High-Performance Data Analysis with the Helmholtz Analytics Toolkit

Martin Siggel, Debus Charlotte, Alexander Rüttgers, Kai Krajsek, Philipp Knechtges, Markus Götz, Claudia Comito, Björn Hagemeier

German Aerospace Center (DLR)
High-Performance Computing

CSAI, June 14. 2019, University of Jyväskylä
How to perform data analytics on huge datasets?
HeAT!

- HeAT = Helmholtz Analytics Toolkit

- Python framework for parallel, distributed data analytics and machine learning

- Developed within the Helmholtz Analytics Framework Project since 2018

- AIM: Bridge data analytics and high-performance computing

- Open Source licensed, MIT

 [helmholtz-analytics/heat](https://github.com/helmholtz-analytics/heat)
How we started HeAT:
The Helmholtz Analytics Framework (HAF) Project

• Joint project of all 6 Helmholtz centers

• Goal: foster data analytics methods and tools within Helmholtz federation.

• Scope:
 • Development of domain-specific data analysis techniques
 • Co-design between domain scientists and information experts
Motivation: HAF applications

Earth System Modelling

SEVIRI Satellite Images – Near Real Time

Research with Photons

Neuroscience

Aeronautics and Aerodynamics

Structural Biology
Motivation: HAF methods + algorithms

- Clustering
 - k-means, mean shift clustering
- Uncertainty quantification
 - Ensemble methods
- Dimension reduction
 - Autoencoder, reduced order models
- Feature learning
 - Image descriptors, autoencoder
- Data assimilation
 - Kalman filter, 4Dvar, particle filter/smooother
- Classification/Regression
 - Random forest, CNN, SVM
- Modelling
 - Fiber tractography, point processes
- Optimization techniques
 - L-BFGS, simulated annealing
- Hyper-parameter optimization
 - Evidence framework, grid search
- Interpolation
 - Radial basis function, Kriging
- Data mining
 - Frequent item set mining
Greatest Common Denominator?

Machine Learning

= Data

+ Numerical Linear Algebra

https://xkcd.com/1838/
Big Data/Deep Learning Libraries

Big Data
- hadoop
- DISCO
- mahout
- Spark
- Apache Storm
- DASK

Deep Learning
- PyTorch
- TensorFlow
- Chainer
- Keras
- PaddlePaddle
- H2O.ai
- mxnet
- CNTK
- ArrayFire
- dy/net

> High-Performance Data Analysis with the Helmholtz Analytics Toolkit > Martin Siggel > 14.06.2019
Scope

- Facilitating applications of HAF in their work
- Bringing HPC and Machine Learning / Data Analytics closer together
- Ease of use

Design

- PyTorch
 - Tensor Linear Algebra
 - Automatic Differentiation
 - NumPy-like interface
 - GPU support
- mpi4py
 - Distributed Parallelism (MPI)
- HeAT
 - k-means
 - SVM
 - Deep Learning
 - And more machine learning algorithms
Which framework could be basis for HeAT?

Evaluation criteria

- Feature completeness
- Compute performance ➔ Benchmarks required!
- Ease of development
Which technology stack to use?
Feature completeness

<table>
<thead>
<tr>
<th>Framework</th>
<th>GPU</th>
<th>MPI</th>
<th>AD</th>
<th>LA</th>
<th>nD Tensors</th>
<th>SVD</th>
<th>Dist. tens</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyTorch</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)*</td>
</tr>
<tr>
<td>MXNet</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Arrayfire</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

- Completeness: PyTorch and TensorFlow
- Ease of implementation and usage: PyTorch and MXNet

*Note: no support of distributed data in TensorFlow in 2018, but today there is first support!
Which technology stack to use? Compute performance

- Implemented 4 benchmark methods in all frameworks (PyTorch, Tensorflow, MXNet, ArrayFire)
 - K-means
 - Self-Organizing Maps (SOM)
 - Artificial Neural Networks (ANN)
 - Support Vector Machines (SVM)
- Example: ResNet Batch Inference (32 Images) on NVIDIA K80 GPU@JURECA
- Similar result for other ML Methods (e.g. k-means)
- Benchmarking is on-going effort:
 - PyTorch seems to be performing best
Distributed tensors
NumPy

<table>
<thead>
<tr>
<th>Runs on</th>
<th>Data structure</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ND-Tensor</td>
<td>- Elementwise operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Slicing</td>
</tr>
<tr>
<td></td>
<td>shape: (4, 3, 2)</td>
<td>- Matrix operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Reduction</td>
</tr>
</tbody>
</table>
PyTorch

Runs on

Data structure

ND-Tensor

Operations

- Elementwise operations
- Slicing
- Matrix operations
- Reduction
- Automatic differentiation
HeAT

- Operations
 - Elementwise operations
 - Slicing
 - Matrix operations
 - Reduction
 - Automatic differentiation

Runs on
- CPU
- GPU
- MPI

Data structure
- ND-Tensor

Shape: (4, 3, 2)
Data Distribution

Example:

```python
import heat as ht
# construct a range tensor
>>> range_data = ht.arange(6, split=1)

>>> range_data.mean()
2.5
>>> range_data.argmax()
5
```
What has been done so far?

- The core technology has been identified
- Implementation of a distributed parallel tensor core framework
- NumPy-compatible core functionality
- Some linear algebra routines
- Parallel data I/O via HDF 5 and NETCDF
- A first implementation of the k-means algorithm is available
Example: k-means

- Find k data clusters
- Minimization of
 \[\arg\ min_c \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2 \]
- NP-hard problem, many local minima!
- Basic k-means algorithm (heuristic):
 1. Choose k initial centroids \(\mu_1 \ldots \mu_k \)
 2. For each point \(x \) calculate Euclidean distance to all centroids
 3. Assign each point to its closest centroid
 4. Estimate new centroid as mean of points
 5. Go to 2. until convergence
Example: k-means

2. For each point calculate distance to centroids
3. Assign point to closest centroid

```python
>>> data.shape
(18, 2, 1)

>>> centroids.shape
(1, 2, 2)
```

Numpy vs. HeAT

```python
>>> distances = ((data - centroids) ** 2).sum(axis=1, keepdims=True)
>>> matching_centroids = np.expand_dims(distances.argmin(axis=2), axis=2)
```

```python
>>> distances = ((data - centroids) ** 2).sum(axis=1)
>>> matching_centroids = distances.argmin(axis=2)
```

```python
>>> matching_centroids.shape
(18, 1, 1)
```
Example: k-means

Numpy vs. HeAT

4. Select data points that are assigned to the current cluster

```python
>>> matching_centroids.shape
(18, 1, 1)
```

```python
>>> for i in range(self.n_clusters):
    selection = (matching_centroids == i).astype(np.int64)
```

```python
>>> for i in range(self.n_clusters):
    selection = (matching_centroids == i).astype(ht.int64)
```

```python
>>> selection.shape
(18, 1, 1)
```
Example: k-means

Numpy vs. HeAT

4. Compute **new centroid positions** by averaging

```python
>>> matching_centroids.shape
(18, 1, 1)
```

```python
>>> data.shape
(18, 2, 1)
```

NumPy

```python
>>> for i in range(self.n_clusters):
...     new_centroids[:, :, i:i+1] = ((data*selection).sum(axis=0, keepdims=True) /
...     selection.sum(axis=0).clip(1.0, sys.maxsize))
```

HeAT

```python
>>> for i in range(self.n_clusters):
...     new_centroids[:, :, i:i+1] = ((data*selection).sum(axis=0) /
...     selection.sum(axis=0).clip(1.0, sys.maxsize))
```

```python
>>> new_centroids.shape
(1, 2, 2)
```
A real world example:
Rocket engine combustion analysis

- **Goal**: Cost reduction of rocket engines, be competitive with e.g. Space-X

Traditional rocket engine:

- 2 Pumps transporting fluid fuel and oxidizer at very high pressure and flow
- **Advantages**
 - Burning rate can be controlled precisely
- **Disadvantages**
 - Pumps are mechanically very complex
 - Expensive
A real world example:
Rocket engine combustion analysis

- **Goal**: Cost reduction of rocket engines, be competitive with e.g. Space-X

Solid propellant rocket engine

- Fuel and oxidizer are mixed in solid form
- Advantage
 - Cheap
- Disadvantage
 - Burning rate can not be varied during flight
A real world example: Rocket engine combustion analysis

- **Goal:** Cost reduction of rocket engines, be competitive with e.g. Space-X

Hybrid rocket engine

- Pressurized fluid oxidizer
- Solid fuel
- A valve controls, how much oxidizer gets into the combustion chamber
- Advantages
 - Cheap
 - Controllable
A real world example: Rocket engine combustion analysis

• **Goal:** Finding a good design for a hybrid rocket engine

• Hundreds of experiments
• Each experiment 3s video data, ~30000 images/ 8 GB data
• Clustering analysis of combustion experiments
• Identification of different burning phases
• Challenges:
 • Number of clusters unknown a priori
 • High memory consumption and computation demand

➢ **Use HeAT’s k-means for distributed clustering**
 • Each image is a sample in a high-dimensional space
A real world example:
Resulting Clusters, k = 7
Time-dependency of centroids

- Centroid 1
 - $t = 0.5s$
- Centroid 5
 - $t = 1.5s$
- Centroid 6
 - $t = 3.2s$
A real world example:
Results, $k = 7$, Cluster assignment
A real world example: Computational Performance

- Hybrid shared memory + distributed memory setting
- CPU only
- Variation of 1 … 16 MPI total ranks
- Variation of 1 … 3 local threads per process
- Strong scaling analysis: How does the computing time reduce with number of ranks?
- First results look promising, testing on larger systems + GPU necessary
Future Developments

• Completion of neural deep network support, including convolutions and automatic differentiation

• Support for sparse matrices

• In kernel methods (e.g. SVMs), linear system has to be solved with distance matrix

\[K = \begin{pmatrix}
 k_{11} & k_{12} & \cdots \\
 k_{21} & k_{22} & \cdots \\
 \vdots & \vdots & \ddots
\end{pmatrix} \quad k_{ij} = \exp\left(-\gamma \|x_i - x_j\|^2\right) \]

• The \(k_{ij} \) never become zero, but can be arbitrarily close to \(O(n^2) \)

• Could one not partially approximate the matrix with low-rank matrices? \(\rightarrow \) Hierarchical Matrices

• Tensor decompositions to reduce computational complexity

Figure taken from Steffen Börm’s lecture notes „Numerical Methods for Non-Local Operators“
Acknowledgments

This work is supported by the Helmholtz Association Initiative and Networking Fund under project number ZT-I-0003.

Thanks for listening!

Contact

Dr. Martin Siggel
Martin.Siggel@dlr.de
Dr. Charlotte Debus
Dr. Philipp Knechtges

https://github.com/helmholtz-analytics

Scan me
Thanks for listening.

Questions?