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Abstract— The semantic interpretation using point clouds,
especially regarding light detection and ranging (LiDAR) point
cloud classification, has attracted a growing interest in the fields
of photogrammetry, remote sensing, and computer vision. In this
letter, we aim at tackling a general and typical feature learning
problem in 3-D point cloud classification—how to represent
geometric features by structurally considering a point and its
surroundings in a more effective and discriminative fashion?
Recently, enormous efforts have been made to design the geomet-
ric features, yet it is less investigated to fully explore the potentials
of the features. For that, there have been many filter-based
studies proposed by selecting a subset of the whole feature space
for better representing the local geometry structure. However,
such a hard-threshold selection strategy inevitably suffers from
information loss. In addition, the construction of the geometric
features is relatively sensitive to the size of the neighborhood.
To this end, we propose to extract multi-scaled feature rep-
resentations and locally embed them into a low-dimensional
and robust subspace where a more compact representation
with the intrinsic structure preservation of the data is expected
to be obtained, thereby further yielding a better classification
performance. In our case, we apply a popular manifold learning
approach, that is, locality-preserving projections, for the task
of learning low-dimensional embedding. Experimental results
conducted on one LiDAR point cloud data set provided by the
2018 IEEE Data Fusion Contest demonstrate the effectiveness of
the proposed method in comparison with several commonly used
state-of-the-art baselines.

Index Terms— Geometric features, light detection and
ranging (LiDAR) point cloud classification, local manifold
learning (LML), multi-scale.

I. INTRODUCTION

LAND use and land cover is of great significance for
urban understanding and monitoring. To acquire sufficient

information for this task, using an appropriate data set is
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necessary. Many recent studies have focused on the use of
earth observation data sources, such as hyperspectral images
and multispectral images, for classifying different materials by
means of spectral absorption characteristics of various objects
[1], [2]. Intuitively, the characteristics of spatial structures
cannot be well encoded when using such image-based data
sources for the classification task, such as a digital surface
model (DSM) [3], [4]. Recently, light detection and ranging
(LiDAR), acquiring rich 3-D spatial information efficiently
and cost-effectively, has become an important data source for
the classification of urban objects [5]–[7]. However, in the
complex urban scenes, the automatic classification of 3-D
points is still a challenging task due to an insufficient and
inaccurate representation of the local geometry.

For classifying point clouds, the generation of distinctive
features is of great importance for obtaining high-precision
results. The straightforward strategy to increase the distinc-
tiveness of feature is to introduce more candidate features [8]
to get a better representative of the domain. However, super-
abundant information would be counterproductive in improv-
ing the performance of generated features when representing
the local geometry due to possible high coherence of fea-
tures. Moreover, the estimation of high-dimensional features
is computationally expensive and time-consuming. To tackle
this problem, the selection of features is a feasible strategy
for reducing repetitive and redundant feature information
[5], [9], [10]. However, it is inevitable to lose some useful
information during the selection of features. An alternative
strategy is used to reduce the dimensionality of features.
Compared with the feature selection strategy, it automatically
reduces the size of the features and simultaneously encap-
sulates repetitive and redundant information into distinctive
domains of the feature space. Moreover, the number of neigh-
bors of points is also a critical factor to be considered for the
calculation of geometric features. Weinmann et al. [9], [10]
proposed a promising strategy in their comprehensive review
to guide the selection of neighborhood size by means of
eigenentropy measurement. As a tradeoff between the compu-
tational cost and optimal size of the neighborhood, we propose
to extract contextual features in a multi-scale way instead of
directly estimating the size of the neighborhood. It should
be noted, however, that multi-scaled features inevitably suffer
from redundancy in information diversity.

The pointwise classification results may be heterogeneous
due to the deficiency in modeling local neighborhood
relations of a given point. A solution was proposed in [11]
by applying contextual classification for smoothing, while
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Fig. 1. Workflow of the proposed point cloud classification strategy. (a) Scaling. (b) Geometric space. (c) Concatenation. (d) Embedding. (e) Classification.

Landrieu et al. [12] globally optimized the classification
results by considering contextual information as a post-
processing step.

To this end, we present a workflow for land use and
land cover classification using LiDAR point clouds, com-
bining multi-scale feature extraction with manifold learning
(ML)-based dimensionality reduction (DR). Inspired by
promising results achieved in the context of hyperspectral
DR [13], [14], we also make use of ML for the DR of
features. The main reason to select the ML methods behind
the feature extraction step lies in the consistent motivation,
that is, they both model the locally contextual information.
Owing to the massive data amount of the point cloud, we use
a linear ML method, locality-preserving projections (LPP).
To be specific, we developed a novel feature reduction method
for point cloud feature representation, using ML strategies.
We evaluate our classification method by performing a qual-
itative and quantitative analysis with two comparable and
representative approaches. We also conduct experiments using
LiDAR point clouds provided in the 2018 GRSS data fusion
contest (DFC) [15], to test and analyze the performance of our
feature extraction method in a highly complicated urban scene.

II. METHODOLOGY

The proposed method for the feature embedding of LiDAR
point cloud includes two major stages: 1) the extraction of
point-based multi-scale geometric features and 2) the reduc-
tion of the dimensionality of features. The workflow of the
proposed method is shown in Fig. 1.

A. Extraction of Point-Based Multi-Scale Geometric Features

Feature extraction is a crucial part in point cloud classifica-
tion, and its performance plays an important role in the quality
of the classification results. However, it remains a challenging
task to extract sufficient information from raw LiDAR points.

In this letter, we construct a set of geometric features
including surface features, statistical features, dimensionality
features, height features, and orientation features. Specifically,

TABLE I

LIST OF USED FEATURES

they consist of local density Dk , omnivariance Ok , anisotropy
Ak , eigenentropy Ek , local curvature Ck , sum of eigenvalues∑

k , geometric center X̂k , linearity Lk , planarity Pk , scattering
Sk , height mean H̄k, height difference �Hk , normal vector nk ,
and verticality Vk (see Table I).

These features are used to represent the local geometric
shape based on the eigenvalue decomposition of the 3-D
structure tensor formed by a specific neighborhood of the
point p [9].

The geometric features are also influenced by the neigh-
borhood scale. Thus, to consider different local contexts,
the geometric features of the query point are calculated using
three different neighborhood sizes k. Here, k = k0, k1, and k2,
and in this letter, k0 = 10, k1 = 20, and k2 = 30 (determined
based on the point density). Then, the geometric features are
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concatenated to form the multi-scale feature vector to represent
the 3-D LiDAR point cloud scene.

B. Low-Dimensional Embedding of Multi-Scale Features

1) Locality-Preserving Projections: In this section,
we briefly review a widely used local ML (LML) method,
namely LPP. LPP embeds the high-dimensional data or feature
into a low-dimensional subspace in which the topological
structure of high-dimensional data is locally preserved. Given
a set of data samples X = [x1, x2, . . . , xN ] ∈ R

L×N with
L dimension by N pixels, LPP linearly learns a mapping
A to find the corresponding low-dimensional embedding
Y = [y1, y2, . . . , yN ] ∈ R

D×N (D � L). This process can be
modeled in the following:∑

(yi − y j )
2Wi j (1)

where Wi j , which is an adjunct matrix, can be defined as

Wi j =
{

exp(−||xi − x j ||2/σ 2)

0,
(2)

where σ denotes the standard deviation of the Gaussian kernel
function.

To enhance the model’s interpretability and transferability,
(4) can be approximately modeled in a linearized way. Suppose
yT = aT X, where a is a linear projection; thus, (4) can be
simplified as follows:∑

(yi − y j )
2Wi j =

∑
(aT xi − aT x j )

2Wi j

=
∑

aT xi Dii xT
i a −

∑
aT xi Wi j xT

j a

= aT X(D − W)XT a = aT XLXT a (3)

where D is a diagonal matrix and Dij = ∑
j Wi j . L is the

Laplacian matrix computed by L = D−W. To avoid the trival
solution, a necessary constraint formulated by yT Dy = 1 is
forced in the process of solving (6), and its linearized version
can be written as

aT XDXT a = 1. (4)

Accordingly, the variable a can be estimated by minimizing
the following objective function:

â = arg min
a

(aT XLXT a). (5)

The solution of (8) can be equivalently obtained by solving
the following generalized eigenvalues decomposition problem:

XLXT = λXDXT a. (6)

2) Geometric Primitive Embedding: Multi-scaled feature
modeling can provide the geometric information more suffi-
ciently by considering the local neighboring context of a given
point. To some extent, the redundancy of the features hinders
the classification performance from further going better. For
this reason, feature selection has been used to, to some
extent, handle this issue by filtering some features based
on the inter-correlations between features or the coherence
between features and given labels. It should be noted that,
however, the new feature space constructed by those selected
features still lies in the original space. Beyond the original
feature space, we propose to use the LML-based method

(LPP in our case) on the extracted geometric primitive to learn
a compact low-dimensional feature representation by locally
embedding the neighboring information.

Compared with other DR methods that maximize or pre-
serve the specific information, such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA),
LML-based method is capable of mining the underlying
data structure and considering the correlation between points.
More specifically, for each point in the multi-scale feature
domain, there is a strong spatial correlation between points,
particularly their neighborhoods. Intuitively, LPP learns the
low-dimensional representation by constructing a neighboring
graph for each sample in the high-dimensional feature domain.
This might further enhance the connections between the orig-
inal features of the points and their neighbors.

Compared with other nonlinear LML’s approaches, LPP can
explicitly project out-of-samples into the learned subspace,
owing to its linearized technique. Moreover, a large number of
samples are usually used for the model’s learning in practice.
For the two purposes, the multi-scale geometric features are
fed into the LPP, leading to the geometric primitive embedding
as the input of the final classifier.

III. EXPERIMENTS

A. LiDAR Point Cloud Data Set

The LiDAR point cloud provided by the 2018 IEEE GRSS
DFC data set is a classification-related benchmark data set
acquired by the National Center for Airborne Laser Mapping
(NCALM) using an Optech Titan MW (14SEN/CON340) with
an integrated camera (an LiDAR sensor operating at three
different laser wavelengths, namely 1550, 1064, and 532 nm),
including 20 land use and land cover categories. Here, exper-
iments are carried out using LiDAR point clouds collected by
laser wavelength 1550 nm.

B. Data Preprocessing

To better represent data and reduce the abundant points
caused by spatial correlation, we apply a downsampling pro-
cedure to reduce the number of points for efficiently testing
our proposed method. The downsampling is conducted by
selecting the point whose ground coordinates are nearest to
the center of a pixel so that we can assign the features of
this point to the pixel. Thus, we can construct a feature map
whose resolution is the same as the resolution of the ground
truth map. The feature for each pixel corresponds to the multi-
scale features of the point assigned to this pixel.

C. Results of 2018 GRSS DFC LiDAR Data

For this data set, we adopted a random sampling strat-
egy to select training and test samples. We randomly select
500 samples for each class as training samples and the rest of
the samples with labels are assigned as test samples. Labels
are selected as training, and test samples can be seen in Fig. 2.
We compare the classification results on multi-scale features
with that of the single-scale neighborhood, and the classifi-
cation results on dimensionality-reduced data using LPP with
those using some benchmark DR methods (PCA and LDA)
and original geometric features (OGF). Since our main focus
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Fig. 2. Classification maps of the different algorithms obtained using an RF classifier on the DFC2018 data set (the map of training samples is dilated for
better illustration, and the black points in classification maps are pixels without projected LiDAR points).

TABLE II

CLASSIFICATION ACCURACY FOR DIFFERENT FEATURE

EXTRACTION METHODS USING DFC2018 DATA SET

is to assess the discriminative performance of the learned
geometric features, we, therefore, use a classic classifier—
random forest whose number of trees is selected to be 100 by
cross-validation. Moreover, ten replications were performed
for selecting training and test samples.

1) Performance Comparison and Analysis Between Multi-
Scale Feature Extraction and Single-Scale Feature Extraction:
The representation of the neighborhood of points is a crucial
issue directly influencing the classification correctness. Thus,
the neighborhood for each point is of great significance.
Table II shows the classification accuracy obtained by using
different neighborhood scales for feature extraction.

It should be noted that two measures for the classification
accuracy are used for performance evaluation, namely over-
all accuracy (OA) and average accuracy (AA). The multi-
scale feature extraction outperforms the other two feature
extraction methods. Compared with the single scale and dual
scale, multi-scale feature extraction increases the OAs by
4.52% and 0.96%, respectively. For AAs, on the other hand,
the corresponding increases are 7.14% and 1.52%, respec-
tively. Overall, with the increase of scales of neighborhoods,
the performance of classification also increases. It means that
multi-scale features provide a more distinctive representation
of local context.

TABLE III

CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETERS

WITH RF CLASSIFIER FOR DIFFERENT DR METHODS

ON THE DFC2018 DATA SET

2) Performance Comparison and Analysis Between LPP
and Classical DR Methods: Table III lists the OAs and AAs
of four different methods with optimal parameters determined
by cross-validation on the training set.

The LML method outperforms other methods. Compared
with OGF, PCA, and LDA, LPP increases the OA by
7.16%, 6.34%, and 15.95%, respectively. For the AA, on the
other hand, the corresponding increases are 9.78%, 10%,
and 21.26%, respectively. The classification maps are shown
in Fig. 2. These results demonstrate the effectiveness of this
LML method and imply that it successfully contributes to
extracting robust and discriminative low-dimensional features.

Moreover, we also provided the classification results with
our method on the test scene given in the DFC2018, yielding
the 40% OA. To the best of our knowledge, the resulting
accuracy is reasonable to a large extent, since our task is point
cloud classification without considering intensities.

3) Sensitivity Analysis of Parameters: The sensitivity of the
parameters is examined by varying the number of neighbors,
the size of reduced dimensionality d , and the variance of
Gaussian kernel in weight determination σ for LPP.
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Fig. 3. Sensitivity analysis of the proposed method on three parameters. (a) Dimensionality. (b) Number of neighbors. (c) Variance of Gaussian kernel.

As shown in Fig. 3, the performance of LPP is in some
kind sensitive to the parameters. In general, as observed
from the data dimensionality point of view, the classification
accuracy increases with decreasing dimensionality. When the
reduced dimensionality reaches approximately four, the accu-
racy reaches the nearly optimal level. Compared with reduced
dimensionality, LPP is much less sensitive to the other two
parameters, the number of neighbors and the variance of
the Gaussian kernel. As the number of neighbors gradually
increases, the corresponding classification accuracy increases
moderately to a peak (e.g., k is equal to around 15) and then
fluctuates. A large number of neighbors may obscure the local
structure, whereas a small amount of neighbor may not be suf-
ficient to represent the local structure, causing the fluctuation
of the LPP performance. The accuracy reaches a peak when
the variance of the Gaussian function in weight determination
is 5.0. Thus, we can determine the optimal parameters for
LPP in our application for reduced dimensionality, number of
neighbors, and the variance of Gaussian function to be 4, 15,
and 0.5.

IV. CONCLUSION

In this letter, for LiDAR point cloud classification, we pro-
posed a novel workflow that combines multi-scale geometric
feature extraction with an LML method for the DR of features
to provide a better representation for point cloud and further
classification. The DFC18 LiDAR data set is used in our
experiments. The qualitative and quantitative results reveal
that our method can outperform other feature DR methods
in classification and can provide an effective and distinctive
geometric feature representation for our application.
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