-level classification,
i.e., from LCZ classification or other land cover classification
to human settlement mapping, is a solution, which will be an
important future research direction.

(a) The city center area.

(b) The red polygon subset.
B LCZ G, Water LCZ F, Bare soil or sand [ll LCZ E, Bare rock or paved LCZ D, Low plants
LCZ C, Scattered trees [l LCZ B, Bush (scrub) B LCZ A, Dense trees B LCZ 10, Heavy industry

LCZ 9, Sparsely built LCZ 8, Large low-rise LCZ 6, Open low-rise B LCZ 5, Open mid-rise
B LCZ4, Open high-risc [ LCZ 3, Compact low-risc [ LCZ 2, Compact mid-risc [l LCZ I, Compact high-rise

Fig. 4: The LCZ map of the city Munich, Germany.

IV. SUMMARY AND OUTLOOK

This paper shows the potential of multi-spectral Sentinel-
2 imagery for human settlement mapping, under the case
where no ground truth data is used in the target area, using a
attention-based ResNeXt. The preliminary results are promis-
ing and yet introduce some important challenges to be solved.
First, the definition of human settlement should be well defined
considering both the existing products and the characteristic
of the employed data. As a first step towards automatic and
efficient human settlement mapping, this work motivates us
to study in directions such as the deep neural network design
and multi-source data fusion in future work.
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